xref: /linux/kernel/irq/manage.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affinity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action) {
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 		if (action->secondary && action->secondary->thread)
196 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
197 	}
198 }
199 
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201 static void irq_validate_effective_affinity(struct irq_data *data)
202 {
203 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
204 	struct irq_chip *chip = irq_data_get_irq_chip(data);
205 
206 	if (!cpumask_empty(m))
207 		return;
208 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
209 		     chip->name, data->irq);
210 }
211 #else
212 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
213 #endif
214 
215 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
216 			bool force)
217 {
218 	struct irq_desc *desc = irq_data_to_desc(data);
219 	struct irq_chip *chip = irq_data_get_irq_chip(data);
220 	const struct cpumask  *prog_mask;
221 	int ret;
222 
223 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
224 	static struct cpumask tmp_mask;
225 
226 	if (!chip || !chip->irq_set_affinity)
227 		return -EINVAL;
228 
229 	raw_spin_lock(&tmp_mask_lock);
230 	/*
231 	 * If this is a managed interrupt and housekeeping is enabled on
232 	 * it check whether the requested affinity mask intersects with
233 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
234 	 * the mask and just keep the housekeeping CPU(s). This prevents
235 	 * the affinity setter from routing the interrupt to an isolated
236 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
237 	 * interrupts on an isolated one.
238 	 *
239 	 * If the masks do not intersect or include online CPU(s) then
240 	 * keep the requested mask. The isolated target CPUs are only
241 	 * receiving interrupts when the I/O operation was submitted
242 	 * directly from them.
243 	 *
244 	 * If all housekeeping CPUs in the affinity mask are offline, the
245 	 * interrupt will be migrated by the CPU hotplug code once a
246 	 * housekeeping CPU which belongs to the affinity mask comes
247 	 * online.
248 	 */
249 	if (irqd_affinity_is_managed(data) &&
250 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
251 		const struct cpumask *hk_mask;
252 
253 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
254 
255 		cpumask_and(&tmp_mask, mask, hk_mask);
256 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
257 			prog_mask = mask;
258 		else
259 			prog_mask = &tmp_mask;
260 	} else {
261 		prog_mask = mask;
262 	}
263 
264 	/*
265 	 * Make sure we only provide online CPUs to the irqchip,
266 	 * unless we are being asked to force the affinity (in which
267 	 * case we do as we are told).
268 	 */
269 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
270 	if (!force && !cpumask_empty(&tmp_mask))
271 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
272 	else if (force)
273 		ret = chip->irq_set_affinity(data, mask, force);
274 	else
275 		ret = -EINVAL;
276 
277 	raw_spin_unlock(&tmp_mask_lock);
278 
279 	switch (ret) {
280 	case IRQ_SET_MASK_OK:
281 	case IRQ_SET_MASK_OK_DONE:
282 		cpumask_copy(desc->irq_common_data.affinity, mask);
283 		fallthrough;
284 	case IRQ_SET_MASK_OK_NOCOPY:
285 		irq_validate_effective_affinity(data);
286 		irq_set_thread_affinity(desc);
287 		ret = 0;
288 	}
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 					   const struct cpumask *dest)
296 {
297 	struct irq_desc *desc = irq_data_to_desc(data);
298 
299 	irqd_set_move_pending(data);
300 	irq_copy_pending(desc, dest);
301 	return 0;
302 }
303 #else
304 static inline int irq_set_affinity_pending(struct irq_data *data,
305 					   const struct cpumask *dest)
306 {
307 	return -EBUSY;
308 }
309 #endif
310 
311 static int irq_try_set_affinity(struct irq_data *data,
312 				const struct cpumask *dest, bool force)
313 {
314 	int ret = irq_do_set_affinity(data, dest, force);
315 
316 	/*
317 	 * In case that the underlying vector management is busy and the
318 	 * architecture supports the generic pending mechanism then utilize
319 	 * this to avoid returning an error to user space.
320 	 */
321 	if (ret == -EBUSY && !force)
322 		ret = irq_set_affinity_pending(data, dest);
323 	return ret;
324 }
325 
326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327 					 const struct cpumask *mask)
328 {
329 	struct irq_desc *desc = irq_data_to_desc(data);
330 
331 	/*
332 	 * Handle irq chips which can handle affinity only in activated
333 	 * state correctly
334 	 *
335 	 * If the interrupt is not yet activated, just store the affinity
336 	 * mask and do not call the chip driver at all. On activation the
337 	 * driver has to make sure anyway that the interrupt is in a
338 	 * usable state so startup works.
339 	 */
340 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342 		return false;
343 
344 	cpumask_copy(desc->irq_common_data.affinity, mask);
345 	irq_data_update_effective_affinity(data, mask);
346 	irqd_set(data, IRQD_AFFINITY_SET);
347 	return true;
348 }
349 
350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351 			    bool force)
352 {
353 	struct irq_chip *chip = irq_data_get_irq_chip(data);
354 	struct irq_desc *desc = irq_data_to_desc(data);
355 	int ret = 0;
356 
357 	if (!chip || !chip->irq_set_affinity)
358 		return -EINVAL;
359 
360 	if (irq_set_affinity_deactivated(data, mask))
361 		return 0;
362 
363 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364 		ret = irq_try_set_affinity(data, mask, force);
365 	} else {
366 		irqd_set_move_pending(data);
367 		irq_copy_pending(desc, mask);
368 	}
369 
370 	if (desc->affinity_notify) {
371 		kref_get(&desc->affinity_notify->kref);
372 		if (!schedule_work(&desc->affinity_notify->work)) {
373 			/* Work was already scheduled, drop our extra ref */
374 			kref_put(&desc->affinity_notify->kref,
375 				 desc->affinity_notify->release);
376 		}
377 	}
378 	irqd_set(data, IRQD_AFFINITY_SET);
379 
380 	return ret;
381 }
382 
383 /**
384  * irq_update_affinity_desc - Update affinity management for an interrupt
385  * @irq:	The interrupt number to update
386  * @affinity:	Pointer to the affinity descriptor
387  *
388  * This interface can be used to configure the affinity management of
389  * interrupts which have been allocated already.
390  *
391  * There are certain limitations on when it may be used - attempts to use it
392  * for when the kernel is configured for generic IRQ reservation mode (in
393  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394  * managed/non-managed interrupt accounting. In addition, attempts to use it on
395  * an interrupt which is already started or which has already been configured
396  * as managed will also fail, as these mean invalid init state or double init.
397  */
398 int irq_update_affinity_desc(unsigned int irq,
399 			     struct irq_affinity_desc *affinity)
400 {
401 	struct irq_desc *desc;
402 	unsigned long flags;
403 	bool activated;
404 	int ret = 0;
405 
406 	/*
407 	 * Supporting this with the reservation scheme used by x86 needs
408 	 * some more thought. Fail it for now.
409 	 */
410 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
411 		return -EOPNOTSUPP;
412 
413 	desc = irq_get_desc_buslock(irq, &flags, 0);
414 	if (!desc)
415 		return -EINVAL;
416 
417 	/* Requires the interrupt to be shut down */
418 	if (irqd_is_started(&desc->irq_data)) {
419 		ret = -EBUSY;
420 		goto out_unlock;
421 	}
422 
423 	/* Interrupts which are already managed cannot be modified */
424 	if (irqd_affinity_is_managed(&desc->irq_data)) {
425 		ret = -EBUSY;
426 		goto out_unlock;
427 	}
428 
429 	/*
430 	 * Deactivate the interrupt. That's required to undo
431 	 * anything an earlier activation has established.
432 	 */
433 	activated = irqd_is_activated(&desc->irq_data);
434 	if (activated)
435 		irq_domain_deactivate_irq(&desc->irq_data);
436 
437 	if (affinity->is_managed) {
438 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
439 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
440 	}
441 
442 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
443 
444 	/* Restore the activation state */
445 	if (activated)
446 		irq_domain_activate_irq(&desc->irq_data, false);
447 
448 out_unlock:
449 	irq_put_desc_busunlock(desc, flags);
450 	return ret;
451 }
452 
453 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
454 			      bool force)
455 {
456 	struct irq_desc *desc = irq_to_desc(irq);
457 	unsigned long flags;
458 	int ret;
459 
460 	if (!desc)
461 		return -EINVAL;
462 
463 	raw_spin_lock_irqsave(&desc->lock, flags);
464 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
465 	raw_spin_unlock_irqrestore(&desc->lock, flags);
466 	return ret;
467 }
468 
469 /**
470  * irq_set_affinity - Set the irq affinity of a given irq
471  * @irq:	Interrupt to set affinity
472  * @cpumask:	cpumask
473  *
474  * Fails if cpumask does not contain an online CPU
475  */
476 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
477 {
478 	return __irq_set_affinity(irq, cpumask, false);
479 }
480 EXPORT_SYMBOL_GPL(irq_set_affinity);
481 
482 /**
483  * irq_force_affinity - Force the irq affinity of a given irq
484  * @irq:	Interrupt to set affinity
485  * @cpumask:	cpumask
486  *
487  * Same as irq_set_affinity, but without checking the mask against
488  * online cpus.
489  *
490  * Solely for low level cpu hotplug code, where we need to make per
491  * cpu interrupts affine before the cpu becomes online.
492  */
493 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
494 {
495 	return __irq_set_affinity(irq, cpumask, true);
496 }
497 EXPORT_SYMBOL_GPL(irq_force_affinity);
498 
499 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
500 			      bool setaffinity)
501 {
502 	unsigned long flags;
503 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
504 
505 	if (!desc)
506 		return -EINVAL;
507 	desc->affinity_hint = m;
508 	irq_put_desc_unlock(desc, flags);
509 	if (m && setaffinity)
510 		__irq_set_affinity(irq, m, false);
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
514 
515 static void irq_affinity_notify(struct work_struct *work)
516 {
517 	struct irq_affinity_notify *notify =
518 		container_of(work, struct irq_affinity_notify, work);
519 	struct irq_desc *desc = irq_to_desc(notify->irq);
520 	cpumask_var_t cpumask;
521 	unsigned long flags;
522 
523 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
524 		goto out;
525 
526 	raw_spin_lock_irqsave(&desc->lock, flags);
527 	if (irq_move_pending(&desc->irq_data))
528 		irq_get_pending(cpumask, desc);
529 	else
530 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
531 	raw_spin_unlock_irqrestore(&desc->lock, flags);
532 
533 	notify->notify(notify, cpumask);
534 
535 	free_cpumask_var(cpumask);
536 out:
537 	kref_put(&notify->kref, notify->release);
538 }
539 
540 /**
541  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
542  *	@irq:		Interrupt for which to enable/disable notification
543  *	@notify:	Context for notification, or %NULL to disable
544  *			notification.  Function pointers must be initialised;
545  *			the other fields will be initialised by this function.
546  *
547  *	Must be called in process context.  Notification may only be enabled
548  *	after the IRQ is allocated and must be disabled before the IRQ is
549  *	freed using free_irq().
550  */
551 int
552 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
553 {
554 	struct irq_desc *desc = irq_to_desc(irq);
555 	struct irq_affinity_notify *old_notify;
556 	unsigned long flags;
557 
558 	/* The release function is promised process context */
559 	might_sleep();
560 
561 	if (!desc || desc->istate & IRQS_NMI)
562 		return -EINVAL;
563 
564 	/* Complete initialisation of *notify */
565 	if (notify) {
566 		notify->irq = irq;
567 		kref_init(&notify->kref);
568 		INIT_WORK(&notify->work, irq_affinity_notify);
569 	}
570 
571 	raw_spin_lock_irqsave(&desc->lock, flags);
572 	old_notify = desc->affinity_notify;
573 	desc->affinity_notify = notify;
574 	raw_spin_unlock_irqrestore(&desc->lock, flags);
575 
576 	if (old_notify) {
577 		if (cancel_work_sync(&old_notify->work)) {
578 			/* Pending work had a ref, put that one too */
579 			kref_put(&old_notify->kref, old_notify->release);
580 		}
581 		kref_put(&old_notify->kref, old_notify->release);
582 	}
583 
584 	return 0;
585 }
586 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
587 
588 #ifndef CONFIG_AUTO_IRQ_AFFINITY
589 /*
590  * Generic version of the affinity autoselector.
591  */
592 int irq_setup_affinity(struct irq_desc *desc)
593 {
594 	struct cpumask *set = irq_default_affinity;
595 	int ret, node = irq_desc_get_node(desc);
596 	static DEFINE_RAW_SPINLOCK(mask_lock);
597 	static struct cpumask mask;
598 
599 	/* Excludes PER_CPU and NO_BALANCE interrupts */
600 	if (!__irq_can_set_affinity(desc))
601 		return 0;
602 
603 	raw_spin_lock(&mask_lock);
604 	/*
605 	 * Preserve the managed affinity setting and a userspace affinity
606 	 * setup, but make sure that one of the targets is online.
607 	 */
608 	if (irqd_affinity_is_managed(&desc->irq_data) ||
609 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
610 		if (cpumask_intersects(desc->irq_common_data.affinity,
611 				       cpu_online_mask))
612 			set = desc->irq_common_data.affinity;
613 		else
614 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
615 	}
616 
617 	cpumask_and(&mask, cpu_online_mask, set);
618 	if (cpumask_empty(&mask))
619 		cpumask_copy(&mask, cpu_online_mask);
620 
621 	if (node != NUMA_NO_NODE) {
622 		const struct cpumask *nodemask = cpumask_of_node(node);
623 
624 		/* make sure at least one of the cpus in nodemask is online */
625 		if (cpumask_intersects(&mask, nodemask))
626 			cpumask_and(&mask, &mask, nodemask);
627 	}
628 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
629 	raw_spin_unlock(&mask_lock);
630 	return ret;
631 }
632 #else
633 /* Wrapper for ALPHA specific affinity selector magic */
634 int irq_setup_affinity(struct irq_desc *desc)
635 {
636 	return irq_select_affinity(irq_desc_get_irq(desc));
637 }
638 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
639 #endif /* CONFIG_SMP */
640 
641 
642 /**
643  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
644  *	@irq: interrupt number to set affinity
645  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
646  *	            specific data for percpu_devid interrupts
647  *
648  *	This function uses the vCPU specific data to set the vCPU
649  *	affinity for an irq. The vCPU specific data is passed from
650  *	outside, such as KVM. One example code path is as below:
651  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
652  */
653 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
654 {
655 	unsigned long flags;
656 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
657 	struct irq_data *data;
658 	struct irq_chip *chip;
659 	int ret = -ENOSYS;
660 
661 	if (!desc)
662 		return -EINVAL;
663 
664 	data = irq_desc_get_irq_data(desc);
665 	do {
666 		chip = irq_data_get_irq_chip(data);
667 		if (chip && chip->irq_set_vcpu_affinity)
668 			break;
669 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
670 		data = data->parent_data;
671 #else
672 		data = NULL;
673 #endif
674 	} while (data);
675 
676 	if (data)
677 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
678 	irq_put_desc_unlock(desc, flags);
679 
680 	return ret;
681 }
682 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
683 
684 void __disable_irq(struct irq_desc *desc)
685 {
686 	if (!desc->depth++)
687 		irq_disable(desc);
688 }
689 
690 static int __disable_irq_nosync(unsigned int irq)
691 {
692 	unsigned long flags;
693 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
694 
695 	if (!desc)
696 		return -EINVAL;
697 	__disable_irq(desc);
698 	irq_put_desc_busunlock(desc, flags);
699 	return 0;
700 }
701 
702 /**
703  *	disable_irq_nosync - disable an irq without waiting
704  *	@irq: Interrupt to disable
705  *
706  *	Disable the selected interrupt line.  Disables and Enables are
707  *	nested.
708  *	Unlike disable_irq(), this function does not ensure existing
709  *	instances of the IRQ handler have completed before returning.
710  *
711  *	This function may be called from IRQ context.
712  */
713 void disable_irq_nosync(unsigned int irq)
714 {
715 	__disable_irq_nosync(irq);
716 }
717 EXPORT_SYMBOL(disable_irq_nosync);
718 
719 /**
720  *	disable_irq - disable an irq and wait for completion
721  *	@irq: Interrupt to disable
722  *
723  *	Disable the selected interrupt line.  Enables and Disables are
724  *	nested.
725  *	This function waits for any pending IRQ handlers for this interrupt
726  *	to complete before returning. If you use this function while
727  *	holding a resource the IRQ handler may need you will deadlock.
728  *
729  *	Can only be called from preemptible code as it might sleep when
730  *	an interrupt thread is associated to @irq.
731  *
732  */
733 void disable_irq(unsigned int irq)
734 {
735 	might_sleep();
736 	if (!__disable_irq_nosync(irq))
737 		synchronize_irq(irq);
738 }
739 EXPORT_SYMBOL(disable_irq);
740 
741 /**
742  *	disable_hardirq - disables an irq and waits for hardirq completion
743  *	@irq: Interrupt to disable
744  *
745  *	Disable the selected interrupt line.  Enables and Disables are
746  *	nested.
747  *	This function waits for any pending hard IRQ handlers for this
748  *	interrupt to complete before returning. If you use this function while
749  *	holding a resource the hard IRQ handler may need you will deadlock.
750  *
751  *	When used to optimistically disable an interrupt from atomic context
752  *	the return value must be checked.
753  *
754  *	Returns: false if a threaded handler is active.
755  *
756  *	This function may be called - with care - from IRQ context.
757  */
758 bool disable_hardirq(unsigned int irq)
759 {
760 	if (!__disable_irq_nosync(irq))
761 		return synchronize_hardirq(irq);
762 
763 	return false;
764 }
765 EXPORT_SYMBOL_GPL(disable_hardirq);
766 
767 /**
768  *	disable_nmi_nosync - disable an nmi without waiting
769  *	@irq: Interrupt to disable
770  *
771  *	Disable the selected interrupt line. Disables and enables are
772  *	nested.
773  *	The interrupt to disable must have been requested through request_nmi.
774  *	Unlike disable_nmi(), this function does not ensure existing
775  *	instances of the IRQ handler have completed before returning.
776  */
777 void disable_nmi_nosync(unsigned int irq)
778 {
779 	disable_irq_nosync(irq);
780 }
781 
782 void __enable_irq(struct irq_desc *desc)
783 {
784 	switch (desc->depth) {
785 	case 0:
786  err_out:
787 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
788 		     irq_desc_get_irq(desc));
789 		break;
790 	case 1: {
791 		if (desc->istate & IRQS_SUSPENDED)
792 			goto err_out;
793 		/* Prevent probing on this irq: */
794 		irq_settings_set_noprobe(desc);
795 		/*
796 		 * Call irq_startup() not irq_enable() here because the
797 		 * interrupt might be marked NOAUTOEN. So irq_startup()
798 		 * needs to be invoked when it gets enabled the first
799 		 * time. If it was already started up, then irq_startup()
800 		 * will invoke irq_enable() under the hood.
801 		 */
802 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
803 		break;
804 	}
805 	default:
806 		desc->depth--;
807 	}
808 }
809 
810 /**
811  *	enable_irq - enable handling of an irq
812  *	@irq: Interrupt to enable
813  *
814  *	Undoes the effect of one call to disable_irq().  If this
815  *	matches the last disable, processing of interrupts on this
816  *	IRQ line is re-enabled.
817  *
818  *	This function may be called from IRQ context only when
819  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
820  */
821 void enable_irq(unsigned int irq)
822 {
823 	unsigned long flags;
824 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
825 
826 	if (!desc)
827 		return;
828 	if (WARN(!desc->irq_data.chip,
829 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
830 		goto out;
831 
832 	__enable_irq(desc);
833 out:
834 	irq_put_desc_busunlock(desc, flags);
835 }
836 EXPORT_SYMBOL(enable_irq);
837 
838 /**
839  *	enable_nmi - enable handling of an nmi
840  *	@irq: Interrupt to enable
841  *
842  *	The interrupt to enable must have been requested through request_nmi.
843  *	Undoes the effect of one call to disable_nmi(). If this
844  *	matches the last disable, processing of interrupts on this
845  *	IRQ line is re-enabled.
846  */
847 void enable_nmi(unsigned int irq)
848 {
849 	enable_irq(irq);
850 }
851 
852 static int set_irq_wake_real(unsigned int irq, unsigned int on)
853 {
854 	struct irq_desc *desc = irq_to_desc(irq);
855 	int ret = -ENXIO;
856 
857 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
858 		return 0;
859 
860 	if (desc->irq_data.chip->irq_set_wake)
861 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
862 
863 	return ret;
864 }
865 
866 /**
867  *	irq_set_irq_wake - control irq power management wakeup
868  *	@irq:	interrupt to control
869  *	@on:	enable/disable power management wakeup
870  *
871  *	Enable/disable power management wakeup mode, which is
872  *	disabled by default.  Enables and disables must match,
873  *	just as they match for non-wakeup mode support.
874  *
875  *	Wakeup mode lets this IRQ wake the system from sleep
876  *	states like "suspend to RAM".
877  *
878  *	Note: irq enable/disable state is completely orthogonal
879  *	to the enable/disable state of irq wake. An irq can be
880  *	disabled with disable_irq() and still wake the system as
881  *	long as the irq has wake enabled. If this does not hold,
882  *	then the underlying irq chip and the related driver need
883  *	to be investigated.
884  */
885 int irq_set_irq_wake(unsigned int irq, unsigned int on)
886 {
887 	unsigned long flags;
888 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
889 	int ret = 0;
890 
891 	if (!desc)
892 		return -EINVAL;
893 
894 	/* Don't use NMIs as wake up interrupts please */
895 	if (desc->istate & IRQS_NMI) {
896 		ret = -EINVAL;
897 		goto out_unlock;
898 	}
899 
900 	/* wakeup-capable irqs can be shared between drivers that
901 	 * don't need to have the same sleep mode behaviors.
902 	 */
903 	if (on) {
904 		if (desc->wake_depth++ == 0) {
905 			ret = set_irq_wake_real(irq, on);
906 			if (ret)
907 				desc->wake_depth = 0;
908 			else
909 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
910 		}
911 	} else {
912 		if (desc->wake_depth == 0) {
913 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
914 		} else if (--desc->wake_depth == 0) {
915 			ret = set_irq_wake_real(irq, on);
916 			if (ret)
917 				desc->wake_depth = 1;
918 			else
919 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
920 		}
921 	}
922 
923 out_unlock:
924 	irq_put_desc_busunlock(desc, flags);
925 	return ret;
926 }
927 EXPORT_SYMBOL(irq_set_irq_wake);
928 
929 /*
930  * Internal function that tells the architecture code whether a
931  * particular irq has been exclusively allocated or is available
932  * for driver use.
933  */
934 int can_request_irq(unsigned int irq, unsigned long irqflags)
935 {
936 	unsigned long flags;
937 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
938 	int canrequest = 0;
939 
940 	if (!desc)
941 		return 0;
942 
943 	if (irq_settings_can_request(desc)) {
944 		if (!desc->action ||
945 		    irqflags & desc->action->flags & IRQF_SHARED)
946 			canrequest = 1;
947 	}
948 	irq_put_desc_unlock(desc, flags);
949 	return canrequest;
950 }
951 
952 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
953 {
954 	struct irq_chip *chip = desc->irq_data.chip;
955 	int ret, unmask = 0;
956 
957 	if (!chip || !chip->irq_set_type) {
958 		/*
959 		 * IRQF_TRIGGER_* but the PIC does not support multiple
960 		 * flow-types?
961 		 */
962 		pr_debug("No set_type function for IRQ %d (%s)\n",
963 			 irq_desc_get_irq(desc),
964 			 chip ? (chip->name ? : "unknown") : "unknown");
965 		return 0;
966 	}
967 
968 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
969 		if (!irqd_irq_masked(&desc->irq_data))
970 			mask_irq(desc);
971 		if (!irqd_irq_disabled(&desc->irq_data))
972 			unmask = 1;
973 	}
974 
975 	/* Mask all flags except trigger mode */
976 	flags &= IRQ_TYPE_SENSE_MASK;
977 	ret = chip->irq_set_type(&desc->irq_data, flags);
978 
979 	switch (ret) {
980 	case IRQ_SET_MASK_OK:
981 	case IRQ_SET_MASK_OK_DONE:
982 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
983 		irqd_set(&desc->irq_data, flags);
984 		fallthrough;
985 
986 	case IRQ_SET_MASK_OK_NOCOPY:
987 		flags = irqd_get_trigger_type(&desc->irq_data);
988 		irq_settings_set_trigger_mask(desc, flags);
989 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
990 		irq_settings_clr_level(desc);
991 		if (flags & IRQ_TYPE_LEVEL_MASK) {
992 			irq_settings_set_level(desc);
993 			irqd_set(&desc->irq_data, IRQD_LEVEL);
994 		}
995 
996 		ret = 0;
997 		break;
998 	default:
999 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1000 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1001 	}
1002 	if (unmask)
1003 		unmask_irq(desc);
1004 	return ret;
1005 }
1006 
1007 #ifdef CONFIG_HARDIRQS_SW_RESEND
1008 int irq_set_parent(int irq, int parent_irq)
1009 {
1010 	unsigned long flags;
1011 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1012 
1013 	if (!desc)
1014 		return -EINVAL;
1015 
1016 	desc->parent_irq = parent_irq;
1017 
1018 	irq_put_desc_unlock(desc, flags);
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(irq_set_parent);
1022 #endif
1023 
1024 /*
1025  * Default primary interrupt handler for threaded interrupts. Is
1026  * assigned as primary handler when request_threaded_irq is called
1027  * with handler == NULL. Useful for oneshot interrupts.
1028  */
1029 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1030 {
1031 	return IRQ_WAKE_THREAD;
1032 }
1033 
1034 /*
1035  * Primary handler for nested threaded interrupts. Should never be
1036  * called.
1037  */
1038 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1039 {
1040 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1041 	return IRQ_NONE;
1042 }
1043 
1044 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1045 {
1046 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1047 	return IRQ_NONE;
1048 }
1049 
1050 static int irq_wait_for_interrupt(struct irqaction *action)
1051 {
1052 	for (;;) {
1053 		set_current_state(TASK_INTERRUPTIBLE);
1054 
1055 		if (kthread_should_stop()) {
1056 			/* may need to run one last time */
1057 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1058 					       &action->thread_flags)) {
1059 				__set_current_state(TASK_RUNNING);
1060 				return 0;
1061 			}
1062 			__set_current_state(TASK_RUNNING);
1063 			return -1;
1064 		}
1065 
1066 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1067 				       &action->thread_flags)) {
1068 			__set_current_state(TASK_RUNNING);
1069 			return 0;
1070 		}
1071 		schedule();
1072 	}
1073 }
1074 
1075 /*
1076  * Oneshot interrupts keep the irq line masked until the threaded
1077  * handler finished. unmask if the interrupt has not been disabled and
1078  * is marked MASKED.
1079  */
1080 static void irq_finalize_oneshot(struct irq_desc *desc,
1081 				 struct irqaction *action)
1082 {
1083 	if (!(desc->istate & IRQS_ONESHOT) ||
1084 	    action->handler == irq_forced_secondary_handler)
1085 		return;
1086 again:
1087 	chip_bus_lock(desc);
1088 	raw_spin_lock_irq(&desc->lock);
1089 
1090 	/*
1091 	 * Implausible though it may be we need to protect us against
1092 	 * the following scenario:
1093 	 *
1094 	 * The thread is faster done than the hard interrupt handler
1095 	 * on the other CPU. If we unmask the irq line then the
1096 	 * interrupt can come in again and masks the line, leaves due
1097 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1098 	 *
1099 	 * This also serializes the state of shared oneshot handlers
1100 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1101 	 * irq_wake_thread(). See the comment there which explains the
1102 	 * serialization.
1103 	 */
1104 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1105 		raw_spin_unlock_irq(&desc->lock);
1106 		chip_bus_sync_unlock(desc);
1107 		cpu_relax();
1108 		goto again;
1109 	}
1110 
1111 	/*
1112 	 * Now check again, whether the thread should run. Otherwise
1113 	 * we would clear the threads_oneshot bit of this thread which
1114 	 * was just set.
1115 	 */
1116 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1117 		goto out_unlock;
1118 
1119 	desc->threads_oneshot &= ~action->thread_mask;
1120 
1121 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1122 	    irqd_irq_masked(&desc->irq_data))
1123 		unmask_threaded_irq(desc);
1124 
1125 out_unlock:
1126 	raw_spin_unlock_irq(&desc->lock);
1127 	chip_bus_sync_unlock(desc);
1128 }
1129 
1130 #ifdef CONFIG_SMP
1131 /*
1132  * Check whether we need to change the affinity of the interrupt thread.
1133  */
1134 static void
1135 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1136 {
1137 	cpumask_var_t mask;
1138 	bool valid = true;
1139 
1140 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1141 		return;
1142 
1143 	/*
1144 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1145 	 * try again next time
1146 	 */
1147 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1148 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1149 		return;
1150 	}
1151 
1152 	raw_spin_lock_irq(&desc->lock);
1153 	/*
1154 	 * This code is triggered unconditionally. Check the affinity
1155 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1156 	 */
1157 	if (cpumask_available(desc->irq_common_data.affinity)) {
1158 		const struct cpumask *m;
1159 
1160 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1161 		cpumask_copy(mask, m);
1162 	} else {
1163 		valid = false;
1164 	}
1165 	raw_spin_unlock_irq(&desc->lock);
1166 
1167 	if (valid)
1168 		set_cpus_allowed_ptr(current, mask);
1169 	free_cpumask_var(mask);
1170 }
1171 #else
1172 static inline void
1173 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1174 #endif
1175 
1176 /*
1177  * Interrupts which are not explicitly requested as threaded
1178  * interrupts rely on the implicit bh/preempt disable of the hard irq
1179  * context. So we need to disable bh here to avoid deadlocks and other
1180  * side effects.
1181  */
1182 static irqreturn_t
1183 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1184 {
1185 	irqreturn_t ret;
1186 
1187 	local_bh_disable();
1188 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1189 		local_irq_disable();
1190 	ret = action->thread_fn(action->irq, action->dev_id);
1191 	if (ret == IRQ_HANDLED)
1192 		atomic_inc(&desc->threads_handled);
1193 
1194 	irq_finalize_oneshot(desc, action);
1195 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196 		local_irq_enable();
1197 	local_bh_enable();
1198 	return ret;
1199 }
1200 
1201 /*
1202  * Interrupts explicitly requested as threaded interrupts want to be
1203  * preemptible - many of them need to sleep and wait for slow busses to
1204  * complete.
1205  */
1206 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1207 		struct irqaction *action)
1208 {
1209 	irqreturn_t ret;
1210 
1211 	ret = action->thread_fn(action->irq, action->dev_id);
1212 	if (ret == IRQ_HANDLED)
1213 		atomic_inc(&desc->threads_handled);
1214 
1215 	irq_finalize_oneshot(desc, action);
1216 	return ret;
1217 }
1218 
1219 static void wake_threads_waitq(struct irq_desc *desc)
1220 {
1221 	if (atomic_dec_and_test(&desc->threads_active))
1222 		wake_up(&desc->wait_for_threads);
1223 }
1224 
1225 static void irq_thread_dtor(struct callback_head *unused)
1226 {
1227 	struct task_struct *tsk = current;
1228 	struct irq_desc *desc;
1229 	struct irqaction *action;
1230 
1231 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1232 		return;
1233 
1234 	action = kthread_data(tsk);
1235 
1236 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1237 	       tsk->comm, tsk->pid, action->irq);
1238 
1239 
1240 	desc = irq_to_desc(action->irq);
1241 	/*
1242 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1243 	 * desc->threads_active and wake possible waiters.
1244 	 */
1245 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1246 		wake_threads_waitq(desc);
1247 
1248 	/* Prevent a stale desc->threads_oneshot */
1249 	irq_finalize_oneshot(desc, action);
1250 }
1251 
1252 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1253 {
1254 	struct irqaction *secondary = action->secondary;
1255 
1256 	if (WARN_ON_ONCE(!secondary))
1257 		return;
1258 
1259 	raw_spin_lock_irq(&desc->lock);
1260 	__irq_wake_thread(desc, secondary);
1261 	raw_spin_unlock_irq(&desc->lock);
1262 }
1263 
1264 /*
1265  * Internal function to notify that a interrupt thread is ready.
1266  */
1267 static void irq_thread_set_ready(struct irq_desc *desc,
1268 				 struct irqaction *action)
1269 {
1270 	set_bit(IRQTF_READY, &action->thread_flags);
1271 	wake_up(&desc->wait_for_threads);
1272 }
1273 
1274 /*
1275  * Internal function to wake up a interrupt thread and wait until it is
1276  * ready.
1277  */
1278 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1279 						  struct irqaction *action)
1280 {
1281 	if (!action || !action->thread)
1282 		return;
1283 
1284 	wake_up_process(action->thread);
1285 	wait_event(desc->wait_for_threads,
1286 		   test_bit(IRQTF_READY, &action->thread_flags));
1287 }
1288 
1289 /*
1290  * Interrupt handler thread
1291  */
1292 static int irq_thread(void *data)
1293 {
1294 	struct callback_head on_exit_work;
1295 	struct irqaction *action = data;
1296 	struct irq_desc *desc = irq_to_desc(action->irq);
1297 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1298 			struct irqaction *action);
1299 
1300 	irq_thread_set_ready(desc, action);
1301 
1302 	sched_set_fifo(current);
1303 
1304 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1305 					   &action->thread_flags))
1306 		handler_fn = irq_forced_thread_fn;
1307 	else
1308 		handler_fn = irq_thread_fn;
1309 
1310 	init_task_work(&on_exit_work, irq_thread_dtor);
1311 	task_work_add(current, &on_exit_work, TWA_NONE);
1312 
1313 	irq_thread_check_affinity(desc, action);
1314 
1315 	while (!irq_wait_for_interrupt(action)) {
1316 		irqreturn_t action_ret;
1317 
1318 		irq_thread_check_affinity(desc, action);
1319 
1320 		action_ret = handler_fn(desc, action);
1321 		if (action_ret == IRQ_WAKE_THREAD)
1322 			irq_wake_secondary(desc, action);
1323 
1324 		wake_threads_waitq(desc);
1325 	}
1326 
1327 	/*
1328 	 * This is the regular exit path. __free_irq() is stopping the
1329 	 * thread via kthread_stop() after calling
1330 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1331 	 * oneshot mask bit can be set.
1332 	 */
1333 	task_work_cancel(current, irq_thread_dtor);
1334 	return 0;
1335 }
1336 
1337 /**
1338  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1339  *	@irq:		Interrupt line
1340  *	@dev_id:	Device identity for which the thread should be woken
1341  *
1342  */
1343 void irq_wake_thread(unsigned int irq, void *dev_id)
1344 {
1345 	struct irq_desc *desc = irq_to_desc(irq);
1346 	struct irqaction *action;
1347 	unsigned long flags;
1348 
1349 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1350 		return;
1351 
1352 	raw_spin_lock_irqsave(&desc->lock, flags);
1353 	for_each_action_of_desc(desc, action) {
1354 		if (action->dev_id == dev_id) {
1355 			if (action->thread)
1356 				__irq_wake_thread(desc, action);
1357 			break;
1358 		}
1359 	}
1360 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1361 }
1362 EXPORT_SYMBOL_GPL(irq_wake_thread);
1363 
1364 static int irq_setup_forced_threading(struct irqaction *new)
1365 {
1366 	if (!force_irqthreads())
1367 		return 0;
1368 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1369 		return 0;
1370 
1371 	/*
1372 	 * No further action required for interrupts which are requested as
1373 	 * threaded interrupts already
1374 	 */
1375 	if (new->handler == irq_default_primary_handler)
1376 		return 0;
1377 
1378 	new->flags |= IRQF_ONESHOT;
1379 
1380 	/*
1381 	 * Handle the case where we have a real primary handler and a
1382 	 * thread handler. We force thread them as well by creating a
1383 	 * secondary action.
1384 	 */
1385 	if (new->handler && new->thread_fn) {
1386 		/* Allocate the secondary action */
1387 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1388 		if (!new->secondary)
1389 			return -ENOMEM;
1390 		new->secondary->handler = irq_forced_secondary_handler;
1391 		new->secondary->thread_fn = new->thread_fn;
1392 		new->secondary->dev_id = new->dev_id;
1393 		new->secondary->irq = new->irq;
1394 		new->secondary->name = new->name;
1395 	}
1396 	/* Deal with the primary handler */
1397 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1398 	new->thread_fn = new->handler;
1399 	new->handler = irq_default_primary_handler;
1400 	return 0;
1401 }
1402 
1403 static int irq_request_resources(struct irq_desc *desc)
1404 {
1405 	struct irq_data *d = &desc->irq_data;
1406 	struct irq_chip *c = d->chip;
1407 
1408 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1409 }
1410 
1411 static void irq_release_resources(struct irq_desc *desc)
1412 {
1413 	struct irq_data *d = &desc->irq_data;
1414 	struct irq_chip *c = d->chip;
1415 
1416 	if (c->irq_release_resources)
1417 		c->irq_release_resources(d);
1418 }
1419 
1420 static bool irq_supports_nmi(struct irq_desc *desc)
1421 {
1422 	struct irq_data *d = irq_desc_get_irq_data(desc);
1423 
1424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1425 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1426 	if (d->parent_data)
1427 		return false;
1428 #endif
1429 	/* Don't support NMIs for chips behind a slow bus */
1430 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1431 		return false;
1432 
1433 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1434 }
1435 
1436 static int irq_nmi_setup(struct irq_desc *desc)
1437 {
1438 	struct irq_data *d = irq_desc_get_irq_data(desc);
1439 	struct irq_chip *c = d->chip;
1440 
1441 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1442 }
1443 
1444 static void irq_nmi_teardown(struct irq_desc *desc)
1445 {
1446 	struct irq_data *d = irq_desc_get_irq_data(desc);
1447 	struct irq_chip *c = d->chip;
1448 
1449 	if (c->irq_nmi_teardown)
1450 		c->irq_nmi_teardown(d);
1451 }
1452 
1453 static int
1454 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1455 {
1456 	struct task_struct *t;
1457 
1458 	if (!secondary) {
1459 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1460 				   new->name);
1461 	} else {
1462 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1463 				   new->name);
1464 	}
1465 
1466 	if (IS_ERR(t))
1467 		return PTR_ERR(t);
1468 
1469 	/*
1470 	 * We keep the reference to the task struct even if
1471 	 * the thread dies to avoid that the interrupt code
1472 	 * references an already freed task_struct.
1473 	 */
1474 	new->thread = get_task_struct(t);
1475 	/*
1476 	 * Tell the thread to set its affinity. This is
1477 	 * important for shared interrupt handlers as we do
1478 	 * not invoke setup_affinity() for the secondary
1479 	 * handlers as everything is already set up. Even for
1480 	 * interrupts marked with IRQF_NO_BALANCE this is
1481 	 * correct as we want the thread to move to the cpu(s)
1482 	 * on which the requesting code placed the interrupt.
1483 	 */
1484 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Internal function to register an irqaction - typically used to
1490  * allocate special interrupts that are part of the architecture.
1491  *
1492  * Locking rules:
1493  *
1494  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1495  *   chip_bus_lock	Provides serialization for slow bus operations
1496  *     desc->lock	Provides serialization against hard interrupts
1497  *
1498  * chip_bus_lock and desc->lock are sufficient for all other management and
1499  * interrupt related functions. desc->request_mutex solely serializes
1500  * request/free_irq().
1501  */
1502 static int
1503 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1504 {
1505 	struct irqaction *old, **old_ptr;
1506 	unsigned long flags, thread_mask = 0;
1507 	int ret, nested, shared = 0;
1508 
1509 	if (!desc)
1510 		return -EINVAL;
1511 
1512 	if (desc->irq_data.chip == &no_irq_chip)
1513 		return -ENOSYS;
1514 	if (!try_module_get(desc->owner))
1515 		return -ENODEV;
1516 
1517 	new->irq = irq;
1518 
1519 	/*
1520 	 * If the trigger type is not specified by the caller,
1521 	 * then use the default for this interrupt.
1522 	 */
1523 	if (!(new->flags & IRQF_TRIGGER_MASK))
1524 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1525 
1526 	/*
1527 	 * Check whether the interrupt nests into another interrupt
1528 	 * thread.
1529 	 */
1530 	nested = irq_settings_is_nested_thread(desc);
1531 	if (nested) {
1532 		if (!new->thread_fn) {
1533 			ret = -EINVAL;
1534 			goto out_mput;
1535 		}
1536 		/*
1537 		 * Replace the primary handler which was provided from
1538 		 * the driver for non nested interrupt handling by the
1539 		 * dummy function which warns when called.
1540 		 */
1541 		new->handler = irq_nested_primary_handler;
1542 	} else {
1543 		if (irq_settings_can_thread(desc)) {
1544 			ret = irq_setup_forced_threading(new);
1545 			if (ret)
1546 				goto out_mput;
1547 		}
1548 	}
1549 
1550 	/*
1551 	 * Create a handler thread when a thread function is supplied
1552 	 * and the interrupt does not nest into another interrupt
1553 	 * thread.
1554 	 */
1555 	if (new->thread_fn && !nested) {
1556 		ret = setup_irq_thread(new, irq, false);
1557 		if (ret)
1558 			goto out_mput;
1559 		if (new->secondary) {
1560 			ret = setup_irq_thread(new->secondary, irq, true);
1561 			if (ret)
1562 				goto out_thread;
1563 		}
1564 	}
1565 
1566 	/*
1567 	 * Drivers are often written to work w/o knowledge about the
1568 	 * underlying irq chip implementation, so a request for a
1569 	 * threaded irq without a primary hard irq context handler
1570 	 * requires the ONESHOT flag to be set. Some irq chips like
1571 	 * MSI based interrupts are per se one shot safe. Check the
1572 	 * chip flags, so we can avoid the unmask dance at the end of
1573 	 * the threaded handler for those.
1574 	 */
1575 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1576 		new->flags &= ~IRQF_ONESHOT;
1577 
1578 	/*
1579 	 * Protects against a concurrent __free_irq() call which might wait
1580 	 * for synchronize_hardirq() to complete without holding the optional
1581 	 * chip bus lock and desc->lock. Also protects against handing out
1582 	 * a recycled oneshot thread_mask bit while it's still in use by
1583 	 * its previous owner.
1584 	 */
1585 	mutex_lock(&desc->request_mutex);
1586 
1587 	/*
1588 	 * Acquire bus lock as the irq_request_resources() callback below
1589 	 * might rely on the serialization or the magic power management
1590 	 * functions which are abusing the irq_bus_lock() callback,
1591 	 */
1592 	chip_bus_lock(desc);
1593 
1594 	/* First installed action requests resources. */
1595 	if (!desc->action) {
1596 		ret = irq_request_resources(desc);
1597 		if (ret) {
1598 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1599 			       new->name, irq, desc->irq_data.chip->name);
1600 			goto out_bus_unlock;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * The following block of code has to be executed atomically
1606 	 * protected against a concurrent interrupt and any of the other
1607 	 * management calls which are not serialized via
1608 	 * desc->request_mutex or the optional bus lock.
1609 	 */
1610 	raw_spin_lock_irqsave(&desc->lock, flags);
1611 	old_ptr = &desc->action;
1612 	old = *old_ptr;
1613 	if (old) {
1614 		/*
1615 		 * Can't share interrupts unless both agree to and are
1616 		 * the same type (level, edge, polarity). So both flag
1617 		 * fields must have IRQF_SHARED set and the bits which
1618 		 * set the trigger type must match. Also all must
1619 		 * agree on ONESHOT.
1620 		 * Interrupt lines used for NMIs cannot be shared.
1621 		 */
1622 		unsigned int oldtype;
1623 
1624 		if (desc->istate & IRQS_NMI) {
1625 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1626 				new->name, irq, desc->irq_data.chip->name);
1627 			ret = -EINVAL;
1628 			goto out_unlock;
1629 		}
1630 
1631 		/*
1632 		 * If nobody did set the configuration before, inherit
1633 		 * the one provided by the requester.
1634 		 */
1635 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1636 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1637 		} else {
1638 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1639 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1640 		}
1641 
1642 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1643 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1644 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1645 			goto mismatch;
1646 
1647 		/* All handlers must agree on per-cpuness */
1648 		if ((old->flags & IRQF_PERCPU) !=
1649 		    (new->flags & IRQF_PERCPU))
1650 			goto mismatch;
1651 
1652 		/* add new interrupt at end of irq queue */
1653 		do {
1654 			/*
1655 			 * Or all existing action->thread_mask bits,
1656 			 * so we can find the next zero bit for this
1657 			 * new action.
1658 			 */
1659 			thread_mask |= old->thread_mask;
1660 			old_ptr = &old->next;
1661 			old = *old_ptr;
1662 		} while (old);
1663 		shared = 1;
1664 	}
1665 
1666 	/*
1667 	 * Setup the thread mask for this irqaction for ONESHOT. For
1668 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1669 	 * conditional in irq_wake_thread().
1670 	 */
1671 	if (new->flags & IRQF_ONESHOT) {
1672 		/*
1673 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1674 		 * but who knows.
1675 		 */
1676 		if (thread_mask == ~0UL) {
1677 			ret = -EBUSY;
1678 			goto out_unlock;
1679 		}
1680 		/*
1681 		 * The thread_mask for the action is or'ed to
1682 		 * desc->thread_active to indicate that the
1683 		 * IRQF_ONESHOT thread handler has been woken, but not
1684 		 * yet finished. The bit is cleared when a thread
1685 		 * completes. When all threads of a shared interrupt
1686 		 * line have completed desc->threads_active becomes
1687 		 * zero and the interrupt line is unmasked. See
1688 		 * handle.c:irq_wake_thread() for further information.
1689 		 *
1690 		 * If no thread is woken by primary (hard irq context)
1691 		 * interrupt handlers, then desc->threads_active is
1692 		 * also checked for zero to unmask the irq line in the
1693 		 * affected hard irq flow handlers
1694 		 * (handle_[fasteoi|level]_irq).
1695 		 *
1696 		 * The new action gets the first zero bit of
1697 		 * thread_mask assigned. See the loop above which or's
1698 		 * all existing action->thread_mask bits.
1699 		 */
1700 		new->thread_mask = 1UL << ffz(thread_mask);
1701 
1702 	} else if (new->handler == irq_default_primary_handler &&
1703 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1704 		/*
1705 		 * The interrupt was requested with handler = NULL, so
1706 		 * we use the default primary handler for it. But it
1707 		 * does not have the oneshot flag set. In combination
1708 		 * with level interrupts this is deadly, because the
1709 		 * default primary handler just wakes the thread, then
1710 		 * the irq lines is reenabled, but the device still
1711 		 * has the level irq asserted. Rinse and repeat....
1712 		 *
1713 		 * While this works for edge type interrupts, we play
1714 		 * it safe and reject unconditionally because we can't
1715 		 * say for sure which type this interrupt really
1716 		 * has. The type flags are unreliable as the
1717 		 * underlying chip implementation can override them.
1718 		 */
1719 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1720 		       new->name, irq);
1721 		ret = -EINVAL;
1722 		goto out_unlock;
1723 	}
1724 
1725 	if (!shared) {
1726 		/* Setup the type (level, edge polarity) if configured: */
1727 		if (new->flags & IRQF_TRIGGER_MASK) {
1728 			ret = __irq_set_trigger(desc,
1729 						new->flags & IRQF_TRIGGER_MASK);
1730 
1731 			if (ret)
1732 				goto out_unlock;
1733 		}
1734 
1735 		/*
1736 		 * Activate the interrupt. That activation must happen
1737 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1738 		 * and the callers are supposed to handle
1739 		 * that. enable_irq() of an interrupt requested with
1740 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1741 		 * keeps it in shutdown mode, it merily associates
1742 		 * resources if necessary and if that's not possible it
1743 		 * fails. Interrupts which are in managed shutdown mode
1744 		 * will simply ignore that activation request.
1745 		 */
1746 		ret = irq_activate(desc);
1747 		if (ret)
1748 			goto out_unlock;
1749 
1750 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1751 				  IRQS_ONESHOT | IRQS_WAITING);
1752 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1753 
1754 		if (new->flags & IRQF_PERCPU) {
1755 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1756 			irq_settings_set_per_cpu(desc);
1757 			if (new->flags & IRQF_NO_DEBUG)
1758 				irq_settings_set_no_debug(desc);
1759 		}
1760 
1761 		if (noirqdebug)
1762 			irq_settings_set_no_debug(desc);
1763 
1764 		if (new->flags & IRQF_ONESHOT)
1765 			desc->istate |= IRQS_ONESHOT;
1766 
1767 		/* Exclude IRQ from balancing if requested */
1768 		if (new->flags & IRQF_NOBALANCING) {
1769 			irq_settings_set_no_balancing(desc);
1770 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1771 		}
1772 
1773 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1774 		    irq_settings_can_autoenable(desc)) {
1775 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1776 		} else {
1777 			/*
1778 			 * Shared interrupts do not go well with disabling
1779 			 * auto enable. The sharing interrupt might request
1780 			 * it while it's still disabled and then wait for
1781 			 * interrupts forever.
1782 			 */
1783 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1784 			/* Undo nested disables: */
1785 			desc->depth = 1;
1786 		}
1787 
1788 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1789 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1790 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1791 
1792 		if (nmsk != omsk)
1793 			/* hope the handler works with current  trigger mode */
1794 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1795 				irq, omsk, nmsk);
1796 	}
1797 
1798 	*old_ptr = new;
1799 
1800 	irq_pm_install_action(desc, new);
1801 
1802 	/* Reset broken irq detection when installing new handler */
1803 	desc->irq_count = 0;
1804 	desc->irqs_unhandled = 0;
1805 
1806 	/*
1807 	 * Check whether we disabled the irq via the spurious handler
1808 	 * before. Reenable it and give it another chance.
1809 	 */
1810 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1811 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1812 		__enable_irq(desc);
1813 	}
1814 
1815 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1816 	chip_bus_sync_unlock(desc);
1817 	mutex_unlock(&desc->request_mutex);
1818 
1819 	irq_setup_timings(desc, new);
1820 
1821 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1822 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1823 
1824 	register_irq_proc(irq, desc);
1825 	new->dir = NULL;
1826 	register_handler_proc(irq, new);
1827 	return 0;
1828 
1829 mismatch:
1830 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1831 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1832 		       irq, new->flags, new->name, old->flags, old->name);
1833 #ifdef CONFIG_DEBUG_SHIRQ
1834 		dump_stack();
1835 #endif
1836 	}
1837 	ret = -EBUSY;
1838 
1839 out_unlock:
1840 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1841 
1842 	if (!desc->action)
1843 		irq_release_resources(desc);
1844 out_bus_unlock:
1845 	chip_bus_sync_unlock(desc);
1846 	mutex_unlock(&desc->request_mutex);
1847 
1848 out_thread:
1849 	if (new->thread) {
1850 		struct task_struct *t = new->thread;
1851 
1852 		new->thread = NULL;
1853 		kthread_stop(t);
1854 		put_task_struct(t);
1855 	}
1856 	if (new->secondary && new->secondary->thread) {
1857 		struct task_struct *t = new->secondary->thread;
1858 
1859 		new->secondary->thread = NULL;
1860 		kthread_stop(t);
1861 		put_task_struct(t);
1862 	}
1863 out_mput:
1864 	module_put(desc->owner);
1865 	return ret;
1866 }
1867 
1868 /*
1869  * Internal function to unregister an irqaction - used to free
1870  * regular and special interrupts that are part of the architecture.
1871  */
1872 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1873 {
1874 	unsigned irq = desc->irq_data.irq;
1875 	struct irqaction *action, **action_ptr;
1876 	unsigned long flags;
1877 
1878 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1879 
1880 	mutex_lock(&desc->request_mutex);
1881 	chip_bus_lock(desc);
1882 	raw_spin_lock_irqsave(&desc->lock, flags);
1883 
1884 	/*
1885 	 * There can be multiple actions per IRQ descriptor, find the right
1886 	 * one based on the dev_id:
1887 	 */
1888 	action_ptr = &desc->action;
1889 	for (;;) {
1890 		action = *action_ptr;
1891 
1892 		if (!action) {
1893 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1894 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1895 			chip_bus_sync_unlock(desc);
1896 			mutex_unlock(&desc->request_mutex);
1897 			return NULL;
1898 		}
1899 
1900 		if (action->dev_id == dev_id)
1901 			break;
1902 		action_ptr = &action->next;
1903 	}
1904 
1905 	/* Found it - now remove it from the list of entries: */
1906 	*action_ptr = action->next;
1907 
1908 	irq_pm_remove_action(desc, action);
1909 
1910 	/* If this was the last handler, shut down the IRQ line: */
1911 	if (!desc->action) {
1912 		irq_settings_clr_disable_unlazy(desc);
1913 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1914 		irq_shutdown(desc);
1915 	}
1916 
1917 #ifdef CONFIG_SMP
1918 	/* make sure affinity_hint is cleaned up */
1919 	if (WARN_ON_ONCE(desc->affinity_hint))
1920 		desc->affinity_hint = NULL;
1921 #endif
1922 
1923 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1924 	/*
1925 	 * Drop bus_lock here so the changes which were done in the chip
1926 	 * callbacks above are synced out to the irq chips which hang
1927 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1928 	 *
1929 	 * Aside of that the bus_lock can also be taken from the threaded
1930 	 * handler in irq_finalize_oneshot() which results in a deadlock
1931 	 * because kthread_stop() would wait forever for the thread to
1932 	 * complete, which is blocked on the bus lock.
1933 	 *
1934 	 * The still held desc->request_mutex() protects against a
1935 	 * concurrent request_irq() of this irq so the release of resources
1936 	 * and timing data is properly serialized.
1937 	 */
1938 	chip_bus_sync_unlock(desc);
1939 
1940 	unregister_handler_proc(irq, action);
1941 
1942 	/*
1943 	 * Make sure it's not being used on another CPU and if the chip
1944 	 * supports it also make sure that there is no (not yet serviced)
1945 	 * interrupt in flight at the hardware level.
1946 	 */
1947 	__synchronize_hardirq(desc, true);
1948 
1949 #ifdef CONFIG_DEBUG_SHIRQ
1950 	/*
1951 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1952 	 * event to happen even now it's being freed, so let's make sure that
1953 	 * is so by doing an extra call to the handler ....
1954 	 *
1955 	 * ( We do this after actually deregistering it, to make sure that a
1956 	 *   'real' IRQ doesn't run in parallel with our fake. )
1957 	 */
1958 	if (action->flags & IRQF_SHARED) {
1959 		local_irq_save(flags);
1960 		action->handler(irq, dev_id);
1961 		local_irq_restore(flags);
1962 	}
1963 #endif
1964 
1965 	/*
1966 	 * The action has already been removed above, but the thread writes
1967 	 * its oneshot mask bit when it completes. Though request_mutex is
1968 	 * held across this which prevents __setup_irq() from handing out
1969 	 * the same bit to a newly requested action.
1970 	 */
1971 	if (action->thread) {
1972 		kthread_stop(action->thread);
1973 		put_task_struct(action->thread);
1974 		if (action->secondary && action->secondary->thread) {
1975 			kthread_stop(action->secondary->thread);
1976 			put_task_struct(action->secondary->thread);
1977 		}
1978 	}
1979 
1980 	/* Last action releases resources */
1981 	if (!desc->action) {
1982 		/*
1983 		 * Reacquire bus lock as irq_release_resources() might
1984 		 * require it to deallocate resources over the slow bus.
1985 		 */
1986 		chip_bus_lock(desc);
1987 		/*
1988 		 * There is no interrupt on the fly anymore. Deactivate it
1989 		 * completely.
1990 		 */
1991 		raw_spin_lock_irqsave(&desc->lock, flags);
1992 		irq_domain_deactivate_irq(&desc->irq_data);
1993 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1994 
1995 		irq_release_resources(desc);
1996 		chip_bus_sync_unlock(desc);
1997 		irq_remove_timings(desc);
1998 	}
1999 
2000 	mutex_unlock(&desc->request_mutex);
2001 
2002 	irq_chip_pm_put(&desc->irq_data);
2003 	module_put(desc->owner);
2004 	kfree(action->secondary);
2005 	return action;
2006 }
2007 
2008 /**
2009  *	free_irq - free an interrupt allocated with request_irq
2010  *	@irq: Interrupt line to free
2011  *	@dev_id: Device identity to free
2012  *
2013  *	Remove an interrupt handler. The handler is removed and if the
2014  *	interrupt line is no longer in use by any driver it is disabled.
2015  *	On a shared IRQ the caller must ensure the interrupt is disabled
2016  *	on the card it drives before calling this function. The function
2017  *	does not return until any executing interrupts for this IRQ
2018  *	have completed.
2019  *
2020  *	This function must not be called from interrupt context.
2021  *
2022  *	Returns the devname argument passed to request_irq.
2023  */
2024 const void *free_irq(unsigned int irq, void *dev_id)
2025 {
2026 	struct irq_desc *desc = irq_to_desc(irq);
2027 	struct irqaction *action;
2028 	const char *devname;
2029 
2030 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2031 		return NULL;
2032 
2033 #ifdef CONFIG_SMP
2034 	if (WARN_ON(desc->affinity_notify))
2035 		desc->affinity_notify = NULL;
2036 #endif
2037 
2038 	action = __free_irq(desc, dev_id);
2039 
2040 	if (!action)
2041 		return NULL;
2042 
2043 	devname = action->name;
2044 	kfree(action);
2045 	return devname;
2046 }
2047 EXPORT_SYMBOL(free_irq);
2048 
2049 /* This function must be called with desc->lock held */
2050 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2051 {
2052 	const char *devname = NULL;
2053 
2054 	desc->istate &= ~IRQS_NMI;
2055 
2056 	if (!WARN_ON(desc->action == NULL)) {
2057 		irq_pm_remove_action(desc, desc->action);
2058 		devname = desc->action->name;
2059 		unregister_handler_proc(irq, desc->action);
2060 
2061 		kfree(desc->action);
2062 		desc->action = NULL;
2063 	}
2064 
2065 	irq_settings_clr_disable_unlazy(desc);
2066 	irq_shutdown_and_deactivate(desc);
2067 
2068 	irq_release_resources(desc);
2069 
2070 	irq_chip_pm_put(&desc->irq_data);
2071 	module_put(desc->owner);
2072 
2073 	return devname;
2074 }
2075 
2076 const void *free_nmi(unsigned int irq, void *dev_id)
2077 {
2078 	struct irq_desc *desc = irq_to_desc(irq);
2079 	unsigned long flags;
2080 	const void *devname;
2081 
2082 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2083 		return NULL;
2084 
2085 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2086 		return NULL;
2087 
2088 	/* NMI still enabled */
2089 	if (WARN_ON(desc->depth == 0))
2090 		disable_nmi_nosync(irq);
2091 
2092 	raw_spin_lock_irqsave(&desc->lock, flags);
2093 
2094 	irq_nmi_teardown(desc);
2095 	devname = __cleanup_nmi(irq, desc);
2096 
2097 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2098 
2099 	return devname;
2100 }
2101 
2102 /**
2103  *	request_threaded_irq - allocate an interrupt line
2104  *	@irq: Interrupt line to allocate
2105  *	@handler: Function to be called when the IRQ occurs.
2106  *		  Primary handler for threaded interrupts.
2107  *		  If handler is NULL and thread_fn != NULL
2108  *		  the default primary handler is installed.
2109  *	@thread_fn: Function called from the irq handler thread
2110  *		    If NULL, no irq thread is created
2111  *	@irqflags: Interrupt type flags
2112  *	@devname: An ascii name for the claiming device
2113  *	@dev_id: A cookie passed back to the handler function
2114  *
2115  *	This call allocates interrupt resources and enables the
2116  *	interrupt line and IRQ handling. From the point this
2117  *	call is made your handler function may be invoked. Since
2118  *	your handler function must clear any interrupt the board
2119  *	raises, you must take care both to initialise your hardware
2120  *	and to set up the interrupt handler in the right order.
2121  *
2122  *	If you want to set up a threaded irq handler for your device
2123  *	then you need to supply @handler and @thread_fn. @handler is
2124  *	still called in hard interrupt context and has to check
2125  *	whether the interrupt originates from the device. If yes it
2126  *	needs to disable the interrupt on the device and return
2127  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2128  *	@thread_fn. This split handler design is necessary to support
2129  *	shared interrupts.
2130  *
2131  *	Dev_id must be globally unique. Normally the address of the
2132  *	device data structure is used as the cookie. Since the handler
2133  *	receives this value it makes sense to use it.
2134  *
2135  *	If your interrupt is shared you must pass a non NULL dev_id
2136  *	as this is required when freeing the interrupt.
2137  *
2138  *	Flags:
2139  *
2140  *	IRQF_SHARED		Interrupt is shared
2141  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2142  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2143  */
2144 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2145 			 irq_handler_t thread_fn, unsigned long irqflags,
2146 			 const char *devname, void *dev_id)
2147 {
2148 	struct irqaction *action;
2149 	struct irq_desc *desc;
2150 	int retval;
2151 
2152 	if (irq == IRQ_NOTCONNECTED)
2153 		return -ENOTCONN;
2154 
2155 	/*
2156 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2157 	 * otherwise we'll have trouble later trying to figure out
2158 	 * which interrupt is which (messes up the interrupt freeing
2159 	 * logic etc).
2160 	 *
2161 	 * Also shared interrupts do not go well with disabling auto enable.
2162 	 * The sharing interrupt might request it while it's still disabled
2163 	 * and then wait for interrupts forever.
2164 	 *
2165 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2166 	 * it cannot be set along with IRQF_NO_SUSPEND.
2167 	 */
2168 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2169 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2170 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2171 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2172 		return -EINVAL;
2173 
2174 	desc = irq_to_desc(irq);
2175 	if (!desc)
2176 		return -EINVAL;
2177 
2178 	if (!irq_settings_can_request(desc) ||
2179 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2180 		return -EINVAL;
2181 
2182 	if (!handler) {
2183 		if (!thread_fn)
2184 			return -EINVAL;
2185 		handler = irq_default_primary_handler;
2186 	}
2187 
2188 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2189 	if (!action)
2190 		return -ENOMEM;
2191 
2192 	action->handler = handler;
2193 	action->thread_fn = thread_fn;
2194 	action->flags = irqflags;
2195 	action->name = devname;
2196 	action->dev_id = dev_id;
2197 
2198 	retval = irq_chip_pm_get(&desc->irq_data);
2199 	if (retval < 0) {
2200 		kfree(action);
2201 		return retval;
2202 	}
2203 
2204 	retval = __setup_irq(irq, desc, action);
2205 
2206 	if (retval) {
2207 		irq_chip_pm_put(&desc->irq_data);
2208 		kfree(action->secondary);
2209 		kfree(action);
2210 	}
2211 
2212 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2213 	if (!retval && (irqflags & IRQF_SHARED)) {
2214 		/*
2215 		 * It's a shared IRQ -- the driver ought to be prepared for it
2216 		 * to happen immediately, so let's make sure....
2217 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2218 		 * run in parallel with our fake.
2219 		 */
2220 		unsigned long flags;
2221 
2222 		disable_irq(irq);
2223 		local_irq_save(flags);
2224 
2225 		handler(irq, dev_id);
2226 
2227 		local_irq_restore(flags);
2228 		enable_irq(irq);
2229 	}
2230 #endif
2231 	return retval;
2232 }
2233 EXPORT_SYMBOL(request_threaded_irq);
2234 
2235 /**
2236  *	request_any_context_irq - allocate an interrupt line
2237  *	@irq: Interrupt line to allocate
2238  *	@handler: Function to be called when the IRQ occurs.
2239  *		  Threaded handler for threaded interrupts.
2240  *	@flags: Interrupt type flags
2241  *	@name: An ascii name for the claiming device
2242  *	@dev_id: A cookie passed back to the handler function
2243  *
2244  *	This call allocates interrupt resources and enables the
2245  *	interrupt line and IRQ handling. It selects either a
2246  *	hardirq or threaded handling method depending on the
2247  *	context.
2248  *
2249  *	On failure, it returns a negative value. On success,
2250  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2251  */
2252 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2253 			    unsigned long flags, const char *name, void *dev_id)
2254 {
2255 	struct irq_desc *desc;
2256 	int ret;
2257 
2258 	if (irq == IRQ_NOTCONNECTED)
2259 		return -ENOTCONN;
2260 
2261 	desc = irq_to_desc(irq);
2262 	if (!desc)
2263 		return -EINVAL;
2264 
2265 	if (irq_settings_is_nested_thread(desc)) {
2266 		ret = request_threaded_irq(irq, NULL, handler,
2267 					   flags, name, dev_id);
2268 		return !ret ? IRQC_IS_NESTED : ret;
2269 	}
2270 
2271 	ret = request_irq(irq, handler, flags, name, dev_id);
2272 	return !ret ? IRQC_IS_HARDIRQ : ret;
2273 }
2274 EXPORT_SYMBOL_GPL(request_any_context_irq);
2275 
2276 /**
2277  *	request_nmi - allocate an interrupt line for NMI delivery
2278  *	@irq: Interrupt line to allocate
2279  *	@handler: Function to be called when the IRQ occurs.
2280  *		  Threaded handler for threaded interrupts.
2281  *	@irqflags: Interrupt type flags
2282  *	@name: An ascii name for the claiming device
2283  *	@dev_id: A cookie passed back to the handler function
2284  *
2285  *	This call allocates interrupt resources and enables the
2286  *	interrupt line and IRQ handling. It sets up the IRQ line
2287  *	to be handled as an NMI.
2288  *
2289  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2290  *	cannot be threaded.
2291  *
2292  *	Interrupt lines requested for NMI delivering must produce per cpu
2293  *	interrupts and have auto enabling setting disabled.
2294  *
2295  *	Dev_id must be globally unique. Normally the address of the
2296  *	device data structure is used as the cookie. Since the handler
2297  *	receives this value it makes sense to use it.
2298  *
2299  *	If the interrupt line cannot be used to deliver NMIs, function
2300  *	will fail and return a negative value.
2301  */
2302 int request_nmi(unsigned int irq, irq_handler_t handler,
2303 		unsigned long irqflags, const char *name, void *dev_id)
2304 {
2305 	struct irqaction *action;
2306 	struct irq_desc *desc;
2307 	unsigned long flags;
2308 	int retval;
2309 
2310 	if (irq == IRQ_NOTCONNECTED)
2311 		return -ENOTCONN;
2312 
2313 	/* NMI cannot be shared, used for Polling */
2314 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2315 		return -EINVAL;
2316 
2317 	if (!(irqflags & IRQF_PERCPU))
2318 		return -EINVAL;
2319 
2320 	if (!handler)
2321 		return -EINVAL;
2322 
2323 	desc = irq_to_desc(irq);
2324 
2325 	if (!desc || (irq_settings_can_autoenable(desc) &&
2326 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2327 	    !irq_settings_can_request(desc) ||
2328 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2329 	    !irq_supports_nmi(desc))
2330 		return -EINVAL;
2331 
2332 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2333 	if (!action)
2334 		return -ENOMEM;
2335 
2336 	action->handler = handler;
2337 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2338 	action->name = name;
2339 	action->dev_id = dev_id;
2340 
2341 	retval = irq_chip_pm_get(&desc->irq_data);
2342 	if (retval < 0)
2343 		goto err_out;
2344 
2345 	retval = __setup_irq(irq, desc, action);
2346 	if (retval)
2347 		goto err_irq_setup;
2348 
2349 	raw_spin_lock_irqsave(&desc->lock, flags);
2350 
2351 	/* Setup NMI state */
2352 	desc->istate |= IRQS_NMI;
2353 	retval = irq_nmi_setup(desc);
2354 	if (retval) {
2355 		__cleanup_nmi(irq, desc);
2356 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2357 		return -EINVAL;
2358 	}
2359 
2360 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2361 
2362 	return 0;
2363 
2364 err_irq_setup:
2365 	irq_chip_pm_put(&desc->irq_data);
2366 err_out:
2367 	kfree(action);
2368 
2369 	return retval;
2370 }
2371 
2372 void enable_percpu_irq(unsigned int irq, unsigned int type)
2373 {
2374 	unsigned int cpu = smp_processor_id();
2375 	unsigned long flags;
2376 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2377 
2378 	if (!desc)
2379 		return;
2380 
2381 	/*
2382 	 * If the trigger type is not specified by the caller, then
2383 	 * use the default for this interrupt.
2384 	 */
2385 	type &= IRQ_TYPE_SENSE_MASK;
2386 	if (type == IRQ_TYPE_NONE)
2387 		type = irqd_get_trigger_type(&desc->irq_data);
2388 
2389 	if (type != IRQ_TYPE_NONE) {
2390 		int ret;
2391 
2392 		ret = __irq_set_trigger(desc, type);
2393 
2394 		if (ret) {
2395 			WARN(1, "failed to set type for IRQ%d\n", irq);
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	irq_percpu_enable(desc, cpu);
2401 out:
2402 	irq_put_desc_unlock(desc, flags);
2403 }
2404 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2405 
2406 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2407 {
2408 	enable_percpu_irq(irq, type);
2409 }
2410 
2411 /**
2412  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2413  * @irq:	Linux irq number to check for
2414  *
2415  * Must be called from a non migratable context. Returns the enable
2416  * state of a per cpu interrupt on the current cpu.
2417  */
2418 bool irq_percpu_is_enabled(unsigned int irq)
2419 {
2420 	unsigned int cpu = smp_processor_id();
2421 	struct irq_desc *desc;
2422 	unsigned long flags;
2423 	bool is_enabled;
2424 
2425 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2426 	if (!desc)
2427 		return false;
2428 
2429 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2430 	irq_put_desc_unlock(desc, flags);
2431 
2432 	return is_enabled;
2433 }
2434 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2435 
2436 void disable_percpu_irq(unsigned int irq)
2437 {
2438 	unsigned int cpu = smp_processor_id();
2439 	unsigned long flags;
2440 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2441 
2442 	if (!desc)
2443 		return;
2444 
2445 	irq_percpu_disable(desc, cpu);
2446 	irq_put_desc_unlock(desc, flags);
2447 }
2448 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2449 
2450 void disable_percpu_nmi(unsigned int irq)
2451 {
2452 	disable_percpu_irq(irq);
2453 }
2454 
2455 /*
2456  * Internal function to unregister a percpu irqaction.
2457  */
2458 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2459 {
2460 	struct irq_desc *desc = irq_to_desc(irq);
2461 	struct irqaction *action;
2462 	unsigned long flags;
2463 
2464 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2465 
2466 	if (!desc)
2467 		return NULL;
2468 
2469 	raw_spin_lock_irqsave(&desc->lock, flags);
2470 
2471 	action = desc->action;
2472 	if (!action || action->percpu_dev_id != dev_id) {
2473 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2474 		goto bad;
2475 	}
2476 
2477 	if (!cpumask_empty(desc->percpu_enabled)) {
2478 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2479 		     irq, cpumask_first(desc->percpu_enabled));
2480 		goto bad;
2481 	}
2482 
2483 	/* Found it - now remove it from the list of entries: */
2484 	desc->action = NULL;
2485 
2486 	desc->istate &= ~IRQS_NMI;
2487 
2488 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2489 
2490 	unregister_handler_proc(irq, action);
2491 
2492 	irq_chip_pm_put(&desc->irq_data);
2493 	module_put(desc->owner);
2494 	return action;
2495 
2496 bad:
2497 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2498 	return NULL;
2499 }
2500 
2501 /**
2502  *	remove_percpu_irq - free a per-cpu interrupt
2503  *	@irq: Interrupt line to free
2504  *	@act: irqaction for the interrupt
2505  *
2506  * Used to remove interrupts statically setup by the early boot process.
2507  */
2508 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2509 {
2510 	struct irq_desc *desc = irq_to_desc(irq);
2511 
2512 	if (desc && irq_settings_is_per_cpu_devid(desc))
2513 	    __free_percpu_irq(irq, act->percpu_dev_id);
2514 }
2515 
2516 /**
2517  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2518  *	@irq: Interrupt line to free
2519  *	@dev_id: Device identity to free
2520  *
2521  *	Remove a percpu interrupt handler. The handler is removed, but
2522  *	the interrupt line is not disabled. This must be done on each
2523  *	CPU before calling this function. The function does not return
2524  *	until any executing interrupts for this IRQ have completed.
2525  *
2526  *	This function must not be called from interrupt context.
2527  */
2528 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2529 {
2530 	struct irq_desc *desc = irq_to_desc(irq);
2531 
2532 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2533 		return;
2534 
2535 	chip_bus_lock(desc);
2536 	kfree(__free_percpu_irq(irq, dev_id));
2537 	chip_bus_sync_unlock(desc);
2538 }
2539 EXPORT_SYMBOL_GPL(free_percpu_irq);
2540 
2541 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2542 {
2543 	struct irq_desc *desc = irq_to_desc(irq);
2544 
2545 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2546 		return;
2547 
2548 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2549 		return;
2550 
2551 	kfree(__free_percpu_irq(irq, dev_id));
2552 }
2553 
2554 /**
2555  *	setup_percpu_irq - setup a per-cpu interrupt
2556  *	@irq: Interrupt line to setup
2557  *	@act: irqaction for the interrupt
2558  *
2559  * Used to statically setup per-cpu interrupts in the early boot process.
2560  */
2561 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2562 {
2563 	struct irq_desc *desc = irq_to_desc(irq);
2564 	int retval;
2565 
2566 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2567 		return -EINVAL;
2568 
2569 	retval = irq_chip_pm_get(&desc->irq_data);
2570 	if (retval < 0)
2571 		return retval;
2572 
2573 	retval = __setup_irq(irq, desc, act);
2574 
2575 	if (retval)
2576 		irq_chip_pm_put(&desc->irq_data);
2577 
2578 	return retval;
2579 }
2580 
2581 /**
2582  *	__request_percpu_irq - allocate a percpu interrupt line
2583  *	@irq: Interrupt line to allocate
2584  *	@handler: Function to be called when the IRQ occurs.
2585  *	@flags: Interrupt type flags (IRQF_TIMER only)
2586  *	@devname: An ascii name for the claiming device
2587  *	@dev_id: A percpu cookie passed back to the handler function
2588  *
2589  *	This call allocates interrupt resources and enables the
2590  *	interrupt on the local CPU. If the interrupt is supposed to be
2591  *	enabled on other CPUs, it has to be done on each CPU using
2592  *	enable_percpu_irq().
2593  *
2594  *	Dev_id must be globally unique. It is a per-cpu variable, and
2595  *	the handler gets called with the interrupted CPU's instance of
2596  *	that variable.
2597  */
2598 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2599 			 unsigned long flags, const char *devname,
2600 			 void __percpu *dev_id)
2601 {
2602 	struct irqaction *action;
2603 	struct irq_desc *desc;
2604 	int retval;
2605 
2606 	if (!dev_id)
2607 		return -EINVAL;
2608 
2609 	desc = irq_to_desc(irq);
2610 	if (!desc || !irq_settings_can_request(desc) ||
2611 	    !irq_settings_is_per_cpu_devid(desc))
2612 		return -EINVAL;
2613 
2614 	if (flags && flags != IRQF_TIMER)
2615 		return -EINVAL;
2616 
2617 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2618 	if (!action)
2619 		return -ENOMEM;
2620 
2621 	action->handler = handler;
2622 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2623 	action->name = devname;
2624 	action->percpu_dev_id = dev_id;
2625 
2626 	retval = irq_chip_pm_get(&desc->irq_data);
2627 	if (retval < 0) {
2628 		kfree(action);
2629 		return retval;
2630 	}
2631 
2632 	retval = __setup_irq(irq, desc, action);
2633 
2634 	if (retval) {
2635 		irq_chip_pm_put(&desc->irq_data);
2636 		kfree(action);
2637 	}
2638 
2639 	return retval;
2640 }
2641 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2642 
2643 /**
2644  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2645  *	@irq: Interrupt line to allocate
2646  *	@handler: Function to be called when the IRQ occurs.
2647  *	@name: An ascii name for the claiming device
2648  *	@dev_id: A percpu cookie passed back to the handler function
2649  *
2650  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2651  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2652  *	being enabled on the same CPU by using enable_percpu_nmi().
2653  *
2654  *	Dev_id must be globally unique. It is a per-cpu variable, and
2655  *	the handler gets called with the interrupted CPU's instance of
2656  *	that variable.
2657  *
2658  *	Interrupt lines requested for NMI delivering should have auto enabling
2659  *	setting disabled.
2660  *
2661  *	If the interrupt line cannot be used to deliver NMIs, function
2662  *	will fail returning a negative value.
2663  */
2664 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2665 		       const char *name, void __percpu *dev_id)
2666 {
2667 	struct irqaction *action;
2668 	struct irq_desc *desc;
2669 	unsigned long flags;
2670 	int retval;
2671 
2672 	if (!handler)
2673 		return -EINVAL;
2674 
2675 	desc = irq_to_desc(irq);
2676 
2677 	if (!desc || !irq_settings_can_request(desc) ||
2678 	    !irq_settings_is_per_cpu_devid(desc) ||
2679 	    irq_settings_can_autoenable(desc) ||
2680 	    !irq_supports_nmi(desc))
2681 		return -EINVAL;
2682 
2683 	/* The line cannot already be NMI */
2684 	if (desc->istate & IRQS_NMI)
2685 		return -EINVAL;
2686 
2687 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2688 	if (!action)
2689 		return -ENOMEM;
2690 
2691 	action->handler = handler;
2692 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2693 		| IRQF_NOBALANCING;
2694 	action->name = name;
2695 	action->percpu_dev_id = dev_id;
2696 
2697 	retval = irq_chip_pm_get(&desc->irq_data);
2698 	if (retval < 0)
2699 		goto err_out;
2700 
2701 	retval = __setup_irq(irq, desc, action);
2702 	if (retval)
2703 		goto err_irq_setup;
2704 
2705 	raw_spin_lock_irqsave(&desc->lock, flags);
2706 	desc->istate |= IRQS_NMI;
2707 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2708 
2709 	return 0;
2710 
2711 err_irq_setup:
2712 	irq_chip_pm_put(&desc->irq_data);
2713 err_out:
2714 	kfree(action);
2715 
2716 	return retval;
2717 }
2718 
2719 /**
2720  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2721  *	@irq: Interrupt line to prepare for NMI delivery
2722  *
2723  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2724  *	before that interrupt line gets enabled with enable_percpu_nmi().
2725  *
2726  *	As a CPU local operation, this should be called from non-preemptible
2727  *	context.
2728  *
2729  *	If the interrupt line cannot be used to deliver NMIs, function
2730  *	will fail returning a negative value.
2731  */
2732 int prepare_percpu_nmi(unsigned int irq)
2733 {
2734 	unsigned long flags;
2735 	struct irq_desc *desc;
2736 	int ret = 0;
2737 
2738 	WARN_ON(preemptible());
2739 
2740 	desc = irq_get_desc_lock(irq, &flags,
2741 				 IRQ_GET_DESC_CHECK_PERCPU);
2742 	if (!desc)
2743 		return -EINVAL;
2744 
2745 	if (WARN(!(desc->istate & IRQS_NMI),
2746 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2747 		 irq)) {
2748 		ret = -EINVAL;
2749 		goto out;
2750 	}
2751 
2752 	ret = irq_nmi_setup(desc);
2753 	if (ret) {
2754 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2755 		goto out;
2756 	}
2757 
2758 out:
2759 	irq_put_desc_unlock(desc, flags);
2760 	return ret;
2761 }
2762 
2763 /**
2764  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2765  *	@irq: Interrupt line from which CPU local NMI configuration should be
2766  *	      removed
2767  *
2768  *	This call undoes the setup done by prepare_percpu_nmi().
2769  *
2770  *	IRQ line should not be enabled for the current CPU.
2771  *
2772  *	As a CPU local operation, this should be called from non-preemptible
2773  *	context.
2774  */
2775 void teardown_percpu_nmi(unsigned int irq)
2776 {
2777 	unsigned long flags;
2778 	struct irq_desc *desc;
2779 
2780 	WARN_ON(preemptible());
2781 
2782 	desc = irq_get_desc_lock(irq, &flags,
2783 				 IRQ_GET_DESC_CHECK_PERCPU);
2784 	if (!desc)
2785 		return;
2786 
2787 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2788 		goto out;
2789 
2790 	irq_nmi_teardown(desc);
2791 out:
2792 	irq_put_desc_unlock(desc, flags);
2793 }
2794 
2795 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2796 			    bool *state)
2797 {
2798 	struct irq_chip *chip;
2799 	int err = -EINVAL;
2800 
2801 	do {
2802 		chip = irq_data_get_irq_chip(data);
2803 		if (WARN_ON_ONCE(!chip))
2804 			return -ENODEV;
2805 		if (chip->irq_get_irqchip_state)
2806 			break;
2807 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2808 		data = data->parent_data;
2809 #else
2810 		data = NULL;
2811 #endif
2812 	} while (data);
2813 
2814 	if (data)
2815 		err = chip->irq_get_irqchip_state(data, which, state);
2816 	return err;
2817 }
2818 
2819 /**
2820  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2821  *	@irq: Interrupt line that is forwarded to a VM
2822  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2823  *	@state: a pointer to a boolean where the state is to be stored
2824  *
2825  *	This call snapshots the internal irqchip state of an
2826  *	interrupt, returning into @state the bit corresponding to
2827  *	stage @which
2828  *
2829  *	This function should be called with preemption disabled if the
2830  *	interrupt controller has per-cpu registers.
2831  */
2832 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2833 			  bool *state)
2834 {
2835 	struct irq_desc *desc;
2836 	struct irq_data *data;
2837 	unsigned long flags;
2838 	int err = -EINVAL;
2839 
2840 	desc = irq_get_desc_buslock(irq, &flags, 0);
2841 	if (!desc)
2842 		return err;
2843 
2844 	data = irq_desc_get_irq_data(desc);
2845 
2846 	err = __irq_get_irqchip_state(data, which, state);
2847 
2848 	irq_put_desc_busunlock(desc, flags);
2849 	return err;
2850 }
2851 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2852 
2853 /**
2854  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2855  *	@irq: Interrupt line that is forwarded to a VM
2856  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2857  *	@val: Value corresponding to @which
2858  *
2859  *	This call sets the internal irqchip state of an interrupt,
2860  *	depending on the value of @which.
2861  *
2862  *	This function should be called with migration disabled if the
2863  *	interrupt controller has per-cpu registers.
2864  */
2865 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2866 			  bool val)
2867 {
2868 	struct irq_desc *desc;
2869 	struct irq_data *data;
2870 	struct irq_chip *chip;
2871 	unsigned long flags;
2872 	int err = -EINVAL;
2873 
2874 	desc = irq_get_desc_buslock(irq, &flags, 0);
2875 	if (!desc)
2876 		return err;
2877 
2878 	data = irq_desc_get_irq_data(desc);
2879 
2880 	do {
2881 		chip = irq_data_get_irq_chip(data);
2882 		if (WARN_ON_ONCE(!chip)) {
2883 			err = -ENODEV;
2884 			goto out_unlock;
2885 		}
2886 		if (chip->irq_set_irqchip_state)
2887 			break;
2888 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2889 		data = data->parent_data;
2890 #else
2891 		data = NULL;
2892 #endif
2893 	} while (data);
2894 
2895 	if (data)
2896 		err = chip->irq_set_irqchip_state(data, which, val);
2897 
2898 out_unlock:
2899 	irq_put_desc_busunlock(desc, flags);
2900 	return err;
2901 }
2902 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2903 
2904 /**
2905  * irq_has_action - Check whether an interrupt is requested
2906  * @irq:	The linux irq number
2907  *
2908  * Returns: A snapshot of the current state
2909  */
2910 bool irq_has_action(unsigned int irq)
2911 {
2912 	bool res;
2913 
2914 	rcu_read_lock();
2915 	res = irq_desc_has_action(irq_to_desc(irq));
2916 	rcu_read_unlock();
2917 	return res;
2918 }
2919 EXPORT_SYMBOL_GPL(irq_has_action);
2920 
2921 /**
2922  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2923  * @irq:	The linux irq number
2924  * @bitmask:	The bitmask to evaluate
2925  *
2926  * Returns: True if one of the bits in @bitmask is set
2927  */
2928 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2929 {
2930 	struct irq_desc *desc;
2931 	bool res = false;
2932 
2933 	rcu_read_lock();
2934 	desc = irq_to_desc(irq);
2935 	if (desc)
2936 		res = !!(desc->status_use_accessors & bitmask);
2937 	rcu_read_unlock();
2938 	return res;
2939 }
2940 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2941