1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * jump label support 4 * 5 * Copyright (C) 2009 Jason Baron <jbaron@redhat.com> 6 * Copyright (C) 2011 Peter Zijlstra 7 * 8 */ 9 #include <linux/memory.h> 10 #include <linux/uaccess.h> 11 #include <linux/module.h> 12 #include <linux/list.h> 13 #include <linux/slab.h> 14 #include <linux/sort.h> 15 #include <linux/err.h> 16 #include <linux/static_key.h> 17 #include <linux/jump_label_ratelimit.h> 18 #include <linux/bug.h> 19 #include <linux/cpu.h> 20 #include <asm/sections.h> 21 22 /* mutex to protect coming/going of the jump_label table */ 23 static DEFINE_MUTEX(jump_label_mutex); 24 25 void jump_label_lock(void) 26 { 27 mutex_lock(&jump_label_mutex); 28 } 29 30 void jump_label_unlock(void) 31 { 32 mutex_unlock(&jump_label_mutex); 33 } 34 35 static int jump_label_cmp(const void *a, const void *b) 36 { 37 const struct jump_entry *jea = a; 38 const struct jump_entry *jeb = b; 39 40 /* 41 * Entrires are sorted by key. 42 */ 43 if (jump_entry_key(jea) < jump_entry_key(jeb)) 44 return -1; 45 46 if (jump_entry_key(jea) > jump_entry_key(jeb)) 47 return 1; 48 49 /* 50 * In the batching mode, entries should also be sorted by the code 51 * inside the already sorted list of entries, enabling a bsearch in 52 * the vector. 53 */ 54 if (jump_entry_code(jea) < jump_entry_code(jeb)) 55 return -1; 56 57 if (jump_entry_code(jea) > jump_entry_code(jeb)) 58 return 1; 59 60 return 0; 61 } 62 63 static void jump_label_swap(void *a, void *b, int size) 64 { 65 long delta = (unsigned long)a - (unsigned long)b; 66 struct jump_entry *jea = a; 67 struct jump_entry *jeb = b; 68 struct jump_entry tmp = *jea; 69 70 jea->code = jeb->code - delta; 71 jea->target = jeb->target - delta; 72 jea->key = jeb->key - delta; 73 74 jeb->code = tmp.code + delta; 75 jeb->target = tmp.target + delta; 76 jeb->key = tmp.key + delta; 77 } 78 79 static void 80 jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop) 81 { 82 unsigned long size; 83 void *swapfn = NULL; 84 85 if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE)) 86 swapfn = jump_label_swap; 87 88 size = (((unsigned long)stop - (unsigned long)start) 89 / sizeof(struct jump_entry)); 90 sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn); 91 } 92 93 static void jump_label_update(struct static_key *key); 94 95 /* 96 * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h. 97 * The use of 'atomic_read()' requires atomic.h and its problematic for some 98 * kernel headers such as kernel.h and others. Since static_key_count() is not 99 * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok 100 * to have it be a function here. Similarly, for 'static_key_enable()' and 101 * 'static_key_disable()', which require bug.h. This should allow jump_label.h 102 * to be included from most/all places for CONFIG_JUMP_LABEL. 103 */ 104 int static_key_count(struct static_key *key) 105 { 106 /* 107 * -1 means the first static_key_slow_inc() is in progress. 108 * static_key_enabled() must return true, so return 1 here. 109 */ 110 int n = atomic_read(&key->enabled); 111 112 return n >= 0 ? n : 1; 113 } 114 EXPORT_SYMBOL_GPL(static_key_count); 115 116 /* 117 * static_key_fast_inc_not_disabled - adds a user for a static key 118 * @key: static key that must be already enabled 119 * 120 * The caller must make sure that the static key can't get disabled while 121 * in this function. It doesn't patch jump labels, only adds a user to 122 * an already enabled static key. 123 * 124 * Returns true if the increment was done. Unlike refcount_t the ref counter 125 * is not saturated, but will fail to increment on overflow. 126 */ 127 bool static_key_fast_inc_not_disabled(struct static_key *key) 128 { 129 int v; 130 131 STATIC_KEY_CHECK_USE(key); 132 /* 133 * Negative key->enabled has a special meaning: it sends 134 * static_key_slow_inc() down the slow path, and it is non-zero 135 * so it counts as "enabled" in jump_label_update(). Note that 136 * atomic_inc_unless_negative() checks >= 0, so roll our own. 137 */ 138 v = atomic_read(&key->enabled); 139 do { 140 if (v <= 0 || (v + 1) < 0) 141 return false; 142 } while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v + 1))); 143 144 return true; 145 } 146 EXPORT_SYMBOL_GPL(static_key_fast_inc_not_disabled); 147 148 bool static_key_slow_inc_cpuslocked(struct static_key *key) 149 { 150 lockdep_assert_cpus_held(); 151 152 /* 153 * Careful if we get concurrent static_key_slow_inc() calls; 154 * later calls must wait for the first one to _finish_ the 155 * jump_label_update() process. At the same time, however, 156 * the jump_label_update() call below wants to see 157 * static_key_enabled(&key) for jumps to be updated properly. 158 */ 159 if (static_key_fast_inc_not_disabled(key)) 160 return true; 161 162 jump_label_lock(); 163 if (atomic_read(&key->enabled) == 0) { 164 atomic_set(&key->enabled, -1); 165 jump_label_update(key); 166 /* 167 * Ensure that if the above cmpxchg loop observes our positive 168 * value, it must also observe all the text changes. 169 */ 170 atomic_set_release(&key->enabled, 1); 171 } else { 172 if (WARN_ON_ONCE(!static_key_fast_inc_not_disabled(key))) { 173 jump_label_unlock(); 174 return false; 175 } 176 } 177 jump_label_unlock(); 178 return true; 179 } 180 181 bool static_key_slow_inc(struct static_key *key) 182 { 183 bool ret; 184 185 cpus_read_lock(); 186 ret = static_key_slow_inc_cpuslocked(key); 187 cpus_read_unlock(); 188 return ret; 189 } 190 EXPORT_SYMBOL_GPL(static_key_slow_inc); 191 192 void static_key_enable_cpuslocked(struct static_key *key) 193 { 194 STATIC_KEY_CHECK_USE(key); 195 lockdep_assert_cpus_held(); 196 197 if (atomic_read(&key->enabled) > 0) { 198 WARN_ON_ONCE(atomic_read(&key->enabled) != 1); 199 return; 200 } 201 202 jump_label_lock(); 203 if (atomic_read(&key->enabled) == 0) { 204 atomic_set(&key->enabled, -1); 205 jump_label_update(key); 206 /* 207 * See static_key_slow_inc(). 208 */ 209 atomic_set_release(&key->enabled, 1); 210 } 211 jump_label_unlock(); 212 } 213 EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked); 214 215 void static_key_enable(struct static_key *key) 216 { 217 cpus_read_lock(); 218 static_key_enable_cpuslocked(key); 219 cpus_read_unlock(); 220 } 221 EXPORT_SYMBOL_GPL(static_key_enable); 222 223 void static_key_disable_cpuslocked(struct static_key *key) 224 { 225 STATIC_KEY_CHECK_USE(key); 226 lockdep_assert_cpus_held(); 227 228 if (atomic_read(&key->enabled) != 1) { 229 WARN_ON_ONCE(atomic_read(&key->enabled) != 0); 230 return; 231 } 232 233 jump_label_lock(); 234 if (atomic_cmpxchg(&key->enabled, 1, 0)) 235 jump_label_update(key); 236 jump_label_unlock(); 237 } 238 EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked); 239 240 void static_key_disable(struct static_key *key) 241 { 242 cpus_read_lock(); 243 static_key_disable_cpuslocked(key); 244 cpus_read_unlock(); 245 } 246 EXPORT_SYMBOL_GPL(static_key_disable); 247 248 static bool static_key_slow_try_dec(struct static_key *key) 249 { 250 int val; 251 252 val = atomic_fetch_add_unless(&key->enabled, -1, 1); 253 if (val == 1) 254 return false; 255 256 /* 257 * The negative count check is valid even when a negative 258 * key->enabled is in use by static_key_slow_inc(); a 259 * __static_key_slow_dec() before the first static_key_slow_inc() 260 * returns is unbalanced, because all other static_key_slow_inc() 261 * instances block while the update is in progress. 262 */ 263 WARN(val < 0, "jump label: negative count!\n"); 264 return true; 265 } 266 267 static void __static_key_slow_dec_cpuslocked(struct static_key *key) 268 { 269 lockdep_assert_cpus_held(); 270 271 if (static_key_slow_try_dec(key)) 272 return; 273 274 jump_label_lock(); 275 if (atomic_dec_and_test(&key->enabled)) 276 jump_label_update(key); 277 jump_label_unlock(); 278 } 279 280 static void __static_key_slow_dec(struct static_key *key) 281 { 282 cpus_read_lock(); 283 __static_key_slow_dec_cpuslocked(key); 284 cpus_read_unlock(); 285 } 286 287 void jump_label_update_timeout(struct work_struct *work) 288 { 289 struct static_key_deferred *key = 290 container_of(work, struct static_key_deferred, work.work); 291 __static_key_slow_dec(&key->key); 292 } 293 EXPORT_SYMBOL_GPL(jump_label_update_timeout); 294 295 void static_key_slow_dec(struct static_key *key) 296 { 297 STATIC_KEY_CHECK_USE(key); 298 __static_key_slow_dec(key); 299 } 300 EXPORT_SYMBOL_GPL(static_key_slow_dec); 301 302 void static_key_slow_dec_cpuslocked(struct static_key *key) 303 { 304 STATIC_KEY_CHECK_USE(key); 305 __static_key_slow_dec_cpuslocked(key); 306 } 307 308 void __static_key_slow_dec_deferred(struct static_key *key, 309 struct delayed_work *work, 310 unsigned long timeout) 311 { 312 STATIC_KEY_CHECK_USE(key); 313 314 if (static_key_slow_try_dec(key)) 315 return; 316 317 schedule_delayed_work(work, timeout); 318 } 319 EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred); 320 321 void __static_key_deferred_flush(void *key, struct delayed_work *work) 322 { 323 STATIC_KEY_CHECK_USE(key); 324 flush_delayed_work(work); 325 } 326 EXPORT_SYMBOL_GPL(__static_key_deferred_flush); 327 328 void jump_label_rate_limit(struct static_key_deferred *key, 329 unsigned long rl) 330 { 331 STATIC_KEY_CHECK_USE(key); 332 key->timeout = rl; 333 INIT_DELAYED_WORK(&key->work, jump_label_update_timeout); 334 } 335 EXPORT_SYMBOL_GPL(jump_label_rate_limit); 336 337 static int addr_conflict(struct jump_entry *entry, void *start, void *end) 338 { 339 if (jump_entry_code(entry) <= (unsigned long)end && 340 jump_entry_code(entry) + jump_entry_size(entry) > (unsigned long)start) 341 return 1; 342 343 return 0; 344 } 345 346 static int __jump_label_text_reserved(struct jump_entry *iter_start, 347 struct jump_entry *iter_stop, void *start, void *end, bool init) 348 { 349 struct jump_entry *iter; 350 351 iter = iter_start; 352 while (iter < iter_stop) { 353 if (init || !jump_entry_is_init(iter)) { 354 if (addr_conflict(iter, start, end)) 355 return 1; 356 } 357 iter++; 358 } 359 360 return 0; 361 } 362 363 #ifndef arch_jump_label_transform_static 364 static void arch_jump_label_transform_static(struct jump_entry *entry, 365 enum jump_label_type type) 366 { 367 /* nothing to do on most architectures */ 368 } 369 #endif 370 371 static inline struct jump_entry *static_key_entries(struct static_key *key) 372 { 373 WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED); 374 return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK); 375 } 376 377 static inline bool static_key_type(struct static_key *key) 378 { 379 return key->type & JUMP_TYPE_TRUE; 380 } 381 382 static inline bool static_key_linked(struct static_key *key) 383 { 384 return key->type & JUMP_TYPE_LINKED; 385 } 386 387 static inline void static_key_clear_linked(struct static_key *key) 388 { 389 key->type &= ~JUMP_TYPE_LINKED; 390 } 391 392 static inline void static_key_set_linked(struct static_key *key) 393 { 394 key->type |= JUMP_TYPE_LINKED; 395 } 396 397 /*** 398 * A 'struct static_key' uses a union such that it either points directly 399 * to a table of 'struct jump_entry' or to a linked list of modules which in 400 * turn point to 'struct jump_entry' tables. 401 * 402 * The two lower bits of the pointer are used to keep track of which pointer 403 * type is in use and to store the initial branch direction, we use an access 404 * function which preserves these bits. 405 */ 406 static void static_key_set_entries(struct static_key *key, 407 struct jump_entry *entries) 408 { 409 unsigned long type; 410 411 WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK); 412 type = key->type & JUMP_TYPE_MASK; 413 key->entries = entries; 414 key->type |= type; 415 } 416 417 static enum jump_label_type jump_label_type(struct jump_entry *entry) 418 { 419 struct static_key *key = jump_entry_key(entry); 420 bool enabled = static_key_enabled(key); 421 bool branch = jump_entry_is_branch(entry); 422 423 /* See the comment in linux/jump_label.h */ 424 return enabled ^ branch; 425 } 426 427 static bool jump_label_can_update(struct jump_entry *entry, bool init) 428 { 429 /* 430 * Cannot update code that was in an init text area. 431 */ 432 if (!init && jump_entry_is_init(entry)) 433 return false; 434 435 if (!kernel_text_address(jump_entry_code(entry))) { 436 /* 437 * This skips patching built-in __exit, which 438 * is part of init_section_contains() but is 439 * not part of kernel_text_address(). 440 * 441 * Skipping built-in __exit is fine since it 442 * will never be executed. 443 */ 444 WARN_ONCE(!jump_entry_is_init(entry), 445 "can't patch jump_label at %pS", 446 (void *)jump_entry_code(entry)); 447 return false; 448 } 449 450 return true; 451 } 452 453 #ifndef HAVE_JUMP_LABEL_BATCH 454 static void __jump_label_update(struct static_key *key, 455 struct jump_entry *entry, 456 struct jump_entry *stop, 457 bool init) 458 { 459 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 460 if (jump_label_can_update(entry, init)) 461 arch_jump_label_transform(entry, jump_label_type(entry)); 462 } 463 } 464 #else 465 static void __jump_label_update(struct static_key *key, 466 struct jump_entry *entry, 467 struct jump_entry *stop, 468 bool init) 469 { 470 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 471 472 if (!jump_label_can_update(entry, init)) 473 continue; 474 475 if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) { 476 /* 477 * Queue is full: Apply the current queue and try again. 478 */ 479 arch_jump_label_transform_apply(); 480 BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry))); 481 } 482 } 483 arch_jump_label_transform_apply(); 484 } 485 #endif 486 487 void __init jump_label_init(void) 488 { 489 struct jump_entry *iter_start = __start___jump_table; 490 struct jump_entry *iter_stop = __stop___jump_table; 491 struct static_key *key = NULL; 492 struct jump_entry *iter; 493 494 /* 495 * Since we are initializing the static_key.enabled field with 496 * with the 'raw' int values (to avoid pulling in atomic.h) in 497 * jump_label.h, let's make sure that is safe. There are only two 498 * cases to check since we initialize to 0 or 1. 499 */ 500 BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0); 501 BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1); 502 503 if (static_key_initialized) 504 return; 505 506 cpus_read_lock(); 507 jump_label_lock(); 508 jump_label_sort_entries(iter_start, iter_stop); 509 510 for (iter = iter_start; iter < iter_stop; iter++) { 511 struct static_key *iterk; 512 bool in_init; 513 514 /* rewrite NOPs */ 515 if (jump_label_type(iter) == JUMP_LABEL_NOP) 516 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 517 518 in_init = init_section_contains((void *)jump_entry_code(iter), 1); 519 jump_entry_set_init(iter, in_init); 520 521 iterk = jump_entry_key(iter); 522 if (iterk == key) 523 continue; 524 525 key = iterk; 526 static_key_set_entries(key, iter); 527 } 528 static_key_initialized = true; 529 jump_label_unlock(); 530 cpus_read_unlock(); 531 } 532 533 static inline bool static_key_sealed(struct static_key *key) 534 { 535 return (key->type & JUMP_TYPE_LINKED) && !(key->type & ~JUMP_TYPE_MASK); 536 } 537 538 static inline void static_key_seal(struct static_key *key) 539 { 540 unsigned long type = key->type & JUMP_TYPE_TRUE; 541 key->type = JUMP_TYPE_LINKED | type; 542 } 543 544 void jump_label_init_ro(void) 545 { 546 struct jump_entry *iter_start = __start___jump_table; 547 struct jump_entry *iter_stop = __stop___jump_table; 548 struct jump_entry *iter; 549 550 if (WARN_ON_ONCE(!static_key_initialized)) 551 return; 552 553 cpus_read_lock(); 554 jump_label_lock(); 555 556 for (iter = iter_start; iter < iter_stop; iter++) { 557 struct static_key *iterk = jump_entry_key(iter); 558 559 if (!is_kernel_ro_after_init((unsigned long)iterk)) 560 continue; 561 562 if (static_key_sealed(iterk)) 563 continue; 564 565 static_key_seal(iterk); 566 } 567 568 jump_label_unlock(); 569 cpus_read_unlock(); 570 } 571 572 #ifdef CONFIG_MODULES 573 574 enum jump_label_type jump_label_init_type(struct jump_entry *entry) 575 { 576 struct static_key *key = jump_entry_key(entry); 577 bool type = static_key_type(key); 578 bool branch = jump_entry_is_branch(entry); 579 580 /* See the comment in linux/jump_label.h */ 581 return type ^ branch; 582 } 583 584 struct static_key_mod { 585 struct static_key_mod *next; 586 struct jump_entry *entries; 587 struct module *mod; 588 }; 589 590 static inline struct static_key_mod *static_key_mod(struct static_key *key) 591 { 592 WARN_ON_ONCE(!static_key_linked(key)); 593 return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK); 594 } 595 596 /*** 597 * key->type and key->next are the same via union. 598 * This sets key->next and preserves the type bits. 599 * 600 * See additional comments above static_key_set_entries(). 601 */ 602 static void static_key_set_mod(struct static_key *key, 603 struct static_key_mod *mod) 604 { 605 unsigned long type; 606 607 WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK); 608 type = key->type & JUMP_TYPE_MASK; 609 key->next = mod; 610 key->type |= type; 611 } 612 613 static int __jump_label_mod_text_reserved(void *start, void *end) 614 { 615 struct module *mod; 616 int ret; 617 618 preempt_disable(); 619 mod = __module_text_address((unsigned long)start); 620 WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod); 621 if (!try_module_get(mod)) 622 mod = NULL; 623 preempt_enable(); 624 625 if (!mod) 626 return 0; 627 628 ret = __jump_label_text_reserved(mod->jump_entries, 629 mod->jump_entries + mod->num_jump_entries, 630 start, end, mod->state == MODULE_STATE_COMING); 631 632 module_put(mod); 633 634 return ret; 635 } 636 637 static void __jump_label_mod_update(struct static_key *key) 638 { 639 struct static_key_mod *mod; 640 641 for (mod = static_key_mod(key); mod; mod = mod->next) { 642 struct jump_entry *stop; 643 struct module *m; 644 645 /* 646 * NULL if the static_key is defined in a module 647 * that does not use it 648 */ 649 if (!mod->entries) 650 continue; 651 652 m = mod->mod; 653 if (!m) 654 stop = __stop___jump_table; 655 else 656 stop = m->jump_entries + m->num_jump_entries; 657 __jump_label_update(key, mod->entries, stop, 658 m && m->state == MODULE_STATE_COMING); 659 } 660 } 661 662 static int jump_label_add_module(struct module *mod) 663 { 664 struct jump_entry *iter_start = mod->jump_entries; 665 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 666 struct jump_entry *iter; 667 struct static_key *key = NULL; 668 struct static_key_mod *jlm, *jlm2; 669 670 /* if the module doesn't have jump label entries, just return */ 671 if (iter_start == iter_stop) 672 return 0; 673 674 jump_label_sort_entries(iter_start, iter_stop); 675 676 for (iter = iter_start; iter < iter_stop; iter++) { 677 struct static_key *iterk; 678 bool in_init; 679 680 in_init = within_module_init(jump_entry_code(iter), mod); 681 jump_entry_set_init(iter, in_init); 682 683 iterk = jump_entry_key(iter); 684 if (iterk == key) 685 continue; 686 687 key = iterk; 688 if (within_module((unsigned long)key, mod)) { 689 static_key_set_entries(key, iter); 690 continue; 691 } 692 693 /* 694 * If the key was sealed at init, then there's no need to keep a 695 * reference to its module entries - just patch them now and be 696 * done with it. 697 */ 698 if (static_key_sealed(key)) 699 goto do_poke; 700 701 jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); 702 if (!jlm) 703 return -ENOMEM; 704 if (!static_key_linked(key)) { 705 jlm2 = kzalloc(sizeof(struct static_key_mod), 706 GFP_KERNEL); 707 if (!jlm2) { 708 kfree(jlm); 709 return -ENOMEM; 710 } 711 preempt_disable(); 712 jlm2->mod = __module_address((unsigned long)key); 713 preempt_enable(); 714 jlm2->entries = static_key_entries(key); 715 jlm2->next = NULL; 716 static_key_set_mod(key, jlm2); 717 static_key_set_linked(key); 718 } 719 jlm->mod = mod; 720 jlm->entries = iter; 721 jlm->next = static_key_mod(key); 722 static_key_set_mod(key, jlm); 723 static_key_set_linked(key); 724 725 /* Only update if we've changed from our initial state */ 726 do_poke: 727 if (jump_label_type(iter) != jump_label_init_type(iter)) 728 __jump_label_update(key, iter, iter_stop, true); 729 } 730 731 return 0; 732 } 733 734 static void jump_label_del_module(struct module *mod) 735 { 736 struct jump_entry *iter_start = mod->jump_entries; 737 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 738 struct jump_entry *iter; 739 struct static_key *key = NULL; 740 struct static_key_mod *jlm, **prev; 741 742 for (iter = iter_start; iter < iter_stop; iter++) { 743 if (jump_entry_key(iter) == key) 744 continue; 745 746 key = jump_entry_key(iter); 747 748 if (within_module((unsigned long)key, mod)) 749 continue; 750 751 /* No @jlm allocated because key was sealed at init. */ 752 if (static_key_sealed(key)) 753 continue; 754 755 /* No memory during module load */ 756 if (WARN_ON(!static_key_linked(key))) 757 continue; 758 759 prev = &key->next; 760 jlm = static_key_mod(key); 761 762 while (jlm && jlm->mod != mod) { 763 prev = &jlm->next; 764 jlm = jlm->next; 765 } 766 767 /* No memory during module load */ 768 if (WARN_ON(!jlm)) 769 continue; 770 771 if (prev == &key->next) 772 static_key_set_mod(key, jlm->next); 773 else 774 *prev = jlm->next; 775 776 kfree(jlm); 777 778 jlm = static_key_mod(key); 779 /* if only one etry is left, fold it back into the static_key */ 780 if (jlm->next == NULL) { 781 static_key_set_entries(key, jlm->entries); 782 static_key_clear_linked(key); 783 kfree(jlm); 784 } 785 } 786 } 787 788 static int 789 jump_label_module_notify(struct notifier_block *self, unsigned long val, 790 void *data) 791 { 792 struct module *mod = data; 793 int ret = 0; 794 795 cpus_read_lock(); 796 jump_label_lock(); 797 798 switch (val) { 799 case MODULE_STATE_COMING: 800 ret = jump_label_add_module(mod); 801 if (ret) { 802 WARN(1, "Failed to allocate memory: jump_label may not work properly.\n"); 803 jump_label_del_module(mod); 804 } 805 break; 806 case MODULE_STATE_GOING: 807 jump_label_del_module(mod); 808 break; 809 } 810 811 jump_label_unlock(); 812 cpus_read_unlock(); 813 814 return notifier_from_errno(ret); 815 } 816 817 static struct notifier_block jump_label_module_nb = { 818 .notifier_call = jump_label_module_notify, 819 .priority = 1, /* higher than tracepoints */ 820 }; 821 822 static __init int jump_label_init_module(void) 823 { 824 return register_module_notifier(&jump_label_module_nb); 825 } 826 early_initcall(jump_label_init_module); 827 828 #endif /* CONFIG_MODULES */ 829 830 /*** 831 * jump_label_text_reserved - check if addr range is reserved 832 * @start: start text addr 833 * @end: end text addr 834 * 835 * checks if the text addr located between @start and @end 836 * overlaps with any of the jump label patch addresses. Code 837 * that wants to modify kernel text should first verify that 838 * it does not overlap with any of the jump label addresses. 839 * Caller must hold jump_label_mutex. 840 * 841 * returns 1 if there is an overlap, 0 otherwise 842 */ 843 int jump_label_text_reserved(void *start, void *end) 844 { 845 bool init = system_state < SYSTEM_RUNNING; 846 int ret = __jump_label_text_reserved(__start___jump_table, 847 __stop___jump_table, start, end, init); 848 849 if (ret) 850 return ret; 851 852 #ifdef CONFIG_MODULES 853 ret = __jump_label_mod_text_reserved(start, end); 854 #endif 855 return ret; 856 } 857 858 static void jump_label_update(struct static_key *key) 859 { 860 struct jump_entry *stop = __stop___jump_table; 861 bool init = system_state < SYSTEM_RUNNING; 862 struct jump_entry *entry; 863 #ifdef CONFIG_MODULES 864 struct module *mod; 865 866 if (static_key_linked(key)) { 867 __jump_label_mod_update(key); 868 return; 869 } 870 871 preempt_disable(); 872 mod = __module_address((unsigned long)key); 873 if (mod) { 874 stop = mod->jump_entries + mod->num_jump_entries; 875 init = mod->state == MODULE_STATE_COMING; 876 } 877 preempt_enable(); 878 #endif 879 entry = static_key_entries(key); 880 /* if there are no users, entry can be NULL */ 881 if (entry) 882 __jump_label_update(key, entry, stop, init); 883 } 884 885 #ifdef CONFIG_STATIC_KEYS_SELFTEST 886 static DEFINE_STATIC_KEY_TRUE(sk_true); 887 static DEFINE_STATIC_KEY_FALSE(sk_false); 888 889 static __init int jump_label_test(void) 890 { 891 int i; 892 893 for (i = 0; i < 2; i++) { 894 WARN_ON(static_key_enabled(&sk_true.key) != true); 895 WARN_ON(static_key_enabled(&sk_false.key) != false); 896 897 WARN_ON(!static_branch_likely(&sk_true)); 898 WARN_ON(!static_branch_unlikely(&sk_true)); 899 WARN_ON(static_branch_likely(&sk_false)); 900 WARN_ON(static_branch_unlikely(&sk_false)); 901 902 static_branch_disable(&sk_true); 903 static_branch_enable(&sk_false); 904 905 WARN_ON(static_key_enabled(&sk_true.key) == true); 906 WARN_ON(static_key_enabled(&sk_false.key) == false); 907 908 WARN_ON(static_branch_likely(&sk_true)); 909 WARN_ON(static_branch_unlikely(&sk_true)); 910 WARN_ON(!static_branch_likely(&sk_false)); 911 WARN_ON(!static_branch_unlikely(&sk_false)); 912 913 static_branch_enable(&sk_true); 914 static_branch_disable(&sk_false); 915 } 916 917 return 0; 918 } 919 early_initcall(jump_label_test); 920 #endif /* STATIC_KEYS_SELFTEST */ 921