1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * jump label support 4 * 5 * Copyright (C) 2009 Jason Baron <jbaron@redhat.com> 6 * Copyright (C) 2011 Peter Zijlstra 7 * 8 */ 9 #include <linux/memory.h> 10 #include <linux/uaccess.h> 11 #include <linux/module.h> 12 #include <linux/list.h> 13 #include <linux/slab.h> 14 #include <linux/sort.h> 15 #include <linux/err.h> 16 #include <linux/static_key.h> 17 #include <linux/jump_label_ratelimit.h> 18 #include <linux/bug.h> 19 #include <linux/cpu.h> 20 #include <asm/sections.h> 21 22 /* mutex to protect coming/going of the jump_label table */ 23 static DEFINE_MUTEX(jump_label_mutex); 24 25 void jump_label_lock(void) 26 { 27 mutex_lock(&jump_label_mutex); 28 } 29 30 void jump_label_unlock(void) 31 { 32 mutex_unlock(&jump_label_mutex); 33 } 34 35 static int jump_label_cmp(const void *a, const void *b) 36 { 37 const struct jump_entry *jea = a; 38 const struct jump_entry *jeb = b; 39 40 /* 41 * Entrires are sorted by key. 42 */ 43 if (jump_entry_key(jea) < jump_entry_key(jeb)) 44 return -1; 45 46 if (jump_entry_key(jea) > jump_entry_key(jeb)) 47 return 1; 48 49 /* 50 * In the batching mode, entries should also be sorted by the code 51 * inside the already sorted list of entries, enabling a bsearch in 52 * the vector. 53 */ 54 if (jump_entry_code(jea) < jump_entry_code(jeb)) 55 return -1; 56 57 if (jump_entry_code(jea) > jump_entry_code(jeb)) 58 return 1; 59 60 return 0; 61 } 62 63 static void jump_label_swap(void *a, void *b, int size) 64 { 65 long delta = (unsigned long)a - (unsigned long)b; 66 struct jump_entry *jea = a; 67 struct jump_entry *jeb = b; 68 struct jump_entry tmp = *jea; 69 70 jea->code = jeb->code - delta; 71 jea->target = jeb->target - delta; 72 jea->key = jeb->key - delta; 73 74 jeb->code = tmp.code + delta; 75 jeb->target = tmp.target + delta; 76 jeb->key = tmp.key + delta; 77 } 78 79 static void 80 jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop) 81 { 82 unsigned long size; 83 void *swapfn = NULL; 84 85 if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE)) 86 swapfn = jump_label_swap; 87 88 size = (((unsigned long)stop - (unsigned long)start) 89 / sizeof(struct jump_entry)); 90 sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn); 91 } 92 93 static void jump_label_update(struct static_key *key); 94 95 /* 96 * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h. 97 * The use of 'atomic_read()' requires atomic.h and its problematic for some 98 * kernel headers such as kernel.h and others. Since static_key_count() is not 99 * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok 100 * to have it be a function here. Similarly, for 'static_key_enable()' and 101 * 'static_key_disable()', which require bug.h. This should allow jump_label.h 102 * to be included from most/all places for CONFIG_JUMP_LABEL. 103 */ 104 int static_key_count(struct static_key *key) 105 { 106 /* 107 * -1 means the first static_key_slow_inc() is in progress. 108 * static_key_enabled() must return true, so return 1 here. 109 */ 110 int n = atomic_read(&key->enabled); 111 112 return n >= 0 ? n : 1; 113 } 114 EXPORT_SYMBOL_GPL(static_key_count); 115 116 /* 117 * static_key_fast_inc_not_disabled - adds a user for a static key 118 * @key: static key that must be already enabled 119 * 120 * The caller must make sure that the static key can't get disabled while 121 * in this function. It doesn't patch jump labels, only adds a user to 122 * an already enabled static key. 123 * 124 * Returns true if the increment was done. Unlike refcount_t the ref counter 125 * is not saturated, but will fail to increment on overflow. 126 */ 127 bool static_key_fast_inc_not_disabled(struct static_key *key) 128 { 129 int v; 130 131 STATIC_KEY_CHECK_USE(key); 132 /* 133 * Negative key->enabled has a special meaning: it sends 134 * static_key_slow_inc/dec() down the slow path, and it is non-zero 135 * so it counts as "enabled" in jump_label_update(). 136 * 137 * The INT_MAX overflow condition is either used by the networking 138 * code to reset or detected in the slow path of 139 * static_key_slow_inc_cpuslocked(). 140 */ 141 v = atomic_read(&key->enabled); 142 do { 143 if (v <= 0 || v == INT_MAX) 144 return false; 145 } while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v + 1))); 146 147 return true; 148 } 149 EXPORT_SYMBOL_GPL(static_key_fast_inc_not_disabled); 150 151 bool static_key_slow_inc_cpuslocked(struct static_key *key) 152 { 153 lockdep_assert_cpus_held(); 154 155 /* 156 * Careful if we get concurrent static_key_slow_inc/dec() calls; 157 * later calls must wait for the first one to _finish_ the 158 * jump_label_update() process. At the same time, however, 159 * the jump_label_update() call below wants to see 160 * static_key_enabled(&key) for jumps to be updated properly. 161 */ 162 if (static_key_fast_inc_not_disabled(key)) 163 return true; 164 165 guard(mutex)(&jump_label_mutex); 166 /* Try to mark it as 'enabling in progress. */ 167 if (!atomic_cmpxchg(&key->enabled, 0, -1)) { 168 jump_label_update(key); 169 /* 170 * Ensure that when static_key_fast_inc_not_disabled() or 171 * static_key_slow_try_dec() observe the positive value, 172 * they must also observe all the text changes. 173 */ 174 atomic_set_release(&key->enabled, 1); 175 } else { 176 /* 177 * While holding the mutex this should never observe 178 * anything else than a value >= 1 and succeed 179 */ 180 if (WARN_ON_ONCE(!static_key_fast_inc_not_disabled(key))) 181 return false; 182 } 183 return true; 184 } 185 186 bool static_key_slow_inc(struct static_key *key) 187 { 188 bool ret; 189 190 cpus_read_lock(); 191 ret = static_key_slow_inc_cpuslocked(key); 192 cpus_read_unlock(); 193 return ret; 194 } 195 EXPORT_SYMBOL_GPL(static_key_slow_inc); 196 197 void static_key_enable_cpuslocked(struct static_key *key) 198 { 199 STATIC_KEY_CHECK_USE(key); 200 lockdep_assert_cpus_held(); 201 202 if (atomic_read(&key->enabled) > 0) { 203 WARN_ON_ONCE(atomic_read(&key->enabled) != 1); 204 return; 205 } 206 207 jump_label_lock(); 208 if (atomic_read(&key->enabled) == 0) { 209 atomic_set(&key->enabled, -1); 210 jump_label_update(key); 211 /* 212 * See static_key_slow_inc(). 213 */ 214 atomic_set_release(&key->enabled, 1); 215 } 216 jump_label_unlock(); 217 } 218 EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked); 219 220 void static_key_enable(struct static_key *key) 221 { 222 cpus_read_lock(); 223 static_key_enable_cpuslocked(key); 224 cpus_read_unlock(); 225 } 226 EXPORT_SYMBOL_GPL(static_key_enable); 227 228 void static_key_disable_cpuslocked(struct static_key *key) 229 { 230 STATIC_KEY_CHECK_USE(key); 231 lockdep_assert_cpus_held(); 232 233 if (atomic_read(&key->enabled) != 1) { 234 WARN_ON_ONCE(atomic_read(&key->enabled) != 0); 235 return; 236 } 237 238 jump_label_lock(); 239 if (atomic_cmpxchg(&key->enabled, 1, 0)) 240 jump_label_update(key); 241 jump_label_unlock(); 242 } 243 EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked); 244 245 void static_key_disable(struct static_key *key) 246 { 247 cpus_read_lock(); 248 static_key_disable_cpuslocked(key); 249 cpus_read_unlock(); 250 } 251 EXPORT_SYMBOL_GPL(static_key_disable); 252 253 static bool static_key_slow_try_dec(struct static_key *key) 254 { 255 int v; 256 257 /* 258 * Go into the slow path if key::enabled is less than or equal than 259 * one. One is valid to shut down the key, anything less than one 260 * is an imbalance, which is handled at the call site. 261 * 262 * That includes the special case of '-1' which is set in 263 * static_key_slow_inc_cpuslocked(), but that's harmless as it is 264 * fully serialized in the slow path below. By the time this task 265 * acquires the jump label lock the value is back to one and the 266 * retry under the lock must succeed. 267 */ 268 v = atomic_read(&key->enabled); 269 do { 270 /* 271 * Warn about the '-1' case though; since that means a 272 * decrement is concurrent with a first (0->1) increment. IOW 273 * people are trying to disable something that wasn't yet fully 274 * enabled. This suggests an ordering problem on the user side. 275 */ 276 WARN_ON_ONCE(v < 0); 277 if (v <= 1) 278 return false; 279 } while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v - 1))); 280 281 return true; 282 } 283 284 static void __static_key_slow_dec_cpuslocked(struct static_key *key) 285 { 286 lockdep_assert_cpus_held(); 287 288 if (static_key_slow_try_dec(key)) 289 return; 290 291 guard(mutex)(&jump_label_mutex); 292 if (atomic_cmpxchg(&key->enabled, 1, 0)) 293 jump_label_update(key); 294 else 295 WARN_ON_ONCE(!static_key_slow_try_dec(key)); 296 } 297 298 static void __static_key_slow_dec(struct static_key *key) 299 { 300 cpus_read_lock(); 301 __static_key_slow_dec_cpuslocked(key); 302 cpus_read_unlock(); 303 } 304 305 void jump_label_update_timeout(struct work_struct *work) 306 { 307 struct static_key_deferred *key = 308 container_of(work, struct static_key_deferred, work.work); 309 __static_key_slow_dec(&key->key); 310 } 311 EXPORT_SYMBOL_GPL(jump_label_update_timeout); 312 313 void static_key_slow_dec(struct static_key *key) 314 { 315 STATIC_KEY_CHECK_USE(key); 316 __static_key_slow_dec(key); 317 } 318 EXPORT_SYMBOL_GPL(static_key_slow_dec); 319 320 void static_key_slow_dec_cpuslocked(struct static_key *key) 321 { 322 STATIC_KEY_CHECK_USE(key); 323 __static_key_slow_dec_cpuslocked(key); 324 } 325 326 void __static_key_slow_dec_deferred(struct static_key *key, 327 struct delayed_work *work, 328 unsigned long timeout) 329 { 330 STATIC_KEY_CHECK_USE(key); 331 332 if (static_key_slow_try_dec(key)) 333 return; 334 335 schedule_delayed_work(work, timeout); 336 } 337 EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred); 338 339 void __static_key_deferred_flush(void *key, struct delayed_work *work) 340 { 341 STATIC_KEY_CHECK_USE(key); 342 flush_delayed_work(work); 343 } 344 EXPORT_SYMBOL_GPL(__static_key_deferred_flush); 345 346 void jump_label_rate_limit(struct static_key_deferred *key, 347 unsigned long rl) 348 { 349 STATIC_KEY_CHECK_USE(key); 350 key->timeout = rl; 351 INIT_DELAYED_WORK(&key->work, jump_label_update_timeout); 352 } 353 EXPORT_SYMBOL_GPL(jump_label_rate_limit); 354 355 static int addr_conflict(struct jump_entry *entry, void *start, void *end) 356 { 357 if (jump_entry_code(entry) <= (unsigned long)end && 358 jump_entry_code(entry) + jump_entry_size(entry) > (unsigned long)start) 359 return 1; 360 361 return 0; 362 } 363 364 static int __jump_label_text_reserved(struct jump_entry *iter_start, 365 struct jump_entry *iter_stop, void *start, void *end, bool init) 366 { 367 struct jump_entry *iter; 368 369 iter = iter_start; 370 while (iter < iter_stop) { 371 if (init || !jump_entry_is_init(iter)) { 372 if (addr_conflict(iter, start, end)) 373 return 1; 374 } 375 iter++; 376 } 377 378 return 0; 379 } 380 381 #ifndef arch_jump_label_transform_static 382 static void arch_jump_label_transform_static(struct jump_entry *entry, 383 enum jump_label_type type) 384 { 385 /* nothing to do on most architectures */ 386 } 387 #endif 388 389 static inline struct jump_entry *static_key_entries(struct static_key *key) 390 { 391 WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED); 392 return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK); 393 } 394 395 static inline bool static_key_type(struct static_key *key) 396 { 397 return key->type & JUMP_TYPE_TRUE; 398 } 399 400 static inline bool static_key_linked(struct static_key *key) 401 { 402 return key->type & JUMP_TYPE_LINKED; 403 } 404 405 static inline void static_key_clear_linked(struct static_key *key) 406 { 407 key->type &= ~JUMP_TYPE_LINKED; 408 } 409 410 static inline void static_key_set_linked(struct static_key *key) 411 { 412 key->type |= JUMP_TYPE_LINKED; 413 } 414 415 /*** 416 * A 'struct static_key' uses a union such that it either points directly 417 * to a table of 'struct jump_entry' or to a linked list of modules which in 418 * turn point to 'struct jump_entry' tables. 419 * 420 * The two lower bits of the pointer are used to keep track of which pointer 421 * type is in use and to store the initial branch direction, we use an access 422 * function which preserves these bits. 423 */ 424 static void static_key_set_entries(struct static_key *key, 425 struct jump_entry *entries) 426 { 427 unsigned long type; 428 429 WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK); 430 type = key->type & JUMP_TYPE_MASK; 431 key->entries = entries; 432 key->type |= type; 433 } 434 435 static enum jump_label_type jump_label_type(struct jump_entry *entry) 436 { 437 struct static_key *key = jump_entry_key(entry); 438 bool enabled = static_key_enabled(key); 439 bool branch = jump_entry_is_branch(entry); 440 441 /* See the comment in linux/jump_label.h */ 442 return enabled ^ branch; 443 } 444 445 static bool jump_label_can_update(struct jump_entry *entry, bool init) 446 { 447 /* 448 * Cannot update code that was in an init text area. 449 */ 450 if (!init && jump_entry_is_init(entry)) 451 return false; 452 453 if (!kernel_text_address(jump_entry_code(entry))) { 454 /* 455 * This skips patching built-in __exit, which 456 * is part of init_section_contains() but is 457 * not part of kernel_text_address(). 458 * 459 * Skipping built-in __exit is fine since it 460 * will never be executed. 461 */ 462 WARN_ONCE(!jump_entry_is_init(entry), 463 "can't patch jump_label at %pS", 464 (void *)jump_entry_code(entry)); 465 return false; 466 } 467 468 return true; 469 } 470 471 #ifndef HAVE_JUMP_LABEL_BATCH 472 static void __jump_label_update(struct static_key *key, 473 struct jump_entry *entry, 474 struct jump_entry *stop, 475 bool init) 476 { 477 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 478 if (jump_label_can_update(entry, init)) 479 arch_jump_label_transform(entry, jump_label_type(entry)); 480 } 481 } 482 #else 483 static void __jump_label_update(struct static_key *key, 484 struct jump_entry *entry, 485 struct jump_entry *stop, 486 bool init) 487 { 488 for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { 489 490 if (!jump_label_can_update(entry, init)) 491 continue; 492 493 if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) { 494 /* 495 * Queue is full: Apply the current queue and try again. 496 */ 497 arch_jump_label_transform_apply(); 498 BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry))); 499 } 500 } 501 arch_jump_label_transform_apply(); 502 } 503 #endif 504 505 void __init jump_label_init(void) 506 { 507 struct jump_entry *iter_start = __start___jump_table; 508 struct jump_entry *iter_stop = __stop___jump_table; 509 struct static_key *key = NULL; 510 struct jump_entry *iter; 511 512 /* 513 * Since we are initializing the static_key.enabled field with 514 * with the 'raw' int values (to avoid pulling in atomic.h) in 515 * jump_label.h, let's make sure that is safe. There are only two 516 * cases to check since we initialize to 0 or 1. 517 */ 518 BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0); 519 BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1); 520 521 if (static_key_initialized) 522 return; 523 524 cpus_read_lock(); 525 jump_label_lock(); 526 jump_label_sort_entries(iter_start, iter_stop); 527 528 for (iter = iter_start; iter < iter_stop; iter++) { 529 struct static_key *iterk; 530 bool in_init; 531 532 /* rewrite NOPs */ 533 if (jump_label_type(iter) == JUMP_LABEL_NOP) 534 arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); 535 536 in_init = init_section_contains((void *)jump_entry_code(iter), 1); 537 jump_entry_set_init(iter, in_init); 538 539 iterk = jump_entry_key(iter); 540 if (iterk == key) 541 continue; 542 543 key = iterk; 544 static_key_set_entries(key, iter); 545 } 546 static_key_initialized = true; 547 jump_label_unlock(); 548 cpus_read_unlock(); 549 } 550 551 static inline bool static_key_sealed(struct static_key *key) 552 { 553 return (key->type & JUMP_TYPE_LINKED) && !(key->type & ~JUMP_TYPE_MASK); 554 } 555 556 static inline void static_key_seal(struct static_key *key) 557 { 558 unsigned long type = key->type & JUMP_TYPE_TRUE; 559 key->type = JUMP_TYPE_LINKED | type; 560 } 561 562 void jump_label_init_ro(void) 563 { 564 struct jump_entry *iter_start = __start___jump_table; 565 struct jump_entry *iter_stop = __stop___jump_table; 566 struct jump_entry *iter; 567 568 if (WARN_ON_ONCE(!static_key_initialized)) 569 return; 570 571 cpus_read_lock(); 572 jump_label_lock(); 573 574 for (iter = iter_start; iter < iter_stop; iter++) { 575 struct static_key *iterk = jump_entry_key(iter); 576 577 if (!is_kernel_ro_after_init((unsigned long)iterk)) 578 continue; 579 580 if (static_key_sealed(iterk)) 581 continue; 582 583 static_key_seal(iterk); 584 } 585 586 jump_label_unlock(); 587 cpus_read_unlock(); 588 } 589 590 #ifdef CONFIG_MODULES 591 592 enum jump_label_type jump_label_init_type(struct jump_entry *entry) 593 { 594 struct static_key *key = jump_entry_key(entry); 595 bool type = static_key_type(key); 596 bool branch = jump_entry_is_branch(entry); 597 598 /* See the comment in linux/jump_label.h */ 599 return type ^ branch; 600 } 601 602 struct static_key_mod { 603 struct static_key_mod *next; 604 struct jump_entry *entries; 605 struct module *mod; 606 }; 607 608 static inline struct static_key_mod *static_key_mod(struct static_key *key) 609 { 610 WARN_ON_ONCE(!static_key_linked(key)); 611 return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK); 612 } 613 614 /*** 615 * key->type and key->next are the same via union. 616 * This sets key->next and preserves the type bits. 617 * 618 * See additional comments above static_key_set_entries(). 619 */ 620 static void static_key_set_mod(struct static_key *key, 621 struct static_key_mod *mod) 622 { 623 unsigned long type; 624 625 WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK); 626 type = key->type & JUMP_TYPE_MASK; 627 key->next = mod; 628 key->type |= type; 629 } 630 631 static int __jump_label_mod_text_reserved(void *start, void *end) 632 { 633 struct module *mod; 634 int ret; 635 636 preempt_disable(); 637 mod = __module_text_address((unsigned long)start); 638 WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod); 639 if (!try_module_get(mod)) 640 mod = NULL; 641 preempt_enable(); 642 643 if (!mod) 644 return 0; 645 646 ret = __jump_label_text_reserved(mod->jump_entries, 647 mod->jump_entries + mod->num_jump_entries, 648 start, end, mod->state == MODULE_STATE_COMING); 649 650 module_put(mod); 651 652 return ret; 653 } 654 655 static void __jump_label_mod_update(struct static_key *key) 656 { 657 struct static_key_mod *mod; 658 659 for (mod = static_key_mod(key); mod; mod = mod->next) { 660 struct jump_entry *stop; 661 struct module *m; 662 663 /* 664 * NULL if the static_key is defined in a module 665 * that does not use it 666 */ 667 if (!mod->entries) 668 continue; 669 670 m = mod->mod; 671 if (!m) 672 stop = __stop___jump_table; 673 else 674 stop = m->jump_entries + m->num_jump_entries; 675 __jump_label_update(key, mod->entries, stop, 676 m && m->state == MODULE_STATE_COMING); 677 } 678 } 679 680 static int jump_label_add_module(struct module *mod) 681 { 682 struct jump_entry *iter_start = mod->jump_entries; 683 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 684 struct jump_entry *iter; 685 struct static_key *key = NULL; 686 struct static_key_mod *jlm, *jlm2; 687 688 /* if the module doesn't have jump label entries, just return */ 689 if (iter_start == iter_stop) 690 return 0; 691 692 jump_label_sort_entries(iter_start, iter_stop); 693 694 for (iter = iter_start; iter < iter_stop; iter++) { 695 struct static_key *iterk; 696 bool in_init; 697 698 in_init = within_module_init(jump_entry_code(iter), mod); 699 jump_entry_set_init(iter, in_init); 700 701 iterk = jump_entry_key(iter); 702 if (iterk == key) 703 continue; 704 705 key = iterk; 706 if (within_module((unsigned long)key, mod)) { 707 static_key_set_entries(key, iter); 708 continue; 709 } 710 711 /* 712 * If the key was sealed at init, then there's no need to keep a 713 * reference to its module entries - just patch them now and be 714 * done with it. 715 */ 716 if (static_key_sealed(key)) 717 goto do_poke; 718 719 jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); 720 if (!jlm) 721 return -ENOMEM; 722 if (!static_key_linked(key)) { 723 jlm2 = kzalloc(sizeof(struct static_key_mod), 724 GFP_KERNEL); 725 if (!jlm2) { 726 kfree(jlm); 727 return -ENOMEM; 728 } 729 preempt_disable(); 730 jlm2->mod = __module_address((unsigned long)key); 731 preempt_enable(); 732 jlm2->entries = static_key_entries(key); 733 jlm2->next = NULL; 734 static_key_set_mod(key, jlm2); 735 static_key_set_linked(key); 736 } 737 jlm->mod = mod; 738 jlm->entries = iter; 739 jlm->next = static_key_mod(key); 740 static_key_set_mod(key, jlm); 741 static_key_set_linked(key); 742 743 /* Only update if we've changed from our initial state */ 744 do_poke: 745 if (jump_label_type(iter) != jump_label_init_type(iter)) 746 __jump_label_update(key, iter, iter_stop, true); 747 } 748 749 return 0; 750 } 751 752 static void jump_label_del_module(struct module *mod) 753 { 754 struct jump_entry *iter_start = mod->jump_entries; 755 struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; 756 struct jump_entry *iter; 757 struct static_key *key = NULL; 758 struct static_key_mod *jlm, **prev; 759 760 for (iter = iter_start; iter < iter_stop; iter++) { 761 if (jump_entry_key(iter) == key) 762 continue; 763 764 key = jump_entry_key(iter); 765 766 if (within_module((unsigned long)key, mod)) 767 continue; 768 769 /* No @jlm allocated because key was sealed at init. */ 770 if (static_key_sealed(key)) 771 continue; 772 773 /* No memory during module load */ 774 if (WARN_ON(!static_key_linked(key))) 775 continue; 776 777 prev = &key->next; 778 jlm = static_key_mod(key); 779 780 while (jlm && jlm->mod != mod) { 781 prev = &jlm->next; 782 jlm = jlm->next; 783 } 784 785 /* No memory during module load */ 786 if (WARN_ON(!jlm)) 787 continue; 788 789 if (prev == &key->next) 790 static_key_set_mod(key, jlm->next); 791 else 792 *prev = jlm->next; 793 794 kfree(jlm); 795 796 jlm = static_key_mod(key); 797 /* if only one etry is left, fold it back into the static_key */ 798 if (jlm->next == NULL) { 799 static_key_set_entries(key, jlm->entries); 800 static_key_clear_linked(key); 801 kfree(jlm); 802 } 803 } 804 } 805 806 static int 807 jump_label_module_notify(struct notifier_block *self, unsigned long val, 808 void *data) 809 { 810 struct module *mod = data; 811 int ret = 0; 812 813 cpus_read_lock(); 814 jump_label_lock(); 815 816 switch (val) { 817 case MODULE_STATE_COMING: 818 ret = jump_label_add_module(mod); 819 if (ret) { 820 WARN(1, "Failed to allocate memory: jump_label may not work properly.\n"); 821 jump_label_del_module(mod); 822 } 823 break; 824 case MODULE_STATE_GOING: 825 jump_label_del_module(mod); 826 break; 827 } 828 829 jump_label_unlock(); 830 cpus_read_unlock(); 831 832 return notifier_from_errno(ret); 833 } 834 835 static struct notifier_block jump_label_module_nb = { 836 .notifier_call = jump_label_module_notify, 837 .priority = 1, /* higher than tracepoints */ 838 }; 839 840 static __init int jump_label_init_module(void) 841 { 842 return register_module_notifier(&jump_label_module_nb); 843 } 844 early_initcall(jump_label_init_module); 845 846 #endif /* CONFIG_MODULES */ 847 848 /*** 849 * jump_label_text_reserved - check if addr range is reserved 850 * @start: start text addr 851 * @end: end text addr 852 * 853 * checks if the text addr located between @start and @end 854 * overlaps with any of the jump label patch addresses. Code 855 * that wants to modify kernel text should first verify that 856 * it does not overlap with any of the jump label addresses. 857 * Caller must hold jump_label_mutex. 858 * 859 * returns 1 if there is an overlap, 0 otherwise 860 */ 861 int jump_label_text_reserved(void *start, void *end) 862 { 863 bool init = system_state < SYSTEM_RUNNING; 864 int ret = __jump_label_text_reserved(__start___jump_table, 865 __stop___jump_table, start, end, init); 866 867 if (ret) 868 return ret; 869 870 #ifdef CONFIG_MODULES 871 ret = __jump_label_mod_text_reserved(start, end); 872 #endif 873 return ret; 874 } 875 876 static void jump_label_update(struct static_key *key) 877 { 878 struct jump_entry *stop = __stop___jump_table; 879 bool init = system_state < SYSTEM_RUNNING; 880 struct jump_entry *entry; 881 #ifdef CONFIG_MODULES 882 struct module *mod; 883 884 if (static_key_linked(key)) { 885 __jump_label_mod_update(key); 886 return; 887 } 888 889 preempt_disable(); 890 mod = __module_address((unsigned long)key); 891 if (mod) { 892 stop = mod->jump_entries + mod->num_jump_entries; 893 init = mod->state == MODULE_STATE_COMING; 894 } 895 preempt_enable(); 896 #endif 897 entry = static_key_entries(key); 898 /* if there are no users, entry can be NULL */ 899 if (entry) 900 __jump_label_update(key, entry, stop, init); 901 } 902 903 #ifdef CONFIG_STATIC_KEYS_SELFTEST 904 static DEFINE_STATIC_KEY_TRUE(sk_true); 905 static DEFINE_STATIC_KEY_FALSE(sk_false); 906 907 static __init int jump_label_test(void) 908 { 909 int i; 910 911 for (i = 0; i < 2; i++) { 912 WARN_ON(static_key_enabled(&sk_true.key) != true); 913 WARN_ON(static_key_enabled(&sk_false.key) != false); 914 915 WARN_ON(!static_branch_likely(&sk_true)); 916 WARN_ON(!static_branch_unlikely(&sk_true)); 917 WARN_ON(static_branch_likely(&sk_false)); 918 WARN_ON(static_branch_unlikely(&sk_false)); 919 920 static_branch_disable(&sk_true); 921 static_branch_enable(&sk_false); 922 923 WARN_ON(static_key_enabled(&sk_true.key) == true); 924 WARN_ON(static_key_enabled(&sk_false.key) == false); 925 926 WARN_ON(static_branch_likely(&sk_true)); 927 WARN_ON(static_branch_unlikely(&sk_true)); 928 WARN_ON(!static_branch_likely(&sk_false)); 929 WARN_ON(!static_branch_unlikely(&sk_false)); 930 931 static_branch_enable(&sk_true); 932 static_branch_disable(&sk_false); 933 } 934 935 return 0; 936 } 937 early_initcall(jump_label_test); 938 #endif /* STATIC_KEYS_SELFTEST */ 939