xref: /linux/kernel/kcov.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "kcov: " fmt
3 
4 #define DISABLE_BRANCH_PROFILING
5 #include <linux/atomic.h>
6 #include <linux/compiler.h>
7 #include <linux/errno.h>
8 #include <linux/export.h>
9 #include <linux/types.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/hashtable.h>
13 #include <linux/init.h>
14 #include <linux/kmsan-checks.h>
15 #include <linux/mm.h>
16 #include <linux/preempt.h>
17 #include <linux/printk.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/vmalloc.h>
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/kcov.h>
25 #include <linux/refcount.h>
26 #include <linux/log2.h>
27 #include <asm/setup.h>
28 
29 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
30 
31 /* Number of 64-bit words written per one comparison: */
32 #define KCOV_WORDS_PER_CMP 4
33 
34 /*
35  * kcov descriptor (one per opened debugfs file).
36  * State transitions of the descriptor:
37  *  - initial state after open()
38  *  - then there must be a single ioctl(KCOV_INIT_TRACE) call
39  *  - then, mmap() call (several calls are allowed but not useful)
40  *  - then, ioctl(KCOV_ENABLE, arg), where arg is
41  *	KCOV_TRACE_PC - to trace only the PCs
42  *	or
43  *	KCOV_TRACE_CMP - to trace only the comparison operands
44  *  - then, ioctl(KCOV_DISABLE) to disable the task.
45  * Enabling/disabling ioctls can be repeated (only one task a time allowed).
46  */
47 struct kcov {
48 	/*
49 	 * Reference counter. We keep one for:
50 	 *  - opened file descriptor
51 	 *  - task with enabled coverage (we can't unwire it from another task)
52 	 *  - each code section for remote coverage collection
53 	 */
54 	refcount_t		refcount;
55 	/* The lock protects mode, size, area and t. */
56 	spinlock_t		lock;
57 	enum kcov_mode		mode;
58 	/* Size of arena (in long's). */
59 	unsigned int		size;
60 	/* Coverage buffer shared with user space. */
61 	void			*area;
62 	/* Task for which we collect coverage, or NULL. */
63 	struct task_struct	*t;
64 	/* Collecting coverage from remote (background) threads. */
65 	bool			remote;
66 	/* Size of remote area (in long's). */
67 	unsigned int		remote_size;
68 	/*
69 	 * Sequence is incremented each time kcov is reenabled, used by
70 	 * kcov_remote_stop(), see the comment there.
71 	 */
72 	int			sequence;
73 };
74 
75 struct kcov_remote_area {
76 	struct list_head	list;
77 	unsigned int		size;
78 };
79 
80 struct kcov_remote {
81 	u64			handle;
82 	struct kcov		*kcov;
83 	struct hlist_node	hnode;
84 };
85 
86 static DEFINE_SPINLOCK(kcov_remote_lock);
87 static DEFINE_HASHTABLE(kcov_remote_map, 4);
88 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
89 
90 struct kcov_percpu_data {
91 	void			*irq_area;
92 	local_lock_t		lock;
93 
94 	unsigned int		saved_mode;
95 	unsigned int		saved_size;
96 	void			*saved_area;
97 	struct kcov		*saved_kcov;
98 	int			saved_sequence;
99 };
100 
101 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
102 	.lock = INIT_LOCAL_LOCK(lock),
103 };
104 
105 /* Must be called with kcov_remote_lock locked. */
106 static struct kcov_remote *kcov_remote_find(u64 handle)
107 {
108 	struct kcov_remote *remote;
109 
110 	hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
111 		if (remote->handle == handle)
112 			return remote;
113 	}
114 	return NULL;
115 }
116 
117 /* Must be called with kcov_remote_lock locked. */
118 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
119 {
120 	struct kcov_remote *remote;
121 
122 	if (kcov_remote_find(handle))
123 		return ERR_PTR(-EEXIST);
124 	remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
125 	if (!remote)
126 		return ERR_PTR(-ENOMEM);
127 	remote->handle = handle;
128 	remote->kcov = kcov;
129 	hash_add(kcov_remote_map, &remote->hnode, handle);
130 	return remote;
131 }
132 
133 /* Must be called with kcov_remote_lock locked. */
134 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
135 {
136 	struct kcov_remote_area *area;
137 	struct list_head *pos;
138 
139 	list_for_each(pos, &kcov_remote_areas) {
140 		area = list_entry(pos, struct kcov_remote_area, list);
141 		if (area->size == size) {
142 			list_del(&area->list);
143 			return area;
144 		}
145 	}
146 	return NULL;
147 }
148 
149 /* Must be called with kcov_remote_lock locked. */
150 static void kcov_remote_area_put(struct kcov_remote_area *area,
151 					unsigned int size)
152 {
153 	INIT_LIST_HEAD(&area->list);
154 	area->size = size;
155 	list_add(&area->list, &kcov_remote_areas);
156 	/*
157 	 * KMSAN doesn't instrument this file, so it may not know area->list
158 	 * is initialized. Unpoison it explicitly to avoid reports in
159 	 * kcov_remote_area_get().
160 	 */
161 	kmsan_unpoison_memory(&area->list, sizeof(area->list));
162 }
163 
164 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
165 {
166 	unsigned int mode;
167 
168 	/*
169 	 * We are interested in code coverage as a function of a syscall inputs,
170 	 * so we ignore code executed in interrupts, unless we are in a remote
171 	 * coverage collection section in a softirq.
172 	 */
173 	if (!in_task() && !(in_serving_softirq() && t->kcov_softirq))
174 		return false;
175 	mode = READ_ONCE(t->kcov_mode);
176 	/*
177 	 * There is some code that runs in interrupts but for which
178 	 * in_interrupt() returns false (e.g. preempt_schedule_irq()).
179 	 * READ_ONCE()/barrier() effectively provides load-acquire wrt
180 	 * interrupts, there are paired barrier()/WRITE_ONCE() in
181 	 * kcov_start().
182 	 */
183 	barrier();
184 	return mode == needed_mode;
185 }
186 
187 static notrace unsigned long canonicalize_ip(unsigned long ip)
188 {
189 #ifdef CONFIG_RANDOMIZE_BASE
190 	ip -= kaslr_offset();
191 #endif
192 	return ip;
193 }
194 
195 /*
196  * Entry point from instrumented code.
197  * This is called once per basic-block/edge.
198  */
199 void notrace __sanitizer_cov_trace_pc(void)
200 {
201 	struct task_struct *t;
202 	unsigned long *area;
203 	unsigned long ip = canonicalize_ip(_RET_IP_);
204 	unsigned long pos;
205 
206 	t = current;
207 	if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
208 		return;
209 
210 	area = t->kcov_area;
211 	/* The first 64-bit word is the number of subsequent PCs. */
212 	pos = READ_ONCE(area[0]) + 1;
213 	if (likely(pos < t->kcov_size)) {
214 		/* Previously we write pc before updating pos. However, some
215 		 * early interrupt code could bypass check_kcov_mode() check
216 		 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is
217 		 * raised between writing pc and updating pos, the pc could be
218 		 * overitten by the recursive __sanitizer_cov_trace_pc().
219 		 * Update pos before writing pc to avoid such interleaving.
220 		 */
221 		WRITE_ONCE(area[0], pos);
222 		barrier();
223 		area[pos] = ip;
224 	}
225 }
226 EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
227 
228 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
229 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
230 {
231 	struct task_struct *t;
232 	u64 *area;
233 	u64 count, start_index, end_pos, max_pos;
234 
235 	t = current;
236 	if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
237 		return;
238 
239 	ip = canonicalize_ip(ip);
240 
241 	/*
242 	 * We write all comparison arguments and types as u64.
243 	 * The buffer was allocated for t->kcov_size unsigned longs.
244 	 */
245 	area = (u64 *)t->kcov_area;
246 	max_pos = t->kcov_size * sizeof(unsigned long);
247 
248 	count = READ_ONCE(area[0]);
249 
250 	/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
251 	start_index = 1 + count * KCOV_WORDS_PER_CMP;
252 	end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
253 	if (likely(end_pos <= max_pos)) {
254 		/* See comment in __sanitizer_cov_trace_pc(). */
255 		WRITE_ONCE(area[0], count + 1);
256 		barrier();
257 		area[start_index] = type;
258 		area[start_index + 1] = arg1;
259 		area[start_index + 2] = arg2;
260 		area[start_index + 3] = ip;
261 	}
262 }
263 
264 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
265 {
266 	write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
267 }
268 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
269 
270 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
271 {
272 	write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
273 }
274 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
275 
276 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
277 {
278 	write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
279 }
280 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
281 
282 void notrace __sanitizer_cov_trace_cmp8(u64 arg1, u64 arg2)
283 {
284 	write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
285 }
286 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
287 
288 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
289 {
290 	write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
291 			_RET_IP_);
292 }
293 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
294 
295 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
296 {
297 	write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
298 			_RET_IP_);
299 }
300 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
301 
302 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
303 {
304 	write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
305 			_RET_IP_);
306 }
307 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
308 
309 void notrace __sanitizer_cov_trace_const_cmp8(u64 arg1, u64 arg2)
310 {
311 	write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
312 			_RET_IP_);
313 }
314 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
315 
316 void notrace __sanitizer_cov_trace_switch(u64 val, u64 *cases)
317 {
318 	u64 i;
319 	u64 count = cases[0];
320 	u64 size = cases[1];
321 	u64 type = KCOV_CMP_CONST;
322 
323 	switch (size) {
324 	case 8:
325 		type |= KCOV_CMP_SIZE(0);
326 		break;
327 	case 16:
328 		type |= KCOV_CMP_SIZE(1);
329 		break;
330 	case 32:
331 		type |= KCOV_CMP_SIZE(2);
332 		break;
333 	case 64:
334 		type |= KCOV_CMP_SIZE(3);
335 		break;
336 	default:
337 		return;
338 	}
339 	for (i = 0; i < count; i++)
340 		write_comp_data(type, cases[i + 2], val, _RET_IP_);
341 }
342 EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
343 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
344 
345 static void kcov_start(struct task_struct *t, struct kcov *kcov,
346 			unsigned int size, void *area, enum kcov_mode mode,
347 			int sequence)
348 {
349 	kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
350 	t->kcov = kcov;
351 	/* Cache in task struct for performance. */
352 	t->kcov_size = size;
353 	t->kcov_area = area;
354 	t->kcov_sequence = sequence;
355 	/* See comment in check_kcov_mode(). */
356 	barrier();
357 	WRITE_ONCE(t->kcov_mode, mode);
358 }
359 
360 static void kcov_stop(struct task_struct *t)
361 {
362 	WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
363 	barrier();
364 	t->kcov = NULL;
365 	t->kcov_size = 0;
366 	t->kcov_area = NULL;
367 }
368 
369 static void kcov_task_reset(struct task_struct *t)
370 {
371 	kcov_stop(t);
372 	t->kcov_sequence = 0;
373 	t->kcov_handle = 0;
374 }
375 
376 void kcov_task_init(struct task_struct *t)
377 {
378 	kcov_task_reset(t);
379 	t->kcov_handle = current->kcov_handle;
380 }
381 
382 static void kcov_reset(struct kcov *kcov)
383 {
384 	kcov->t = NULL;
385 	kcov->mode = KCOV_MODE_INIT;
386 	kcov->remote = false;
387 	kcov->remote_size = 0;
388 	kcov->sequence++;
389 }
390 
391 static void kcov_remote_reset(struct kcov *kcov)
392 {
393 	int bkt;
394 	struct kcov_remote *remote;
395 	struct hlist_node *tmp;
396 	unsigned long flags;
397 
398 	spin_lock_irqsave(&kcov_remote_lock, flags);
399 	hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
400 		if (remote->kcov != kcov)
401 			continue;
402 		hash_del(&remote->hnode);
403 		kfree(remote);
404 	}
405 	/* Do reset before unlock to prevent races with kcov_remote_start(). */
406 	kcov_reset(kcov);
407 	spin_unlock_irqrestore(&kcov_remote_lock, flags);
408 }
409 
410 static void kcov_disable(struct task_struct *t, struct kcov *kcov)
411 {
412 	kcov_task_reset(t);
413 	if (kcov->remote)
414 		kcov_remote_reset(kcov);
415 	else
416 		kcov_reset(kcov);
417 }
418 
419 static void kcov_get(struct kcov *kcov)
420 {
421 	refcount_inc(&kcov->refcount);
422 }
423 
424 static void kcov_put(struct kcov *kcov)
425 {
426 	if (refcount_dec_and_test(&kcov->refcount)) {
427 		kcov_remote_reset(kcov);
428 		vfree(kcov->area);
429 		kfree(kcov);
430 	}
431 }
432 
433 void kcov_task_exit(struct task_struct *t)
434 {
435 	struct kcov *kcov;
436 	unsigned long flags;
437 
438 	kcov = t->kcov;
439 	if (kcov == NULL)
440 		return;
441 
442 	spin_lock_irqsave(&kcov->lock, flags);
443 	kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
444 	/*
445 	 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
446 	 * which comes down to:
447 	 *        WARN_ON(!kcov->remote && kcov->t != t);
448 	 *
449 	 * For KCOV_REMOTE_ENABLE devices, the exiting task is either:
450 	 *
451 	 * 1. A remote task between kcov_remote_start() and kcov_remote_stop().
452 	 *    In this case we should print a warning right away, since a task
453 	 *    shouldn't be exiting when it's in a kcov coverage collection
454 	 *    section. Here t points to the task that is collecting remote
455 	 *    coverage, and t->kcov->t points to the thread that created the
456 	 *    kcov device. Which means that to detect this case we need to
457 	 *    check that t != t->kcov->t, and this gives us the following:
458 	 *        WARN_ON(kcov->remote && kcov->t != t);
459 	 *
460 	 * 2. The task that created kcov exiting without calling KCOV_DISABLE,
461 	 *    and then again we make sure that t->kcov->t == t:
462 	 *        WARN_ON(kcov->remote && kcov->t != t);
463 	 *
464 	 * By combining all three checks into one we get:
465 	 */
466 	if (WARN_ON(kcov->t != t)) {
467 		spin_unlock_irqrestore(&kcov->lock, flags);
468 		return;
469 	}
470 	/* Just to not leave dangling references behind. */
471 	kcov_disable(t, kcov);
472 	spin_unlock_irqrestore(&kcov->lock, flags);
473 	kcov_put(kcov);
474 }
475 
476 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
477 {
478 	int res = 0;
479 	struct kcov *kcov = vma->vm_file->private_data;
480 	unsigned long size, off;
481 	struct page *page;
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&kcov->lock, flags);
485 	size = kcov->size * sizeof(unsigned long);
486 	if (kcov->area == NULL || vma->vm_pgoff != 0 ||
487 	    vma->vm_end - vma->vm_start != size) {
488 		res = -EINVAL;
489 		goto exit;
490 	}
491 	spin_unlock_irqrestore(&kcov->lock, flags);
492 	vma->vm_flags |= VM_DONTEXPAND;
493 	for (off = 0; off < size; off += PAGE_SIZE) {
494 		page = vmalloc_to_page(kcov->area + off);
495 		res = vm_insert_page(vma, vma->vm_start + off, page);
496 		if (res) {
497 			pr_warn_once("kcov: vm_insert_page() failed\n");
498 			return res;
499 		}
500 	}
501 	return 0;
502 exit:
503 	spin_unlock_irqrestore(&kcov->lock, flags);
504 	return res;
505 }
506 
507 static int kcov_open(struct inode *inode, struct file *filep)
508 {
509 	struct kcov *kcov;
510 
511 	kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
512 	if (!kcov)
513 		return -ENOMEM;
514 	kcov->mode = KCOV_MODE_DISABLED;
515 	kcov->sequence = 1;
516 	refcount_set(&kcov->refcount, 1);
517 	spin_lock_init(&kcov->lock);
518 	filep->private_data = kcov;
519 	return nonseekable_open(inode, filep);
520 }
521 
522 static int kcov_close(struct inode *inode, struct file *filep)
523 {
524 	kcov_put(filep->private_data);
525 	return 0;
526 }
527 
528 static int kcov_get_mode(unsigned long arg)
529 {
530 	if (arg == KCOV_TRACE_PC)
531 		return KCOV_MODE_TRACE_PC;
532 	else if (arg == KCOV_TRACE_CMP)
533 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS
534 		return KCOV_MODE_TRACE_CMP;
535 #else
536 		return -ENOTSUPP;
537 #endif
538 	else
539 		return -EINVAL;
540 }
541 
542 /*
543  * Fault in a lazily-faulted vmalloc area before it can be used by
544  * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
545  * vmalloc fault handling path is instrumented.
546  */
547 static void kcov_fault_in_area(struct kcov *kcov)
548 {
549 	unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
550 	unsigned long *area = kcov->area;
551 	unsigned long offset;
552 
553 	for (offset = 0; offset < kcov->size; offset += stride)
554 		READ_ONCE(area[offset]);
555 }
556 
557 static inline bool kcov_check_handle(u64 handle, bool common_valid,
558 				bool uncommon_valid, bool zero_valid)
559 {
560 	if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
561 		return false;
562 	switch (handle & KCOV_SUBSYSTEM_MASK) {
563 	case KCOV_SUBSYSTEM_COMMON:
564 		return (handle & KCOV_INSTANCE_MASK) ?
565 			common_valid : zero_valid;
566 	case KCOV_SUBSYSTEM_USB:
567 		return uncommon_valid;
568 	default:
569 		return false;
570 	}
571 	return false;
572 }
573 
574 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
575 			     unsigned long arg)
576 {
577 	struct task_struct *t;
578 	unsigned long flags, unused;
579 	int mode, i;
580 	struct kcov_remote_arg *remote_arg;
581 	struct kcov_remote *remote;
582 
583 	switch (cmd) {
584 	case KCOV_ENABLE:
585 		/*
586 		 * Enable coverage for the current task.
587 		 * At this point user must have been enabled trace mode,
588 		 * and mmapped the file. Coverage collection is disabled only
589 		 * at task exit or voluntary by KCOV_DISABLE. After that it can
590 		 * be enabled for another task.
591 		 */
592 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
593 			return -EINVAL;
594 		t = current;
595 		if (kcov->t != NULL || t->kcov != NULL)
596 			return -EBUSY;
597 		mode = kcov_get_mode(arg);
598 		if (mode < 0)
599 			return mode;
600 		kcov_fault_in_area(kcov);
601 		kcov->mode = mode;
602 		kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
603 				kcov->sequence);
604 		kcov->t = t;
605 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
606 		kcov_get(kcov);
607 		return 0;
608 	case KCOV_DISABLE:
609 		/* Disable coverage for the current task. */
610 		unused = arg;
611 		if (unused != 0 || current->kcov != kcov)
612 			return -EINVAL;
613 		t = current;
614 		if (WARN_ON(kcov->t != t))
615 			return -EINVAL;
616 		kcov_disable(t, kcov);
617 		kcov_put(kcov);
618 		return 0;
619 	case KCOV_REMOTE_ENABLE:
620 		if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
621 			return -EINVAL;
622 		t = current;
623 		if (kcov->t != NULL || t->kcov != NULL)
624 			return -EBUSY;
625 		remote_arg = (struct kcov_remote_arg *)arg;
626 		mode = kcov_get_mode(remote_arg->trace_mode);
627 		if (mode < 0)
628 			return mode;
629 		if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long))
630 			return -EINVAL;
631 		kcov->mode = mode;
632 		t->kcov = kcov;
633 		kcov->t = t;
634 		kcov->remote = true;
635 		kcov->remote_size = remote_arg->area_size;
636 		spin_lock_irqsave(&kcov_remote_lock, flags);
637 		for (i = 0; i < remote_arg->num_handles; i++) {
638 			if (!kcov_check_handle(remote_arg->handles[i],
639 						false, true, false)) {
640 				spin_unlock_irqrestore(&kcov_remote_lock,
641 							flags);
642 				kcov_disable(t, kcov);
643 				return -EINVAL;
644 			}
645 			remote = kcov_remote_add(kcov, remote_arg->handles[i]);
646 			if (IS_ERR(remote)) {
647 				spin_unlock_irqrestore(&kcov_remote_lock,
648 							flags);
649 				kcov_disable(t, kcov);
650 				return PTR_ERR(remote);
651 			}
652 		}
653 		if (remote_arg->common_handle) {
654 			if (!kcov_check_handle(remote_arg->common_handle,
655 						true, false, false)) {
656 				spin_unlock_irqrestore(&kcov_remote_lock,
657 							flags);
658 				kcov_disable(t, kcov);
659 				return -EINVAL;
660 			}
661 			remote = kcov_remote_add(kcov,
662 					remote_arg->common_handle);
663 			if (IS_ERR(remote)) {
664 				spin_unlock_irqrestore(&kcov_remote_lock,
665 							flags);
666 				kcov_disable(t, kcov);
667 				return PTR_ERR(remote);
668 			}
669 			t->kcov_handle = remote_arg->common_handle;
670 		}
671 		spin_unlock_irqrestore(&kcov_remote_lock, flags);
672 		/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
673 		kcov_get(kcov);
674 		return 0;
675 	default:
676 		return -ENOTTY;
677 	}
678 }
679 
680 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
681 {
682 	struct kcov *kcov;
683 	int res;
684 	struct kcov_remote_arg *remote_arg = NULL;
685 	unsigned int remote_num_handles;
686 	unsigned long remote_arg_size;
687 	unsigned long size, flags;
688 	void *area;
689 
690 	kcov = filep->private_data;
691 	switch (cmd) {
692 	case KCOV_INIT_TRACE:
693 		/*
694 		 * Enable kcov in trace mode and setup buffer size.
695 		 * Must happen before anything else.
696 		 *
697 		 * First check the size argument - it must be at least 2
698 		 * to hold the current position and one PC.
699 		 */
700 		size = arg;
701 		if (size < 2 || size > INT_MAX / sizeof(unsigned long))
702 			return -EINVAL;
703 		area = vmalloc_user(size * sizeof(unsigned long));
704 		if (area == NULL)
705 			return -ENOMEM;
706 		spin_lock_irqsave(&kcov->lock, flags);
707 		if (kcov->mode != KCOV_MODE_DISABLED) {
708 			spin_unlock_irqrestore(&kcov->lock, flags);
709 			vfree(area);
710 			return -EBUSY;
711 		}
712 		kcov->area = area;
713 		kcov->size = size;
714 		kcov->mode = KCOV_MODE_INIT;
715 		spin_unlock_irqrestore(&kcov->lock, flags);
716 		return 0;
717 	case KCOV_REMOTE_ENABLE:
718 		if (get_user(remote_num_handles, (unsigned __user *)(arg +
719 				offsetof(struct kcov_remote_arg, num_handles))))
720 			return -EFAULT;
721 		if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
722 			return -EINVAL;
723 		remote_arg_size = struct_size(remote_arg, handles,
724 					remote_num_handles);
725 		remote_arg = memdup_user((void __user *)arg, remote_arg_size);
726 		if (IS_ERR(remote_arg))
727 			return PTR_ERR(remote_arg);
728 		if (remote_arg->num_handles != remote_num_handles) {
729 			kfree(remote_arg);
730 			return -EINVAL;
731 		}
732 		arg = (unsigned long)remote_arg;
733 		fallthrough;
734 	default:
735 		/*
736 		 * All other commands can be normally executed under a spin lock, so we
737 		 * obtain and release it here in order to simplify kcov_ioctl_locked().
738 		 */
739 		spin_lock_irqsave(&kcov->lock, flags);
740 		res = kcov_ioctl_locked(kcov, cmd, arg);
741 		spin_unlock_irqrestore(&kcov->lock, flags);
742 		kfree(remote_arg);
743 		return res;
744 	}
745 }
746 
747 static const struct file_operations kcov_fops = {
748 	.open		= kcov_open,
749 	.unlocked_ioctl	= kcov_ioctl,
750 	.compat_ioctl	= kcov_ioctl,
751 	.mmap		= kcov_mmap,
752 	.release        = kcov_close,
753 };
754 
755 /*
756  * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
757  * of code in a kernel background thread or in a softirq to allow kcov to be
758  * used to collect coverage from that part of code.
759  *
760  * The handle argument of kcov_remote_start() identifies a code section that is
761  * used for coverage collection. A userspace process passes this handle to
762  * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
763  * coverage for the code section identified by this handle.
764  *
765  * The usage of these annotations in the kernel code is different depending on
766  * the type of the kernel thread whose code is being annotated.
767  *
768  * For global kernel threads that are spawned in a limited number of instances
769  * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
770  * softirqs, each instance must be assigned a unique 4-byte instance id. The
771  * instance id is then combined with a 1-byte subsystem id to get a handle via
772  * kcov_remote_handle(subsystem_id, instance_id).
773  *
774  * For local kernel threads that are spawned from system calls handler when a
775  * user interacts with some kernel interface (e.g. vhost workers), a handle is
776  * passed from a userspace process as the common_handle field of the
777  * kcov_remote_arg struct (note, that the user must generate a handle by using
778  * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
779  * arbitrary 4-byte non-zero number as the instance id). This common handle
780  * then gets saved into the task_struct of the process that issued the
781  * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
782  * kernel threads, the common handle must be retrieved via kcov_common_handle()
783  * and passed to the spawned threads via custom annotations. Those kernel
784  * threads must in turn be annotated with kcov_remote_start(common_handle) and
785  * kcov_remote_stop(). All of the threads that are spawned by the same process
786  * obtain the same handle, hence the name "common".
787  *
788  * See Documentation/dev-tools/kcov.rst for more details.
789  *
790  * Internally, kcov_remote_start() looks up the kcov device associated with the
791  * provided handle, allocates an area for coverage collection, and saves the
792  * pointers to kcov and area into the current task_struct to allow coverage to
793  * be collected via __sanitizer_cov_trace_pc().
794  * In turns kcov_remote_stop() clears those pointers from task_struct to stop
795  * collecting coverage and copies all collected coverage into the kcov area.
796  */
797 
798 static inline bool kcov_mode_enabled(unsigned int mode)
799 {
800 	return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
801 }
802 
803 static void kcov_remote_softirq_start(struct task_struct *t)
804 {
805 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
806 	unsigned int mode;
807 
808 	mode = READ_ONCE(t->kcov_mode);
809 	barrier();
810 	if (kcov_mode_enabled(mode)) {
811 		data->saved_mode = mode;
812 		data->saved_size = t->kcov_size;
813 		data->saved_area = t->kcov_area;
814 		data->saved_sequence = t->kcov_sequence;
815 		data->saved_kcov = t->kcov;
816 		kcov_stop(t);
817 	}
818 }
819 
820 static void kcov_remote_softirq_stop(struct task_struct *t)
821 {
822 	struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
823 
824 	if (data->saved_kcov) {
825 		kcov_start(t, data->saved_kcov, data->saved_size,
826 				data->saved_area, data->saved_mode,
827 				data->saved_sequence);
828 		data->saved_mode = 0;
829 		data->saved_size = 0;
830 		data->saved_area = NULL;
831 		data->saved_sequence = 0;
832 		data->saved_kcov = NULL;
833 	}
834 }
835 
836 void kcov_remote_start(u64 handle)
837 {
838 	struct task_struct *t = current;
839 	struct kcov_remote *remote;
840 	struct kcov *kcov;
841 	unsigned int mode;
842 	void *area;
843 	unsigned int size;
844 	int sequence;
845 	unsigned long flags;
846 
847 	if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
848 		return;
849 	if (!in_task() && !in_serving_softirq())
850 		return;
851 
852 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
853 
854 	/*
855 	 * Check that kcov_remote_start() is not called twice in background
856 	 * threads nor called by user tasks (with enabled kcov).
857 	 */
858 	mode = READ_ONCE(t->kcov_mode);
859 	if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
860 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
861 		return;
862 	}
863 	/*
864 	 * Check that kcov_remote_start() is not called twice in softirqs.
865 	 * Note, that kcov_remote_start() can be called from a softirq that
866 	 * happened while collecting coverage from a background thread.
867 	 */
868 	if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
869 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
870 		return;
871 	}
872 
873 	spin_lock(&kcov_remote_lock);
874 	remote = kcov_remote_find(handle);
875 	if (!remote) {
876 		spin_unlock(&kcov_remote_lock);
877 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
878 		return;
879 	}
880 	kcov_debug("handle = %llx, context: %s\n", handle,
881 			in_task() ? "task" : "softirq");
882 	kcov = remote->kcov;
883 	/* Put in kcov_remote_stop(). */
884 	kcov_get(kcov);
885 	/*
886 	 * Read kcov fields before unlock to prevent races with
887 	 * KCOV_DISABLE / kcov_remote_reset().
888 	 */
889 	mode = kcov->mode;
890 	sequence = kcov->sequence;
891 	if (in_task()) {
892 		size = kcov->remote_size;
893 		area = kcov_remote_area_get(size);
894 	} else {
895 		size = CONFIG_KCOV_IRQ_AREA_SIZE;
896 		area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
897 	}
898 	spin_unlock(&kcov_remote_lock);
899 
900 	/* Can only happen when in_task(). */
901 	if (!area) {
902 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
903 		area = vmalloc(size * sizeof(unsigned long));
904 		if (!area) {
905 			kcov_put(kcov);
906 			return;
907 		}
908 		local_lock_irqsave(&kcov_percpu_data.lock, flags);
909 	}
910 
911 	/* Reset coverage size. */
912 	*(u64 *)area = 0;
913 
914 	if (in_serving_softirq()) {
915 		kcov_remote_softirq_start(t);
916 		t->kcov_softirq = 1;
917 	}
918 	kcov_start(t, kcov, size, area, mode, sequence);
919 
920 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
921 
922 }
923 EXPORT_SYMBOL(kcov_remote_start);
924 
925 static void kcov_move_area(enum kcov_mode mode, void *dst_area,
926 				unsigned int dst_area_size, void *src_area)
927 {
928 	u64 word_size = sizeof(unsigned long);
929 	u64 count_size, entry_size_log;
930 	u64 dst_len, src_len;
931 	void *dst_entries, *src_entries;
932 	u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
933 
934 	kcov_debug("%px %u <= %px %lu\n",
935 		dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
936 
937 	switch (mode) {
938 	case KCOV_MODE_TRACE_PC:
939 		dst_len = READ_ONCE(*(unsigned long *)dst_area);
940 		src_len = *(unsigned long *)src_area;
941 		count_size = sizeof(unsigned long);
942 		entry_size_log = __ilog2_u64(sizeof(unsigned long));
943 		break;
944 	case KCOV_MODE_TRACE_CMP:
945 		dst_len = READ_ONCE(*(u64 *)dst_area);
946 		src_len = *(u64 *)src_area;
947 		count_size = sizeof(u64);
948 		BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
949 		entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
950 		break;
951 	default:
952 		WARN_ON(1);
953 		return;
954 	}
955 
956 	/* As arm can't divide u64 integers use log of entry size. */
957 	if (dst_len > ((dst_area_size * word_size - count_size) >>
958 				entry_size_log))
959 		return;
960 	dst_occupied = count_size + (dst_len << entry_size_log);
961 	dst_free = dst_area_size * word_size - dst_occupied;
962 	bytes_to_move = min(dst_free, src_len << entry_size_log);
963 	dst_entries = dst_area + dst_occupied;
964 	src_entries = src_area + count_size;
965 	memcpy(dst_entries, src_entries, bytes_to_move);
966 	entries_moved = bytes_to_move >> entry_size_log;
967 
968 	switch (mode) {
969 	case KCOV_MODE_TRACE_PC:
970 		WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
971 		break;
972 	case KCOV_MODE_TRACE_CMP:
973 		WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
974 		break;
975 	default:
976 		break;
977 	}
978 }
979 
980 /* See the comment before kcov_remote_start() for usage details. */
981 void kcov_remote_stop(void)
982 {
983 	struct task_struct *t = current;
984 	struct kcov *kcov;
985 	unsigned int mode;
986 	void *area;
987 	unsigned int size;
988 	int sequence;
989 	unsigned long flags;
990 
991 	if (!in_task() && !in_serving_softirq())
992 		return;
993 
994 	local_lock_irqsave(&kcov_percpu_data.lock, flags);
995 
996 	mode = READ_ONCE(t->kcov_mode);
997 	barrier();
998 	if (!kcov_mode_enabled(mode)) {
999 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1000 		return;
1001 	}
1002 	/*
1003 	 * When in softirq, check if the corresponding kcov_remote_start()
1004 	 * actually found the remote handle and started collecting coverage.
1005 	 */
1006 	if (in_serving_softirq() && !t->kcov_softirq) {
1007 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1008 		return;
1009 	}
1010 	/* Make sure that kcov_softirq is only set when in softirq. */
1011 	if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
1012 		local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1013 		return;
1014 	}
1015 
1016 	kcov = t->kcov;
1017 	area = t->kcov_area;
1018 	size = t->kcov_size;
1019 	sequence = t->kcov_sequence;
1020 
1021 	kcov_stop(t);
1022 	if (in_serving_softirq()) {
1023 		t->kcov_softirq = 0;
1024 		kcov_remote_softirq_stop(t);
1025 	}
1026 
1027 	spin_lock(&kcov->lock);
1028 	/*
1029 	 * KCOV_DISABLE could have been called between kcov_remote_start()
1030 	 * and kcov_remote_stop(), hence the sequence check.
1031 	 */
1032 	if (sequence == kcov->sequence && kcov->remote)
1033 		kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
1034 	spin_unlock(&kcov->lock);
1035 
1036 	if (in_task()) {
1037 		spin_lock(&kcov_remote_lock);
1038 		kcov_remote_area_put(area, size);
1039 		spin_unlock(&kcov_remote_lock);
1040 	}
1041 
1042 	local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
1043 
1044 	/* Get in kcov_remote_start(). */
1045 	kcov_put(kcov);
1046 }
1047 EXPORT_SYMBOL(kcov_remote_stop);
1048 
1049 /* See the comment before kcov_remote_start() for usage details. */
1050 u64 kcov_common_handle(void)
1051 {
1052 	if (!in_task())
1053 		return 0;
1054 	return current->kcov_handle;
1055 }
1056 EXPORT_SYMBOL(kcov_common_handle);
1057 
1058 static int __init kcov_init(void)
1059 {
1060 	int cpu;
1061 
1062 	for_each_possible_cpu(cpu) {
1063 		void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
1064 				sizeof(unsigned long), cpu_to_node(cpu));
1065 		if (!area)
1066 			return -ENOMEM;
1067 		per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
1068 	}
1069 
1070 	/*
1071 	 * The kcov debugfs file won't ever get removed and thus,
1072 	 * there is no need to protect it against removal races. The
1073 	 * use of debugfs_create_file_unsafe() is actually safe here.
1074 	 */
1075 	debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
1076 
1077 	return 0;
1078 }
1079 
1080 device_initcall(kcov_init);
1081