1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "kcov: " fmt 3 4 #define DISABLE_BRANCH_PROFILING 5 #include <linux/atomic.h> 6 #include <linux/compiler.h> 7 #include <linux/errno.h> 8 #include <linux/export.h> 9 #include <linux/types.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/hashtable.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/preempt.h> 16 #include <linux/printk.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/spinlock.h> 20 #include <linux/vmalloc.h> 21 #include <linux/debugfs.h> 22 #include <linux/uaccess.h> 23 #include <linux/kcov.h> 24 #include <linux/refcount.h> 25 #include <linux/log2.h> 26 #include <asm/setup.h> 27 28 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 29 30 /* Number of 64-bit words written per one comparison: */ 31 #define KCOV_WORDS_PER_CMP 4 32 33 /* 34 * kcov descriptor (one per opened debugfs file). 35 * State transitions of the descriptor: 36 * - initial state after open() 37 * - then there must be a single ioctl(KCOV_INIT_TRACE) call 38 * - then, mmap() call (several calls are allowed but not useful) 39 * - then, ioctl(KCOV_ENABLE, arg), where arg is 40 * KCOV_TRACE_PC - to trace only the PCs 41 * or 42 * KCOV_TRACE_CMP - to trace only the comparison operands 43 * - then, ioctl(KCOV_DISABLE) to disable the task. 44 * Enabling/disabling ioctls can be repeated (only one task a time allowed). 45 */ 46 struct kcov { 47 /* 48 * Reference counter. We keep one for: 49 * - opened file descriptor 50 * - task with enabled coverage (we can't unwire it from another task) 51 * - each code section for remote coverage collection 52 */ 53 refcount_t refcount; 54 /* The lock protects mode, size, area and t. */ 55 spinlock_t lock; 56 enum kcov_mode mode; 57 /* Size of arena (in long's). */ 58 unsigned int size; 59 /* Coverage buffer shared with user space. */ 60 void *area; 61 /* Task for which we collect coverage, or NULL. */ 62 struct task_struct *t; 63 /* Collecting coverage from remote (background) threads. */ 64 bool remote; 65 /* Size of remote area (in long's). */ 66 unsigned int remote_size; 67 /* 68 * Sequence is incremented each time kcov is reenabled, used by 69 * kcov_remote_stop(), see the comment there. 70 */ 71 int sequence; 72 }; 73 74 struct kcov_remote_area { 75 struct list_head list; 76 unsigned int size; 77 }; 78 79 struct kcov_remote { 80 u64 handle; 81 struct kcov *kcov; 82 struct hlist_node hnode; 83 }; 84 85 static DEFINE_SPINLOCK(kcov_remote_lock); 86 static DEFINE_HASHTABLE(kcov_remote_map, 4); 87 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); 88 89 struct kcov_percpu_data { 90 void *irq_area; 91 local_lock_t lock; 92 93 unsigned int saved_mode; 94 unsigned int saved_size; 95 void *saved_area; 96 struct kcov *saved_kcov; 97 int saved_sequence; 98 }; 99 100 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { 101 .lock = INIT_LOCAL_LOCK(lock), 102 }; 103 104 /* Must be called with kcov_remote_lock locked. */ 105 static struct kcov_remote *kcov_remote_find(u64 handle) 106 { 107 struct kcov_remote *remote; 108 109 hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { 110 if (remote->handle == handle) 111 return remote; 112 } 113 return NULL; 114 } 115 116 /* Must be called with kcov_remote_lock locked. */ 117 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) 118 { 119 struct kcov_remote *remote; 120 121 if (kcov_remote_find(handle)) 122 return ERR_PTR(-EEXIST); 123 remote = kmalloc(sizeof(*remote), GFP_ATOMIC); 124 if (!remote) 125 return ERR_PTR(-ENOMEM); 126 remote->handle = handle; 127 remote->kcov = kcov; 128 hash_add(kcov_remote_map, &remote->hnode, handle); 129 return remote; 130 } 131 132 /* Must be called with kcov_remote_lock locked. */ 133 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) 134 { 135 struct kcov_remote_area *area; 136 struct list_head *pos; 137 138 list_for_each(pos, &kcov_remote_areas) { 139 area = list_entry(pos, struct kcov_remote_area, list); 140 if (area->size == size) { 141 list_del(&area->list); 142 return area; 143 } 144 } 145 return NULL; 146 } 147 148 /* Must be called with kcov_remote_lock locked. */ 149 static void kcov_remote_area_put(struct kcov_remote_area *area, 150 unsigned int size) 151 { 152 INIT_LIST_HEAD(&area->list); 153 area->size = size; 154 list_add(&area->list, &kcov_remote_areas); 155 } 156 157 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) 158 { 159 unsigned int mode; 160 161 /* 162 * We are interested in code coverage as a function of a syscall inputs, 163 * so we ignore code executed in interrupts, unless we are in a remote 164 * coverage collection section in a softirq. 165 */ 166 if (!in_task() && !(in_serving_softirq() && t->kcov_softirq)) 167 return false; 168 mode = READ_ONCE(t->kcov_mode); 169 /* 170 * There is some code that runs in interrupts but for which 171 * in_interrupt() returns false (e.g. preempt_schedule_irq()). 172 * READ_ONCE()/barrier() effectively provides load-acquire wrt 173 * interrupts, there are paired barrier()/WRITE_ONCE() in 174 * kcov_start(). 175 */ 176 barrier(); 177 return mode == needed_mode; 178 } 179 180 static notrace unsigned long canonicalize_ip(unsigned long ip) 181 { 182 #ifdef CONFIG_RANDOMIZE_BASE 183 ip -= kaslr_offset(); 184 #endif 185 return ip; 186 } 187 188 /* 189 * Entry point from instrumented code. 190 * This is called once per basic-block/edge. 191 */ 192 void notrace __sanitizer_cov_trace_pc(void) 193 { 194 struct task_struct *t; 195 unsigned long *area; 196 unsigned long ip = canonicalize_ip(_RET_IP_); 197 unsigned long pos; 198 199 t = current; 200 if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) 201 return; 202 203 area = t->kcov_area; 204 /* The first 64-bit word is the number of subsequent PCs. */ 205 pos = READ_ONCE(area[0]) + 1; 206 if (likely(pos < t->kcov_size)) { 207 area[pos] = ip; 208 WRITE_ONCE(area[0], pos); 209 } 210 } 211 EXPORT_SYMBOL(__sanitizer_cov_trace_pc); 212 213 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 214 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) 215 { 216 struct task_struct *t; 217 u64 *area; 218 u64 count, start_index, end_pos, max_pos; 219 220 t = current; 221 if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) 222 return; 223 224 ip = canonicalize_ip(ip); 225 226 /* 227 * We write all comparison arguments and types as u64. 228 * The buffer was allocated for t->kcov_size unsigned longs. 229 */ 230 area = (u64 *)t->kcov_area; 231 max_pos = t->kcov_size * sizeof(unsigned long); 232 233 count = READ_ONCE(area[0]); 234 235 /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ 236 start_index = 1 + count * KCOV_WORDS_PER_CMP; 237 end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); 238 if (likely(end_pos <= max_pos)) { 239 area[start_index] = type; 240 area[start_index + 1] = arg1; 241 area[start_index + 2] = arg2; 242 area[start_index + 3] = ip; 243 WRITE_ONCE(area[0], count + 1); 244 } 245 } 246 247 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) 248 { 249 write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); 250 } 251 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); 252 253 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) 254 { 255 write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); 256 } 257 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); 258 259 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) 260 { 261 write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); 262 } 263 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); 264 265 void notrace __sanitizer_cov_trace_cmp8(u64 arg1, u64 arg2) 266 { 267 write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); 268 } 269 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); 270 271 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) 272 { 273 write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, 274 _RET_IP_); 275 } 276 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); 277 278 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) 279 { 280 write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, 281 _RET_IP_); 282 } 283 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); 284 285 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) 286 { 287 write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, 288 _RET_IP_); 289 } 290 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); 291 292 void notrace __sanitizer_cov_trace_const_cmp8(u64 arg1, u64 arg2) 293 { 294 write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, 295 _RET_IP_); 296 } 297 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); 298 299 void notrace __sanitizer_cov_trace_switch(u64 val, u64 *cases) 300 { 301 u64 i; 302 u64 count = cases[0]; 303 u64 size = cases[1]; 304 u64 type = KCOV_CMP_CONST; 305 306 switch (size) { 307 case 8: 308 type |= KCOV_CMP_SIZE(0); 309 break; 310 case 16: 311 type |= KCOV_CMP_SIZE(1); 312 break; 313 case 32: 314 type |= KCOV_CMP_SIZE(2); 315 break; 316 case 64: 317 type |= KCOV_CMP_SIZE(3); 318 break; 319 default: 320 return; 321 } 322 for (i = 0; i < count; i++) 323 write_comp_data(type, cases[i + 2], val, _RET_IP_); 324 } 325 EXPORT_SYMBOL(__sanitizer_cov_trace_switch); 326 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ 327 328 static void kcov_start(struct task_struct *t, struct kcov *kcov, 329 unsigned int size, void *area, enum kcov_mode mode, 330 int sequence) 331 { 332 kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); 333 t->kcov = kcov; 334 /* Cache in task struct for performance. */ 335 t->kcov_size = size; 336 t->kcov_area = area; 337 t->kcov_sequence = sequence; 338 /* See comment in check_kcov_mode(). */ 339 barrier(); 340 WRITE_ONCE(t->kcov_mode, mode); 341 } 342 343 static void kcov_stop(struct task_struct *t) 344 { 345 WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); 346 barrier(); 347 t->kcov = NULL; 348 t->kcov_size = 0; 349 t->kcov_area = NULL; 350 } 351 352 static void kcov_task_reset(struct task_struct *t) 353 { 354 kcov_stop(t); 355 t->kcov_sequence = 0; 356 t->kcov_handle = 0; 357 } 358 359 void kcov_task_init(struct task_struct *t) 360 { 361 kcov_task_reset(t); 362 t->kcov_handle = current->kcov_handle; 363 } 364 365 static void kcov_reset(struct kcov *kcov) 366 { 367 kcov->t = NULL; 368 kcov->mode = KCOV_MODE_INIT; 369 kcov->remote = false; 370 kcov->remote_size = 0; 371 kcov->sequence++; 372 } 373 374 static void kcov_remote_reset(struct kcov *kcov) 375 { 376 int bkt; 377 struct kcov_remote *remote; 378 struct hlist_node *tmp; 379 unsigned long flags; 380 381 spin_lock_irqsave(&kcov_remote_lock, flags); 382 hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { 383 if (remote->kcov != kcov) 384 continue; 385 hash_del(&remote->hnode); 386 kfree(remote); 387 } 388 /* Do reset before unlock to prevent races with kcov_remote_start(). */ 389 kcov_reset(kcov); 390 spin_unlock_irqrestore(&kcov_remote_lock, flags); 391 } 392 393 static void kcov_disable(struct task_struct *t, struct kcov *kcov) 394 { 395 kcov_task_reset(t); 396 if (kcov->remote) 397 kcov_remote_reset(kcov); 398 else 399 kcov_reset(kcov); 400 } 401 402 static void kcov_get(struct kcov *kcov) 403 { 404 refcount_inc(&kcov->refcount); 405 } 406 407 static void kcov_put(struct kcov *kcov) 408 { 409 if (refcount_dec_and_test(&kcov->refcount)) { 410 kcov_remote_reset(kcov); 411 vfree(kcov->area); 412 kfree(kcov); 413 } 414 } 415 416 void kcov_task_exit(struct task_struct *t) 417 { 418 struct kcov *kcov; 419 unsigned long flags; 420 421 kcov = t->kcov; 422 if (kcov == NULL) 423 return; 424 425 spin_lock_irqsave(&kcov->lock, flags); 426 kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); 427 /* 428 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, 429 * which comes down to: 430 * WARN_ON(!kcov->remote && kcov->t != t); 431 * 432 * For KCOV_REMOTE_ENABLE devices, the exiting task is either: 433 * 434 * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). 435 * In this case we should print a warning right away, since a task 436 * shouldn't be exiting when it's in a kcov coverage collection 437 * section. Here t points to the task that is collecting remote 438 * coverage, and t->kcov->t points to the thread that created the 439 * kcov device. Which means that to detect this case we need to 440 * check that t != t->kcov->t, and this gives us the following: 441 * WARN_ON(kcov->remote && kcov->t != t); 442 * 443 * 2. The task that created kcov exiting without calling KCOV_DISABLE, 444 * and then again we make sure that t->kcov->t == t: 445 * WARN_ON(kcov->remote && kcov->t != t); 446 * 447 * By combining all three checks into one we get: 448 */ 449 if (WARN_ON(kcov->t != t)) { 450 spin_unlock_irqrestore(&kcov->lock, flags); 451 return; 452 } 453 /* Just to not leave dangling references behind. */ 454 kcov_disable(t, kcov); 455 spin_unlock_irqrestore(&kcov->lock, flags); 456 kcov_put(kcov); 457 } 458 459 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) 460 { 461 int res = 0; 462 struct kcov *kcov = vma->vm_file->private_data; 463 unsigned long size, off; 464 struct page *page; 465 unsigned long flags; 466 467 spin_lock_irqsave(&kcov->lock, flags); 468 size = kcov->size * sizeof(unsigned long); 469 if (kcov->area == NULL || vma->vm_pgoff != 0 || 470 vma->vm_end - vma->vm_start != size) { 471 res = -EINVAL; 472 goto exit; 473 } 474 spin_unlock_irqrestore(&kcov->lock, flags); 475 vma->vm_flags |= VM_DONTEXPAND; 476 for (off = 0; off < size; off += PAGE_SIZE) { 477 page = vmalloc_to_page(kcov->area + off); 478 res = vm_insert_page(vma, vma->vm_start + off, page); 479 if (res) { 480 pr_warn_once("kcov: vm_insert_page() failed\n"); 481 return res; 482 } 483 } 484 return 0; 485 exit: 486 spin_unlock_irqrestore(&kcov->lock, flags); 487 return res; 488 } 489 490 static int kcov_open(struct inode *inode, struct file *filep) 491 { 492 struct kcov *kcov; 493 494 kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); 495 if (!kcov) 496 return -ENOMEM; 497 kcov->mode = KCOV_MODE_DISABLED; 498 kcov->sequence = 1; 499 refcount_set(&kcov->refcount, 1); 500 spin_lock_init(&kcov->lock); 501 filep->private_data = kcov; 502 return nonseekable_open(inode, filep); 503 } 504 505 static int kcov_close(struct inode *inode, struct file *filep) 506 { 507 kcov_put(filep->private_data); 508 return 0; 509 } 510 511 static int kcov_get_mode(unsigned long arg) 512 { 513 if (arg == KCOV_TRACE_PC) 514 return KCOV_MODE_TRACE_PC; 515 else if (arg == KCOV_TRACE_CMP) 516 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 517 return KCOV_MODE_TRACE_CMP; 518 #else 519 return -ENOTSUPP; 520 #endif 521 else 522 return -EINVAL; 523 } 524 525 /* 526 * Fault in a lazily-faulted vmalloc area before it can be used by 527 * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the 528 * vmalloc fault handling path is instrumented. 529 */ 530 static void kcov_fault_in_area(struct kcov *kcov) 531 { 532 unsigned long stride = PAGE_SIZE / sizeof(unsigned long); 533 unsigned long *area = kcov->area; 534 unsigned long offset; 535 536 for (offset = 0; offset < kcov->size; offset += stride) 537 READ_ONCE(area[offset]); 538 } 539 540 static inline bool kcov_check_handle(u64 handle, bool common_valid, 541 bool uncommon_valid, bool zero_valid) 542 { 543 if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) 544 return false; 545 switch (handle & KCOV_SUBSYSTEM_MASK) { 546 case KCOV_SUBSYSTEM_COMMON: 547 return (handle & KCOV_INSTANCE_MASK) ? 548 common_valid : zero_valid; 549 case KCOV_SUBSYSTEM_USB: 550 return uncommon_valid; 551 default: 552 return false; 553 } 554 return false; 555 } 556 557 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, 558 unsigned long arg) 559 { 560 struct task_struct *t; 561 unsigned long flags, unused; 562 int mode, i; 563 struct kcov_remote_arg *remote_arg; 564 struct kcov_remote *remote; 565 566 switch (cmd) { 567 case KCOV_ENABLE: 568 /* 569 * Enable coverage for the current task. 570 * At this point user must have been enabled trace mode, 571 * and mmapped the file. Coverage collection is disabled only 572 * at task exit or voluntary by KCOV_DISABLE. After that it can 573 * be enabled for another task. 574 */ 575 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 576 return -EINVAL; 577 t = current; 578 if (kcov->t != NULL || t->kcov != NULL) 579 return -EBUSY; 580 mode = kcov_get_mode(arg); 581 if (mode < 0) 582 return mode; 583 kcov_fault_in_area(kcov); 584 kcov->mode = mode; 585 kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, 586 kcov->sequence); 587 kcov->t = t; 588 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 589 kcov_get(kcov); 590 return 0; 591 case KCOV_DISABLE: 592 /* Disable coverage for the current task. */ 593 unused = arg; 594 if (unused != 0 || current->kcov != kcov) 595 return -EINVAL; 596 t = current; 597 if (WARN_ON(kcov->t != t)) 598 return -EINVAL; 599 kcov_disable(t, kcov); 600 kcov_put(kcov); 601 return 0; 602 case KCOV_REMOTE_ENABLE: 603 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 604 return -EINVAL; 605 t = current; 606 if (kcov->t != NULL || t->kcov != NULL) 607 return -EBUSY; 608 remote_arg = (struct kcov_remote_arg *)arg; 609 mode = kcov_get_mode(remote_arg->trace_mode); 610 if (mode < 0) 611 return mode; 612 if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long)) 613 return -EINVAL; 614 kcov->mode = mode; 615 t->kcov = kcov; 616 kcov->t = t; 617 kcov->remote = true; 618 kcov->remote_size = remote_arg->area_size; 619 spin_lock_irqsave(&kcov_remote_lock, flags); 620 for (i = 0; i < remote_arg->num_handles; i++) { 621 if (!kcov_check_handle(remote_arg->handles[i], 622 false, true, false)) { 623 spin_unlock_irqrestore(&kcov_remote_lock, 624 flags); 625 kcov_disable(t, kcov); 626 return -EINVAL; 627 } 628 remote = kcov_remote_add(kcov, remote_arg->handles[i]); 629 if (IS_ERR(remote)) { 630 spin_unlock_irqrestore(&kcov_remote_lock, 631 flags); 632 kcov_disable(t, kcov); 633 return PTR_ERR(remote); 634 } 635 } 636 if (remote_arg->common_handle) { 637 if (!kcov_check_handle(remote_arg->common_handle, 638 true, false, false)) { 639 spin_unlock_irqrestore(&kcov_remote_lock, 640 flags); 641 kcov_disable(t, kcov); 642 return -EINVAL; 643 } 644 remote = kcov_remote_add(kcov, 645 remote_arg->common_handle); 646 if (IS_ERR(remote)) { 647 spin_unlock_irqrestore(&kcov_remote_lock, 648 flags); 649 kcov_disable(t, kcov); 650 return PTR_ERR(remote); 651 } 652 t->kcov_handle = remote_arg->common_handle; 653 } 654 spin_unlock_irqrestore(&kcov_remote_lock, flags); 655 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 656 kcov_get(kcov); 657 return 0; 658 default: 659 return -ENOTTY; 660 } 661 } 662 663 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 664 { 665 struct kcov *kcov; 666 int res; 667 struct kcov_remote_arg *remote_arg = NULL; 668 unsigned int remote_num_handles; 669 unsigned long remote_arg_size; 670 unsigned long size, flags; 671 void *area; 672 673 kcov = filep->private_data; 674 switch (cmd) { 675 case KCOV_INIT_TRACE: 676 /* 677 * Enable kcov in trace mode and setup buffer size. 678 * Must happen before anything else. 679 * 680 * First check the size argument - it must be at least 2 681 * to hold the current position and one PC. 682 */ 683 size = arg; 684 if (size < 2 || size > INT_MAX / sizeof(unsigned long)) 685 return -EINVAL; 686 area = vmalloc_user(size * sizeof(unsigned long)); 687 if (area == NULL) 688 return -ENOMEM; 689 spin_lock_irqsave(&kcov->lock, flags); 690 if (kcov->mode != KCOV_MODE_DISABLED) { 691 spin_unlock_irqrestore(&kcov->lock, flags); 692 vfree(area); 693 return -EBUSY; 694 } 695 kcov->area = area; 696 kcov->size = size; 697 kcov->mode = KCOV_MODE_INIT; 698 spin_unlock_irqrestore(&kcov->lock, flags); 699 return 0; 700 case KCOV_REMOTE_ENABLE: 701 if (get_user(remote_num_handles, (unsigned __user *)(arg + 702 offsetof(struct kcov_remote_arg, num_handles)))) 703 return -EFAULT; 704 if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) 705 return -EINVAL; 706 remote_arg_size = struct_size(remote_arg, handles, 707 remote_num_handles); 708 remote_arg = memdup_user((void __user *)arg, remote_arg_size); 709 if (IS_ERR(remote_arg)) 710 return PTR_ERR(remote_arg); 711 if (remote_arg->num_handles != remote_num_handles) { 712 kfree(remote_arg); 713 return -EINVAL; 714 } 715 arg = (unsigned long)remote_arg; 716 fallthrough; 717 default: 718 /* 719 * All other commands can be normally executed under a spin lock, so we 720 * obtain and release it here in order to simplify kcov_ioctl_locked(). 721 */ 722 spin_lock_irqsave(&kcov->lock, flags); 723 res = kcov_ioctl_locked(kcov, cmd, arg); 724 spin_unlock_irqrestore(&kcov->lock, flags); 725 kfree(remote_arg); 726 return res; 727 } 728 } 729 730 static const struct file_operations kcov_fops = { 731 .open = kcov_open, 732 .unlocked_ioctl = kcov_ioctl, 733 .compat_ioctl = kcov_ioctl, 734 .mmap = kcov_mmap, 735 .release = kcov_close, 736 }; 737 738 /* 739 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section 740 * of code in a kernel background thread or in a softirq to allow kcov to be 741 * used to collect coverage from that part of code. 742 * 743 * The handle argument of kcov_remote_start() identifies a code section that is 744 * used for coverage collection. A userspace process passes this handle to 745 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting 746 * coverage for the code section identified by this handle. 747 * 748 * The usage of these annotations in the kernel code is different depending on 749 * the type of the kernel thread whose code is being annotated. 750 * 751 * For global kernel threads that are spawned in a limited number of instances 752 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for 753 * softirqs, each instance must be assigned a unique 4-byte instance id. The 754 * instance id is then combined with a 1-byte subsystem id to get a handle via 755 * kcov_remote_handle(subsystem_id, instance_id). 756 * 757 * For local kernel threads that are spawned from system calls handler when a 758 * user interacts with some kernel interface (e.g. vhost workers), a handle is 759 * passed from a userspace process as the common_handle field of the 760 * kcov_remote_arg struct (note, that the user must generate a handle by using 761 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an 762 * arbitrary 4-byte non-zero number as the instance id). This common handle 763 * then gets saved into the task_struct of the process that issued the 764 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn 765 * kernel threads, the common handle must be retrieved via kcov_common_handle() 766 * and passed to the spawned threads via custom annotations. Those kernel 767 * threads must in turn be annotated with kcov_remote_start(common_handle) and 768 * kcov_remote_stop(). All of the threads that are spawned by the same process 769 * obtain the same handle, hence the name "common". 770 * 771 * See Documentation/dev-tools/kcov.rst for more details. 772 * 773 * Internally, kcov_remote_start() looks up the kcov device associated with the 774 * provided handle, allocates an area for coverage collection, and saves the 775 * pointers to kcov and area into the current task_struct to allow coverage to 776 * be collected via __sanitizer_cov_trace_pc(). 777 * In turns kcov_remote_stop() clears those pointers from task_struct to stop 778 * collecting coverage and copies all collected coverage into the kcov area. 779 */ 780 781 static inline bool kcov_mode_enabled(unsigned int mode) 782 { 783 return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; 784 } 785 786 static void kcov_remote_softirq_start(struct task_struct *t) 787 { 788 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 789 unsigned int mode; 790 791 mode = READ_ONCE(t->kcov_mode); 792 barrier(); 793 if (kcov_mode_enabled(mode)) { 794 data->saved_mode = mode; 795 data->saved_size = t->kcov_size; 796 data->saved_area = t->kcov_area; 797 data->saved_sequence = t->kcov_sequence; 798 data->saved_kcov = t->kcov; 799 kcov_stop(t); 800 } 801 } 802 803 static void kcov_remote_softirq_stop(struct task_struct *t) 804 { 805 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 806 807 if (data->saved_kcov) { 808 kcov_start(t, data->saved_kcov, data->saved_size, 809 data->saved_area, data->saved_mode, 810 data->saved_sequence); 811 data->saved_mode = 0; 812 data->saved_size = 0; 813 data->saved_area = NULL; 814 data->saved_sequence = 0; 815 data->saved_kcov = NULL; 816 } 817 } 818 819 void kcov_remote_start(u64 handle) 820 { 821 struct task_struct *t = current; 822 struct kcov_remote *remote; 823 struct kcov *kcov; 824 unsigned int mode; 825 void *area; 826 unsigned int size; 827 int sequence; 828 unsigned long flags; 829 830 if (WARN_ON(!kcov_check_handle(handle, true, true, true))) 831 return; 832 if (!in_task() && !in_serving_softirq()) 833 return; 834 835 local_lock_irqsave(&kcov_percpu_data.lock, flags); 836 837 /* 838 * Check that kcov_remote_start() is not called twice in background 839 * threads nor called by user tasks (with enabled kcov). 840 */ 841 mode = READ_ONCE(t->kcov_mode); 842 if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { 843 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 844 return; 845 } 846 /* 847 * Check that kcov_remote_start() is not called twice in softirqs. 848 * Note, that kcov_remote_start() can be called from a softirq that 849 * happened while collecting coverage from a background thread. 850 */ 851 if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { 852 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 853 return; 854 } 855 856 spin_lock(&kcov_remote_lock); 857 remote = kcov_remote_find(handle); 858 if (!remote) { 859 spin_unlock(&kcov_remote_lock); 860 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 861 return; 862 } 863 kcov_debug("handle = %llx, context: %s\n", handle, 864 in_task() ? "task" : "softirq"); 865 kcov = remote->kcov; 866 /* Put in kcov_remote_stop(). */ 867 kcov_get(kcov); 868 /* 869 * Read kcov fields before unlock to prevent races with 870 * KCOV_DISABLE / kcov_remote_reset(). 871 */ 872 mode = kcov->mode; 873 sequence = kcov->sequence; 874 if (in_task()) { 875 size = kcov->remote_size; 876 area = kcov_remote_area_get(size); 877 } else { 878 size = CONFIG_KCOV_IRQ_AREA_SIZE; 879 area = this_cpu_ptr(&kcov_percpu_data)->irq_area; 880 } 881 spin_unlock(&kcov_remote_lock); 882 883 /* Can only happen when in_task(). */ 884 if (!area) { 885 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 886 area = vmalloc(size * sizeof(unsigned long)); 887 if (!area) { 888 kcov_put(kcov); 889 return; 890 } 891 local_lock_irqsave(&kcov_percpu_data.lock, flags); 892 } 893 894 /* Reset coverage size. */ 895 *(u64 *)area = 0; 896 897 if (in_serving_softirq()) { 898 kcov_remote_softirq_start(t); 899 t->kcov_softirq = 1; 900 } 901 kcov_start(t, kcov, size, area, mode, sequence); 902 903 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 904 905 } 906 EXPORT_SYMBOL(kcov_remote_start); 907 908 static void kcov_move_area(enum kcov_mode mode, void *dst_area, 909 unsigned int dst_area_size, void *src_area) 910 { 911 u64 word_size = sizeof(unsigned long); 912 u64 count_size, entry_size_log; 913 u64 dst_len, src_len; 914 void *dst_entries, *src_entries; 915 u64 dst_occupied, dst_free, bytes_to_move, entries_moved; 916 917 kcov_debug("%px %u <= %px %lu\n", 918 dst_area, dst_area_size, src_area, *(unsigned long *)src_area); 919 920 switch (mode) { 921 case KCOV_MODE_TRACE_PC: 922 dst_len = READ_ONCE(*(unsigned long *)dst_area); 923 src_len = *(unsigned long *)src_area; 924 count_size = sizeof(unsigned long); 925 entry_size_log = __ilog2_u64(sizeof(unsigned long)); 926 break; 927 case KCOV_MODE_TRACE_CMP: 928 dst_len = READ_ONCE(*(u64 *)dst_area); 929 src_len = *(u64 *)src_area; 930 count_size = sizeof(u64); 931 BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); 932 entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); 933 break; 934 default: 935 WARN_ON(1); 936 return; 937 } 938 939 /* As arm can't divide u64 integers use log of entry size. */ 940 if (dst_len > ((dst_area_size * word_size - count_size) >> 941 entry_size_log)) 942 return; 943 dst_occupied = count_size + (dst_len << entry_size_log); 944 dst_free = dst_area_size * word_size - dst_occupied; 945 bytes_to_move = min(dst_free, src_len << entry_size_log); 946 dst_entries = dst_area + dst_occupied; 947 src_entries = src_area + count_size; 948 memcpy(dst_entries, src_entries, bytes_to_move); 949 entries_moved = bytes_to_move >> entry_size_log; 950 951 switch (mode) { 952 case KCOV_MODE_TRACE_PC: 953 WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); 954 break; 955 case KCOV_MODE_TRACE_CMP: 956 WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); 957 break; 958 default: 959 break; 960 } 961 } 962 963 /* See the comment before kcov_remote_start() for usage details. */ 964 void kcov_remote_stop(void) 965 { 966 struct task_struct *t = current; 967 struct kcov *kcov; 968 unsigned int mode; 969 void *area; 970 unsigned int size; 971 int sequence; 972 unsigned long flags; 973 974 if (!in_task() && !in_serving_softirq()) 975 return; 976 977 local_lock_irqsave(&kcov_percpu_data.lock, flags); 978 979 mode = READ_ONCE(t->kcov_mode); 980 barrier(); 981 if (!kcov_mode_enabled(mode)) { 982 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 983 return; 984 } 985 /* 986 * When in softirq, check if the corresponding kcov_remote_start() 987 * actually found the remote handle and started collecting coverage. 988 */ 989 if (in_serving_softirq() && !t->kcov_softirq) { 990 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 991 return; 992 } 993 /* Make sure that kcov_softirq is only set when in softirq. */ 994 if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { 995 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 996 return; 997 } 998 999 kcov = t->kcov; 1000 area = t->kcov_area; 1001 size = t->kcov_size; 1002 sequence = t->kcov_sequence; 1003 1004 kcov_stop(t); 1005 if (in_serving_softirq()) { 1006 t->kcov_softirq = 0; 1007 kcov_remote_softirq_stop(t); 1008 } 1009 1010 spin_lock(&kcov->lock); 1011 /* 1012 * KCOV_DISABLE could have been called between kcov_remote_start() 1013 * and kcov_remote_stop(), hence the sequence check. 1014 */ 1015 if (sequence == kcov->sequence && kcov->remote) 1016 kcov_move_area(kcov->mode, kcov->area, kcov->size, area); 1017 spin_unlock(&kcov->lock); 1018 1019 if (in_task()) { 1020 spin_lock(&kcov_remote_lock); 1021 kcov_remote_area_put(area, size); 1022 spin_unlock(&kcov_remote_lock); 1023 } 1024 1025 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1026 1027 /* Get in kcov_remote_start(). */ 1028 kcov_put(kcov); 1029 } 1030 EXPORT_SYMBOL(kcov_remote_stop); 1031 1032 /* See the comment before kcov_remote_start() for usage details. */ 1033 u64 kcov_common_handle(void) 1034 { 1035 if (!in_task()) 1036 return 0; 1037 return current->kcov_handle; 1038 } 1039 EXPORT_SYMBOL(kcov_common_handle); 1040 1041 static int __init kcov_init(void) 1042 { 1043 int cpu; 1044 1045 for_each_possible_cpu(cpu) { 1046 void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * 1047 sizeof(unsigned long), cpu_to_node(cpu)); 1048 if (!area) 1049 return -ENOMEM; 1050 per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; 1051 } 1052 1053 /* 1054 * The kcov debugfs file won't ever get removed and thus, 1055 * there is no need to protect it against removal races. The 1056 * use of debugfs_create_file_unsafe() is actually safe here. 1057 */ 1058 debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); 1059 1060 return 0; 1061 } 1062 1063 device_initcall(kcov_init); 1064