xref: /linux/kernel/kcsan/core.c (revision bb5b94f5bbe75470912b70fb08880fc5273aa62d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kcsan: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 
23 #include "atomic.h"
24 #include "encoding.h"
25 #include "kcsan.h"
26 
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32 
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42 
43 bool kcsan_enabled;
44 
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47 	.disable_count		= 0,
48 	.atomic_next		= 0,
49 	.atomic_nest_count	= 0,
50 	.in_flat_atomic		= false,
51 	.access_mask		= 0,
52 	.scoped_accesses	= {LIST_POISON1, NULL},
53 };
54 
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *	1. if during insertion the address slot is already occupied, check if
62  *	   any adjacent slots are free;
63  *	2. accesses that straddle a slot boundary due to size that exceeds a
64  *	   slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *	1. excessive contention between watchpoint checks and setup;
71  *	2. larger number of simultaneous watchpoints without sacrificing
72  *	   performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81 
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89 
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100 
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106 
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109 
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111 						      size_t size,
112 						      bool expect_write,
113 						      long *encoded_watchpoint)
114 {
115 	const int slot = watchpoint_slot(addr);
116 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117 	atomic_long_t *watchpoint;
118 	unsigned long wp_addr_masked;
119 	size_t wp_size;
120 	bool is_write;
121 	int i;
122 
123 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124 
125 	for (i = 0; i < NUM_SLOTS; ++i) {
126 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127 		*encoded_watchpoint = atomic_long_read(watchpoint);
128 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129 				       &wp_size, &is_write))
130 			continue;
131 
132 		if (expect_write && !is_write)
133 			continue;
134 
135 		/* Check if the watchpoint matches the access. */
136 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137 			return watchpoint;
138 	}
139 
140 	return NULL;
141 }
142 
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146 	const int slot = watchpoint_slot(addr);
147 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148 	atomic_long_t *watchpoint;
149 	int i;
150 
151 	/* Check slot index logic, ensuring we stay within array bounds. */
152 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156 
157 	for (i = 0; i < NUM_SLOTS; ++i) {
158 		long expect_val = INVALID_WATCHPOINT;
159 
160 		/* Try to acquire this slot. */
161 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163 			return watchpoint;
164 	}
165 
166 	return NULL;
167 }
168 
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *	1. another thread already consumed the watchpoint;
175  *	2. the thread that set up the watchpoint already removed it;
176  *	3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183 
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189 
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195 
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198 	/*
199 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200 	 * also result in calls that generate warnings in uaccess regions.
201 	 */
202 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204 
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208 	struct kcsan_ctx *ctx = get_ctx();
209 	struct list_head *prev_save = ctx->scoped_accesses.prev;
210 	struct kcsan_scoped_access *scoped_access;
211 
212 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215 	ctx->scoped_accesses.prev = prev_save;
216 }
217 
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222 	if (type & KCSAN_ACCESS_ATOMIC)
223 		return true;
224 
225 	/*
226 	 * Unless explicitly declared atomic, never consider an assertion access
227 	 * as atomic. This allows using them also in atomic regions, such as
228 	 * seqlocks, without implicitly changing their semantics.
229 	 */
230 	if (type & KCSAN_ACCESS_ASSERT)
231 		return false;
232 
233 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236 		return true; /* Assume aligned writes up to word size are atomic. */
237 
238 	if (ctx->atomic_next > 0) {
239 		/*
240 		 * Because we do not have separate contexts for nested
241 		 * interrupts, in case atomic_next is set, we simply assume that
242 		 * the outer interrupt set atomic_next. In the worst case, we
243 		 * will conservatively consider operations as atomic. This is a
244 		 * reasonable trade-off to make, since this case should be
245 		 * extremely rare; however, even if extremely rare, it could
246 		 * lead to false positives otherwise.
247 		 */
248 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249 			--ctx->atomic_next; /* in task, or outer interrupt */
250 		return true;
251 	}
252 
253 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255 
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259 	/*
260 	 * Never set up watchpoints when memory operations are atomic.
261 	 *
262 	 * Need to check this first, before kcsan_skip check below: (1) atomics
263 	 * should not count towards skipped instructions, and (2) to actually
264 	 * decrement kcsan_atomic_next for consecutive instruction stream.
265 	 */
266 	if (is_atomic(ptr, size, type, ctx))
267 		return false;
268 
269 	if (this_cpu_dec_return(kcsan_skip) >= 0)
270 		return false;
271 
272 	/*
273 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
274 	 * via reset_kcsan_skip() to avoid underflow.
275 	 */
276 
277 	/* this operation should be watched */
278 	return true;
279 }
280 
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287 	u32 state = this_cpu_read(kcsan_rand_state);
288 
289 	state = 1664525 * state + 1013904223;
290 	this_cpu_write(kcsan_rand_state, state);
291 
292 	return state % ep_ro;
293 }
294 
295 static inline void reset_kcsan_skip(void)
296 {
297 	long skip_count = kcsan_skip_watch -
298 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
300 				   0);
301 	this_cpu_write(kcsan_skip, skip_count);
302 }
303 
304 static __always_inline bool kcsan_is_enabled(void)
305 {
306 	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
307 }
308 
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313 	/* For certain access types, skew the random delay to be longer. */
314 	unsigned int skew_delay_order =
315 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316 
317 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
319 			       0;
320 	udelay(delay);
321 }
322 
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326 	task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329 
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333 	task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336 
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349 
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351 					    size_t size,
352 					    int type,
353 					    atomic_long_t *watchpoint,
354 					    long encoded_watchpoint)
355 {
356 	unsigned long flags;
357 	bool consumed;
358 
359 	if (!kcsan_is_enabled())
360 		return;
361 
362 	/*
363 	 * The access_mask check relies on value-change comparison. To avoid
364 	 * reporting a race where e.g. the writer set up the watchpoint, but the
365 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
366 	 */
367 	if (get_ctx()->access_mask != 0)
368 		return;
369 
370 	/*
371 	 * Consume the watchpoint as soon as possible, to minimize the chances
372 	 * of !consumed. Consuming the watchpoint must always be guarded by
373 	 * kcsan_is_enabled() check, as otherwise we might erroneously
374 	 * triggering reports when disabled.
375 	 */
376 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
377 
378 	/* keep this after try_consume_watchpoint */
379 	flags = user_access_save();
380 
381 	if (consumed) {
382 		kcsan_save_irqtrace(current);
383 		kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints);
384 		kcsan_restore_irqtrace(current);
385 	} else {
386 		/*
387 		 * The other thread may not print any diagnostics, as it has
388 		 * already removed the watchpoint, or another thread consumed
389 		 * the watchpoint before this thread.
390 		 */
391 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
392 	}
393 
394 	if ((type & KCSAN_ACCESS_ASSERT) != 0)
395 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
396 	else
397 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
398 
399 	user_access_restore(flags);
400 }
401 
402 static noinline void
403 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
404 {
405 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
406 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
407 	atomic_long_t *watchpoint;
408 	u64 old, new, diff;
409 	unsigned long access_mask;
410 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
411 	unsigned long ua_flags = user_access_save();
412 	unsigned long irq_flags = 0;
413 
414 	/*
415 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
416 	 * should_watch().
417 	 */
418 	reset_kcsan_skip();
419 
420 	if (!kcsan_is_enabled())
421 		goto out;
422 
423 	/*
424 	 * Special atomic rules: unlikely to be true, so we check them here in
425 	 * the slow-path, and not in the fast-path in is_atomic(). Call after
426 	 * kcsan_is_enabled(), as we may access memory that is not yet
427 	 * initialized during early boot.
428 	 */
429 	if (!is_assert && kcsan_is_atomic_special(ptr))
430 		goto out;
431 
432 	if (!check_encodable((unsigned long)ptr, size)) {
433 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
434 		goto out;
435 	}
436 
437 	/*
438 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
439 	 * runtime is entered for every memory access, and potentially useful
440 	 * information is lost if dirtied by KCSAN.
441 	 */
442 	kcsan_save_irqtrace(current);
443 	if (!kcsan_interrupt_watcher)
444 		local_irq_save(irq_flags);
445 
446 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
447 	if (watchpoint == NULL) {
448 		/*
449 		 * Out of capacity: the size of 'watchpoints', and the frequency
450 		 * with which should_watch() returns true should be tweaked so
451 		 * that this case happens very rarely.
452 		 */
453 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
454 		goto out_unlock;
455 	}
456 
457 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
458 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
459 
460 	/*
461 	 * Read the current value, to later check and infer a race if the data
462 	 * was modified via a non-instrumented access, e.g. from a device.
463 	 */
464 	old = 0;
465 	switch (size) {
466 	case 1:
467 		old = READ_ONCE(*(const u8 *)ptr);
468 		break;
469 	case 2:
470 		old = READ_ONCE(*(const u16 *)ptr);
471 		break;
472 	case 4:
473 		old = READ_ONCE(*(const u32 *)ptr);
474 		break;
475 	case 8:
476 		old = READ_ONCE(*(const u64 *)ptr);
477 		break;
478 	default:
479 		break; /* ignore; we do not diff the values */
480 	}
481 
482 	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
483 		kcsan_disable_current();
484 		pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
485 		       is_write ? "write" : "read", size, ptr,
486 		       watchpoint_slot((unsigned long)ptr),
487 		       encode_watchpoint((unsigned long)ptr, size, is_write));
488 		kcsan_enable_current();
489 	}
490 
491 	/*
492 	 * Delay this thread, to increase probability of observing a racy
493 	 * conflicting access.
494 	 */
495 	delay_access(type);
496 
497 	/*
498 	 * Re-read value, and check if it is as expected; if not, we infer a
499 	 * racy access.
500 	 */
501 	access_mask = get_ctx()->access_mask;
502 	new = 0;
503 	switch (size) {
504 	case 1:
505 		new = READ_ONCE(*(const u8 *)ptr);
506 		break;
507 	case 2:
508 		new = READ_ONCE(*(const u16 *)ptr);
509 		break;
510 	case 4:
511 		new = READ_ONCE(*(const u32 *)ptr);
512 		break;
513 	case 8:
514 		new = READ_ONCE(*(const u64 *)ptr);
515 		break;
516 	default:
517 		break; /* ignore; we do not diff the values */
518 	}
519 
520 	diff = old ^ new;
521 	if (access_mask)
522 		diff &= access_mask;
523 
524 	/* Were we able to observe a value-change? */
525 	if (diff != 0)
526 		value_change = KCSAN_VALUE_CHANGE_TRUE;
527 
528 	/* Check if this access raced with another. */
529 	if (!consume_watchpoint(watchpoint)) {
530 		/*
531 		 * Depending on the access type, map a value_change of MAYBE to
532 		 * TRUE (always report) or FALSE (never report).
533 		 */
534 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
535 			if (access_mask != 0) {
536 				/*
537 				 * For access with access_mask, we require a
538 				 * value-change, as it is likely that races on
539 				 * ~access_mask bits are expected.
540 				 */
541 				value_change = KCSAN_VALUE_CHANGE_FALSE;
542 			} else if (size > 8 || is_assert) {
543 				/* Always assume a value-change. */
544 				value_change = KCSAN_VALUE_CHANGE_TRUE;
545 			}
546 		}
547 
548 		/*
549 		 * No need to increment 'data_races' counter, as the racing
550 		 * thread already did.
551 		 *
552 		 * Count 'assert_failures' for each failed ASSERT access,
553 		 * therefore both this thread and the racing thread may
554 		 * increment this counter.
555 		 */
556 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
557 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
558 
559 		kcsan_report_known_origin(ptr, size, type, value_change,
560 					  watchpoint - watchpoints,
561 					  old, new, access_mask);
562 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
563 		/* Inferring a race, since the value should not have changed. */
564 
565 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
566 		if (is_assert)
567 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
568 
569 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
570 			kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask);
571 	}
572 
573 	/*
574 	 * Remove watchpoint; must be after reporting, since the slot may be
575 	 * reused after this point.
576 	 */
577 	remove_watchpoint(watchpoint);
578 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
579 out_unlock:
580 	if (!kcsan_interrupt_watcher)
581 		local_irq_restore(irq_flags);
582 	kcsan_restore_irqtrace(current);
583 out:
584 	user_access_restore(ua_flags);
585 }
586 
587 static __always_inline void check_access(const volatile void *ptr, size_t size,
588 					 int type)
589 {
590 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
591 	atomic_long_t *watchpoint;
592 	long encoded_watchpoint;
593 
594 	/*
595 	 * Do nothing for 0 sized check; this comparison will be optimized out
596 	 * for constant sized instrumentation (__tsan_{read,write}N).
597 	 */
598 	if (unlikely(size == 0))
599 		return;
600 
601 	/*
602 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
603 	 * user_access_save, as the address that ptr points to is only used to
604 	 * check if a watchpoint exists; ptr is never dereferenced.
605 	 */
606 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
607 				     &encoded_watchpoint);
608 	/*
609 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
610 	 * slow-path, as long as no state changes that cause a race to be
611 	 * detected and reported have occurred until kcsan_is_enabled() is
612 	 * checked.
613 	 */
614 
615 	if (unlikely(watchpoint != NULL))
616 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
617 				       encoded_watchpoint);
618 	else {
619 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
620 
621 		if (unlikely(should_watch(ptr, size, type, ctx)))
622 			kcsan_setup_watchpoint(ptr, size, type);
623 		else if (unlikely(ctx->scoped_accesses.prev))
624 			kcsan_check_scoped_accesses();
625 	}
626 }
627 
628 /* === Public interface ===================================================== */
629 
630 void __init kcsan_init(void)
631 {
632 	int cpu;
633 
634 	BUG_ON(!in_task());
635 
636 	for_each_possible_cpu(cpu)
637 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
638 
639 	/*
640 	 * We are in the init task, and no other tasks should be running;
641 	 * WRITE_ONCE without memory barrier is sufficient.
642 	 */
643 	if (kcsan_early_enable) {
644 		pr_info("enabled early\n");
645 		WRITE_ONCE(kcsan_enabled, true);
646 	}
647 }
648 
649 /* === Exported interface =================================================== */
650 
651 void kcsan_disable_current(void)
652 {
653 	++get_ctx()->disable_count;
654 }
655 EXPORT_SYMBOL(kcsan_disable_current);
656 
657 void kcsan_enable_current(void)
658 {
659 	if (get_ctx()->disable_count-- == 0) {
660 		/*
661 		 * Warn if kcsan_enable_current() calls are unbalanced with
662 		 * kcsan_disable_current() calls, which causes disable_count to
663 		 * become negative and should not happen.
664 		 */
665 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
666 		kcsan_disable_current(); /* disable to generate warning */
667 		WARN(1, "Unbalanced %s()", __func__);
668 		kcsan_enable_current();
669 	}
670 }
671 EXPORT_SYMBOL(kcsan_enable_current);
672 
673 void kcsan_enable_current_nowarn(void)
674 {
675 	if (get_ctx()->disable_count-- == 0)
676 		kcsan_disable_current();
677 }
678 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
679 
680 void kcsan_nestable_atomic_begin(void)
681 {
682 	/*
683 	 * Do *not* check and warn if we are in a flat atomic region: nestable
684 	 * and flat atomic regions are independent from each other.
685 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
686 	 * comments.
687 	 */
688 
689 	++get_ctx()->atomic_nest_count;
690 }
691 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
692 
693 void kcsan_nestable_atomic_end(void)
694 {
695 	if (get_ctx()->atomic_nest_count-- == 0) {
696 		/*
697 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
698 		 * kcsan_nestable_atomic_begin() calls, which causes
699 		 * atomic_nest_count to become negative and should not happen.
700 		 */
701 		kcsan_nestable_atomic_begin(); /* restore to 0 */
702 		kcsan_disable_current(); /* disable to generate warning */
703 		WARN(1, "Unbalanced %s()", __func__);
704 		kcsan_enable_current();
705 	}
706 }
707 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
708 
709 void kcsan_flat_atomic_begin(void)
710 {
711 	get_ctx()->in_flat_atomic = true;
712 }
713 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
714 
715 void kcsan_flat_atomic_end(void)
716 {
717 	get_ctx()->in_flat_atomic = false;
718 }
719 EXPORT_SYMBOL(kcsan_flat_atomic_end);
720 
721 void kcsan_atomic_next(int n)
722 {
723 	get_ctx()->atomic_next = n;
724 }
725 EXPORT_SYMBOL(kcsan_atomic_next);
726 
727 void kcsan_set_access_mask(unsigned long mask)
728 {
729 	get_ctx()->access_mask = mask;
730 }
731 EXPORT_SYMBOL(kcsan_set_access_mask);
732 
733 struct kcsan_scoped_access *
734 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
735 			  struct kcsan_scoped_access *sa)
736 {
737 	struct kcsan_ctx *ctx = get_ctx();
738 
739 	__kcsan_check_access(ptr, size, type);
740 
741 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
742 
743 	INIT_LIST_HEAD(&sa->list);
744 	sa->ptr = ptr;
745 	sa->size = size;
746 	sa->type = type;
747 
748 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
749 		INIT_LIST_HEAD(&ctx->scoped_accesses);
750 	list_add(&sa->list, &ctx->scoped_accesses);
751 
752 	ctx->disable_count--;
753 	return sa;
754 }
755 EXPORT_SYMBOL(kcsan_begin_scoped_access);
756 
757 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
758 {
759 	struct kcsan_ctx *ctx = get_ctx();
760 
761 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
762 		return;
763 
764 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
765 
766 	list_del(&sa->list);
767 	if (list_empty(&ctx->scoped_accesses))
768 		/*
769 		 * Ensure we do not enter kcsan_check_scoped_accesses()
770 		 * slow-path if unnecessary, and avoids requiring list_empty()
771 		 * in the fast-path (to avoid a READ_ONCE() and potential
772 		 * uaccess warning).
773 		 */
774 		ctx->scoped_accesses.prev = NULL;
775 
776 	ctx->disable_count--;
777 
778 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
779 }
780 EXPORT_SYMBOL(kcsan_end_scoped_access);
781 
782 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
783 {
784 	check_access(ptr, size, type);
785 }
786 EXPORT_SYMBOL(__kcsan_check_access);
787 
788 /*
789  * KCSAN uses the same instrumentation that is emitted by supported compilers
790  * for ThreadSanitizer (TSAN).
791  *
792  * When enabled, the compiler emits instrumentation calls (the functions
793  * prefixed with "__tsan" below) for all loads and stores that it generated;
794  * inline asm is not instrumented.
795  *
796  * Note that, not all supported compiler versions distinguish aligned/unaligned
797  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
798  * version to the generic version, which can handle both.
799  */
800 
801 #define DEFINE_TSAN_READ_WRITE(size)                                           \
802 	void __tsan_read##size(void *ptr);                                     \
803 	void __tsan_read##size(void *ptr)                                      \
804 	{                                                                      \
805 		check_access(ptr, size, 0);                                    \
806 	}                                                                      \
807 	EXPORT_SYMBOL(__tsan_read##size);                                      \
808 	void __tsan_unaligned_read##size(void *ptr)                            \
809 		__alias(__tsan_read##size);                                    \
810 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
811 	void __tsan_write##size(void *ptr);                                    \
812 	void __tsan_write##size(void *ptr)                                     \
813 	{                                                                      \
814 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
815 	}                                                                      \
816 	EXPORT_SYMBOL(__tsan_write##size);                                     \
817 	void __tsan_unaligned_write##size(void *ptr)                           \
818 		__alias(__tsan_write##size);                                   \
819 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
820 	void __tsan_read_write##size(void *ptr);                               \
821 	void __tsan_read_write##size(void *ptr)                                \
822 	{                                                                      \
823 		check_access(ptr, size,                                        \
824 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
825 	}                                                                      \
826 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
827 	void __tsan_unaligned_read_write##size(void *ptr)                      \
828 		__alias(__tsan_read_write##size);                              \
829 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
830 
831 DEFINE_TSAN_READ_WRITE(1);
832 DEFINE_TSAN_READ_WRITE(2);
833 DEFINE_TSAN_READ_WRITE(4);
834 DEFINE_TSAN_READ_WRITE(8);
835 DEFINE_TSAN_READ_WRITE(16);
836 
837 void __tsan_read_range(void *ptr, size_t size);
838 void __tsan_read_range(void *ptr, size_t size)
839 {
840 	check_access(ptr, size, 0);
841 }
842 EXPORT_SYMBOL(__tsan_read_range);
843 
844 void __tsan_write_range(void *ptr, size_t size);
845 void __tsan_write_range(void *ptr, size_t size)
846 {
847 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
848 }
849 EXPORT_SYMBOL(__tsan_write_range);
850 
851 /*
852  * Use of explicit volatile is generally disallowed [1], however, volatile is
853  * still used in various concurrent context, whether in low-level
854  * synchronization primitives or for legacy reasons.
855  * [1] https://lwn.net/Articles/233479/
856  *
857  * We only consider volatile accesses atomic if they are aligned and would pass
858  * the size-check of compiletime_assert_rwonce_type().
859  */
860 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
861 	void __tsan_volatile_read##size(void *ptr);                            \
862 	void __tsan_volatile_read##size(void *ptr)                             \
863 	{                                                                      \
864 		const bool is_atomic = size <= sizeof(long long) &&            \
865 				       IS_ALIGNED((unsigned long)ptr, size);   \
866 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
867 			return;                                                \
868 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
869 	}                                                                      \
870 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
871 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
872 		__alias(__tsan_volatile_read##size);                           \
873 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
874 	void __tsan_volatile_write##size(void *ptr);                           \
875 	void __tsan_volatile_write##size(void *ptr)                            \
876 	{                                                                      \
877 		const bool is_atomic = size <= sizeof(long long) &&            \
878 				       IS_ALIGNED((unsigned long)ptr, size);   \
879 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
880 			return;                                                \
881 		check_access(ptr, size,                                        \
882 			     KCSAN_ACCESS_WRITE |                              \
883 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
884 	}                                                                      \
885 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
886 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
887 		__alias(__tsan_volatile_write##size);                          \
888 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
889 
890 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
891 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
892 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
893 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
894 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
895 
896 /*
897  * The below are not required by KCSAN, but can still be emitted by the
898  * compiler.
899  */
900 void __tsan_func_entry(void *call_pc);
901 void __tsan_func_entry(void *call_pc)
902 {
903 }
904 EXPORT_SYMBOL(__tsan_func_entry);
905 void __tsan_func_exit(void);
906 void __tsan_func_exit(void)
907 {
908 }
909 EXPORT_SYMBOL(__tsan_func_exit);
910 void __tsan_init(void);
911 void __tsan_init(void)
912 {
913 }
914 EXPORT_SYMBOL(__tsan_init);
915 
916 /*
917  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
918  *
919  * Normal kernel code _should not_ be using them directly, but some
920  * architectures may implement some or all atomics using the compilers'
921  * builtins.
922  *
923  * Note: If an architecture decides to fully implement atomics using the
924  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
925  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
926  * atomic-instrumented) is no longer necessary.
927  *
928  * TSAN instrumentation replaces atomic accesses with calls to any of the below
929  * functions, whose job is to also execute the operation itself.
930  */
931 
932 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
933 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
934 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
935 	{                                                                                          \
936 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
937 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
938 		}                                                                                  \
939 		return __atomic_load_n(ptr, memorder);                                             \
940 	}                                                                                          \
941 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
942 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
943 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
944 	{                                                                                          \
945 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
946 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
947 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
948 		}                                                                                  \
949 		__atomic_store_n(ptr, v, memorder);                                                \
950 	}                                                                                          \
951 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
952 
953 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
954 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
955 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
956 	{                                                                                          \
957 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
958 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
959 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
960 					     KCSAN_ACCESS_ATOMIC);                                 \
961 		}                                                                                  \
962 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
963 	}                                                                                          \
964 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
965 
966 /*
967  * Note: CAS operations are always classified as write, even in case they
968  * fail. We cannot perform check_access() after a write, as it might lead to
969  * false positives, in cases such as:
970  *
971  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
972  *
973  *	T1: if (__atomic_load_n(&p->flag, ...)) {
974  *		modify *p;
975  *		p->flag = 0;
976  *	    }
977  *
978  * The only downside is that, if there are 3 threads, with one CAS that
979  * succeeds, another CAS that fails, and an unmarked racing operation, we may
980  * point at the wrong CAS as the source of the race. However, if we assume that
981  * all CAS can succeed in some other execution, the data race is still valid.
982  */
983 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
984 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
985 							      u##bits val, int mo, int fail_mo);   \
986 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
987 							      u##bits val, int mo, int fail_mo)    \
988 	{                                                                                          \
989 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
990 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
991 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
992 					     KCSAN_ACCESS_ATOMIC);                                 \
993 		}                                                                                  \
994 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
995 	}                                                                                          \
996 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
997 
998 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
999 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1000 							   int mo, int fail_mo);                   \
1001 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1002 							   int mo, int fail_mo)                    \
1003 	{                                                                                          \
1004 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1005 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1006 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1007 					     KCSAN_ACCESS_ATOMIC);                                 \
1008 		}                                                                                  \
1009 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1010 		return exp;                                                                        \
1011 	}                                                                                          \
1012 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1013 
1014 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1015 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1016 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1017 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1018 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1019 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1020 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1021 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1022 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1023 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1024 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1025 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1026 
1027 DEFINE_TSAN_ATOMIC_OPS(8);
1028 DEFINE_TSAN_ATOMIC_OPS(16);
1029 DEFINE_TSAN_ATOMIC_OPS(32);
1030 DEFINE_TSAN_ATOMIC_OPS(64);
1031 
1032 void __tsan_atomic_thread_fence(int memorder);
1033 void __tsan_atomic_thread_fence(int memorder)
1034 {
1035 	__atomic_thread_fence(memorder);
1036 }
1037 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1038 
1039 void __tsan_atomic_signal_fence(int memorder);
1040 void __tsan_atomic_signal_fence(int memorder) { }
1041 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1042