xref: /linux/kernel/kcsan/core.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kcsan: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 
23 #include "encoding.h"
24 #include "kcsan.h"
25 #include "permissive.h"
26 
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32 
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42 
43 bool kcsan_enabled;
44 
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47 	.disable_count		= 0,
48 	.atomic_next		= 0,
49 	.atomic_nest_count	= 0,
50 	.in_flat_atomic		= false,
51 	.access_mask		= 0,
52 	.scoped_accesses	= {LIST_POISON1, NULL},
53 };
54 
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *	1. if during insertion the address slot is already occupied, check if
62  *	   any adjacent slots are free;
63  *	2. accesses that straddle a slot boundary due to size that exceeds a
64  *	   slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *	1. excessive contention between watchpoint checks and setup;
71  *	2. larger number of simultaneous watchpoints without sacrificing
72  *	   performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81 
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89 
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100 
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106 
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109 
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111 						      size_t size,
112 						      bool expect_write,
113 						      long *encoded_watchpoint)
114 {
115 	const int slot = watchpoint_slot(addr);
116 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117 	atomic_long_t *watchpoint;
118 	unsigned long wp_addr_masked;
119 	size_t wp_size;
120 	bool is_write;
121 	int i;
122 
123 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124 
125 	for (i = 0; i < NUM_SLOTS; ++i) {
126 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127 		*encoded_watchpoint = atomic_long_read(watchpoint);
128 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129 				       &wp_size, &is_write))
130 			continue;
131 
132 		if (expect_write && !is_write)
133 			continue;
134 
135 		/* Check if the watchpoint matches the access. */
136 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137 			return watchpoint;
138 	}
139 
140 	return NULL;
141 }
142 
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146 	const int slot = watchpoint_slot(addr);
147 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148 	atomic_long_t *watchpoint;
149 	int i;
150 
151 	/* Check slot index logic, ensuring we stay within array bounds. */
152 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156 
157 	for (i = 0; i < NUM_SLOTS; ++i) {
158 		long expect_val = INVALID_WATCHPOINT;
159 
160 		/* Try to acquire this slot. */
161 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163 			return watchpoint;
164 	}
165 
166 	return NULL;
167 }
168 
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *	1. another thread already consumed the watchpoint;
175  *	2. the thread that set up the watchpoint already removed it;
176  *	3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183 
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189 
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195 
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198 	/*
199 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200 	 * also result in calls that generate warnings in uaccess regions.
201 	 */
202 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204 
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208 	struct kcsan_ctx *ctx = get_ctx();
209 	struct list_head *prev_save = ctx->scoped_accesses.prev;
210 	struct kcsan_scoped_access *scoped_access;
211 
212 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215 	ctx->scoped_accesses.prev = prev_save;
216 }
217 
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222 	if (type & KCSAN_ACCESS_ATOMIC)
223 		return true;
224 
225 	/*
226 	 * Unless explicitly declared atomic, never consider an assertion access
227 	 * as atomic. This allows using them also in atomic regions, such as
228 	 * seqlocks, without implicitly changing their semantics.
229 	 */
230 	if (type & KCSAN_ACCESS_ASSERT)
231 		return false;
232 
233 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236 		return true; /* Assume aligned writes up to word size are atomic. */
237 
238 	if (ctx->atomic_next > 0) {
239 		/*
240 		 * Because we do not have separate contexts for nested
241 		 * interrupts, in case atomic_next is set, we simply assume that
242 		 * the outer interrupt set atomic_next. In the worst case, we
243 		 * will conservatively consider operations as atomic. This is a
244 		 * reasonable trade-off to make, since this case should be
245 		 * extremely rare; however, even if extremely rare, it could
246 		 * lead to false positives otherwise.
247 		 */
248 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249 			--ctx->atomic_next; /* in task, or outer interrupt */
250 		return true;
251 	}
252 
253 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255 
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259 	/*
260 	 * Never set up watchpoints when memory operations are atomic.
261 	 *
262 	 * Need to check this first, before kcsan_skip check below: (1) atomics
263 	 * should not count towards skipped instructions, and (2) to actually
264 	 * decrement kcsan_atomic_next for consecutive instruction stream.
265 	 */
266 	if (is_atomic(ptr, size, type, ctx))
267 		return false;
268 
269 	if (this_cpu_dec_return(kcsan_skip) >= 0)
270 		return false;
271 
272 	/*
273 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
274 	 * via reset_kcsan_skip() to avoid underflow.
275 	 */
276 
277 	/* this operation should be watched */
278 	return true;
279 }
280 
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287 	u32 state = this_cpu_read(kcsan_rand_state);
288 
289 	state = 1664525 * state + 1013904223;
290 	this_cpu_write(kcsan_rand_state, state);
291 
292 	return state % ep_ro;
293 }
294 
295 static inline void reset_kcsan_skip(void)
296 {
297 	long skip_count = kcsan_skip_watch -
298 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
300 				   0);
301 	this_cpu_write(kcsan_skip, skip_count);
302 }
303 
304 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
305 {
306 	return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
307 }
308 
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313 	/* For certain access types, skew the random delay to be longer. */
314 	unsigned int skew_delay_order =
315 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316 
317 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
319 			       0;
320 	udelay(delay);
321 }
322 
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326 	task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329 
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333 	task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336 
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349 
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351 					    size_t size,
352 					    int type,
353 					    atomic_long_t *watchpoint,
354 					    long encoded_watchpoint)
355 {
356 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
357 	struct kcsan_ctx *ctx = get_ctx();
358 	unsigned long flags;
359 	bool consumed;
360 
361 	/*
362 	 * We know a watchpoint exists. Let's try to keep the race-window
363 	 * between here and finally consuming the watchpoint below as small as
364 	 * possible -- avoid unneccessarily complex code until consumed.
365 	 */
366 
367 	if (!kcsan_is_enabled(ctx))
368 		return;
369 
370 	/*
371 	 * The access_mask check relies on value-change comparison. To avoid
372 	 * reporting a race where e.g. the writer set up the watchpoint, but the
373 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
374 	 */
375 	if (ctx->access_mask)
376 		return;
377 
378 	/*
379 	 * If the other thread does not want to ignore the access, and there was
380 	 * a value change as a result of this thread's operation, we will still
381 	 * generate a report of unknown origin.
382 	 *
383 	 * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
384 	 */
385 	if (!is_assert && kcsan_ignore_address(ptr))
386 		return;
387 
388 	/*
389 	 * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
390 	 * avoid erroneously triggering reports if the context is disabled.
391 	 */
392 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
393 
394 	/* keep this after try_consume_watchpoint */
395 	flags = user_access_save();
396 
397 	if (consumed) {
398 		kcsan_save_irqtrace(current);
399 		kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints);
400 		kcsan_restore_irqtrace(current);
401 	} else {
402 		/*
403 		 * The other thread may not print any diagnostics, as it has
404 		 * already removed the watchpoint, or another thread consumed
405 		 * the watchpoint before this thread.
406 		 */
407 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
408 	}
409 
410 	if (is_assert)
411 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
412 	else
413 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
414 
415 	user_access_restore(flags);
416 }
417 
418 static noinline void
419 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
420 {
421 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
422 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
423 	atomic_long_t *watchpoint;
424 	u64 old, new, diff;
425 	unsigned long access_mask;
426 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
427 	unsigned long ua_flags = user_access_save();
428 	struct kcsan_ctx *ctx = get_ctx();
429 	unsigned long irq_flags = 0;
430 
431 	/*
432 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
433 	 * should_watch().
434 	 */
435 	reset_kcsan_skip();
436 
437 	if (!kcsan_is_enabled(ctx))
438 		goto out;
439 
440 	/*
441 	 * Check to-ignore addresses after kcsan_is_enabled(), as we may access
442 	 * memory that is not yet initialized during early boot.
443 	 */
444 	if (!is_assert && kcsan_ignore_address(ptr))
445 		goto out;
446 
447 	if (!check_encodable((unsigned long)ptr, size)) {
448 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
449 		goto out;
450 	}
451 
452 	/*
453 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
454 	 * runtime is entered for every memory access, and potentially useful
455 	 * information is lost if dirtied by KCSAN.
456 	 */
457 	kcsan_save_irqtrace(current);
458 	if (!kcsan_interrupt_watcher)
459 		local_irq_save(irq_flags);
460 
461 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
462 	if (watchpoint == NULL) {
463 		/*
464 		 * Out of capacity: the size of 'watchpoints', and the frequency
465 		 * with which should_watch() returns true should be tweaked so
466 		 * that this case happens very rarely.
467 		 */
468 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
469 		goto out_unlock;
470 	}
471 
472 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
473 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
474 
475 	/*
476 	 * Read the current value, to later check and infer a race if the data
477 	 * was modified via a non-instrumented access, e.g. from a device.
478 	 */
479 	old = 0;
480 	switch (size) {
481 	case 1:
482 		old = READ_ONCE(*(const u8 *)ptr);
483 		break;
484 	case 2:
485 		old = READ_ONCE(*(const u16 *)ptr);
486 		break;
487 	case 4:
488 		old = READ_ONCE(*(const u32 *)ptr);
489 		break;
490 	case 8:
491 		old = READ_ONCE(*(const u64 *)ptr);
492 		break;
493 	default:
494 		break; /* ignore; we do not diff the values */
495 	}
496 
497 	/*
498 	 * Delay this thread, to increase probability of observing a racy
499 	 * conflicting access.
500 	 */
501 	delay_access(type);
502 
503 	/*
504 	 * Re-read value, and check if it is as expected; if not, we infer a
505 	 * racy access.
506 	 */
507 	access_mask = ctx->access_mask;
508 	new = 0;
509 	switch (size) {
510 	case 1:
511 		new = READ_ONCE(*(const u8 *)ptr);
512 		break;
513 	case 2:
514 		new = READ_ONCE(*(const u16 *)ptr);
515 		break;
516 	case 4:
517 		new = READ_ONCE(*(const u32 *)ptr);
518 		break;
519 	case 8:
520 		new = READ_ONCE(*(const u64 *)ptr);
521 		break;
522 	default:
523 		break; /* ignore; we do not diff the values */
524 	}
525 
526 	diff = old ^ new;
527 	if (access_mask)
528 		diff &= access_mask;
529 
530 	/*
531 	 * Check if we observed a value change.
532 	 *
533 	 * Also check if the data race should be ignored (the rules depend on
534 	 * non-zero diff); if it is to be ignored, the below rules for
535 	 * KCSAN_VALUE_CHANGE_MAYBE apply.
536 	 */
537 	if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
538 		value_change = KCSAN_VALUE_CHANGE_TRUE;
539 
540 	/* Check if this access raced with another. */
541 	if (!consume_watchpoint(watchpoint)) {
542 		/*
543 		 * Depending on the access type, map a value_change of MAYBE to
544 		 * TRUE (always report) or FALSE (never report).
545 		 */
546 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
547 			if (access_mask != 0) {
548 				/*
549 				 * For access with access_mask, we require a
550 				 * value-change, as it is likely that races on
551 				 * ~access_mask bits are expected.
552 				 */
553 				value_change = KCSAN_VALUE_CHANGE_FALSE;
554 			} else if (size > 8 || is_assert) {
555 				/* Always assume a value-change. */
556 				value_change = KCSAN_VALUE_CHANGE_TRUE;
557 			}
558 		}
559 
560 		/*
561 		 * No need to increment 'data_races' counter, as the racing
562 		 * thread already did.
563 		 *
564 		 * Count 'assert_failures' for each failed ASSERT access,
565 		 * therefore both this thread and the racing thread may
566 		 * increment this counter.
567 		 */
568 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
569 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
570 
571 		kcsan_report_known_origin(ptr, size, type, value_change,
572 					  watchpoint - watchpoints,
573 					  old, new, access_mask);
574 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
575 		/* Inferring a race, since the value should not have changed. */
576 
577 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
578 		if (is_assert)
579 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
580 
581 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
582 			kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask);
583 	}
584 
585 	/*
586 	 * Remove watchpoint; must be after reporting, since the slot may be
587 	 * reused after this point.
588 	 */
589 	remove_watchpoint(watchpoint);
590 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
591 out_unlock:
592 	if (!kcsan_interrupt_watcher)
593 		local_irq_restore(irq_flags);
594 	kcsan_restore_irqtrace(current);
595 out:
596 	user_access_restore(ua_flags);
597 }
598 
599 static __always_inline void check_access(const volatile void *ptr, size_t size,
600 					 int type)
601 {
602 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
603 	atomic_long_t *watchpoint;
604 	long encoded_watchpoint;
605 
606 	/*
607 	 * Do nothing for 0 sized check; this comparison will be optimized out
608 	 * for constant sized instrumentation (__tsan_{read,write}N).
609 	 */
610 	if (unlikely(size == 0))
611 		return;
612 
613 	/*
614 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
615 	 * user_access_save, as the address that ptr points to is only used to
616 	 * check if a watchpoint exists; ptr is never dereferenced.
617 	 */
618 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
619 				     &encoded_watchpoint);
620 	/*
621 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
622 	 * slow-path, as long as no state changes that cause a race to be
623 	 * detected and reported have occurred until kcsan_is_enabled() is
624 	 * checked.
625 	 */
626 
627 	if (unlikely(watchpoint != NULL))
628 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
629 				       encoded_watchpoint);
630 	else {
631 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
632 
633 		if (unlikely(should_watch(ptr, size, type, ctx)))
634 			kcsan_setup_watchpoint(ptr, size, type);
635 		else if (unlikely(ctx->scoped_accesses.prev))
636 			kcsan_check_scoped_accesses();
637 	}
638 }
639 
640 /* === Public interface ===================================================== */
641 
642 void __init kcsan_init(void)
643 {
644 	int cpu;
645 
646 	BUG_ON(!in_task());
647 
648 	for_each_possible_cpu(cpu)
649 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
650 
651 	/*
652 	 * We are in the init task, and no other tasks should be running;
653 	 * WRITE_ONCE without memory barrier is sufficient.
654 	 */
655 	if (kcsan_early_enable) {
656 		pr_info("enabled early\n");
657 		WRITE_ONCE(kcsan_enabled, true);
658 	}
659 
660 	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
661 	    IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
662 	    IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
663 	    IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
664 		pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
665 	} else {
666 		pr_info("strict mode configured\n");
667 	}
668 }
669 
670 /* === Exported interface =================================================== */
671 
672 void kcsan_disable_current(void)
673 {
674 	++get_ctx()->disable_count;
675 }
676 EXPORT_SYMBOL(kcsan_disable_current);
677 
678 void kcsan_enable_current(void)
679 {
680 	if (get_ctx()->disable_count-- == 0) {
681 		/*
682 		 * Warn if kcsan_enable_current() calls are unbalanced with
683 		 * kcsan_disable_current() calls, which causes disable_count to
684 		 * become negative and should not happen.
685 		 */
686 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
687 		kcsan_disable_current(); /* disable to generate warning */
688 		WARN(1, "Unbalanced %s()", __func__);
689 		kcsan_enable_current();
690 	}
691 }
692 EXPORT_SYMBOL(kcsan_enable_current);
693 
694 void kcsan_enable_current_nowarn(void)
695 {
696 	if (get_ctx()->disable_count-- == 0)
697 		kcsan_disable_current();
698 }
699 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
700 
701 void kcsan_nestable_atomic_begin(void)
702 {
703 	/*
704 	 * Do *not* check and warn if we are in a flat atomic region: nestable
705 	 * and flat atomic regions are independent from each other.
706 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
707 	 * comments.
708 	 */
709 
710 	++get_ctx()->atomic_nest_count;
711 }
712 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
713 
714 void kcsan_nestable_atomic_end(void)
715 {
716 	if (get_ctx()->atomic_nest_count-- == 0) {
717 		/*
718 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
719 		 * kcsan_nestable_atomic_begin() calls, which causes
720 		 * atomic_nest_count to become negative and should not happen.
721 		 */
722 		kcsan_nestable_atomic_begin(); /* restore to 0 */
723 		kcsan_disable_current(); /* disable to generate warning */
724 		WARN(1, "Unbalanced %s()", __func__);
725 		kcsan_enable_current();
726 	}
727 }
728 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
729 
730 void kcsan_flat_atomic_begin(void)
731 {
732 	get_ctx()->in_flat_atomic = true;
733 }
734 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
735 
736 void kcsan_flat_atomic_end(void)
737 {
738 	get_ctx()->in_flat_atomic = false;
739 }
740 EXPORT_SYMBOL(kcsan_flat_atomic_end);
741 
742 void kcsan_atomic_next(int n)
743 {
744 	get_ctx()->atomic_next = n;
745 }
746 EXPORT_SYMBOL(kcsan_atomic_next);
747 
748 void kcsan_set_access_mask(unsigned long mask)
749 {
750 	get_ctx()->access_mask = mask;
751 }
752 EXPORT_SYMBOL(kcsan_set_access_mask);
753 
754 struct kcsan_scoped_access *
755 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
756 			  struct kcsan_scoped_access *sa)
757 {
758 	struct kcsan_ctx *ctx = get_ctx();
759 
760 	__kcsan_check_access(ptr, size, type);
761 
762 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
763 
764 	INIT_LIST_HEAD(&sa->list);
765 	sa->ptr = ptr;
766 	sa->size = size;
767 	sa->type = type;
768 
769 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
770 		INIT_LIST_HEAD(&ctx->scoped_accesses);
771 	list_add(&sa->list, &ctx->scoped_accesses);
772 
773 	ctx->disable_count--;
774 	return sa;
775 }
776 EXPORT_SYMBOL(kcsan_begin_scoped_access);
777 
778 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
779 {
780 	struct kcsan_ctx *ctx = get_ctx();
781 
782 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
783 		return;
784 
785 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
786 
787 	list_del(&sa->list);
788 	if (list_empty(&ctx->scoped_accesses))
789 		/*
790 		 * Ensure we do not enter kcsan_check_scoped_accesses()
791 		 * slow-path if unnecessary, and avoids requiring list_empty()
792 		 * in the fast-path (to avoid a READ_ONCE() and potential
793 		 * uaccess warning).
794 		 */
795 		ctx->scoped_accesses.prev = NULL;
796 
797 	ctx->disable_count--;
798 
799 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
800 }
801 EXPORT_SYMBOL(kcsan_end_scoped_access);
802 
803 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
804 {
805 	check_access(ptr, size, type);
806 }
807 EXPORT_SYMBOL(__kcsan_check_access);
808 
809 /*
810  * KCSAN uses the same instrumentation that is emitted by supported compilers
811  * for ThreadSanitizer (TSAN).
812  *
813  * When enabled, the compiler emits instrumentation calls (the functions
814  * prefixed with "__tsan" below) for all loads and stores that it generated;
815  * inline asm is not instrumented.
816  *
817  * Note that, not all supported compiler versions distinguish aligned/unaligned
818  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
819  * version to the generic version, which can handle both.
820  */
821 
822 #define DEFINE_TSAN_READ_WRITE(size)                                           \
823 	void __tsan_read##size(void *ptr);                                     \
824 	void __tsan_read##size(void *ptr)                                      \
825 	{                                                                      \
826 		check_access(ptr, size, 0);                                    \
827 	}                                                                      \
828 	EXPORT_SYMBOL(__tsan_read##size);                                      \
829 	void __tsan_unaligned_read##size(void *ptr)                            \
830 		__alias(__tsan_read##size);                                    \
831 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
832 	void __tsan_write##size(void *ptr);                                    \
833 	void __tsan_write##size(void *ptr)                                     \
834 	{                                                                      \
835 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
836 	}                                                                      \
837 	EXPORT_SYMBOL(__tsan_write##size);                                     \
838 	void __tsan_unaligned_write##size(void *ptr)                           \
839 		__alias(__tsan_write##size);                                   \
840 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
841 	void __tsan_read_write##size(void *ptr);                               \
842 	void __tsan_read_write##size(void *ptr)                                \
843 	{                                                                      \
844 		check_access(ptr, size,                                        \
845 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
846 	}                                                                      \
847 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
848 	void __tsan_unaligned_read_write##size(void *ptr)                      \
849 		__alias(__tsan_read_write##size);                              \
850 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
851 
852 DEFINE_TSAN_READ_WRITE(1);
853 DEFINE_TSAN_READ_WRITE(2);
854 DEFINE_TSAN_READ_WRITE(4);
855 DEFINE_TSAN_READ_WRITE(8);
856 DEFINE_TSAN_READ_WRITE(16);
857 
858 void __tsan_read_range(void *ptr, size_t size);
859 void __tsan_read_range(void *ptr, size_t size)
860 {
861 	check_access(ptr, size, 0);
862 }
863 EXPORT_SYMBOL(__tsan_read_range);
864 
865 void __tsan_write_range(void *ptr, size_t size);
866 void __tsan_write_range(void *ptr, size_t size)
867 {
868 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
869 }
870 EXPORT_SYMBOL(__tsan_write_range);
871 
872 /*
873  * Use of explicit volatile is generally disallowed [1], however, volatile is
874  * still used in various concurrent context, whether in low-level
875  * synchronization primitives or for legacy reasons.
876  * [1] https://lwn.net/Articles/233479/
877  *
878  * We only consider volatile accesses atomic if they are aligned and would pass
879  * the size-check of compiletime_assert_rwonce_type().
880  */
881 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
882 	void __tsan_volatile_read##size(void *ptr);                            \
883 	void __tsan_volatile_read##size(void *ptr)                             \
884 	{                                                                      \
885 		const bool is_atomic = size <= sizeof(long long) &&            \
886 				       IS_ALIGNED((unsigned long)ptr, size);   \
887 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
888 			return;                                                \
889 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
890 	}                                                                      \
891 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
892 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
893 		__alias(__tsan_volatile_read##size);                           \
894 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
895 	void __tsan_volatile_write##size(void *ptr);                           \
896 	void __tsan_volatile_write##size(void *ptr)                            \
897 	{                                                                      \
898 		const bool is_atomic = size <= sizeof(long long) &&            \
899 				       IS_ALIGNED((unsigned long)ptr, size);   \
900 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
901 			return;                                                \
902 		check_access(ptr, size,                                        \
903 			     KCSAN_ACCESS_WRITE |                              \
904 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
905 	}                                                                      \
906 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
907 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
908 		__alias(__tsan_volatile_write##size);                          \
909 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
910 
911 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
912 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
913 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
914 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
915 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
916 
917 /*
918  * The below are not required by KCSAN, but can still be emitted by the
919  * compiler.
920  */
921 void __tsan_func_entry(void *call_pc);
922 void __tsan_func_entry(void *call_pc)
923 {
924 }
925 EXPORT_SYMBOL(__tsan_func_entry);
926 void __tsan_func_exit(void);
927 void __tsan_func_exit(void)
928 {
929 }
930 EXPORT_SYMBOL(__tsan_func_exit);
931 void __tsan_init(void);
932 void __tsan_init(void)
933 {
934 }
935 EXPORT_SYMBOL(__tsan_init);
936 
937 /*
938  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
939  *
940  * Normal kernel code _should not_ be using them directly, but some
941  * architectures may implement some or all atomics using the compilers'
942  * builtins.
943  *
944  * Note: If an architecture decides to fully implement atomics using the
945  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
946  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
947  * atomic-instrumented) is no longer necessary.
948  *
949  * TSAN instrumentation replaces atomic accesses with calls to any of the below
950  * functions, whose job is to also execute the operation itself.
951  */
952 
953 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
954 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
955 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
956 	{                                                                                          \
957 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
958 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
959 		}                                                                                  \
960 		return __atomic_load_n(ptr, memorder);                                             \
961 	}                                                                                          \
962 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
963 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
964 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
965 	{                                                                                          \
966 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
967 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
968 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
969 		}                                                                                  \
970 		__atomic_store_n(ptr, v, memorder);                                                \
971 	}                                                                                          \
972 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
973 
974 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
975 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
976 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
977 	{                                                                                          \
978 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
979 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
980 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
981 					     KCSAN_ACCESS_ATOMIC);                                 \
982 		}                                                                                  \
983 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
984 	}                                                                                          \
985 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
986 
987 /*
988  * Note: CAS operations are always classified as write, even in case they
989  * fail. We cannot perform check_access() after a write, as it might lead to
990  * false positives, in cases such as:
991  *
992  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
993  *
994  *	T1: if (__atomic_load_n(&p->flag, ...)) {
995  *		modify *p;
996  *		p->flag = 0;
997  *	    }
998  *
999  * The only downside is that, if there are 3 threads, with one CAS that
1000  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1001  * point at the wrong CAS as the source of the race. However, if we assume that
1002  * all CAS can succeed in some other execution, the data race is still valid.
1003  */
1004 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1005 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1006 							      u##bits val, int mo, int fail_mo);   \
1007 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1008 							      u##bits val, int mo, int fail_mo)    \
1009 	{                                                                                          \
1010 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1011 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1012 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1013 					     KCSAN_ACCESS_ATOMIC);                                 \
1014 		}                                                                                  \
1015 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1016 	}                                                                                          \
1017 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1018 
1019 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1020 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1021 							   int mo, int fail_mo);                   \
1022 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1023 							   int mo, int fail_mo)                    \
1024 	{                                                                                          \
1025 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1026 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1027 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1028 					     KCSAN_ACCESS_ATOMIC);                                 \
1029 		}                                                                                  \
1030 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1031 		return exp;                                                                        \
1032 	}                                                                                          \
1033 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1034 
1035 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1036 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1037 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1038 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1039 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1040 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1041 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1042 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1043 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1044 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1045 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1046 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1047 
1048 DEFINE_TSAN_ATOMIC_OPS(8);
1049 DEFINE_TSAN_ATOMIC_OPS(16);
1050 DEFINE_TSAN_ATOMIC_OPS(32);
1051 DEFINE_TSAN_ATOMIC_OPS(64);
1052 
1053 void __tsan_atomic_thread_fence(int memorder);
1054 void __tsan_atomic_thread_fence(int memorder)
1055 {
1056 	__atomic_thread_fence(memorder);
1057 }
1058 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1059 
1060 void __tsan_atomic_signal_fence(int memorder);
1061 void __tsan_atomic_signal_fence(int memorder) { }
1062 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1063