xref: /linux/kernel/kcmp.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 #include <linux/kernel.h>
2 #include <linux/syscalls.h>
3 #include <linux/fdtable.h>
4 #include <linux/string.h>
5 #include <linux/random.h>
6 #include <linux/module.h>
7 #include <linux/ptrace.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/cache.h>
11 #include <linux/bug.h>
12 #include <linux/err.h>
13 #include <linux/kcmp.h>
14 
15 #include <asm/unistd.h>
16 
17 /*
18  * We don't expose the real in-memory order of objects for security reasons.
19  * But still the comparison results should be suitable for sorting. So we
20  * obfuscate kernel pointers values and compare the production instead.
21  *
22  * The obfuscation is done in two steps. First we xor the kernel pointer with
23  * a random value, which puts pointer into a new position in a reordered space.
24  * Secondly we multiply the xor production with a large odd random number to
25  * permute its bits even more (the odd multiplier guarantees that the product
26  * is unique ever after the high bits are truncated, since any odd number is
27  * relative prime to 2^n).
28  *
29  * Note also that the obfuscation itself is invisible to userspace and if needed
30  * it can be changed to an alternate scheme.
31  */
32 static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
33 
34 static long kptr_obfuscate(long v, int type)
35 {
36 	return (v ^ cookies[type][0]) * cookies[type][1];
37 }
38 
39 /*
40  * 0 - equal, i.e. v1 = v2
41  * 1 - less than, i.e. v1 < v2
42  * 2 - greater than, i.e. v1 > v2
43  * 3 - not equal but ordering unavailable (reserved for future)
44  */
45 static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
46 {
47 	long t1, t2;
48 
49 	t1 = kptr_obfuscate((long)v1, type);
50 	t2 = kptr_obfuscate((long)v2, type);
51 
52 	return (t1 < t2) | ((t1 > t2) << 1);
53 }
54 
55 /* The caller must have pinned the task */
56 static struct file *
57 get_file_raw_ptr(struct task_struct *task, unsigned int idx)
58 {
59 	struct file *file = NULL;
60 
61 	task_lock(task);
62 	rcu_read_lock();
63 
64 	if (task->files)
65 		file = fcheck_files(task->files, idx);
66 
67 	rcu_read_unlock();
68 	task_unlock(task);
69 
70 	return file;
71 }
72 
73 static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
74 {
75 	if (likely(m2 != m1))
76 		mutex_unlock(m2);
77 	mutex_unlock(m1);
78 }
79 
80 static int kcmp_lock(struct mutex *m1, struct mutex *m2)
81 {
82 	int err;
83 
84 	if (m2 > m1)
85 		swap(m1, m2);
86 
87 	err = mutex_lock_killable(m1);
88 	if (!err && likely(m1 != m2)) {
89 		err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
90 		if (err)
91 			mutex_unlock(m1);
92 	}
93 
94 	return err;
95 }
96 
97 SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
98 		unsigned long, idx1, unsigned long, idx2)
99 {
100 	struct task_struct *task1, *task2;
101 	int ret;
102 
103 	rcu_read_lock();
104 
105 	/*
106 	 * Tasks are looked up in caller's PID namespace only.
107 	 */
108 	task1 = find_task_by_vpid(pid1);
109 	task2 = find_task_by_vpid(pid2);
110 	if (!task1 || !task2)
111 		goto err_no_task;
112 
113 	get_task_struct(task1);
114 	get_task_struct(task2);
115 
116 	rcu_read_unlock();
117 
118 	/*
119 	 * One should have enough rights to inspect task details.
120 	 */
121 	ret = kcmp_lock(&task1->signal->cred_guard_mutex,
122 			&task2->signal->cred_guard_mutex);
123 	if (ret)
124 		goto err;
125 	if (!ptrace_may_access(task1, PTRACE_MODE_READ_REALCREDS) ||
126 	    !ptrace_may_access(task2, PTRACE_MODE_READ_REALCREDS)) {
127 		ret = -EPERM;
128 		goto err_unlock;
129 	}
130 
131 	switch (type) {
132 	case KCMP_FILE: {
133 		struct file *filp1, *filp2;
134 
135 		filp1 = get_file_raw_ptr(task1, idx1);
136 		filp2 = get_file_raw_ptr(task2, idx2);
137 
138 		if (filp1 && filp2)
139 			ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
140 		else
141 			ret = -EBADF;
142 		break;
143 	}
144 	case KCMP_VM:
145 		ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
146 		break;
147 	case KCMP_FILES:
148 		ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
149 		break;
150 	case KCMP_FS:
151 		ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
152 		break;
153 	case KCMP_SIGHAND:
154 		ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
155 		break;
156 	case KCMP_IO:
157 		ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
158 		break;
159 	case KCMP_SYSVSEM:
160 #ifdef CONFIG_SYSVIPC
161 		ret = kcmp_ptr(task1->sysvsem.undo_list,
162 			       task2->sysvsem.undo_list,
163 			       KCMP_SYSVSEM);
164 #else
165 		ret = -EOPNOTSUPP;
166 #endif
167 		break;
168 	default:
169 		ret = -EINVAL;
170 		break;
171 	}
172 
173 err_unlock:
174 	kcmp_unlock(&task1->signal->cred_guard_mutex,
175 		    &task2->signal->cred_guard_mutex);
176 err:
177 	put_task_struct(task1);
178 	put_task_struct(task2);
179 
180 	return ret;
181 
182 err_no_task:
183 	rcu_read_unlock();
184 	return -ESRCH;
185 }
186 
187 static __init int kcmp_cookies_init(void)
188 {
189 	int i;
190 
191 	get_random_bytes(cookies, sizeof(cookies));
192 
193 	for (i = 0; i < KCMP_TYPES; i++)
194 		cookies[i][1] |= (~(~0UL >>  1) | 1);
195 
196 	return 0;
197 }
198 arch_initcall(kcmp_cookies_init);
199