1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) { 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 wake_up_process(action->thread); 198 } 199 if (action->secondary && action->secondary->thread) { 200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 201 wake_up_process(action->secondary->thread); 202 } 203 } 204 } 205 206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 207 static void irq_validate_effective_affinity(struct irq_data *data) 208 { 209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 210 struct irq_chip *chip = irq_data_get_irq_chip(data); 211 212 if (!cpumask_empty(m)) 213 return; 214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 215 chip->name, data->irq); 216 } 217 #else 218 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 const struct cpumask *prog_mask; 227 int ret; 228 229 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 230 static struct cpumask tmp_mask; 231 232 if (!chip || !chip->irq_set_affinity) 233 return -EINVAL; 234 235 raw_spin_lock(&tmp_mask_lock); 236 /* 237 * If this is a managed interrupt and housekeeping is enabled on 238 * it check whether the requested affinity mask intersects with 239 * a housekeeping CPU. If so, then remove the isolated CPUs from 240 * the mask and just keep the housekeeping CPU(s). This prevents 241 * the affinity setter from routing the interrupt to an isolated 242 * CPU to avoid that I/O submitted from a housekeeping CPU causes 243 * interrupts on an isolated one. 244 * 245 * If the masks do not intersect or include online CPU(s) then 246 * keep the requested mask. The isolated target CPUs are only 247 * receiving interrupts when the I/O operation was submitted 248 * directly from them. 249 * 250 * If all housekeeping CPUs in the affinity mask are offline, the 251 * interrupt will be migrated by the CPU hotplug code once a 252 * housekeeping CPU which belongs to the affinity mask comes 253 * online. 254 */ 255 if (irqd_affinity_is_managed(data) && 256 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 257 const struct cpumask *hk_mask; 258 259 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 260 261 cpumask_and(&tmp_mask, mask, hk_mask); 262 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 263 prog_mask = mask; 264 else 265 prog_mask = &tmp_mask; 266 } else { 267 prog_mask = mask; 268 } 269 270 /* 271 * Make sure we only provide online CPUs to the irqchip, 272 * unless we are being asked to force the affinity (in which 273 * case we do as we are told). 274 */ 275 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 276 if (!force && !cpumask_empty(&tmp_mask)) 277 ret = chip->irq_set_affinity(data, &tmp_mask, force); 278 else if (force) 279 ret = chip->irq_set_affinity(data, mask, force); 280 else 281 ret = -EINVAL; 282 283 raw_spin_unlock(&tmp_mask_lock); 284 285 switch (ret) { 286 case IRQ_SET_MASK_OK: 287 case IRQ_SET_MASK_OK_DONE: 288 cpumask_copy(desc->irq_common_data.affinity, mask); 289 fallthrough; 290 case IRQ_SET_MASK_OK_NOCOPY: 291 irq_validate_effective_affinity(data); 292 irq_set_thread_affinity(desc); 293 ret = 0; 294 } 295 296 return ret; 297 } 298 299 #ifdef CONFIG_GENERIC_PENDING_IRQ 300 static inline int irq_set_affinity_pending(struct irq_data *data, 301 const struct cpumask *dest) 302 { 303 struct irq_desc *desc = irq_data_to_desc(data); 304 305 irqd_set_move_pending(data); 306 irq_copy_pending(desc, dest); 307 return 0; 308 } 309 #else 310 static inline int irq_set_affinity_pending(struct irq_data *data, 311 const struct cpumask *dest) 312 { 313 return -EBUSY; 314 } 315 #endif 316 317 static int irq_try_set_affinity(struct irq_data *data, 318 const struct cpumask *dest, bool force) 319 { 320 int ret = irq_do_set_affinity(data, dest, force); 321 322 /* 323 * In case that the underlying vector management is busy and the 324 * architecture supports the generic pending mechanism then utilize 325 * this to avoid returning an error to user space. 326 */ 327 if (ret == -EBUSY && !force) 328 ret = irq_set_affinity_pending(data, dest); 329 return ret; 330 } 331 332 static bool irq_set_affinity_deactivated(struct irq_data *data, 333 const struct cpumask *mask) 334 { 335 struct irq_desc *desc = irq_data_to_desc(data); 336 337 /* 338 * Handle irq chips which can handle affinity only in activated 339 * state correctly 340 * 341 * If the interrupt is not yet activated, just store the affinity 342 * mask and do not call the chip driver at all. On activation the 343 * driver has to make sure anyway that the interrupt is in a 344 * usable state so startup works. 345 */ 346 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 347 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 348 return false; 349 350 cpumask_copy(desc->irq_common_data.affinity, mask); 351 irq_data_update_effective_affinity(data, mask); 352 irqd_set(data, IRQD_AFFINITY_SET); 353 return true; 354 } 355 356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 357 bool force) 358 { 359 struct irq_chip *chip = irq_data_get_irq_chip(data); 360 struct irq_desc *desc = irq_data_to_desc(data); 361 int ret = 0; 362 363 if (!chip || !chip->irq_set_affinity) 364 return -EINVAL; 365 366 if (irq_set_affinity_deactivated(data, mask)) 367 return 0; 368 369 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 370 ret = irq_try_set_affinity(data, mask, force); 371 } else { 372 irqd_set_move_pending(data); 373 irq_copy_pending(desc, mask); 374 } 375 376 if (desc->affinity_notify) { 377 kref_get(&desc->affinity_notify->kref); 378 if (!schedule_work(&desc->affinity_notify->work)) { 379 /* Work was already scheduled, drop our extra ref */ 380 kref_put(&desc->affinity_notify->kref, 381 desc->affinity_notify->release); 382 } 383 } 384 irqd_set(data, IRQD_AFFINITY_SET); 385 386 return ret; 387 } 388 389 /** 390 * irq_update_affinity_desc - Update affinity management for an interrupt 391 * @irq: The interrupt number to update 392 * @affinity: Pointer to the affinity descriptor 393 * 394 * This interface can be used to configure the affinity management of 395 * interrupts which have been allocated already. 396 * 397 * There are certain limitations on when it may be used - attempts to use it 398 * for when the kernel is configured for generic IRQ reservation mode (in 399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 400 * managed/non-managed interrupt accounting. In addition, attempts to use it on 401 * an interrupt which is already started or which has already been configured 402 * as managed will also fail, as these mean invalid init state or double init. 403 */ 404 int irq_update_affinity_desc(unsigned int irq, 405 struct irq_affinity_desc *affinity) 406 { 407 struct irq_desc *desc; 408 unsigned long flags; 409 bool activated; 410 int ret = 0; 411 412 /* 413 * Supporting this with the reservation scheme used by x86 needs 414 * some more thought. Fail it for now. 415 */ 416 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 417 return -EOPNOTSUPP; 418 419 desc = irq_get_desc_buslock(irq, &flags, 0); 420 if (!desc) 421 return -EINVAL; 422 423 /* Requires the interrupt to be shut down */ 424 if (irqd_is_started(&desc->irq_data)) { 425 ret = -EBUSY; 426 goto out_unlock; 427 } 428 429 /* Interrupts which are already managed cannot be modified */ 430 if (irqd_affinity_is_managed(&desc->irq_data)) { 431 ret = -EBUSY; 432 goto out_unlock; 433 } 434 435 /* 436 * Deactivate the interrupt. That's required to undo 437 * anything an earlier activation has established. 438 */ 439 activated = irqd_is_activated(&desc->irq_data); 440 if (activated) 441 irq_domain_deactivate_irq(&desc->irq_data); 442 443 if (affinity->is_managed) { 444 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 445 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 446 } 447 448 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 449 450 /* Restore the activation state */ 451 if (activated) 452 irq_domain_activate_irq(&desc->irq_data, false); 453 454 out_unlock: 455 irq_put_desc_busunlock(desc, flags); 456 return ret; 457 } 458 459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 460 bool force) 461 { 462 struct irq_desc *desc = irq_to_desc(irq); 463 unsigned long flags; 464 int ret; 465 466 if (!desc) 467 return -EINVAL; 468 469 raw_spin_lock_irqsave(&desc->lock, flags); 470 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 471 raw_spin_unlock_irqrestore(&desc->lock, flags); 472 return ret; 473 } 474 475 /** 476 * irq_set_affinity - Set the irq affinity of a given irq 477 * @irq: Interrupt to set affinity 478 * @cpumask: cpumask 479 * 480 * Fails if cpumask does not contain an online CPU 481 */ 482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 483 { 484 return __irq_set_affinity(irq, cpumask, false); 485 } 486 EXPORT_SYMBOL_GPL(irq_set_affinity); 487 488 /** 489 * irq_force_affinity - Force the irq affinity of a given irq 490 * @irq: Interrupt to set affinity 491 * @cpumask: cpumask 492 * 493 * Same as irq_set_affinity, but without checking the mask against 494 * online cpus. 495 * 496 * Solely for low level cpu hotplug code, where we need to make per 497 * cpu interrupts affine before the cpu becomes online. 498 */ 499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 500 { 501 return __irq_set_affinity(irq, cpumask, true); 502 } 503 EXPORT_SYMBOL_GPL(irq_force_affinity); 504 505 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 506 bool setaffinity) 507 { 508 unsigned long flags; 509 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 510 511 if (!desc) 512 return -EINVAL; 513 desc->affinity_hint = m; 514 irq_put_desc_unlock(desc, flags); 515 if (m && setaffinity) 516 __irq_set_affinity(irq, m, false); 517 return 0; 518 } 519 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 520 521 static void irq_affinity_notify(struct work_struct *work) 522 { 523 struct irq_affinity_notify *notify = 524 container_of(work, struct irq_affinity_notify, work); 525 struct irq_desc *desc = irq_to_desc(notify->irq); 526 cpumask_var_t cpumask; 527 unsigned long flags; 528 529 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 530 goto out; 531 532 raw_spin_lock_irqsave(&desc->lock, flags); 533 if (irq_move_pending(&desc->irq_data)) 534 irq_get_pending(cpumask, desc); 535 else 536 cpumask_copy(cpumask, desc->irq_common_data.affinity); 537 raw_spin_unlock_irqrestore(&desc->lock, flags); 538 539 notify->notify(notify, cpumask); 540 541 free_cpumask_var(cpumask); 542 out: 543 kref_put(¬ify->kref, notify->release); 544 } 545 546 /** 547 * irq_set_affinity_notifier - control notification of IRQ affinity changes 548 * @irq: Interrupt for which to enable/disable notification 549 * @notify: Context for notification, or %NULL to disable 550 * notification. Function pointers must be initialised; 551 * the other fields will be initialised by this function. 552 * 553 * Must be called in process context. Notification may only be enabled 554 * after the IRQ is allocated and must be disabled before the IRQ is 555 * freed using free_irq(). 556 */ 557 int 558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 559 { 560 struct irq_desc *desc = irq_to_desc(irq); 561 struct irq_affinity_notify *old_notify; 562 unsigned long flags; 563 564 /* The release function is promised process context */ 565 might_sleep(); 566 567 if (!desc || irq_is_nmi(desc)) 568 return -EINVAL; 569 570 /* Complete initialisation of *notify */ 571 if (notify) { 572 notify->irq = irq; 573 kref_init(¬ify->kref); 574 INIT_WORK(¬ify->work, irq_affinity_notify); 575 } 576 577 raw_spin_lock_irqsave(&desc->lock, flags); 578 old_notify = desc->affinity_notify; 579 desc->affinity_notify = notify; 580 raw_spin_unlock_irqrestore(&desc->lock, flags); 581 582 if (old_notify) { 583 if (cancel_work_sync(&old_notify->work)) { 584 /* Pending work had a ref, put that one too */ 585 kref_put(&old_notify->kref, old_notify->release); 586 } 587 kref_put(&old_notify->kref, old_notify->release); 588 } 589 590 return 0; 591 } 592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 593 594 #ifndef CONFIG_AUTO_IRQ_AFFINITY 595 /* 596 * Generic version of the affinity autoselector. 597 */ 598 int irq_setup_affinity(struct irq_desc *desc) 599 { 600 struct cpumask *set = irq_default_affinity; 601 int ret, node = irq_desc_get_node(desc); 602 static DEFINE_RAW_SPINLOCK(mask_lock); 603 static struct cpumask mask; 604 605 /* Excludes PER_CPU and NO_BALANCE interrupts */ 606 if (!__irq_can_set_affinity(desc)) 607 return 0; 608 609 raw_spin_lock(&mask_lock); 610 /* 611 * Preserve the managed affinity setting and a userspace affinity 612 * setup, but make sure that one of the targets is online. 613 */ 614 if (irqd_affinity_is_managed(&desc->irq_data) || 615 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 616 if (cpumask_intersects(desc->irq_common_data.affinity, 617 cpu_online_mask)) 618 set = desc->irq_common_data.affinity; 619 else 620 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 621 } 622 623 cpumask_and(&mask, cpu_online_mask, set); 624 if (cpumask_empty(&mask)) 625 cpumask_copy(&mask, cpu_online_mask); 626 627 if (node != NUMA_NO_NODE) { 628 const struct cpumask *nodemask = cpumask_of_node(node); 629 630 /* make sure at least one of the cpus in nodemask is online */ 631 if (cpumask_intersects(&mask, nodemask)) 632 cpumask_and(&mask, &mask, nodemask); 633 } 634 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 635 raw_spin_unlock(&mask_lock); 636 return ret; 637 } 638 #else 639 /* Wrapper for ALPHA specific affinity selector magic */ 640 int irq_setup_affinity(struct irq_desc *desc) 641 { 642 return irq_select_affinity(irq_desc_get_irq(desc)); 643 } 644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 645 #endif /* CONFIG_SMP */ 646 647 648 /** 649 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 650 * @irq: interrupt number to set affinity 651 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 652 * specific data for percpu_devid interrupts 653 * 654 * This function uses the vCPU specific data to set the vCPU 655 * affinity for an irq. The vCPU specific data is passed from 656 * outside, such as KVM. One example code path is as below: 657 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 658 */ 659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 660 { 661 unsigned long flags; 662 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 663 struct irq_data *data; 664 struct irq_chip *chip; 665 int ret = -ENOSYS; 666 667 if (!desc) 668 return -EINVAL; 669 670 data = irq_desc_get_irq_data(desc); 671 do { 672 chip = irq_data_get_irq_chip(data); 673 if (chip && chip->irq_set_vcpu_affinity) 674 break; 675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 676 data = data->parent_data; 677 #else 678 data = NULL; 679 #endif 680 } while (data); 681 682 if (data) 683 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 684 irq_put_desc_unlock(desc, flags); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 689 690 void __disable_irq(struct irq_desc *desc) 691 { 692 if (!desc->depth++) 693 irq_disable(desc); 694 } 695 696 static int __disable_irq_nosync(unsigned int irq) 697 { 698 unsigned long flags; 699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 700 701 if (!desc) 702 return -EINVAL; 703 __disable_irq(desc); 704 irq_put_desc_busunlock(desc, flags); 705 return 0; 706 } 707 708 /** 709 * disable_irq_nosync - disable an irq without waiting 710 * @irq: Interrupt to disable 711 * 712 * Disable the selected interrupt line. Disables and Enables are 713 * nested. 714 * Unlike disable_irq(), this function does not ensure existing 715 * instances of the IRQ handler have completed before returning. 716 * 717 * This function may be called from IRQ context. 718 */ 719 void disable_irq_nosync(unsigned int irq) 720 { 721 __disable_irq_nosync(irq); 722 } 723 EXPORT_SYMBOL(disable_irq_nosync); 724 725 /** 726 * disable_irq - disable an irq and wait for completion 727 * @irq: Interrupt to disable 728 * 729 * Disable the selected interrupt line. Enables and Disables are 730 * nested. 731 * This function waits for any pending IRQ handlers for this interrupt 732 * to complete before returning. If you use this function while 733 * holding a resource the IRQ handler may need you will deadlock. 734 * 735 * Can only be called from preemptible code as it might sleep when 736 * an interrupt thread is associated to @irq. 737 * 738 */ 739 void disable_irq(unsigned int irq) 740 { 741 might_sleep(); 742 if (!__disable_irq_nosync(irq)) 743 synchronize_irq(irq); 744 } 745 EXPORT_SYMBOL(disable_irq); 746 747 /** 748 * disable_hardirq - disables an irq and waits for hardirq completion 749 * @irq: Interrupt to disable 750 * 751 * Disable the selected interrupt line. Enables and Disables are 752 * nested. 753 * This function waits for any pending hard IRQ handlers for this 754 * interrupt to complete before returning. If you use this function while 755 * holding a resource the hard IRQ handler may need you will deadlock. 756 * 757 * When used to optimistically disable an interrupt from atomic context 758 * the return value must be checked. 759 * 760 * Returns: false if a threaded handler is active. 761 * 762 * This function may be called - with care - from IRQ context. 763 */ 764 bool disable_hardirq(unsigned int irq) 765 { 766 if (!__disable_irq_nosync(irq)) 767 return synchronize_hardirq(irq); 768 769 return false; 770 } 771 EXPORT_SYMBOL_GPL(disable_hardirq); 772 773 /** 774 * disable_nmi_nosync - disable an nmi without waiting 775 * @irq: Interrupt to disable 776 * 777 * Disable the selected interrupt line. Disables and enables are 778 * nested. 779 * The interrupt to disable must have been requested through request_nmi. 780 * Unlike disable_nmi(), this function does not ensure existing 781 * instances of the IRQ handler have completed before returning. 782 */ 783 void disable_nmi_nosync(unsigned int irq) 784 { 785 disable_irq_nosync(irq); 786 } 787 788 void __enable_irq(struct irq_desc *desc) 789 { 790 switch (desc->depth) { 791 case 0: 792 err_out: 793 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 794 irq_desc_get_irq(desc)); 795 break; 796 case 1: { 797 if (desc->istate & IRQS_SUSPENDED) 798 goto err_out; 799 /* Prevent probing on this irq: */ 800 irq_settings_set_noprobe(desc); 801 /* 802 * Call irq_startup() not irq_enable() here because the 803 * interrupt might be marked NOAUTOEN so irq_startup() 804 * needs to be invoked when it gets enabled the first time. 805 * This is also required when __enable_irq() is invoked for 806 * a managed and shutdown interrupt from the S3 resume 807 * path. 808 * 809 * If it was already started up, then irq_startup() will 810 * invoke irq_enable() under the hood. 811 */ 812 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 813 break; 814 } 815 default: 816 desc->depth--; 817 } 818 } 819 820 /** 821 * enable_irq - enable handling of an irq 822 * @irq: Interrupt to enable 823 * 824 * Undoes the effect of one call to disable_irq(). If this 825 * matches the last disable, processing of interrupts on this 826 * IRQ line is re-enabled. 827 * 828 * This function may be called from IRQ context only when 829 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 830 */ 831 void enable_irq(unsigned int irq) 832 { 833 unsigned long flags; 834 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 835 836 if (!desc) 837 return; 838 if (WARN(!desc->irq_data.chip, 839 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 840 goto out; 841 842 __enable_irq(desc); 843 out: 844 irq_put_desc_busunlock(desc, flags); 845 } 846 EXPORT_SYMBOL(enable_irq); 847 848 /** 849 * enable_nmi - enable handling of an nmi 850 * @irq: Interrupt to enable 851 * 852 * The interrupt to enable must have been requested through request_nmi. 853 * Undoes the effect of one call to disable_nmi(). If this 854 * matches the last disable, processing of interrupts on this 855 * IRQ line is re-enabled. 856 */ 857 void enable_nmi(unsigned int irq) 858 { 859 enable_irq(irq); 860 } 861 862 static int set_irq_wake_real(unsigned int irq, unsigned int on) 863 { 864 struct irq_desc *desc = irq_to_desc(irq); 865 int ret = -ENXIO; 866 867 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 868 return 0; 869 870 if (desc->irq_data.chip->irq_set_wake) 871 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 872 873 return ret; 874 } 875 876 /** 877 * irq_set_irq_wake - control irq power management wakeup 878 * @irq: interrupt to control 879 * @on: enable/disable power management wakeup 880 * 881 * Enable/disable power management wakeup mode, which is 882 * disabled by default. Enables and disables must match, 883 * just as they match for non-wakeup mode support. 884 * 885 * Wakeup mode lets this IRQ wake the system from sleep 886 * states like "suspend to RAM". 887 * 888 * Note: irq enable/disable state is completely orthogonal 889 * to the enable/disable state of irq wake. An irq can be 890 * disabled with disable_irq() and still wake the system as 891 * long as the irq has wake enabled. If this does not hold, 892 * then the underlying irq chip and the related driver need 893 * to be investigated. 894 */ 895 int irq_set_irq_wake(unsigned int irq, unsigned int on) 896 { 897 unsigned long flags; 898 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 899 int ret = 0; 900 901 if (!desc) 902 return -EINVAL; 903 904 /* Don't use NMIs as wake up interrupts please */ 905 if (irq_is_nmi(desc)) { 906 ret = -EINVAL; 907 goto out_unlock; 908 } 909 910 /* wakeup-capable irqs can be shared between drivers that 911 * don't need to have the same sleep mode behaviors. 912 */ 913 if (on) { 914 if (desc->wake_depth++ == 0) { 915 ret = set_irq_wake_real(irq, on); 916 if (ret) 917 desc->wake_depth = 0; 918 else 919 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 920 } 921 } else { 922 if (desc->wake_depth == 0) { 923 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 924 } else if (--desc->wake_depth == 0) { 925 ret = set_irq_wake_real(irq, on); 926 if (ret) 927 desc->wake_depth = 1; 928 else 929 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 930 } 931 } 932 933 out_unlock: 934 irq_put_desc_busunlock(desc, flags); 935 return ret; 936 } 937 EXPORT_SYMBOL(irq_set_irq_wake); 938 939 /* 940 * Internal function that tells the architecture code whether a 941 * particular irq has been exclusively allocated or is available 942 * for driver use. 943 */ 944 int can_request_irq(unsigned int irq, unsigned long irqflags) 945 { 946 unsigned long flags; 947 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 948 int canrequest = 0; 949 950 if (!desc) 951 return 0; 952 953 if (irq_settings_can_request(desc)) { 954 if (!desc->action || 955 irqflags & desc->action->flags & IRQF_SHARED) 956 canrequest = 1; 957 } 958 irq_put_desc_unlock(desc, flags); 959 return canrequest; 960 } 961 962 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 963 { 964 struct irq_chip *chip = desc->irq_data.chip; 965 int ret, unmask = 0; 966 967 if (!chip || !chip->irq_set_type) { 968 /* 969 * IRQF_TRIGGER_* but the PIC does not support multiple 970 * flow-types? 971 */ 972 pr_debug("No set_type function for IRQ %d (%s)\n", 973 irq_desc_get_irq(desc), 974 chip ? (chip->name ? : "unknown") : "unknown"); 975 return 0; 976 } 977 978 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 979 if (!irqd_irq_masked(&desc->irq_data)) 980 mask_irq(desc); 981 if (!irqd_irq_disabled(&desc->irq_data)) 982 unmask = 1; 983 } 984 985 /* Mask all flags except trigger mode */ 986 flags &= IRQ_TYPE_SENSE_MASK; 987 ret = chip->irq_set_type(&desc->irq_data, flags); 988 989 switch (ret) { 990 case IRQ_SET_MASK_OK: 991 case IRQ_SET_MASK_OK_DONE: 992 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 993 irqd_set(&desc->irq_data, flags); 994 fallthrough; 995 996 case IRQ_SET_MASK_OK_NOCOPY: 997 flags = irqd_get_trigger_type(&desc->irq_data); 998 irq_settings_set_trigger_mask(desc, flags); 999 irqd_clear(&desc->irq_data, IRQD_LEVEL); 1000 irq_settings_clr_level(desc); 1001 if (flags & IRQ_TYPE_LEVEL_MASK) { 1002 irq_settings_set_level(desc); 1003 irqd_set(&desc->irq_data, IRQD_LEVEL); 1004 } 1005 1006 ret = 0; 1007 break; 1008 default: 1009 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1010 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1011 } 1012 if (unmask) 1013 unmask_irq(desc); 1014 return ret; 1015 } 1016 1017 #ifdef CONFIG_HARDIRQS_SW_RESEND 1018 int irq_set_parent(int irq, int parent_irq) 1019 { 1020 unsigned long flags; 1021 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1022 1023 if (!desc) 1024 return -EINVAL; 1025 1026 desc->parent_irq = parent_irq; 1027 1028 irq_put_desc_unlock(desc, flags); 1029 return 0; 1030 } 1031 EXPORT_SYMBOL_GPL(irq_set_parent); 1032 #endif 1033 1034 /* 1035 * Default primary interrupt handler for threaded interrupts. Is 1036 * assigned as primary handler when request_threaded_irq is called 1037 * with handler == NULL. Useful for oneshot interrupts. 1038 */ 1039 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1040 { 1041 return IRQ_WAKE_THREAD; 1042 } 1043 1044 /* 1045 * Primary handler for nested threaded interrupts. Should never be 1046 * called. 1047 */ 1048 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1049 { 1050 WARN(1, "Primary handler called for nested irq %d\n", irq); 1051 return IRQ_NONE; 1052 } 1053 1054 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1055 { 1056 WARN(1, "Secondary action handler called for irq %d\n", irq); 1057 return IRQ_NONE; 1058 } 1059 1060 #ifdef CONFIG_SMP 1061 /* 1062 * Check whether we need to change the affinity of the interrupt thread. 1063 */ 1064 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1065 { 1066 cpumask_var_t mask; 1067 bool valid = false; 1068 1069 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1070 return; 1071 1072 __set_current_state(TASK_RUNNING); 1073 1074 /* 1075 * In case we are out of memory we set IRQTF_AFFINITY again and 1076 * try again next time 1077 */ 1078 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1079 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1080 return; 1081 } 1082 1083 raw_spin_lock_irq(&desc->lock); 1084 /* 1085 * This code is triggered unconditionally. Check the affinity 1086 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1087 */ 1088 if (cpumask_available(desc->irq_common_data.affinity)) { 1089 const struct cpumask *m; 1090 1091 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1092 cpumask_copy(mask, m); 1093 valid = true; 1094 } 1095 raw_spin_unlock_irq(&desc->lock); 1096 1097 if (valid) 1098 set_cpus_allowed_ptr(current, mask); 1099 free_cpumask_var(mask); 1100 } 1101 #else 1102 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1103 #endif 1104 1105 static int irq_wait_for_interrupt(struct irq_desc *desc, 1106 struct irqaction *action) 1107 { 1108 for (;;) { 1109 set_current_state(TASK_INTERRUPTIBLE); 1110 irq_thread_check_affinity(desc, action); 1111 1112 if (kthread_should_stop()) { 1113 /* may need to run one last time */ 1114 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1115 &action->thread_flags)) { 1116 __set_current_state(TASK_RUNNING); 1117 return 0; 1118 } 1119 __set_current_state(TASK_RUNNING); 1120 return -1; 1121 } 1122 1123 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1124 &action->thread_flags)) { 1125 __set_current_state(TASK_RUNNING); 1126 return 0; 1127 } 1128 schedule(); 1129 } 1130 } 1131 1132 /* 1133 * Oneshot interrupts keep the irq line masked until the threaded 1134 * handler finished. unmask if the interrupt has not been disabled and 1135 * is marked MASKED. 1136 */ 1137 static void irq_finalize_oneshot(struct irq_desc *desc, 1138 struct irqaction *action) 1139 { 1140 if (!(desc->istate & IRQS_ONESHOT) || 1141 action->handler == irq_forced_secondary_handler) 1142 return; 1143 again: 1144 chip_bus_lock(desc); 1145 raw_spin_lock_irq(&desc->lock); 1146 1147 /* 1148 * Implausible though it may be we need to protect us against 1149 * the following scenario: 1150 * 1151 * The thread is faster done than the hard interrupt handler 1152 * on the other CPU. If we unmask the irq line then the 1153 * interrupt can come in again and masks the line, leaves due 1154 * to IRQS_INPROGRESS and the irq line is masked forever. 1155 * 1156 * This also serializes the state of shared oneshot handlers 1157 * versus "desc->threads_oneshot |= action->thread_mask;" in 1158 * irq_wake_thread(). See the comment there which explains the 1159 * serialization. 1160 */ 1161 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1162 raw_spin_unlock_irq(&desc->lock); 1163 chip_bus_sync_unlock(desc); 1164 cpu_relax(); 1165 goto again; 1166 } 1167 1168 /* 1169 * Now check again, whether the thread should run. Otherwise 1170 * we would clear the threads_oneshot bit of this thread which 1171 * was just set. 1172 */ 1173 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1174 goto out_unlock; 1175 1176 desc->threads_oneshot &= ~action->thread_mask; 1177 1178 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1179 irqd_irq_masked(&desc->irq_data)) 1180 unmask_threaded_irq(desc); 1181 1182 out_unlock: 1183 raw_spin_unlock_irq(&desc->lock); 1184 chip_bus_sync_unlock(desc); 1185 } 1186 1187 /* 1188 * Interrupts which are not explicitly requested as threaded 1189 * interrupts rely on the implicit bh/preempt disable of the hard irq 1190 * context. So we need to disable bh here to avoid deadlocks and other 1191 * side effects. 1192 */ 1193 static irqreturn_t 1194 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1195 { 1196 irqreturn_t ret; 1197 1198 local_bh_disable(); 1199 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1200 local_irq_disable(); 1201 ret = action->thread_fn(action->irq, action->dev_id); 1202 if (ret == IRQ_HANDLED) 1203 atomic_inc(&desc->threads_handled); 1204 1205 irq_finalize_oneshot(desc, action); 1206 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1207 local_irq_enable(); 1208 local_bh_enable(); 1209 return ret; 1210 } 1211 1212 /* 1213 * Interrupts explicitly requested as threaded interrupts want to be 1214 * preemptible - many of them need to sleep and wait for slow busses to 1215 * complete. 1216 */ 1217 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1218 struct irqaction *action) 1219 { 1220 irqreturn_t ret; 1221 1222 ret = action->thread_fn(action->irq, action->dev_id); 1223 if (ret == IRQ_HANDLED) 1224 atomic_inc(&desc->threads_handled); 1225 1226 irq_finalize_oneshot(desc, action); 1227 return ret; 1228 } 1229 1230 void wake_threads_waitq(struct irq_desc *desc) 1231 { 1232 if (atomic_dec_and_test(&desc->threads_active)) 1233 wake_up(&desc->wait_for_threads); 1234 } 1235 1236 static void irq_thread_dtor(struct callback_head *unused) 1237 { 1238 struct task_struct *tsk = current; 1239 struct irq_desc *desc; 1240 struct irqaction *action; 1241 1242 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1243 return; 1244 1245 action = kthread_data(tsk); 1246 1247 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1248 tsk->comm, tsk->pid, action->irq); 1249 1250 1251 desc = irq_to_desc(action->irq); 1252 /* 1253 * If IRQTF_RUNTHREAD is set, we need to decrement 1254 * desc->threads_active and wake possible waiters. 1255 */ 1256 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1257 wake_threads_waitq(desc); 1258 1259 /* Prevent a stale desc->threads_oneshot */ 1260 irq_finalize_oneshot(desc, action); 1261 } 1262 1263 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1264 { 1265 struct irqaction *secondary = action->secondary; 1266 1267 if (WARN_ON_ONCE(!secondary)) 1268 return; 1269 1270 raw_spin_lock_irq(&desc->lock); 1271 __irq_wake_thread(desc, secondary); 1272 raw_spin_unlock_irq(&desc->lock); 1273 } 1274 1275 /* 1276 * Internal function to notify that a interrupt thread is ready. 1277 */ 1278 static void irq_thread_set_ready(struct irq_desc *desc, 1279 struct irqaction *action) 1280 { 1281 set_bit(IRQTF_READY, &action->thread_flags); 1282 wake_up(&desc->wait_for_threads); 1283 } 1284 1285 /* 1286 * Internal function to wake up a interrupt thread and wait until it is 1287 * ready. 1288 */ 1289 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1290 struct irqaction *action) 1291 { 1292 if (!action || !action->thread) 1293 return; 1294 1295 wake_up_process(action->thread); 1296 wait_event(desc->wait_for_threads, 1297 test_bit(IRQTF_READY, &action->thread_flags)); 1298 } 1299 1300 /* 1301 * Interrupt handler thread 1302 */ 1303 static int irq_thread(void *data) 1304 { 1305 struct callback_head on_exit_work; 1306 struct irqaction *action = data; 1307 struct irq_desc *desc = irq_to_desc(action->irq); 1308 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1309 struct irqaction *action); 1310 1311 irq_thread_set_ready(desc, action); 1312 1313 sched_set_fifo(current); 1314 1315 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1316 &action->thread_flags)) 1317 handler_fn = irq_forced_thread_fn; 1318 else 1319 handler_fn = irq_thread_fn; 1320 1321 init_task_work(&on_exit_work, irq_thread_dtor); 1322 task_work_add(current, &on_exit_work, TWA_NONE); 1323 1324 while (!irq_wait_for_interrupt(desc, action)) { 1325 irqreturn_t action_ret; 1326 1327 action_ret = handler_fn(desc, action); 1328 if (action_ret == IRQ_WAKE_THREAD) 1329 irq_wake_secondary(desc, action); 1330 1331 wake_threads_waitq(desc); 1332 } 1333 1334 /* 1335 * This is the regular exit path. __free_irq() is stopping the 1336 * thread via kthread_stop() after calling 1337 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1338 * oneshot mask bit can be set. 1339 */ 1340 task_work_cancel_func(current, irq_thread_dtor); 1341 return 0; 1342 } 1343 1344 /** 1345 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1346 * @irq: Interrupt line 1347 * @dev_id: Device identity for which the thread should be woken 1348 * 1349 */ 1350 void irq_wake_thread(unsigned int irq, void *dev_id) 1351 { 1352 struct irq_desc *desc = irq_to_desc(irq); 1353 struct irqaction *action; 1354 unsigned long flags; 1355 1356 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1357 return; 1358 1359 raw_spin_lock_irqsave(&desc->lock, flags); 1360 for_each_action_of_desc(desc, action) { 1361 if (action->dev_id == dev_id) { 1362 if (action->thread) 1363 __irq_wake_thread(desc, action); 1364 break; 1365 } 1366 } 1367 raw_spin_unlock_irqrestore(&desc->lock, flags); 1368 } 1369 EXPORT_SYMBOL_GPL(irq_wake_thread); 1370 1371 static int irq_setup_forced_threading(struct irqaction *new) 1372 { 1373 if (!force_irqthreads()) 1374 return 0; 1375 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1376 return 0; 1377 1378 /* 1379 * No further action required for interrupts which are requested as 1380 * threaded interrupts already 1381 */ 1382 if (new->handler == irq_default_primary_handler) 1383 return 0; 1384 1385 new->flags |= IRQF_ONESHOT; 1386 1387 /* 1388 * Handle the case where we have a real primary handler and a 1389 * thread handler. We force thread them as well by creating a 1390 * secondary action. 1391 */ 1392 if (new->handler && new->thread_fn) { 1393 /* Allocate the secondary action */ 1394 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1395 if (!new->secondary) 1396 return -ENOMEM; 1397 new->secondary->handler = irq_forced_secondary_handler; 1398 new->secondary->thread_fn = new->thread_fn; 1399 new->secondary->dev_id = new->dev_id; 1400 new->secondary->irq = new->irq; 1401 new->secondary->name = new->name; 1402 } 1403 /* Deal with the primary handler */ 1404 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1405 new->thread_fn = new->handler; 1406 new->handler = irq_default_primary_handler; 1407 return 0; 1408 } 1409 1410 static int irq_request_resources(struct irq_desc *desc) 1411 { 1412 struct irq_data *d = &desc->irq_data; 1413 struct irq_chip *c = d->chip; 1414 1415 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1416 } 1417 1418 static void irq_release_resources(struct irq_desc *desc) 1419 { 1420 struct irq_data *d = &desc->irq_data; 1421 struct irq_chip *c = d->chip; 1422 1423 if (c->irq_release_resources) 1424 c->irq_release_resources(d); 1425 } 1426 1427 static bool irq_supports_nmi(struct irq_desc *desc) 1428 { 1429 struct irq_data *d = irq_desc_get_irq_data(desc); 1430 1431 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1432 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1433 if (d->parent_data) 1434 return false; 1435 #endif 1436 /* Don't support NMIs for chips behind a slow bus */ 1437 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1438 return false; 1439 1440 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1441 } 1442 1443 static int irq_nmi_setup(struct irq_desc *desc) 1444 { 1445 struct irq_data *d = irq_desc_get_irq_data(desc); 1446 struct irq_chip *c = d->chip; 1447 1448 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1449 } 1450 1451 static void irq_nmi_teardown(struct irq_desc *desc) 1452 { 1453 struct irq_data *d = irq_desc_get_irq_data(desc); 1454 struct irq_chip *c = d->chip; 1455 1456 if (c->irq_nmi_teardown) 1457 c->irq_nmi_teardown(d); 1458 } 1459 1460 static int 1461 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1462 { 1463 struct task_struct *t; 1464 1465 if (!secondary) { 1466 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1467 new->name); 1468 } else { 1469 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1470 new->name); 1471 } 1472 1473 if (IS_ERR(t)) 1474 return PTR_ERR(t); 1475 1476 /* 1477 * We keep the reference to the task struct even if 1478 * the thread dies to avoid that the interrupt code 1479 * references an already freed task_struct. 1480 */ 1481 new->thread = get_task_struct(t); 1482 /* 1483 * Tell the thread to set its affinity. This is 1484 * important for shared interrupt handlers as we do 1485 * not invoke setup_affinity() for the secondary 1486 * handlers as everything is already set up. Even for 1487 * interrupts marked with IRQF_NO_BALANCE this is 1488 * correct as we want the thread to move to the cpu(s) 1489 * on which the requesting code placed the interrupt. 1490 */ 1491 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1492 return 0; 1493 } 1494 1495 /* 1496 * Internal function to register an irqaction - typically used to 1497 * allocate special interrupts that are part of the architecture. 1498 * 1499 * Locking rules: 1500 * 1501 * desc->request_mutex Provides serialization against a concurrent free_irq() 1502 * chip_bus_lock Provides serialization for slow bus operations 1503 * desc->lock Provides serialization against hard interrupts 1504 * 1505 * chip_bus_lock and desc->lock are sufficient for all other management and 1506 * interrupt related functions. desc->request_mutex solely serializes 1507 * request/free_irq(). 1508 */ 1509 static int 1510 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1511 { 1512 struct irqaction *old, **old_ptr; 1513 unsigned long flags, thread_mask = 0; 1514 int ret, nested, shared = 0; 1515 1516 if (!desc) 1517 return -EINVAL; 1518 1519 if (desc->irq_data.chip == &no_irq_chip) 1520 return -ENOSYS; 1521 if (!try_module_get(desc->owner)) 1522 return -ENODEV; 1523 1524 new->irq = irq; 1525 1526 /* 1527 * If the trigger type is not specified by the caller, 1528 * then use the default for this interrupt. 1529 */ 1530 if (!(new->flags & IRQF_TRIGGER_MASK)) 1531 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1532 1533 /* 1534 * Check whether the interrupt nests into another interrupt 1535 * thread. 1536 */ 1537 nested = irq_settings_is_nested_thread(desc); 1538 if (nested) { 1539 if (!new->thread_fn) { 1540 ret = -EINVAL; 1541 goto out_mput; 1542 } 1543 /* 1544 * Replace the primary handler which was provided from 1545 * the driver for non nested interrupt handling by the 1546 * dummy function which warns when called. 1547 */ 1548 new->handler = irq_nested_primary_handler; 1549 } else { 1550 if (irq_settings_can_thread(desc)) { 1551 ret = irq_setup_forced_threading(new); 1552 if (ret) 1553 goto out_mput; 1554 } 1555 } 1556 1557 /* 1558 * Create a handler thread when a thread function is supplied 1559 * and the interrupt does not nest into another interrupt 1560 * thread. 1561 */ 1562 if (new->thread_fn && !nested) { 1563 ret = setup_irq_thread(new, irq, false); 1564 if (ret) 1565 goto out_mput; 1566 if (new->secondary) { 1567 ret = setup_irq_thread(new->secondary, irq, true); 1568 if (ret) 1569 goto out_thread; 1570 } 1571 } 1572 1573 /* 1574 * Drivers are often written to work w/o knowledge about the 1575 * underlying irq chip implementation, so a request for a 1576 * threaded irq without a primary hard irq context handler 1577 * requires the ONESHOT flag to be set. Some irq chips like 1578 * MSI based interrupts are per se one shot safe. Check the 1579 * chip flags, so we can avoid the unmask dance at the end of 1580 * the threaded handler for those. 1581 */ 1582 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1583 new->flags &= ~IRQF_ONESHOT; 1584 1585 /* 1586 * Protects against a concurrent __free_irq() call which might wait 1587 * for synchronize_hardirq() to complete without holding the optional 1588 * chip bus lock and desc->lock. Also protects against handing out 1589 * a recycled oneshot thread_mask bit while it's still in use by 1590 * its previous owner. 1591 */ 1592 mutex_lock(&desc->request_mutex); 1593 1594 /* 1595 * Acquire bus lock as the irq_request_resources() callback below 1596 * might rely on the serialization or the magic power management 1597 * functions which are abusing the irq_bus_lock() callback, 1598 */ 1599 chip_bus_lock(desc); 1600 1601 /* First installed action requests resources. */ 1602 if (!desc->action) { 1603 ret = irq_request_resources(desc); 1604 if (ret) { 1605 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1606 new->name, irq, desc->irq_data.chip->name); 1607 goto out_bus_unlock; 1608 } 1609 } 1610 1611 /* 1612 * The following block of code has to be executed atomically 1613 * protected against a concurrent interrupt and any of the other 1614 * management calls which are not serialized via 1615 * desc->request_mutex or the optional bus lock. 1616 */ 1617 raw_spin_lock_irqsave(&desc->lock, flags); 1618 old_ptr = &desc->action; 1619 old = *old_ptr; 1620 if (old) { 1621 /* 1622 * Can't share interrupts unless both agree to and are 1623 * the same type (level, edge, polarity). So both flag 1624 * fields must have IRQF_SHARED set and the bits which 1625 * set the trigger type must match. Also all must 1626 * agree on ONESHOT. 1627 * Interrupt lines used for NMIs cannot be shared. 1628 */ 1629 unsigned int oldtype; 1630 1631 if (irq_is_nmi(desc)) { 1632 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1633 new->name, irq, desc->irq_data.chip->name); 1634 ret = -EINVAL; 1635 goto out_unlock; 1636 } 1637 1638 /* 1639 * If nobody did set the configuration before, inherit 1640 * the one provided by the requester. 1641 */ 1642 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1643 oldtype = irqd_get_trigger_type(&desc->irq_data); 1644 } else { 1645 oldtype = new->flags & IRQF_TRIGGER_MASK; 1646 irqd_set_trigger_type(&desc->irq_data, oldtype); 1647 } 1648 1649 if (!((old->flags & new->flags) & IRQF_SHARED) || 1650 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1651 goto mismatch; 1652 1653 if ((old->flags & IRQF_ONESHOT) && 1654 (new->flags & IRQF_COND_ONESHOT)) 1655 new->flags |= IRQF_ONESHOT; 1656 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1657 goto mismatch; 1658 1659 /* All handlers must agree on per-cpuness */ 1660 if ((old->flags & IRQF_PERCPU) != 1661 (new->flags & IRQF_PERCPU)) 1662 goto mismatch; 1663 1664 /* add new interrupt at end of irq queue */ 1665 do { 1666 /* 1667 * Or all existing action->thread_mask bits, 1668 * so we can find the next zero bit for this 1669 * new action. 1670 */ 1671 thread_mask |= old->thread_mask; 1672 old_ptr = &old->next; 1673 old = *old_ptr; 1674 } while (old); 1675 shared = 1; 1676 } 1677 1678 /* 1679 * Setup the thread mask for this irqaction for ONESHOT. For 1680 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1681 * conditional in irq_wake_thread(). 1682 */ 1683 if (new->flags & IRQF_ONESHOT) { 1684 /* 1685 * Unlikely to have 32 resp 64 irqs sharing one line, 1686 * but who knows. 1687 */ 1688 if (thread_mask == ~0UL) { 1689 ret = -EBUSY; 1690 goto out_unlock; 1691 } 1692 /* 1693 * The thread_mask for the action is or'ed to 1694 * desc->thread_active to indicate that the 1695 * IRQF_ONESHOT thread handler has been woken, but not 1696 * yet finished. The bit is cleared when a thread 1697 * completes. When all threads of a shared interrupt 1698 * line have completed desc->threads_active becomes 1699 * zero and the interrupt line is unmasked. See 1700 * handle.c:irq_wake_thread() for further information. 1701 * 1702 * If no thread is woken by primary (hard irq context) 1703 * interrupt handlers, then desc->threads_active is 1704 * also checked for zero to unmask the irq line in the 1705 * affected hard irq flow handlers 1706 * (handle_[fasteoi|level]_irq). 1707 * 1708 * The new action gets the first zero bit of 1709 * thread_mask assigned. See the loop above which or's 1710 * all existing action->thread_mask bits. 1711 */ 1712 new->thread_mask = 1UL << ffz(thread_mask); 1713 1714 } else if (new->handler == irq_default_primary_handler && 1715 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1716 /* 1717 * The interrupt was requested with handler = NULL, so 1718 * we use the default primary handler for it. But it 1719 * does not have the oneshot flag set. In combination 1720 * with level interrupts this is deadly, because the 1721 * default primary handler just wakes the thread, then 1722 * the irq lines is reenabled, but the device still 1723 * has the level irq asserted. Rinse and repeat.... 1724 * 1725 * While this works for edge type interrupts, we play 1726 * it safe and reject unconditionally because we can't 1727 * say for sure which type this interrupt really 1728 * has. The type flags are unreliable as the 1729 * underlying chip implementation can override them. 1730 */ 1731 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1732 new->name, irq); 1733 ret = -EINVAL; 1734 goto out_unlock; 1735 } 1736 1737 if (!shared) { 1738 /* Setup the type (level, edge polarity) if configured: */ 1739 if (new->flags & IRQF_TRIGGER_MASK) { 1740 ret = __irq_set_trigger(desc, 1741 new->flags & IRQF_TRIGGER_MASK); 1742 1743 if (ret) 1744 goto out_unlock; 1745 } 1746 1747 /* 1748 * Activate the interrupt. That activation must happen 1749 * independently of IRQ_NOAUTOEN. request_irq() can fail 1750 * and the callers are supposed to handle 1751 * that. enable_irq() of an interrupt requested with 1752 * IRQ_NOAUTOEN is not supposed to fail. The activation 1753 * keeps it in shutdown mode, it merily associates 1754 * resources if necessary and if that's not possible it 1755 * fails. Interrupts which are in managed shutdown mode 1756 * will simply ignore that activation request. 1757 */ 1758 ret = irq_activate(desc); 1759 if (ret) 1760 goto out_unlock; 1761 1762 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1763 IRQS_ONESHOT | IRQS_WAITING); 1764 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1765 1766 if (new->flags & IRQF_PERCPU) { 1767 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1768 irq_settings_set_per_cpu(desc); 1769 if (new->flags & IRQF_NO_DEBUG) 1770 irq_settings_set_no_debug(desc); 1771 } 1772 1773 if (noirqdebug) 1774 irq_settings_set_no_debug(desc); 1775 1776 if (new->flags & IRQF_ONESHOT) 1777 desc->istate |= IRQS_ONESHOT; 1778 1779 /* Exclude IRQ from balancing if requested */ 1780 if (new->flags & IRQF_NOBALANCING) { 1781 irq_settings_set_no_balancing(desc); 1782 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1783 } 1784 1785 if (!(new->flags & IRQF_NO_AUTOEN) && 1786 irq_settings_can_autoenable(desc)) { 1787 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1788 } else { 1789 /* 1790 * Shared interrupts do not go well with disabling 1791 * auto enable. The sharing interrupt might request 1792 * it while it's still disabled and then wait for 1793 * interrupts forever. 1794 */ 1795 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1796 /* Undo nested disables: */ 1797 desc->depth = 1; 1798 } 1799 1800 } else if (new->flags & IRQF_TRIGGER_MASK) { 1801 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1802 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1803 1804 if (nmsk != omsk) 1805 /* hope the handler works with current trigger mode */ 1806 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1807 irq, omsk, nmsk); 1808 } 1809 1810 *old_ptr = new; 1811 1812 irq_pm_install_action(desc, new); 1813 1814 /* Reset broken irq detection when installing new handler */ 1815 desc->irq_count = 0; 1816 desc->irqs_unhandled = 0; 1817 1818 /* 1819 * Check whether we disabled the irq via the spurious handler 1820 * before. Reenable it and give it another chance. 1821 */ 1822 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1823 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1824 __enable_irq(desc); 1825 } 1826 1827 raw_spin_unlock_irqrestore(&desc->lock, flags); 1828 chip_bus_sync_unlock(desc); 1829 mutex_unlock(&desc->request_mutex); 1830 1831 irq_setup_timings(desc, new); 1832 1833 wake_up_and_wait_for_irq_thread_ready(desc, new); 1834 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1835 1836 register_irq_proc(irq, desc); 1837 new->dir = NULL; 1838 register_handler_proc(irq, new); 1839 return 0; 1840 1841 mismatch: 1842 if (!(new->flags & IRQF_PROBE_SHARED)) { 1843 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1844 irq, new->flags, new->name, old->flags, old->name); 1845 #ifdef CONFIG_DEBUG_SHIRQ 1846 dump_stack(); 1847 #endif 1848 } 1849 ret = -EBUSY; 1850 1851 out_unlock: 1852 raw_spin_unlock_irqrestore(&desc->lock, flags); 1853 1854 if (!desc->action) 1855 irq_release_resources(desc); 1856 out_bus_unlock: 1857 chip_bus_sync_unlock(desc); 1858 mutex_unlock(&desc->request_mutex); 1859 1860 out_thread: 1861 if (new->thread) { 1862 struct task_struct *t = new->thread; 1863 1864 new->thread = NULL; 1865 kthread_stop_put(t); 1866 } 1867 if (new->secondary && new->secondary->thread) { 1868 struct task_struct *t = new->secondary->thread; 1869 1870 new->secondary->thread = NULL; 1871 kthread_stop_put(t); 1872 } 1873 out_mput: 1874 module_put(desc->owner); 1875 return ret; 1876 } 1877 1878 /* 1879 * Internal function to unregister an irqaction - used to free 1880 * regular and special interrupts that are part of the architecture. 1881 */ 1882 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1883 { 1884 unsigned irq = desc->irq_data.irq; 1885 struct irqaction *action, **action_ptr; 1886 unsigned long flags; 1887 1888 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1889 1890 mutex_lock(&desc->request_mutex); 1891 chip_bus_lock(desc); 1892 raw_spin_lock_irqsave(&desc->lock, flags); 1893 1894 /* 1895 * There can be multiple actions per IRQ descriptor, find the right 1896 * one based on the dev_id: 1897 */ 1898 action_ptr = &desc->action; 1899 for (;;) { 1900 action = *action_ptr; 1901 1902 if (!action) { 1903 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1904 raw_spin_unlock_irqrestore(&desc->lock, flags); 1905 chip_bus_sync_unlock(desc); 1906 mutex_unlock(&desc->request_mutex); 1907 return NULL; 1908 } 1909 1910 if (action->dev_id == dev_id) 1911 break; 1912 action_ptr = &action->next; 1913 } 1914 1915 /* Found it - now remove it from the list of entries: */ 1916 *action_ptr = action->next; 1917 1918 irq_pm_remove_action(desc, action); 1919 1920 /* If this was the last handler, shut down the IRQ line: */ 1921 if (!desc->action) { 1922 irq_settings_clr_disable_unlazy(desc); 1923 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1924 irq_shutdown(desc); 1925 } 1926 1927 #ifdef CONFIG_SMP 1928 /* make sure affinity_hint is cleaned up */ 1929 if (WARN_ON_ONCE(desc->affinity_hint)) 1930 desc->affinity_hint = NULL; 1931 #endif 1932 1933 raw_spin_unlock_irqrestore(&desc->lock, flags); 1934 /* 1935 * Drop bus_lock here so the changes which were done in the chip 1936 * callbacks above are synced out to the irq chips which hang 1937 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1938 * 1939 * Aside of that the bus_lock can also be taken from the threaded 1940 * handler in irq_finalize_oneshot() which results in a deadlock 1941 * because kthread_stop() would wait forever for the thread to 1942 * complete, which is blocked on the bus lock. 1943 * 1944 * The still held desc->request_mutex() protects against a 1945 * concurrent request_irq() of this irq so the release of resources 1946 * and timing data is properly serialized. 1947 */ 1948 chip_bus_sync_unlock(desc); 1949 1950 unregister_handler_proc(irq, action); 1951 1952 /* 1953 * Make sure it's not being used on another CPU and if the chip 1954 * supports it also make sure that there is no (not yet serviced) 1955 * interrupt in flight at the hardware level. 1956 */ 1957 __synchronize_irq(desc); 1958 1959 #ifdef CONFIG_DEBUG_SHIRQ 1960 /* 1961 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1962 * event to happen even now it's being freed, so let's make sure that 1963 * is so by doing an extra call to the handler .... 1964 * 1965 * ( We do this after actually deregistering it, to make sure that a 1966 * 'real' IRQ doesn't run in parallel with our fake. ) 1967 */ 1968 if (action->flags & IRQF_SHARED) { 1969 local_irq_save(flags); 1970 action->handler(irq, dev_id); 1971 local_irq_restore(flags); 1972 } 1973 #endif 1974 1975 /* 1976 * The action has already been removed above, but the thread writes 1977 * its oneshot mask bit when it completes. Though request_mutex is 1978 * held across this which prevents __setup_irq() from handing out 1979 * the same bit to a newly requested action. 1980 */ 1981 if (action->thread) { 1982 kthread_stop_put(action->thread); 1983 if (action->secondary && action->secondary->thread) 1984 kthread_stop_put(action->secondary->thread); 1985 } 1986 1987 /* Last action releases resources */ 1988 if (!desc->action) { 1989 /* 1990 * Reacquire bus lock as irq_release_resources() might 1991 * require it to deallocate resources over the slow bus. 1992 */ 1993 chip_bus_lock(desc); 1994 /* 1995 * There is no interrupt on the fly anymore. Deactivate it 1996 * completely. 1997 */ 1998 raw_spin_lock_irqsave(&desc->lock, flags); 1999 irq_domain_deactivate_irq(&desc->irq_data); 2000 raw_spin_unlock_irqrestore(&desc->lock, flags); 2001 2002 irq_release_resources(desc); 2003 chip_bus_sync_unlock(desc); 2004 irq_remove_timings(desc); 2005 } 2006 2007 mutex_unlock(&desc->request_mutex); 2008 2009 irq_chip_pm_put(&desc->irq_data); 2010 module_put(desc->owner); 2011 kfree(action->secondary); 2012 return action; 2013 } 2014 2015 /** 2016 * free_irq - free an interrupt allocated with request_irq 2017 * @irq: Interrupt line to free 2018 * @dev_id: Device identity to free 2019 * 2020 * Remove an interrupt handler. The handler is removed and if the 2021 * interrupt line is no longer in use by any driver it is disabled. 2022 * On a shared IRQ the caller must ensure the interrupt is disabled 2023 * on the card it drives before calling this function. The function 2024 * does not return until any executing interrupts for this IRQ 2025 * have completed. 2026 * 2027 * This function must not be called from interrupt context. 2028 * 2029 * Returns the devname argument passed to request_irq. 2030 */ 2031 const void *free_irq(unsigned int irq, void *dev_id) 2032 { 2033 struct irq_desc *desc = irq_to_desc(irq); 2034 struct irqaction *action; 2035 const char *devname; 2036 2037 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2038 return NULL; 2039 2040 #ifdef CONFIG_SMP 2041 if (WARN_ON(desc->affinity_notify)) 2042 desc->affinity_notify = NULL; 2043 #endif 2044 2045 action = __free_irq(desc, dev_id); 2046 2047 if (!action) 2048 return NULL; 2049 2050 devname = action->name; 2051 kfree(action); 2052 return devname; 2053 } 2054 EXPORT_SYMBOL(free_irq); 2055 2056 /* This function must be called with desc->lock held */ 2057 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2058 { 2059 const char *devname = NULL; 2060 2061 desc->istate &= ~IRQS_NMI; 2062 2063 if (!WARN_ON(desc->action == NULL)) { 2064 irq_pm_remove_action(desc, desc->action); 2065 devname = desc->action->name; 2066 unregister_handler_proc(irq, desc->action); 2067 2068 kfree(desc->action); 2069 desc->action = NULL; 2070 } 2071 2072 irq_settings_clr_disable_unlazy(desc); 2073 irq_shutdown_and_deactivate(desc); 2074 2075 irq_release_resources(desc); 2076 2077 irq_chip_pm_put(&desc->irq_data); 2078 module_put(desc->owner); 2079 2080 return devname; 2081 } 2082 2083 const void *free_nmi(unsigned int irq, void *dev_id) 2084 { 2085 struct irq_desc *desc = irq_to_desc(irq); 2086 unsigned long flags; 2087 const void *devname; 2088 2089 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2090 return NULL; 2091 2092 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2093 return NULL; 2094 2095 /* NMI still enabled */ 2096 if (WARN_ON(desc->depth == 0)) 2097 disable_nmi_nosync(irq); 2098 2099 raw_spin_lock_irqsave(&desc->lock, flags); 2100 2101 irq_nmi_teardown(desc); 2102 devname = __cleanup_nmi(irq, desc); 2103 2104 raw_spin_unlock_irqrestore(&desc->lock, flags); 2105 2106 return devname; 2107 } 2108 2109 /** 2110 * request_threaded_irq - allocate an interrupt line 2111 * @irq: Interrupt line to allocate 2112 * @handler: Function to be called when the IRQ occurs. 2113 * Primary handler for threaded interrupts. 2114 * If handler is NULL and thread_fn != NULL 2115 * the default primary handler is installed. 2116 * @thread_fn: Function called from the irq handler thread 2117 * If NULL, no irq thread is created 2118 * @irqflags: Interrupt type flags 2119 * @devname: An ascii name for the claiming device 2120 * @dev_id: A cookie passed back to the handler function 2121 * 2122 * This call allocates interrupt resources and enables the 2123 * interrupt line and IRQ handling. From the point this 2124 * call is made your handler function may be invoked. Since 2125 * your handler function must clear any interrupt the board 2126 * raises, you must take care both to initialise your hardware 2127 * and to set up the interrupt handler in the right order. 2128 * 2129 * If you want to set up a threaded irq handler for your device 2130 * then you need to supply @handler and @thread_fn. @handler is 2131 * still called in hard interrupt context and has to check 2132 * whether the interrupt originates from the device. If yes it 2133 * needs to disable the interrupt on the device and return 2134 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2135 * @thread_fn. This split handler design is necessary to support 2136 * shared interrupts. 2137 * 2138 * Dev_id must be globally unique. Normally the address of the 2139 * device data structure is used as the cookie. Since the handler 2140 * receives this value it makes sense to use it. 2141 * 2142 * If your interrupt is shared you must pass a non NULL dev_id 2143 * as this is required when freeing the interrupt. 2144 * 2145 * Flags: 2146 * 2147 * IRQF_SHARED Interrupt is shared 2148 * IRQF_TRIGGER_* Specify active edge(s) or level 2149 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2150 */ 2151 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2152 irq_handler_t thread_fn, unsigned long irqflags, 2153 const char *devname, void *dev_id) 2154 { 2155 struct irqaction *action; 2156 struct irq_desc *desc; 2157 int retval; 2158 2159 if (irq == IRQ_NOTCONNECTED) 2160 return -ENOTCONN; 2161 2162 /* 2163 * Sanity-check: shared interrupts must pass in a real dev-ID, 2164 * otherwise we'll have trouble later trying to figure out 2165 * which interrupt is which (messes up the interrupt freeing 2166 * logic etc). 2167 * 2168 * Also shared interrupts do not go well with disabling auto enable. 2169 * The sharing interrupt might request it while it's still disabled 2170 * and then wait for interrupts forever. 2171 * 2172 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2173 * it cannot be set along with IRQF_NO_SUSPEND. 2174 */ 2175 if (((irqflags & IRQF_SHARED) && !dev_id) || 2176 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2177 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2178 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2179 return -EINVAL; 2180 2181 desc = irq_to_desc(irq); 2182 if (!desc) 2183 return -EINVAL; 2184 2185 if (!irq_settings_can_request(desc) || 2186 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2187 return -EINVAL; 2188 2189 if (!handler) { 2190 if (!thread_fn) 2191 return -EINVAL; 2192 handler = irq_default_primary_handler; 2193 } 2194 2195 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2196 if (!action) 2197 return -ENOMEM; 2198 2199 action->handler = handler; 2200 action->thread_fn = thread_fn; 2201 action->flags = irqflags; 2202 action->name = devname; 2203 action->dev_id = dev_id; 2204 2205 retval = irq_chip_pm_get(&desc->irq_data); 2206 if (retval < 0) { 2207 kfree(action); 2208 return retval; 2209 } 2210 2211 retval = __setup_irq(irq, desc, action); 2212 2213 if (retval) { 2214 irq_chip_pm_put(&desc->irq_data); 2215 kfree(action->secondary); 2216 kfree(action); 2217 } 2218 2219 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2220 if (!retval && (irqflags & IRQF_SHARED)) { 2221 /* 2222 * It's a shared IRQ -- the driver ought to be prepared for it 2223 * to happen immediately, so let's make sure.... 2224 * We disable the irq to make sure that a 'real' IRQ doesn't 2225 * run in parallel with our fake. 2226 */ 2227 unsigned long flags; 2228 2229 disable_irq(irq); 2230 local_irq_save(flags); 2231 2232 handler(irq, dev_id); 2233 2234 local_irq_restore(flags); 2235 enable_irq(irq); 2236 } 2237 #endif 2238 return retval; 2239 } 2240 EXPORT_SYMBOL(request_threaded_irq); 2241 2242 /** 2243 * request_any_context_irq - allocate an interrupt line 2244 * @irq: Interrupt line to allocate 2245 * @handler: Function to be called when the IRQ occurs. 2246 * Threaded handler for threaded interrupts. 2247 * @flags: Interrupt type flags 2248 * @name: An ascii name for the claiming device 2249 * @dev_id: A cookie passed back to the handler function 2250 * 2251 * This call allocates interrupt resources and enables the 2252 * interrupt line and IRQ handling. It selects either a 2253 * hardirq or threaded handling method depending on the 2254 * context. 2255 * 2256 * On failure, it returns a negative value. On success, 2257 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2258 */ 2259 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2260 unsigned long flags, const char *name, void *dev_id) 2261 { 2262 struct irq_desc *desc; 2263 int ret; 2264 2265 if (irq == IRQ_NOTCONNECTED) 2266 return -ENOTCONN; 2267 2268 desc = irq_to_desc(irq); 2269 if (!desc) 2270 return -EINVAL; 2271 2272 if (irq_settings_is_nested_thread(desc)) { 2273 ret = request_threaded_irq(irq, NULL, handler, 2274 flags, name, dev_id); 2275 return !ret ? IRQC_IS_NESTED : ret; 2276 } 2277 2278 ret = request_irq(irq, handler, flags, name, dev_id); 2279 return !ret ? IRQC_IS_HARDIRQ : ret; 2280 } 2281 EXPORT_SYMBOL_GPL(request_any_context_irq); 2282 2283 /** 2284 * request_nmi - allocate an interrupt line for NMI delivery 2285 * @irq: Interrupt line to allocate 2286 * @handler: Function to be called when the IRQ occurs. 2287 * Threaded handler for threaded interrupts. 2288 * @irqflags: Interrupt type flags 2289 * @name: An ascii name for the claiming device 2290 * @dev_id: A cookie passed back to the handler function 2291 * 2292 * This call allocates interrupt resources and enables the 2293 * interrupt line and IRQ handling. It sets up the IRQ line 2294 * to be handled as an NMI. 2295 * 2296 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2297 * cannot be threaded. 2298 * 2299 * Interrupt lines requested for NMI delivering must produce per cpu 2300 * interrupts and have auto enabling setting disabled. 2301 * 2302 * Dev_id must be globally unique. Normally the address of the 2303 * device data structure is used as the cookie. Since the handler 2304 * receives this value it makes sense to use it. 2305 * 2306 * If the interrupt line cannot be used to deliver NMIs, function 2307 * will fail and return a negative value. 2308 */ 2309 int request_nmi(unsigned int irq, irq_handler_t handler, 2310 unsigned long irqflags, const char *name, void *dev_id) 2311 { 2312 struct irqaction *action; 2313 struct irq_desc *desc; 2314 unsigned long flags; 2315 int retval; 2316 2317 if (irq == IRQ_NOTCONNECTED) 2318 return -ENOTCONN; 2319 2320 /* NMI cannot be shared, used for Polling */ 2321 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2322 return -EINVAL; 2323 2324 if (!(irqflags & IRQF_PERCPU)) 2325 return -EINVAL; 2326 2327 if (!handler) 2328 return -EINVAL; 2329 2330 desc = irq_to_desc(irq); 2331 2332 if (!desc || (irq_settings_can_autoenable(desc) && 2333 !(irqflags & IRQF_NO_AUTOEN)) || 2334 !irq_settings_can_request(desc) || 2335 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2336 !irq_supports_nmi(desc)) 2337 return -EINVAL; 2338 2339 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2340 if (!action) 2341 return -ENOMEM; 2342 2343 action->handler = handler; 2344 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2345 action->name = name; 2346 action->dev_id = dev_id; 2347 2348 retval = irq_chip_pm_get(&desc->irq_data); 2349 if (retval < 0) 2350 goto err_out; 2351 2352 retval = __setup_irq(irq, desc, action); 2353 if (retval) 2354 goto err_irq_setup; 2355 2356 raw_spin_lock_irqsave(&desc->lock, flags); 2357 2358 /* Setup NMI state */ 2359 desc->istate |= IRQS_NMI; 2360 retval = irq_nmi_setup(desc); 2361 if (retval) { 2362 __cleanup_nmi(irq, desc); 2363 raw_spin_unlock_irqrestore(&desc->lock, flags); 2364 return -EINVAL; 2365 } 2366 2367 raw_spin_unlock_irqrestore(&desc->lock, flags); 2368 2369 return 0; 2370 2371 err_irq_setup: 2372 irq_chip_pm_put(&desc->irq_data); 2373 err_out: 2374 kfree(action); 2375 2376 return retval; 2377 } 2378 2379 void enable_percpu_irq(unsigned int irq, unsigned int type) 2380 { 2381 unsigned int cpu = smp_processor_id(); 2382 unsigned long flags; 2383 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2384 2385 if (!desc) 2386 return; 2387 2388 /* 2389 * If the trigger type is not specified by the caller, then 2390 * use the default for this interrupt. 2391 */ 2392 type &= IRQ_TYPE_SENSE_MASK; 2393 if (type == IRQ_TYPE_NONE) 2394 type = irqd_get_trigger_type(&desc->irq_data); 2395 2396 if (type != IRQ_TYPE_NONE) { 2397 int ret; 2398 2399 ret = __irq_set_trigger(desc, type); 2400 2401 if (ret) { 2402 WARN(1, "failed to set type for IRQ%d\n", irq); 2403 goto out; 2404 } 2405 } 2406 2407 irq_percpu_enable(desc, cpu); 2408 out: 2409 irq_put_desc_unlock(desc, flags); 2410 } 2411 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2412 2413 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2414 { 2415 enable_percpu_irq(irq, type); 2416 } 2417 2418 /** 2419 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2420 * @irq: Linux irq number to check for 2421 * 2422 * Must be called from a non migratable context. Returns the enable 2423 * state of a per cpu interrupt on the current cpu. 2424 */ 2425 bool irq_percpu_is_enabled(unsigned int irq) 2426 { 2427 unsigned int cpu = smp_processor_id(); 2428 struct irq_desc *desc; 2429 unsigned long flags; 2430 bool is_enabled; 2431 2432 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2433 if (!desc) 2434 return false; 2435 2436 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2437 irq_put_desc_unlock(desc, flags); 2438 2439 return is_enabled; 2440 } 2441 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2442 2443 void disable_percpu_irq(unsigned int irq) 2444 { 2445 unsigned int cpu = smp_processor_id(); 2446 unsigned long flags; 2447 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2448 2449 if (!desc) 2450 return; 2451 2452 irq_percpu_disable(desc, cpu); 2453 irq_put_desc_unlock(desc, flags); 2454 } 2455 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2456 2457 void disable_percpu_nmi(unsigned int irq) 2458 { 2459 disable_percpu_irq(irq); 2460 } 2461 2462 /* 2463 * Internal function to unregister a percpu irqaction. 2464 */ 2465 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2466 { 2467 struct irq_desc *desc = irq_to_desc(irq); 2468 struct irqaction *action; 2469 unsigned long flags; 2470 2471 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2472 2473 if (!desc) 2474 return NULL; 2475 2476 raw_spin_lock_irqsave(&desc->lock, flags); 2477 2478 action = desc->action; 2479 if (!action || action->percpu_dev_id != dev_id) { 2480 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2481 goto bad; 2482 } 2483 2484 if (!cpumask_empty(desc->percpu_enabled)) { 2485 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2486 irq, cpumask_first(desc->percpu_enabled)); 2487 goto bad; 2488 } 2489 2490 /* Found it - now remove it from the list of entries: */ 2491 desc->action = NULL; 2492 2493 desc->istate &= ~IRQS_NMI; 2494 2495 raw_spin_unlock_irqrestore(&desc->lock, flags); 2496 2497 unregister_handler_proc(irq, action); 2498 2499 irq_chip_pm_put(&desc->irq_data); 2500 module_put(desc->owner); 2501 return action; 2502 2503 bad: 2504 raw_spin_unlock_irqrestore(&desc->lock, flags); 2505 return NULL; 2506 } 2507 2508 /** 2509 * remove_percpu_irq - free a per-cpu interrupt 2510 * @irq: Interrupt line to free 2511 * @act: irqaction for the interrupt 2512 * 2513 * Used to remove interrupts statically setup by the early boot process. 2514 */ 2515 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2516 { 2517 struct irq_desc *desc = irq_to_desc(irq); 2518 2519 if (desc && irq_settings_is_per_cpu_devid(desc)) 2520 __free_percpu_irq(irq, act->percpu_dev_id); 2521 } 2522 2523 /** 2524 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2525 * @irq: Interrupt line to free 2526 * @dev_id: Device identity to free 2527 * 2528 * Remove a percpu interrupt handler. The handler is removed, but 2529 * the interrupt line is not disabled. This must be done on each 2530 * CPU before calling this function. The function does not return 2531 * until any executing interrupts for this IRQ have completed. 2532 * 2533 * This function must not be called from interrupt context. 2534 */ 2535 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2536 { 2537 struct irq_desc *desc = irq_to_desc(irq); 2538 2539 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2540 return; 2541 2542 chip_bus_lock(desc); 2543 kfree(__free_percpu_irq(irq, dev_id)); 2544 chip_bus_sync_unlock(desc); 2545 } 2546 EXPORT_SYMBOL_GPL(free_percpu_irq); 2547 2548 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2549 { 2550 struct irq_desc *desc = irq_to_desc(irq); 2551 2552 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2553 return; 2554 2555 if (WARN_ON(!irq_is_nmi(desc))) 2556 return; 2557 2558 kfree(__free_percpu_irq(irq, dev_id)); 2559 } 2560 2561 /** 2562 * setup_percpu_irq - setup a per-cpu interrupt 2563 * @irq: Interrupt line to setup 2564 * @act: irqaction for the interrupt 2565 * 2566 * Used to statically setup per-cpu interrupts in the early boot process. 2567 */ 2568 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2569 { 2570 struct irq_desc *desc = irq_to_desc(irq); 2571 int retval; 2572 2573 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2574 return -EINVAL; 2575 2576 retval = irq_chip_pm_get(&desc->irq_data); 2577 if (retval < 0) 2578 return retval; 2579 2580 retval = __setup_irq(irq, desc, act); 2581 2582 if (retval) 2583 irq_chip_pm_put(&desc->irq_data); 2584 2585 return retval; 2586 } 2587 2588 /** 2589 * __request_percpu_irq - allocate a percpu interrupt line 2590 * @irq: Interrupt line to allocate 2591 * @handler: Function to be called when the IRQ occurs. 2592 * @flags: Interrupt type flags (IRQF_TIMER only) 2593 * @devname: An ascii name for the claiming device 2594 * @dev_id: A percpu cookie passed back to the handler function 2595 * 2596 * This call allocates interrupt resources and enables the 2597 * interrupt on the local CPU. If the interrupt is supposed to be 2598 * enabled on other CPUs, it has to be done on each CPU using 2599 * enable_percpu_irq(). 2600 * 2601 * Dev_id must be globally unique. It is a per-cpu variable, and 2602 * the handler gets called with the interrupted CPU's instance of 2603 * that variable. 2604 */ 2605 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2606 unsigned long flags, const char *devname, 2607 void __percpu *dev_id) 2608 { 2609 struct irqaction *action; 2610 struct irq_desc *desc; 2611 int retval; 2612 2613 if (!dev_id) 2614 return -EINVAL; 2615 2616 desc = irq_to_desc(irq); 2617 if (!desc || !irq_settings_can_request(desc) || 2618 !irq_settings_is_per_cpu_devid(desc)) 2619 return -EINVAL; 2620 2621 if (flags && flags != IRQF_TIMER) 2622 return -EINVAL; 2623 2624 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2625 if (!action) 2626 return -ENOMEM; 2627 2628 action->handler = handler; 2629 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2630 action->name = devname; 2631 action->percpu_dev_id = dev_id; 2632 2633 retval = irq_chip_pm_get(&desc->irq_data); 2634 if (retval < 0) { 2635 kfree(action); 2636 return retval; 2637 } 2638 2639 retval = __setup_irq(irq, desc, action); 2640 2641 if (retval) { 2642 irq_chip_pm_put(&desc->irq_data); 2643 kfree(action); 2644 } 2645 2646 return retval; 2647 } 2648 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2649 2650 /** 2651 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2652 * @irq: Interrupt line to allocate 2653 * @handler: Function to be called when the IRQ occurs. 2654 * @name: An ascii name for the claiming device 2655 * @dev_id: A percpu cookie passed back to the handler function 2656 * 2657 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2658 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2659 * being enabled on the same CPU by using enable_percpu_nmi(). 2660 * 2661 * Dev_id must be globally unique. It is a per-cpu variable, and 2662 * the handler gets called with the interrupted CPU's instance of 2663 * that variable. 2664 * 2665 * Interrupt lines requested for NMI delivering should have auto enabling 2666 * setting disabled. 2667 * 2668 * If the interrupt line cannot be used to deliver NMIs, function 2669 * will fail returning a negative value. 2670 */ 2671 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2672 const char *name, void __percpu *dev_id) 2673 { 2674 struct irqaction *action; 2675 struct irq_desc *desc; 2676 unsigned long flags; 2677 int retval; 2678 2679 if (!handler) 2680 return -EINVAL; 2681 2682 desc = irq_to_desc(irq); 2683 2684 if (!desc || !irq_settings_can_request(desc) || 2685 !irq_settings_is_per_cpu_devid(desc) || 2686 irq_settings_can_autoenable(desc) || 2687 !irq_supports_nmi(desc)) 2688 return -EINVAL; 2689 2690 /* The line cannot already be NMI */ 2691 if (irq_is_nmi(desc)) 2692 return -EINVAL; 2693 2694 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2695 if (!action) 2696 return -ENOMEM; 2697 2698 action->handler = handler; 2699 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2700 | IRQF_NOBALANCING; 2701 action->name = name; 2702 action->percpu_dev_id = dev_id; 2703 2704 retval = irq_chip_pm_get(&desc->irq_data); 2705 if (retval < 0) 2706 goto err_out; 2707 2708 retval = __setup_irq(irq, desc, action); 2709 if (retval) 2710 goto err_irq_setup; 2711 2712 raw_spin_lock_irqsave(&desc->lock, flags); 2713 desc->istate |= IRQS_NMI; 2714 raw_spin_unlock_irqrestore(&desc->lock, flags); 2715 2716 return 0; 2717 2718 err_irq_setup: 2719 irq_chip_pm_put(&desc->irq_data); 2720 err_out: 2721 kfree(action); 2722 2723 return retval; 2724 } 2725 2726 /** 2727 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2728 * @irq: Interrupt line to prepare for NMI delivery 2729 * 2730 * This call prepares an interrupt line to deliver NMI on the current CPU, 2731 * before that interrupt line gets enabled with enable_percpu_nmi(). 2732 * 2733 * As a CPU local operation, this should be called from non-preemptible 2734 * context. 2735 * 2736 * If the interrupt line cannot be used to deliver NMIs, function 2737 * will fail returning a negative value. 2738 */ 2739 int prepare_percpu_nmi(unsigned int irq) 2740 { 2741 unsigned long flags; 2742 struct irq_desc *desc; 2743 int ret = 0; 2744 2745 WARN_ON(preemptible()); 2746 2747 desc = irq_get_desc_lock(irq, &flags, 2748 IRQ_GET_DESC_CHECK_PERCPU); 2749 if (!desc) 2750 return -EINVAL; 2751 2752 if (WARN(!irq_is_nmi(desc), 2753 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2754 irq)) { 2755 ret = -EINVAL; 2756 goto out; 2757 } 2758 2759 ret = irq_nmi_setup(desc); 2760 if (ret) { 2761 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2762 goto out; 2763 } 2764 2765 out: 2766 irq_put_desc_unlock(desc, flags); 2767 return ret; 2768 } 2769 2770 /** 2771 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2772 * @irq: Interrupt line from which CPU local NMI configuration should be 2773 * removed 2774 * 2775 * This call undoes the setup done by prepare_percpu_nmi(). 2776 * 2777 * IRQ line should not be enabled for the current CPU. 2778 * 2779 * As a CPU local operation, this should be called from non-preemptible 2780 * context. 2781 */ 2782 void teardown_percpu_nmi(unsigned int irq) 2783 { 2784 unsigned long flags; 2785 struct irq_desc *desc; 2786 2787 WARN_ON(preemptible()); 2788 2789 desc = irq_get_desc_lock(irq, &flags, 2790 IRQ_GET_DESC_CHECK_PERCPU); 2791 if (!desc) 2792 return; 2793 2794 if (WARN_ON(!irq_is_nmi(desc))) 2795 goto out; 2796 2797 irq_nmi_teardown(desc); 2798 out: 2799 irq_put_desc_unlock(desc, flags); 2800 } 2801 2802 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2803 bool *state) 2804 { 2805 struct irq_chip *chip; 2806 int err = -EINVAL; 2807 2808 do { 2809 chip = irq_data_get_irq_chip(data); 2810 if (WARN_ON_ONCE(!chip)) 2811 return -ENODEV; 2812 if (chip->irq_get_irqchip_state) 2813 break; 2814 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2815 data = data->parent_data; 2816 #else 2817 data = NULL; 2818 #endif 2819 } while (data); 2820 2821 if (data) 2822 err = chip->irq_get_irqchip_state(data, which, state); 2823 return err; 2824 } 2825 2826 /** 2827 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2828 * @irq: Interrupt line that is forwarded to a VM 2829 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2830 * @state: a pointer to a boolean where the state is to be stored 2831 * 2832 * This call snapshots the internal irqchip state of an 2833 * interrupt, returning into @state the bit corresponding to 2834 * stage @which 2835 * 2836 * This function should be called with preemption disabled if the 2837 * interrupt controller has per-cpu registers. 2838 */ 2839 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2840 bool *state) 2841 { 2842 struct irq_desc *desc; 2843 struct irq_data *data; 2844 unsigned long flags; 2845 int err = -EINVAL; 2846 2847 desc = irq_get_desc_buslock(irq, &flags, 0); 2848 if (!desc) 2849 return err; 2850 2851 data = irq_desc_get_irq_data(desc); 2852 2853 err = __irq_get_irqchip_state(data, which, state); 2854 2855 irq_put_desc_busunlock(desc, flags); 2856 return err; 2857 } 2858 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2859 2860 /** 2861 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2862 * @irq: Interrupt line that is forwarded to a VM 2863 * @which: State to be restored (one of IRQCHIP_STATE_*) 2864 * @val: Value corresponding to @which 2865 * 2866 * This call sets the internal irqchip state of an interrupt, 2867 * depending on the value of @which. 2868 * 2869 * This function should be called with migration disabled if the 2870 * interrupt controller has per-cpu registers. 2871 */ 2872 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2873 bool val) 2874 { 2875 struct irq_desc *desc; 2876 struct irq_data *data; 2877 struct irq_chip *chip; 2878 unsigned long flags; 2879 int err = -EINVAL; 2880 2881 desc = irq_get_desc_buslock(irq, &flags, 0); 2882 if (!desc) 2883 return err; 2884 2885 data = irq_desc_get_irq_data(desc); 2886 2887 do { 2888 chip = irq_data_get_irq_chip(data); 2889 if (WARN_ON_ONCE(!chip)) { 2890 err = -ENODEV; 2891 goto out_unlock; 2892 } 2893 if (chip->irq_set_irqchip_state) 2894 break; 2895 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2896 data = data->parent_data; 2897 #else 2898 data = NULL; 2899 #endif 2900 } while (data); 2901 2902 if (data) 2903 err = chip->irq_set_irqchip_state(data, which, val); 2904 2905 out_unlock: 2906 irq_put_desc_busunlock(desc, flags); 2907 return err; 2908 } 2909 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2910 2911 /** 2912 * irq_has_action - Check whether an interrupt is requested 2913 * @irq: The linux irq number 2914 * 2915 * Returns: A snapshot of the current state 2916 */ 2917 bool irq_has_action(unsigned int irq) 2918 { 2919 bool res; 2920 2921 rcu_read_lock(); 2922 res = irq_desc_has_action(irq_to_desc(irq)); 2923 rcu_read_unlock(); 2924 return res; 2925 } 2926 EXPORT_SYMBOL_GPL(irq_has_action); 2927 2928 /** 2929 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2930 * @irq: The linux irq number 2931 * @bitmask: The bitmask to evaluate 2932 * 2933 * Returns: True if one of the bits in @bitmask is set 2934 */ 2935 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2936 { 2937 struct irq_desc *desc; 2938 bool res = false; 2939 2940 rcu_read_lock(); 2941 desc = irq_to_desc(irq); 2942 if (desc) 2943 res = !!(desc->status_use_accessors & bitmask); 2944 rcu_read_unlock(); 2945 return res; 2946 } 2947 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2948