xref: /linux/kernel/kcsan/core.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kcsan: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 
23 #include "atomic.h"
24 #include "encoding.h"
25 #include "kcsan.h"
26 
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32 
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42 
43 bool kcsan_enabled;
44 
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47 	.disable_count		= 0,
48 	.atomic_next		= 0,
49 	.atomic_nest_count	= 0,
50 	.in_flat_atomic		= false,
51 	.access_mask		= 0,
52 	.scoped_accesses	= {LIST_POISON1, NULL},
53 };
54 
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *	1. if during insertion the address slot is already occupied, check if
62  *	   any adjacent slots are free;
63  *	2. accesses that straddle a slot boundary due to size that exceeds a
64  *	   slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *	1. excessive contention between watchpoint checks and setup;
71  *	2. larger number of simultaneous watchpoints without sacrificing
72  *	   performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81 
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89 
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100 
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106 
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109 
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111 						      size_t size,
112 						      bool expect_write,
113 						      long *encoded_watchpoint)
114 {
115 	const int slot = watchpoint_slot(addr);
116 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117 	atomic_long_t *watchpoint;
118 	unsigned long wp_addr_masked;
119 	size_t wp_size;
120 	bool is_write;
121 	int i;
122 
123 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124 
125 	for (i = 0; i < NUM_SLOTS; ++i) {
126 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127 		*encoded_watchpoint = atomic_long_read(watchpoint);
128 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129 				       &wp_size, &is_write))
130 			continue;
131 
132 		if (expect_write && !is_write)
133 			continue;
134 
135 		/* Check if the watchpoint matches the access. */
136 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137 			return watchpoint;
138 	}
139 
140 	return NULL;
141 }
142 
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146 	const int slot = watchpoint_slot(addr);
147 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148 	atomic_long_t *watchpoint;
149 	int i;
150 
151 	/* Check slot index logic, ensuring we stay within array bounds. */
152 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156 
157 	for (i = 0; i < NUM_SLOTS; ++i) {
158 		long expect_val = INVALID_WATCHPOINT;
159 
160 		/* Try to acquire this slot. */
161 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163 			return watchpoint;
164 	}
165 
166 	return NULL;
167 }
168 
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *	1. another thread already consumed the watchpoint;
175  *	2. the thread that set up the watchpoint already removed it;
176  *	3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183 
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189 
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195 
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198 	/*
199 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200 	 * also result in calls that generate warnings in uaccess regions.
201 	 */
202 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204 
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208 	struct kcsan_ctx *ctx = get_ctx();
209 	struct list_head *prev_save = ctx->scoped_accesses.prev;
210 	struct kcsan_scoped_access *scoped_access;
211 
212 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215 	ctx->scoped_accesses.prev = prev_save;
216 }
217 
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222 	if (type & KCSAN_ACCESS_ATOMIC)
223 		return true;
224 
225 	/*
226 	 * Unless explicitly declared atomic, never consider an assertion access
227 	 * as atomic. This allows using them also in atomic regions, such as
228 	 * seqlocks, without implicitly changing their semantics.
229 	 */
230 	if (type & KCSAN_ACCESS_ASSERT)
231 		return false;
232 
233 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236 		return true; /* Assume aligned writes up to word size are atomic. */
237 
238 	if (ctx->atomic_next > 0) {
239 		/*
240 		 * Because we do not have separate contexts for nested
241 		 * interrupts, in case atomic_next is set, we simply assume that
242 		 * the outer interrupt set atomic_next. In the worst case, we
243 		 * will conservatively consider operations as atomic. This is a
244 		 * reasonable trade-off to make, since this case should be
245 		 * extremely rare; however, even if extremely rare, it could
246 		 * lead to false positives otherwise.
247 		 */
248 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249 			--ctx->atomic_next; /* in task, or outer interrupt */
250 		return true;
251 	}
252 
253 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255 
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259 	/*
260 	 * Never set up watchpoints when memory operations are atomic.
261 	 *
262 	 * Need to check this first, before kcsan_skip check below: (1) atomics
263 	 * should not count towards skipped instructions, and (2) to actually
264 	 * decrement kcsan_atomic_next for consecutive instruction stream.
265 	 */
266 	if (is_atomic(ptr, size, type, ctx))
267 		return false;
268 
269 	if (this_cpu_dec_return(kcsan_skip) >= 0)
270 		return false;
271 
272 	/*
273 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
274 	 * via reset_kcsan_skip() to avoid underflow.
275 	 */
276 
277 	/* this operation should be watched */
278 	return true;
279 }
280 
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287 	u32 state = this_cpu_read(kcsan_rand_state);
288 
289 	state = 1664525 * state + 1013904223;
290 	this_cpu_write(kcsan_rand_state, state);
291 
292 	return state % ep_ro;
293 }
294 
295 static inline void reset_kcsan_skip(void)
296 {
297 	long skip_count = kcsan_skip_watch -
298 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
300 				   0);
301 	this_cpu_write(kcsan_skip, skip_count);
302 }
303 
304 static __always_inline bool kcsan_is_enabled(void)
305 {
306 	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
307 }
308 
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313 	/* For certain access types, skew the random delay to be longer. */
314 	unsigned int skew_delay_order =
315 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316 
317 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
319 			       0;
320 	udelay(delay);
321 }
322 
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326 	task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329 
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333 	task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336 
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349 
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351 					    size_t size,
352 					    int type,
353 					    atomic_long_t *watchpoint,
354 					    long encoded_watchpoint)
355 {
356 	unsigned long flags;
357 	bool consumed;
358 
359 	if (!kcsan_is_enabled())
360 		return;
361 
362 	/*
363 	 * The access_mask check relies on value-change comparison. To avoid
364 	 * reporting a race where e.g. the writer set up the watchpoint, but the
365 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
366 	 */
367 	if (get_ctx()->access_mask != 0)
368 		return;
369 
370 	/*
371 	 * Consume the watchpoint as soon as possible, to minimize the chances
372 	 * of !consumed. Consuming the watchpoint must always be guarded by
373 	 * kcsan_is_enabled() check, as otherwise we might erroneously
374 	 * triggering reports when disabled.
375 	 */
376 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
377 
378 	/* keep this after try_consume_watchpoint */
379 	flags = user_access_save();
380 
381 	if (consumed) {
382 		kcsan_save_irqtrace(current);
383 		kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
384 			     KCSAN_REPORT_CONSUMED_WATCHPOINT,
385 			     watchpoint - watchpoints);
386 		kcsan_restore_irqtrace(current);
387 	} else {
388 		/*
389 		 * The other thread may not print any diagnostics, as it has
390 		 * already removed the watchpoint, or another thread consumed
391 		 * the watchpoint before this thread.
392 		 */
393 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
394 	}
395 
396 	if ((type & KCSAN_ACCESS_ASSERT) != 0)
397 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
398 	else
399 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
400 
401 	user_access_restore(flags);
402 }
403 
404 static noinline void
405 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
406 {
407 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
408 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
409 	atomic_long_t *watchpoint;
410 	union {
411 		u8 _1;
412 		u16 _2;
413 		u32 _4;
414 		u64 _8;
415 	} expect_value;
416 	unsigned long access_mask;
417 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
418 	unsigned long ua_flags = user_access_save();
419 	unsigned long irq_flags = 0;
420 
421 	/*
422 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
423 	 * should_watch().
424 	 */
425 	reset_kcsan_skip();
426 
427 	if (!kcsan_is_enabled())
428 		goto out;
429 
430 	/*
431 	 * Special atomic rules: unlikely to be true, so we check them here in
432 	 * the slow-path, and not in the fast-path in is_atomic(). Call after
433 	 * kcsan_is_enabled(), as we may access memory that is not yet
434 	 * initialized during early boot.
435 	 */
436 	if (!is_assert && kcsan_is_atomic_special(ptr))
437 		goto out;
438 
439 	if (!check_encodable((unsigned long)ptr, size)) {
440 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
441 		goto out;
442 	}
443 
444 	/*
445 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
446 	 * runtime is entered for every memory access, and potentially useful
447 	 * information is lost if dirtied by KCSAN.
448 	 */
449 	kcsan_save_irqtrace(current);
450 	if (!kcsan_interrupt_watcher)
451 		local_irq_save(irq_flags);
452 
453 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
454 	if (watchpoint == NULL) {
455 		/*
456 		 * Out of capacity: the size of 'watchpoints', and the frequency
457 		 * with which should_watch() returns true should be tweaked so
458 		 * that this case happens very rarely.
459 		 */
460 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
461 		goto out_unlock;
462 	}
463 
464 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
465 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
466 
467 	/*
468 	 * Read the current value, to later check and infer a race if the data
469 	 * was modified via a non-instrumented access, e.g. from a device.
470 	 */
471 	expect_value._8 = 0;
472 	switch (size) {
473 	case 1:
474 		expect_value._1 = READ_ONCE(*(const u8 *)ptr);
475 		break;
476 	case 2:
477 		expect_value._2 = READ_ONCE(*(const u16 *)ptr);
478 		break;
479 	case 4:
480 		expect_value._4 = READ_ONCE(*(const u32 *)ptr);
481 		break;
482 	case 8:
483 		expect_value._8 = READ_ONCE(*(const u64 *)ptr);
484 		break;
485 	default:
486 		break; /* ignore; we do not diff the values */
487 	}
488 
489 	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
490 		kcsan_disable_current();
491 		pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
492 		       is_write ? "write" : "read", size, ptr,
493 		       watchpoint_slot((unsigned long)ptr),
494 		       encode_watchpoint((unsigned long)ptr, size, is_write));
495 		kcsan_enable_current();
496 	}
497 
498 	/*
499 	 * Delay this thread, to increase probability of observing a racy
500 	 * conflicting access.
501 	 */
502 	delay_access(type);
503 
504 	/*
505 	 * Re-read value, and check if it is as expected; if not, we infer a
506 	 * racy access.
507 	 */
508 	access_mask = get_ctx()->access_mask;
509 	switch (size) {
510 	case 1:
511 		expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
512 		if (access_mask)
513 			expect_value._1 &= (u8)access_mask;
514 		break;
515 	case 2:
516 		expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
517 		if (access_mask)
518 			expect_value._2 &= (u16)access_mask;
519 		break;
520 	case 4:
521 		expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
522 		if (access_mask)
523 			expect_value._4 &= (u32)access_mask;
524 		break;
525 	case 8:
526 		expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
527 		if (access_mask)
528 			expect_value._8 &= (u64)access_mask;
529 		break;
530 	default:
531 		break; /* ignore; we do not diff the values */
532 	}
533 
534 	/* Were we able to observe a value-change? */
535 	if (expect_value._8 != 0)
536 		value_change = KCSAN_VALUE_CHANGE_TRUE;
537 
538 	/* Check if this access raced with another. */
539 	if (!consume_watchpoint(watchpoint)) {
540 		/*
541 		 * Depending on the access type, map a value_change of MAYBE to
542 		 * TRUE (always report) or FALSE (never report).
543 		 */
544 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
545 			if (access_mask != 0) {
546 				/*
547 				 * For access with access_mask, we require a
548 				 * value-change, as it is likely that races on
549 				 * ~access_mask bits are expected.
550 				 */
551 				value_change = KCSAN_VALUE_CHANGE_FALSE;
552 			} else if (size > 8 || is_assert) {
553 				/* Always assume a value-change. */
554 				value_change = KCSAN_VALUE_CHANGE_TRUE;
555 			}
556 		}
557 
558 		/*
559 		 * No need to increment 'data_races' counter, as the racing
560 		 * thread already did.
561 		 *
562 		 * Count 'assert_failures' for each failed ASSERT access,
563 		 * therefore both this thread and the racing thread may
564 		 * increment this counter.
565 		 */
566 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
567 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
568 
569 		kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
570 			     watchpoint - watchpoints);
571 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
572 		/* Inferring a race, since the value should not have changed. */
573 
574 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
575 		if (is_assert)
576 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
577 
578 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
579 			kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
580 				     KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
581 				     watchpoint - watchpoints);
582 	}
583 
584 	/*
585 	 * Remove watchpoint; must be after reporting, since the slot may be
586 	 * reused after this point.
587 	 */
588 	remove_watchpoint(watchpoint);
589 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
590 out_unlock:
591 	if (!kcsan_interrupt_watcher)
592 		local_irq_restore(irq_flags);
593 	kcsan_restore_irqtrace(current);
594 out:
595 	user_access_restore(ua_flags);
596 }
597 
598 static __always_inline void check_access(const volatile void *ptr, size_t size,
599 					 int type)
600 {
601 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
602 	atomic_long_t *watchpoint;
603 	long encoded_watchpoint;
604 
605 	/*
606 	 * Do nothing for 0 sized check; this comparison will be optimized out
607 	 * for constant sized instrumentation (__tsan_{read,write}N).
608 	 */
609 	if (unlikely(size == 0))
610 		return;
611 
612 	/*
613 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
614 	 * user_access_save, as the address that ptr points to is only used to
615 	 * check if a watchpoint exists; ptr is never dereferenced.
616 	 */
617 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
618 				     &encoded_watchpoint);
619 	/*
620 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
621 	 * slow-path, as long as no state changes that cause a race to be
622 	 * detected and reported have occurred until kcsan_is_enabled() is
623 	 * checked.
624 	 */
625 
626 	if (unlikely(watchpoint != NULL))
627 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
628 				       encoded_watchpoint);
629 	else {
630 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
631 
632 		if (unlikely(should_watch(ptr, size, type, ctx)))
633 			kcsan_setup_watchpoint(ptr, size, type);
634 		else if (unlikely(ctx->scoped_accesses.prev))
635 			kcsan_check_scoped_accesses();
636 	}
637 }
638 
639 /* === Public interface ===================================================== */
640 
641 void __init kcsan_init(void)
642 {
643 	int cpu;
644 
645 	BUG_ON(!in_task());
646 
647 	for_each_possible_cpu(cpu)
648 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
649 
650 	/*
651 	 * We are in the init task, and no other tasks should be running;
652 	 * WRITE_ONCE without memory barrier is sufficient.
653 	 */
654 	if (kcsan_early_enable) {
655 		pr_info("enabled early\n");
656 		WRITE_ONCE(kcsan_enabled, true);
657 	}
658 }
659 
660 /* === Exported interface =================================================== */
661 
662 void kcsan_disable_current(void)
663 {
664 	++get_ctx()->disable_count;
665 }
666 EXPORT_SYMBOL(kcsan_disable_current);
667 
668 void kcsan_enable_current(void)
669 {
670 	if (get_ctx()->disable_count-- == 0) {
671 		/*
672 		 * Warn if kcsan_enable_current() calls are unbalanced with
673 		 * kcsan_disable_current() calls, which causes disable_count to
674 		 * become negative and should not happen.
675 		 */
676 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
677 		kcsan_disable_current(); /* disable to generate warning */
678 		WARN(1, "Unbalanced %s()", __func__);
679 		kcsan_enable_current();
680 	}
681 }
682 EXPORT_SYMBOL(kcsan_enable_current);
683 
684 void kcsan_enable_current_nowarn(void)
685 {
686 	if (get_ctx()->disable_count-- == 0)
687 		kcsan_disable_current();
688 }
689 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
690 
691 void kcsan_nestable_atomic_begin(void)
692 {
693 	/*
694 	 * Do *not* check and warn if we are in a flat atomic region: nestable
695 	 * and flat atomic regions are independent from each other.
696 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
697 	 * comments.
698 	 */
699 
700 	++get_ctx()->atomic_nest_count;
701 }
702 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
703 
704 void kcsan_nestable_atomic_end(void)
705 {
706 	if (get_ctx()->atomic_nest_count-- == 0) {
707 		/*
708 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
709 		 * kcsan_nestable_atomic_begin() calls, which causes
710 		 * atomic_nest_count to become negative and should not happen.
711 		 */
712 		kcsan_nestable_atomic_begin(); /* restore to 0 */
713 		kcsan_disable_current(); /* disable to generate warning */
714 		WARN(1, "Unbalanced %s()", __func__);
715 		kcsan_enable_current();
716 	}
717 }
718 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
719 
720 void kcsan_flat_atomic_begin(void)
721 {
722 	get_ctx()->in_flat_atomic = true;
723 }
724 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
725 
726 void kcsan_flat_atomic_end(void)
727 {
728 	get_ctx()->in_flat_atomic = false;
729 }
730 EXPORT_SYMBOL(kcsan_flat_atomic_end);
731 
732 void kcsan_atomic_next(int n)
733 {
734 	get_ctx()->atomic_next = n;
735 }
736 EXPORT_SYMBOL(kcsan_atomic_next);
737 
738 void kcsan_set_access_mask(unsigned long mask)
739 {
740 	get_ctx()->access_mask = mask;
741 }
742 EXPORT_SYMBOL(kcsan_set_access_mask);
743 
744 struct kcsan_scoped_access *
745 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
746 			  struct kcsan_scoped_access *sa)
747 {
748 	struct kcsan_ctx *ctx = get_ctx();
749 
750 	__kcsan_check_access(ptr, size, type);
751 
752 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
753 
754 	INIT_LIST_HEAD(&sa->list);
755 	sa->ptr = ptr;
756 	sa->size = size;
757 	sa->type = type;
758 
759 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
760 		INIT_LIST_HEAD(&ctx->scoped_accesses);
761 	list_add(&sa->list, &ctx->scoped_accesses);
762 
763 	ctx->disable_count--;
764 	return sa;
765 }
766 EXPORT_SYMBOL(kcsan_begin_scoped_access);
767 
768 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
769 {
770 	struct kcsan_ctx *ctx = get_ctx();
771 
772 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
773 		return;
774 
775 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
776 
777 	list_del(&sa->list);
778 	if (list_empty(&ctx->scoped_accesses))
779 		/*
780 		 * Ensure we do not enter kcsan_check_scoped_accesses()
781 		 * slow-path if unnecessary, and avoids requiring list_empty()
782 		 * in the fast-path (to avoid a READ_ONCE() and potential
783 		 * uaccess warning).
784 		 */
785 		ctx->scoped_accesses.prev = NULL;
786 
787 	ctx->disable_count--;
788 
789 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
790 }
791 EXPORT_SYMBOL(kcsan_end_scoped_access);
792 
793 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
794 {
795 	check_access(ptr, size, type);
796 }
797 EXPORT_SYMBOL(__kcsan_check_access);
798 
799 /*
800  * KCSAN uses the same instrumentation that is emitted by supported compilers
801  * for ThreadSanitizer (TSAN).
802  *
803  * When enabled, the compiler emits instrumentation calls (the functions
804  * prefixed with "__tsan" below) for all loads and stores that it generated;
805  * inline asm is not instrumented.
806  *
807  * Note that, not all supported compiler versions distinguish aligned/unaligned
808  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
809  * version to the generic version, which can handle both.
810  */
811 
812 #define DEFINE_TSAN_READ_WRITE(size)                                           \
813 	void __tsan_read##size(void *ptr);                                     \
814 	void __tsan_read##size(void *ptr)                                      \
815 	{                                                                      \
816 		check_access(ptr, size, 0);                                    \
817 	}                                                                      \
818 	EXPORT_SYMBOL(__tsan_read##size);                                      \
819 	void __tsan_unaligned_read##size(void *ptr)                            \
820 		__alias(__tsan_read##size);                                    \
821 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
822 	void __tsan_write##size(void *ptr);                                    \
823 	void __tsan_write##size(void *ptr)                                     \
824 	{                                                                      \
825 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
826 	}                                                                      \
827 	EXPORT_SYMBOL(__tsan_write##size);                                     \
828 	void __tsan_unaligned_write##size(void *ptr)                           \
829 		__alias(__tsan_write##size);                                   \
830 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
831 	void __tsan_read_write##size(void *ptr);                               \
832 	void __tsan_read_write##size(void *ptr)                                \
833 	{                                                                      \
834 		check_access(ptr, size,                                        \
835 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
836 	}                                                                      \
837 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
838 	void __tsan_unaligned_read_write##size(void *ptr)                      \
839 		__alias(__tsan_read_write##size);                              \
840 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
841 
842 DEFINE_TSAN_READ_WRITE(1);
843 DEFINE_TSAN_READ_WRITE(2);
844 DEFINE_TSAN_READ_WRITE(4);
845 DEFINE_TSAN_READ_WRITE(8);
846 DEFINE_TSAN_READ_WRITE(16);
847 
848 void __tsan_read_range(void *ptr, size_t size);
849 void __tsan_read_range(void *ptr, size_t size)
850 {
851 	check_access(ptr, size, 0);
852 }
853 EXPORT_SYMBOL(__tsan_read_range);
854 
855 void __tsan_write_range(void *ptr, size_t size);
856 void __tsan_write_range(void *ptr, size_t size)
857 {
858 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
859 }
860 EXPORT_SYMBOL(__tsan_write_range);
861 
862 /*
863  * Use of explicit volatile is generally disallowed [1], however, volatile is
864  * still used in various concurrent context, whether in low-level
865  * synchronization primitives or for legacy reasons.
866  * [1] https://lwn.net/Articles/233479/
867  *
868  * We only consider volatile accesses atomic if they are aligned and would pass
869  * the size-check of compiletime_assert_rwonce_type().
870  */
871 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
872 	void __tsan_volatile_read##size(void *ptr);                            \
873 	void __tsan_volatile_read##size(void *ptr)                             \
874 	{                                                                      \
875 		const bool is_atomic = size <= sizeof(long long) &&            \
876 				       IS_ALIGNED((unsigned long)ptr, size);   \
877 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
878 			return;                                                \
879 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
880 	}                                                                      \
881 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
882 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
883 		__alias(__tsan_volatile_read##size);                           \
884 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
885 	void __tsan_volatile_write##size(void *ptr);                           \
886 	void __tsan_volatile_write##size(void *ptr)                            \
887 	{                                                                      \
888 		const bool is_atomic = size <= sizeof(long long) &&            \
889 				       IS_ALIGNED((unsigned long)ptr, size);   \
890 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
891 			return;                                                \
892 		check_access(ptr, size,                                        \
893 			     KCSAN_ACCESS_WRITE |                              \
894 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
895 	}                                                                      \
896 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
897 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
898 		__alias(__tsan_volatile_write##size);                          \
899 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
900 
901 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
902 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
903 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
904 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
905 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
906 
907 /*
908  * The below are not required by KCSAN, but can still be emitted by the
909  * compiler.
910  */
911 void __tsan_func_entry(void *call_pc);
912 void __tsan_func_entry(void *call_pc)
913 {
914 }
915 EXPORT_SYMBOL(__tsan_func_entry);
916 void __tsan_func_exit(void);
917 void __tsan_func_exit(void)
918 {
919 }
920 EXPORT_SYMBOL(__tsan_func_exit);
921 void __tsan_init(void);
922 void __tsan_init(void)
923 {
924 }
925 EXPORT_SYMBOL(__tsan_init);
926 
927 /*
928  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
929  *
930  * Normal kernel code _should not_ be using them directly, but some
931  * architectures may implement some or all atomics using the compilers'
932  * builtins.
933  *
934  * Note: If an architecture decides to fully implement atomics using the
935  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
936  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
937  * atomic-instrumented) is no longer necessary.
938  *
939  * TSAN instrumentation replaces atomic accesses with calls to any of the below
940  * functions, whose job is to also execute the operation itself.
941  */
942 
943 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
944 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
945 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
946 	{                                                                                          \
947 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
948 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
949 		}                                                                                  \
950 		return __atomic_load_n(ptr, memorder);                                             \
951 	}                                                                                          \
952 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
953 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
954 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
955 	{                                                                                          \
956 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
957 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
958 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
959 		}                                                                                  \
960 		__atomic_store_n(ptr, v, memorder);                                                \
961 	}                                                                                          \
962 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
963 
964 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
965 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
966 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
967 	{                                                                                          \
968 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
969 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
970 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
971 					     KCSAN_ACCESS_ATOMIC);                                 \
972 		}                                                                                  \
973 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
974 	}                                                                                          \
975 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
976 
977 /*
978  * Note: CAS operations are always classified as write, even in case they
979  * fail. We cannot perform check_access() after a write, as it might lead to
980  * false positives, in cases such as:
981  *
982  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
983  *
984  *	T1: if (__atomic_load_n(&p->flag, ...)) {
985  *		modify *p;
986  *		p->flag = 0;
987  *	    }
988  *
989  * The only downside is that, if there are 3 threads, with one CAS that
990  * succeeds, another CAS that fails, and an unmarked racing operation, we may
991  * point at the wrong CAS as the source of the race. However, if we assume that
992  * all CAS can succeed in some other execution, the data race is still valid.
993  */
994 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
995 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
996 							      u##bits val, int mo, int fail_mo);   \
997 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
998 							      u##bits val, int mo, int fail_mo)    \
999 	{                                                                                          \
1000 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1001 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1002 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1003 					     KCSAN_ACCESS_ATOMIC);                                 \
1004 		}                                                                                  \
1005 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1006 	}                                                                                          \
1007 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1008 
1009 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1010 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1011 							   int mo, int fail_mo);                   \
1012 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1013 							   int mo, int fail_mo)                    \
1014 	{                                                                                          \
1015 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1016 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1017 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1018 					     KCSAN_ACCESS_ATOMIC);                                 \
1019 		}                                                                                  \
1020 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1021 		return exp;                                                                        \
1022 	}                                                                                          \
1023 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1024 
1025 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1026 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1027 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1028 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1029 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1030 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1031 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1032 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1033 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1034 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1035 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1036 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1037 
1038 DEFINE_TSAN_ATOMIC_OPS(8);
1039 DEFINE_TSAN_ATOMIC_OPS(16);
1040 DEFINE_TSAN_ATOMIC_OPS(32);
1041 DEFINE_TSAN_ATOMIC_OPS(64);
1042 
1043 void __tsan_atomic_thread_fence(int memorder);
1044 void __tsan_atomic_thread_fence(int memorder)
1045 {
1046 	__atomic_thread_fence(memorder);
1047 }
1048 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1049 
1050 void __tsan_atomic_signal_fence(int memorder);
1051 void __tsan_atomic_signal_fence(int memorder) { }
1052 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1053