1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "kcov: " fmt 3 4 #define DISABLE_BRANCH_PROFILING 5 #include <linux/atomic.h> 6 #include <linux/compiler.h> 7 #include <linux/errno.h> 8 #include <linux/export.h> 9 #include <linux/types.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/hashtable.h> 13 #include <linux/init.h> 14 #include <linux/jiffies.h> 15 #include <linux/kmsan-checks.h> 16 #include <linux/mm.h> 17 #include <linux/preempt.h> 18 #include <linux/printk.h> 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/vmalloc.h> 23 #include <linux/debugfs.h> 24 #include <linux/uaccess.h> 25 #include <linux/kcov.h> 26 #include <linux/refcount.h> 27 #include <linux/log2.h> 28 #include <asm/setup.h> 29 30 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 31 32 /* Number of 64-bit words written per one comparison: */ 33 #define KCOV_WORDS_PER_CMP 4 34 35 /* 36 * kcov descriptor (one per opened debugfs file). 37 * State transitions of the descriptor: 38 * - initial state after open() 39 * - then there must be a single ioctl(KCOV_INIT_TRACE) call 40 * - then, mmap() call (several calls are allowed but not useful) 41 * - then, ioctl(KCOV_ENABLE, arg), where arg is 42 * KCOV_TRACE_PC - to trace only the PCs 43 * or 44 * KCOV_TRACE_CMP - to trace only the comparison operands 45 * - then, ioctl(KCOV_DISABLE) to disable the task. 46 * Enabling/disabling ioctls can be repeated (only one task a time allowed). 47 */ 48 struct kcov { 49 /* 50 * Reference counter. We keep one for: 51 * - opened file descriptor 52 * - task with enabled coverage (we can't unwire it from another task) 53 * - each code section for remote coverage collection 54 */ 55 refcount_t refcount; 56 /* The lock protects mode, size, area and t. */ 57 spinlock_t lock; 58 enum kcov_mode mode; 59 /* Size of arena (in long's). */ 60 unsigned int size; 61 /* Coverage buffer shared with user space. */ 62 void *area; 63 /* Task for which we collect coverage, or NULL. */ 64 struct task_struct *t; 65 /* Collecting coverage from remote (background) threads. */ 66 bool remote; 67 /* Size of remote area (in long's). */ 68 unsigned int remote_size; 69 /* 70 * Sequence is incremented each time kcov is reenabled, used by 71 * kcov_remote_stop(), see the comment there. 72 */ 73 int sequence; 74 }; 75 76 struct kcov_remote_area { 77 struct list_head list; 78 unsigned int size; 79 }; 80 81 struct kcov_remote { 82 u64 handle; 83 struct kcov *kcov; 84 struct hlist_node hnode; 85 }; 86 87 static DEFINE_SPINLOCK(kcov_remote_lock); 88 static DEFINE_HASHTABLE(kcov_remote_map, 4); 89 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); 90 91 struct kcov_percpu_data { 92 void *irq_area; 93 local_lock_t lock; 94 95 unsigned int saved_mode; 96 unsigned int saved_size; 97 void *saved_area; 98 struct kcov *saved_kcov; 99 int saved_sequence; 100 }; 101 102 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { 103 .lock = INIT_LOCAL_LOCK(lock), 104 }; 105 106 /* Must be called with kcov_remote_lock locked. */ 107 static struct kcov_remote *kcov_remote_find(u64 handle) 108 { 109 struct kcov_remote *remote; 110 111 hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { 112 if (remote->handle == handle) 113 return remote; 114 } 115 return NULL; 116 } 117 118 /* Must be called with kcov_remote_lock locked. */ 119 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) 120 { 121 struct kcov_remote *remote; 122 123 if (kcov_remote_find(handle)) 124 return ERR_PTR(-EEXIST); 125 remote = kmalloc(sizeof(*remote), GFP_ATOMIC); 126 if (!remote) 127 return ERR_PTR(-ENOMEM); 128 remote->handle = handle; 129 remote->kcov = kcov; 130 hash_add(kcov_remote_map, &remote->hnode, handle); 131 return remote; 132 } 133 134 /* Must be called with kcov_remote_lock locked. */ 135 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) 136 { 137 struct kcov_remote_area *area; 138 struct list_head *pos; 139 140 list_for_each(pos, &kcov_remote_areas) { 141 area = list_entry(pos, struct kcov_remote_area, list); 142 if (area->size == size) { 143 list_del(&area->list); 144 return area; 145 } 146 } 147 return NULL; 148 } 149 150 /* Must be called with kcov_remote_lock locked. */ 151 static void kcov_remote_area_put(struct kcov_remote_area *area, 152 unsigned int size) 153 { 154 INIT_LIST_HEAD(&area->list); 155 area->size = size; 156 list_add(&area->list, &kcov_remote_areas); 157 /* 158 * KMSAN doesn't instrument this file, so it may not know area->list 159 * is initialized. Unpoison it explicitly to avoid reports in 160 * kcov_remote_area_get(). 161 */ 162 kmsan_unpoison_memory(&area->list, sizeof(area->list)); 163 } 164 165 /* 166 * Unlike in_serving_softirq(), this function returns false when called during 167 * a hardirq or an NMI that happened in the softirq context. 168 */ 169 static inline bool in_softirq_really(void) 170 { 171 return in_serving_softirq() && !in_hardirq() && !in_nmi(); 172 } 173 174 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) 175 { 176 unsigned int mode; 177 178 /* 179 * We are interested in code coverage as a function of a syscall inputs, 180 * so we ignore code executed in interrupts, unless we are in a remote 181 * coverage collection section in a softirq. 182 */ 183 if (!in_task() && !(in_softirq_really() && t->kcov_softirq)) 184 return false; 185 mode = READ_ONCE(t->kcov_mode); 186 /* 187 * There is some code that runs in interrupts but for which 188 * in_interrupt() returns false (e.g. preempt_schedule_irq()). 189 * READ_ONCE()/barrier() effectively provides load-acquire wrt 190 * interrupts, there are paired barrier()/WRITE_ONCE() in 191 * kcov_start(). 192 */ 193 barrier(); 194 return mode == needed_mode; 195 } 196 197 static notrace unsigned long canonicalize_ip(unsigned long ip) 198 { 199 #ifdef CONFIG_RANDOMIZE_BASE 200 ip -= kaslr_offset(); 201 #endif 202 return ip; 203 } 204 205 /* 206 * Entry point from instrumented code. 207 * This is called once per basic-block/edge. 208 */ 209 void notrace __sanitizer_cov_trace_pc(void) 210 { 211 struct task_struct *t; 212 unsigned long *area; 213 unsigned long ip = canonicalize_ip(_RET_IP_); 214 unsigned long pos; 215 216 t = current; 217 if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) 218 return; 219 220 area = t->kcov_area; 221 /* The first 64-bit word is the number of subsequent PCs. */ 222 pos = READ_ONCE(area[0]) + 1; 223 if (likely(pos < t->kcov_size)) { 224 /* Previously we write pc before updating pos. However, some 225 * early interrupt code could bypass check_kcov_mode() check 226 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is 227 * raised between writing pc and updating pos, the pc could be 228 * overitten by the recursive __sanitizer_cov_trace_pc(). 229 * Update pos before writing pc to avoid such interleaving. 230 */ 231 WRITE_ONCE(area[0], pos); 232 barrier(); 233 area[pos] = ip; 234 } 235 } 236 EXPORT_SYMBOL(__sanitizer_cov_trace_pc); 237 238 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 239 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) 240 { 241 struct task_struct *t; 242 u64 *area; 243 u64 count, start_index, end_pos, max_pos; 244 245 t = current; 246 if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) 247 return; 248 249 ip = canonicalize_ip(ip); 250 251 /* 252 * We write all comparison arguments and types as u64. 253 * The buffer was allocated for t->kcov_size unsigned longs. 254 */ 255 area = (u64 *)t->kcov_area; 256 max_pos = t->kcov_size * sizeof(unsigned long); 257 258 count = READ_ONCE(area[0]); 259 260 /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ 261 start_index = 1 + count * KCOV_WORDS_PER_CMP; 262 end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); 263 if (likely(end_pos <= max_pos)) { 264 /* See comment in __sanitizer_cov_trace_pc(). */ 265 WRITE_ONCE(area[0], count + 1); 266 barrier(); 267 area[start_index] = type; 268 area[start_index + 1] = arg1; 269 area[start_index + 2] = arg2; 270 area[start_index + 3] = ip; 271 } 272 } 273 274 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) 275 { 276 write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); 277 } 278 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); 279 280 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) 281 { 282 write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); 283 } 284 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); 285 286 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) 287 { 288 write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); 289 } 290 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); 291 292 void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2) 293 { 294 write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); 295 } 296 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); 297 298 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) 299 { 300 write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, 301 _RET_IP_); 302 } 303 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); 304 305 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) 306 { 307 write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, 308 _RET_IP_); 309 } 310 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); 311 312 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) 313 { 314 write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, 315 _RET_IP_); 316 } 317 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); 318 319 void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2) 320 { 321 write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, 322 _RET_IP_); 323 } 324 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); 325 326 void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg) 327 { 328 u64 i; 329 u64 *cases = arg; 330 u64 count = cases[0]; 331 u64 size = cases[1]; 332 u64 type = KCOV_CMP_CONST; 333 334 switch (size) { 335 case 8: 336 type |= KCOV_CMP_SIZE(0); 337 break; 338 case 16: 339 type |= KCOV_CMP_SIZE(1); 340 break; 341 case 32: 342 type |= KCOV_CMP_SIZE(2); 343 break; 344 case 64: 345 type |= KCOV_CMP_SIZE(3); 346 break; 347 default: 348 return; 349 } 350 for (i = 0; i < count; i++) 351 write_comp_data(type, cases[i + 2], val, _RET_IP_); 352 } 353 EXPORT_SYMBOL(__sanitizer_cov_trace_switch); 354 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ 355 356 static void kcov_start(struct task_struct *t, struct kcov *kcov, 357 unsigned int size, void *area, enum kcov_mode mode, 358 int sequence) 359 { 360 kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); 361 t->kcov = kcov; 362 /* Cache in task struct for performance. */ 363 t->kcov_size = size; 364 t->kcov_area = area; 365 t->kcov_sequence = sequence; 366 /* See comment in check_kcov_mode(). */ 367 barrier(); 368 WRITE_ONCE(t->kcov_mode, mode); 369 } 370 371 static void kcov_stop(struct task_struct *t) 372 { 373 WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); 374 barrier(); 375 t->kcov = NULL; 376 t->kcov_size = 0; 377 t->kcov_area = NULL; 378 } 379 380 static void kcov_task_reset(struct task_struct *t) 381 { 382 kcov_stop(t); 383 t->kcov_sequence = 0; 384 t->kcov_handle = 0; 385 } 386 387 void kcov_task_init(struct task_struct *t) 388 { 389 kcov_task_reset(t); 390 t->kcov_handle = current->kcov_handle; 391 } 392 393 static void kcov_reset(struct kcov *kcov) 394 { 395 kcov->t = NULL; 396 kcov->mode = KCOV_MODE_INIT; 397 kcov->remote = false; 398 kcov->remote_size = 0; 399 kcov->sequence++; 400 } 401 402 static void kcov_remote_reset(struct kcov *kcov) 403 { 404 int bkt; 405 struct kcov_remote *remote; 406 struct hlist_node *tmp; 407 unsigned long flags; 408 409 spin_lock_irqsave(&kcov_remote_lock, flags); 410 hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { 411 if (remote->kcov != kcov) 412 continue; 413 hash_del(&remote->hnode); 414 kfree(remote); 415 } 416 /* Do reset before unlock to prevent races with kcov_remote_start(). */ 417 kcov_reset(kcov); 418 spin_unlock_irqrestore(&kcov_remote_lock, flags); 419 } 420 421 static void kcov_disable(struct task_struct *t, struct kcov *kcov) 422 { 423 kcov_task_reset(t); 424 if (kcov->remote) 425 kcov_remote_reset(kcov); 426 else 427 kcov_reset(kcov); 428 } 429 430 static void kcov_get(struct kcov *kcov) 431 { 432 refcount_inc(&kcov->refcount); 433 } 434 435 static void kcov_put(struct kcov *kcov) 436 { 437 if (refcount_dec_and_test(&kcov->refcount)) { 438 kcov_remote_reset(kcov); 439 vfree(kcov->area); 440 kfree(kcov); 441 } 442 } 443 444 void kcov_task_exit(struct task_struct *t) 445 { 446 struct kcov *kcov; 447 unsigned long flags; 448 449 kcov = t->kcov; 450 if (kcov == NULL) 451 return; 452 453 spin_lock_irqsave(&kcov->lock, flags); 454 kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); 455 /* 456 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, 457 * which comes down to: 458 * WARN_ON(!kcov->remote && kcov->t != t); 459 * 460 * For KCOV_REMOTE_ENABLE devices, the exiting task is either: 461 * 462 * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). 463 * In this case we should print a warning right away, since a task 464 * shouldn't be exiting when it's in a kcov coverage collection 465 * section. Here t points to the task that is collecting remote 466 * coverage, and t->kcov->t points to the thread that created the 467 * kcov device. Which means that to detect this case we need to 468 * check that t != t->kcov->t, and this gives us the following: 469 * WARN_ON(kcov->remote && kcov->t != t); 470 * 471 * 2. The task that created kcov exiting without calling KCOV_DISABLE, 472 * and then again we make sure that t->kcov->t == t: 473 * WARN_ON(kcov->remote && kcov->t != t); 474 * 475 * By combining all three checks into one we get: 476 */ 477 if (WARN_ON(kcov->t != t)) { 478 spin_unlock_irqrestore(&kcov->lock, flags); 479 return; 480 } 481 /* Just to not leave dangling references behind. */ 482 kcov_disable(t, kcov); 483 spin_unlock_irqrestore(&kcov->lock, flags); 484 kcov_put(kcov); 485 } 486 487 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) 488 { 489 int res = 0; 490 struct kcov *kcov = vma->vm_file->private_data; 491 unsigned long size, off; 492 struct page *page; 493 unsigned long flags; 494 495 spin_lock_irqsave(&kcov->lock, flags); 496 size = kcov->size * sizeof(unsigned long); 497 if (kcov->area == NULL || vma->vm_pgoff != 0 || 498 vma->vm_end - vma->vm_start != size) { 499 res = -EINVAL; 500 goto exit; 501 } 502 spin_unlock_irqrestore(&kcov->lock, flags); 503 vm_flags_set(vma, VM_DONTEXPAND); 504 for (off = 0; off < size; off += PAGE_SIZE) { 505 page = vmalloc_to_page(kcov->area + off); 506 res = vm_insert_page(vma, vma->vm_start + off, page); 507 if (res) { 508 pr_warn_once("kcov: vm_insert_page() failed\n"); 509 return res; 510 } 511 } 512 return 0; 513 exit: 514 spin_unlock_irqrestore(&kcov->lock, flags); 515 return res; 516 } 517 518 static int kcov_open(struct inode *inode, struct file *filep) 519 { 520 struct kcov *kcov; 521 522 kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); 523 if (!kcov) 524 return -ENOMEM; 525 kcov->mode = KCOV_MODE_DISABLED; 526 kcov->sequence = 1; 527 refcount_set(&kcov->refcount, 1); 528 spin_lock_init(&kcov->lock); 529 filep->private_data = kcov; 530 return nonseekable_open(inode, filep); 531 } 532 533 static int kcov_close(struct inode *inode, struct file *filep) 534 { 535 kcov_put(filep->private_data); 536 return 0; 537 } 538 539 static int kcov_get_mode(unsigned long arg) 540 { 541 if (arg == KCOV_TRACE_PC) 542 return KCOV_MODE_TRACE_PC; 543 else if (arg == KCOV_TRACE_CMP) 544 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 545 return KCOV_MODE_TRACE_CMP; 546 #else 547 return -ENOTSUPP; 548 #endif 549 else 550 return -EINVAL; 551 } 552 553 /* 554 * Fault in a lazily-faulted vmalloc area before it can be used by 555 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the 556 * vmalloc fault handling path is instrumented. 557 */ 558 static void kcov_fault_in_area(struct kcov *kcov) 559 { 560 unsigned long stride = PAGE_SIZE / sizeof(unsigned long); 561 unsigned long *area = kcov->area; 562 unsigned long offset; 563 564 for (offset = 0; offset < kcov->size; offset += stride) 565 READ_ONCE(area[offset]); 566 } 567 568 static inline bool kcov_check_handle(u64 handle, bool common_valid, 569 bool uncommon_valid, bool zero_valid) 570 { 571 if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) 572 return false; 573 switch (handle & KCOV_SUBSYSTEM_MASK) { 574 case KCOV_SUBSYSTEM_COMMON: 575 return (handle & KCOV_INSTANCE_MASK) ? 576 common_valid : zero_valid; 577 case KCOV_SUBSYSTEM_USB: 578 return uncommon_valid; 579 default: 580 return false; 581 } 582 return false; 583 } 584 585 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, 586 unsigned long arg) 587 { 588 struct task_struct *t; 589 unsigned long flags, unused; 590 int mode, i; 591 struct kcov_remote_arg *remote_arg; 592 struct kcov_remote *remote; 593 594 switch (cmd) { 595 case KCOV_ENABLE: 596 /* 597 * Enable coverage for the current task. 598 * At this point user must have been enabled trace mode, 599 * and mmapped the file. Coverage collection is disabled only 600 * at task exit or voluntary by KCOV_DISABLE. After that it can 601 * be enabled for another task. 602 */ 603 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 604 return -EINVAL; 605 t = current; 606 if (kcov->t != NULL || t->kcov != NULL) 607 return -EBUSY; 608 mode = kcov_get_mode(arg); 609 if (mode < 0) 610 return mode; 611 kcov_fault_in_area(kcov); 612 kcov->mode = mode; 613 kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, 614 kcov->sequence); 615 kcov->t = t; 616 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 617 kcov_get(kcov); 618 return 0; 619 case KCOV_DISABLE: 620 /* Disable coverage for the current task. */ 621 unused = arg; 622 if (unused != 0 || current->kcov != kcov) 623 return -EINVAL; 624 t = current; 625 if (WARN_ON(kcov->t != t)) 626 return -EINVAL; 627 kcov_disable(t, kcov); 628 kcov_put(kcov); 629 return 0; 630 case KCOV_REMOTE_ENABLE: 631 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 632 return -EINVAL; 633 t = current; 634 if (kcov->t != NULL || t->kcov != NULL) 635 return -EBUSY; 636 remote_arg = (struct kcov_remote_arg *)arg; 637 mode = kcov_get_mode(remote_arg->trace_mode); 638 if (mode < 0) 639 return mode; 640 if ((unsigned long)remote_arg->area_size > 641 LONG_MAX / sizeof(unsigned long)) 642 return -EINVAL; 643 kcov->mode = mode; 644 t->kcov = kcov; 645 t->kcov_mode = KCOV_MODE_REMOTE; 646 kcov->t = t; 647 kcov->remote = true; 648 kcov->remote_size = remote_arg->area_size; 649 spin_lock_irqsave(&kcov_remote_lock, flags); 650 for (i = 0; i < remote_arg->num_handles; i++) { 651 if (!kcov_check_handle(remote_arg->handles[i], 652 false, true, false)) { 653 spin_unlock_irqrestore(&kcov_remote_lock, 654 flags); 655 kcov_disable(t, kcov); 656 return -EINVAL; 657 } 658 remote = kcov_remote_add(kcov, remote_arg->handles[i]); 659 if (IS_ERR(remote)) { 660 spin_unlock_irqrestore(&kcov_remote_lock, 661 flags); 662 kcov_disable(t, kcov); 663 return PTR_ERR(remote); 664 } 665 } 666 if (remote_arg->common_handle) { 667 if (!kcov_check_handle(remote_arg->common_handle, 668 true, false, false)) { 669 spin_unlock_irqrestore(&kcov_remote_lock, 670 flags); 671 kcov_disable(t, kcov); 672 return -EINVAL; 673 } 674 remote = kcov_remote_add(kcov, 675 remote_arg->common_handle); 676 if (IS_ERR(remote)) { 677 spin_unlock_irqrestore(&kcov_remote_lock, 678 flags); 679 kcov_disable(t, kcov); 680 return PTR_ERR(remote); 681 } 682 t->kcov_handle = remote_arg->common_handle; 683 } 684 spin_unlock_irqrestore(&kcov_remote_lock, flags); 685 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 686 kcov_get(kcov); 687 return 0; 688 default: 689 return -ENOTTY; 690 } 691 } 692 693 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 694 { 695 struct kcov *kcov; 696 int res; 697 struct kcov_remote_arg *remote_arg = NULL; 698 unsigned int remote_num_handles; 699 unsigned long remote_arg_size; 700 unsigned long size, flags; 701 void *area; 702 703 kcov = filep->private_data; 704 switch (cmd) { 705 case KCOV_INIT_TRACE: 706 /* 707 * Enable kcov in trace mode and setup buffer size. 708 * Must happen before anything else. 709 * 710 * First check the size argument - it must be at least 2 711 * to hold the current position and one PC. 712 */ 713 size = arg; 714 if (size < 2 || size > INT_MAX / sizeof(unsigned long)) 715 return -EINVAL; 716 area = vmalloc_user(size * sizeof(unsigned long)); 717 if (area == NULL) 718 return -ENOMEM; 719 spin_lock_irqsave(&kcov->lock, flags); 720 if (kcov->mode != KCOV_MODE_DISABLED) { 721 spin_unlock_irqrestore(&kcov->lock, flags); 722 vfree(area); 723 return -EBUSY; 724 } 725 kcov->area = area; 726 kcov->size = size; 727 kcov->mode = KCOV_MODE_INIT; 728 spin_unlock_irqrestore(&kcov->lock, flags); 729 return 0; 730 case KCOV_REMOTE_ENABLE: 731 if (get_user(remote_num_handles, (unsigned __user *)(arg + 732 offsetof(struct kcov_remote_arg, num_handles)))) 733 return -EFAULT; 734 if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) 735 return -EINVAL; 736 remote_arg_size = struct_size(remote_arg, handles, 737 remote_num_handles); 738 remote_arg = memdup_user((void __user *)arg, remote_arg_size); 739 if (IS_ERR(remote_arg)) 740 return PTR_ERR(remote_arg); 741 if (remote_arg->num_handles != remote_num_handles) { 742 kfree(remote_arg); 743 return -EINVAL; 744 } 745 arg = (unsigned long)remote_arg; 746 fallthrough; 747 default: 748 /* 749 * All other commands can be normally executed under a spin lock, so we 750 * obtain and release it here in order to simplify kcov_ioctl_locked(). 751 */ 752 spin_lock_irqsave(&kcov->lock, flags); 753 res = kcov_ioctl_locked(kcov, cmd, arg); 754 spin_unlock_irqrestore(&kcov->lock, flags); 755 kfree(remote_arg); 756 return res; 757 } 758 } 759 760 static const struct file_operations kcov_fops = { 761 .open = kcov_open, 762 .unlocked_ioctl = kcov_ioctl, 763 .compat_ioctl = kcov_ioctl, 764 .mmap = kcov_mmap, 765 .release = kcov_close, 766 }; 767 768 /* 769 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section 770 * of code in a kernel background thread or in a softirq to allow kcov to be 771 * used to collect coverage from that part of code. 772 * 773 * The handle argument of kcov_remote_start() identifies a code section that is 774 * used for coverage collection. A userspace process passes this handle to 775 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting 776 * coverage for the code section identified by this handle. 777 * 778 * The usage of these annotations in the kernel code is different depending on 779 * the type of the kernel thread whose code is being annotated. 780 * 781 * For global kernel threads that are spawned in a limited number of instances 782 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for 783 * softirqs, each instance must be assigned a unique 4-byte instance id. The 784 * instance id is then combined with a 1-byte subsystem id to get a handle via 785 * kcov_remote_handle(subsystem_id, instance_id). 786 * 787 * For local kernel threads that are spawned from system calls handler when a 788 * user interacts with some kernel interface (e.g. vhost workers), a handle is 789 * passed from a userspace process as the common_handle field of the 790 * kcov_remote_arg struct (note, that the user must generate a handle by using 791 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an 792 * arbitrary 4-byte non-zero number as the instance id). This common handle 793 * then gets saved into the task_struct of the process that issued the 794 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn 795 * kernel threads, the common handle must be retrieved via kcov_common_handle() 796 * and passed to the spawned threads via custom annotations. Those kernel 797 * threads must in turn be annotated with kcov_remote_start(common_handle) and 798 * kcov_remote_stop(). All of the threads that are spawned by the same process 799 * obtain the same handle, hence the name "common". 800 * 801 * See Documentation/dev-tools/kcov.rst for more details. 802 * 803 * Internally, kcov_remote_start() looks up the kcov device associated with the 804 * provided handle, allocates an area for coverage collection, and saves the 805 * pointers to kcov and area into the current task_struct to allow coverage to 806 * be collected via __sanitizer_cov_trace_pc(). 807 * In turns kcov_remote_stop() clears those pointers from task_struct to stop 808 * collecting coverage and copies all collected coverage into the kcov area. 809 */ 810 811 static inline bool kcov_mode_enabled(unsigned int mode) 812 { 813 return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; 814 } 815 816 static void kcov_remote_softirq_start(struct task_struct *t) 817 { 818 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 819 unsigned int mode; 820 821 mode = READ_ONCE(t->kcov_mode); 822 barrier(); 823 if (kcov_mode_enabled(mode)) { 824 data->saved_mode = mode; 825 data->saved_size = t->kcov_size; 826 data->saved_area = t->kcov_area; 827 data->saved_sequence = t->kcov_sequence; 828 data->saved_kcov = t->kcov; 829 kcov_stop(t); 830 } 831 } 832 833 static void kcov_remote_softirq_stop(struct task_struct *t) 834 { 835 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 836 837 if (data->saved_kcov) { 838 kcov_start(t, data->saved_kcov, data->saved_size, 839 data->saved_area, data->saved_mode, 840 data->saved_sequence); 841 data->saved_mode = 0; 842 data->saved_size = 0; 843 data->saved_area = NULL; 844 data->saved_sequence = 0; 845 data->saved_kcov = NULL; 846 } 847 } 848 849 void kcov_remote_start(u64 handle) 850 { 851 struct task_struct *t = current; 852 struct kcov_remote *remote; 853 struct kcov *kcov; 854 unsigned int mode; 855 void *area; 856 unsigned int size; 857 int sequence; 858 unsigned long flags; 859 860 if (WARN_ON(!kcov_check_handle(handle, true, true, true))) 861 return; 862 if (!in_task() && !in_softirq_really()) 863 return; 864 865 local_lock_irqsave(&kcov_percpu_data.lock, flags); 866 867 /* 868 * Check that kcov_remote_start() is not called twice in background 869 * threads nor called by user tasks (with enabled kcov). 870 */ 871 mode = READ_ONCE(t->kcov_mode); 872 if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { 873 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 874 return; 875 } 876 /* 877 * Check that kcov_remote_start() is not called twice in softirqs. 878 * Note, that kcov_remote_start() can be called from a softirq that 879 * happened while collecting coverage from a background thread. 880 */ 881 if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { 882 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 883 return; 884 } 885 886 spin_lock(&kcov_remote_lock); 887 remote = kcov_remote_find(handle); 888 if (!remote) { 889 spin_unlock(&kcov_remote_lock); 890 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 891 return; 892 } 893 kcov_debug("handle = %llx, context: %s\n", handle, 894 in_task() ? "task" : "softirq"); 895 kcov = remote->kcov; 896 /* Put in kcov_remote_stop(). */ 897 kcov_get(kcov); 898 /* 899 * Read kcov fields before unlock to prevent races with 900 * KCOV_DISABLE / kcov_remote_reset(). 901 */ 902 mode = kcov->mode; 903 sequence = kcov->sequence; 904 if (in_task()) { 905 size = kcov->remote_size; 906 area = kcov_remote_area_get(size); 907 } else { 908 size = CONFIG_KCOV_IRQ_AREA_SIZE; 909 area = this_cpu_ptr(&kcov_percpu_data)->irq_area; 910 } 911 spin_unlock(&kcov_remote_lock); 912 913 /* Can only happen when in_task(). */ 914 if (!area) { 915 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 916 area = vmalloc(size * sizeof(unsigned long)); 917 if (!area) { 918 kcov_put(kcov); 919 return; 920 } 921 local_lock_irqsave(&kcov_percpu_data.lock, flags); 922 } 923 924 /* Reset coverage size. */ 925 *(u64 *)area = 0; 926 927 if (in_serving_softirq()) { 928 kcov_remote_softirq_start(t); 929 t->kcov_softirq = 1; 930 } 931 kcov_start(t, kcov, size, area, mode, sequence); 932 933 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 934 935 } 936 EXPORT_SYMBOL(kcov_remote_start); 937 938 static void kcov_move_area(enum kcov_mode mode, void *dst_area, 939 unsigned int dst_area_size, void *src_area) 940 { 941 u64 word_size = sizeof(unsigned long); 942 u64 count_size, entry_size_log; 943 u64 dst_len, src_len; 944 void *dst_entries, *src_entries; 945 u64 dst_occupied, dst_free, bytes_to_move, entries_moved; 946 947 kcov_debug("%px %u <= %px %lu\n", 948 dst_area, dst_area_size, src_area, *(unsigned long *)src_area); 949 950 switch (mode) { 951 case KCOV_MODE_TRACE_PC: 952 dst_len = READ_ONCE(*(unsigned long *)dst_area); 953 src_len = *(unsigned long *)src_area; 954 count_size = sizeof(unsigned long); 955 entry_size_log = __ilog2_u64(sizeof(unsigned long)); 956 break; 957 case KCOV_MODE_TRACE_CMP: 958 dst_len = READ_ONCE(*(u64 *)dst_area); 959 src_len = *(u64 *)src_area; 960 count_size = sizeof(u64); 961 BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); 962 entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); 963 break; 964 default: 965 WARN_ON(1); 966 return; 967 } 968 969 /* As arm can't divide u64 integers use log of entry size. */ 970 if (dst_len > ((dst_area_size * word_size - count_size) >> 971 entry_size_log)) 972 return; 973 dst_occupied = count_size + (dst_len << entry_size_log); 974 dst_free = dst_area_size * word_size - dst_occupied; 975 bytes_to_move = min(dst_free, src_len << entry_size_log); 976 dst_entries = dst_area + dst_occupied; 977 src_entries = src_area + count_size; 978 memcpy(dst_entries, src_entries, bytes_to_move); 979 entries_moved = bytes_to_move >> entry_size_log; 980 981 switch (mode) { 982 case KCOV_MODE_TRACE_PC: 983 WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); 984 break; 985 case KCOV_MODE_TRACE_CMP: 986 WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); 987 break; 988 default: 989 break; 990 } 991 } 992 993 /* See the comment before kcov_remote_start() for usage details. */ 994 void kcov_remote_stop(void) 995 { 996 struct task_struct *t = current; 997 struct kcov *kcov; 998 unsigned int mode; 999 void *area; 1000 unsigned int size; 1001 int sequence; 1002 unsigned long flags; 1003 1004 if (!in_task() && !in_softirq_really()) 1005 return; 1006 1007 local_lock_irqsave(&kcov_percpu_data.lock, flags); 1008 1009 mode = READ_ONCE(t->kcov_mode); 1010 barrier(); 1011 if (!kcov_mode_enabled(mode)) { 1012 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1013 return; 1014 } 1015 /* 1016 * When in softirq, check if the corresponding kcov_remote_start() 1017 * actually found the remote handle and started collecting coverage. 1018 */ 1019 if (in_serving_softirq() && !t->kcov_softirq) { 1020 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1021 return; 1022 } 1023 /* Make sure that kcov_softirq is only set when in softirq. */ 1024 if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { 1025 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1026 return; 1027 } 1028 1029 kcov = t->kcov; 1030 area = t->kcov_area; 1031 size = t->kcov_size; 1032 sequence = t->kcov_sequence; 1033 1034 kcov_stop(t); 1035 if (in_serving_softirq()) { 1036 t->kcov_softirq = 0; 1037 kcov_remote_softirq_stop(t); 1038 } 1039 1040 spin_lock(&kcov->lock); 1041 /* 1042 * KCOV_DISABLE could have been called between kcov_remote_start() 1043 * and kcov_remote_stop(), hence the sequence check. 1044 */ 1045 if (sequence == kcov->sequence && kcov->remote) 1046 kcov_move_area(kcov->mode, kcov->area, kcov->size, area); 1047 spin_unlock(&kcov->lock); 1048 1049 if (in_task()) { 1050 spin_lock(&kcov_remote_lock); 1051 kcov_remote_area_put(area, size); 1052 spin_unlock(&kcov_remote_lock); 1053 } 1054 1055 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1056 1057 /* Get in kcov_remote_start(). */ 1058 kcov_put(kcov); 1059 } 1060 EXPORT_SYMBOL(kcov_remote_stop); 1061 1062 /* See the comment before kcov_remote_start() for usage details. */ 1063 u64 kcov_common_handle(void) 1064 { 1065 if (!in_task()) 1066 return 0; 1067 return current->kcov_handle; 1068 } 1069 EXPORT_SYMBOL(kcov_common_handle); 1070 1071 #ifdef CONFIG_KCOV_SELFTEST 1072 static void __init selftest(void) 1073 { 1074 unsigned long start; 1075 1076 pr_err("running self test\n"); 1077 /* 1078 * Test that interrupts don't produce spurious coverage. 1079 * The coverage callback filters out interrupt code, but only 1080 * after the handler updates preempt count. Some code periodically 1081 * leaks out of that section and leads to spurious coverage. 1082 * It's hard to call the actual interrupt handler directly, 1083 * so we just loop here for a bit waiting for a timer interrupt. 1084 * We set kcov_mode to enable tracing, but don't setup the area, 1085 * so any attempt to trace will crash. Note: we must not call any 1086 * potentially traced functions in this region. 1087 */ 1088 start = jiffies; 1089 current->kcov_mode = KCOV_MODE_TRACE_PC; 1090 while ((jiffies - start) * MSEC_PER_SEC / HZ < 300) 1091 ; 1092 current->kcov_mode = 0; 1093 pr_err("done running self test\n"); 1094 } 1095 #endif 1096 1097 static int __init kcov_init(void) 1098 { 1099 int cpu; 1100 1101 for_each_possible_cpu(cpu) { 1102 void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * 1103 sizeof(unsigned long), cpu_to_node(cpu)); 1104 if (!area) 1105 return -ENOMEM; 1106 per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; 1107 } 1108 1109 /* 1110 * The kcov debugfs file won't ever get removed and thus, 1111 * there is no need to protect it against removal races. The 1112 * use of debugfs_create_file_unsafe() is actually safe here. 1113 */ 1114 debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); 1115 1116 #ifdef CONFIG_KCOV_SELFTEST 1117 selftest(); 1118 #endif 1119 1120 return 0; 1121 } 1122 1123 device_initcall(kcov_init); 1124