xref: /linux/kernel/irq/manage.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 	__synchronize_hardirq(desc, true);
114 	/*
115 	 * We made sure that no hardirq handler is running. Now verify that no
116 	 * threaded handlers are active.
117 	 */
118 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120 
121 /**
122  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *	@irq: interrupt number to wait for
124  *
125  *	This function waits for any pending IRQ handlers for this interrupt
126  *	to complete before returning. If you use this function while
127  *	holding a resource the IRQ handler may need you will deadlock.
128  *
129  *	Can only be called from preemptible code as it might sleep when
130  *	an interrupt thread is associated to @irq.
131  *
132  *	It optionally makes sure (when the irq chip supports that method)
133  *	that the interrupt is not pending in any CPU and waiting for
134  *	service.
135  */
136 void synchronize_irq(unsigned int irq)
137 {
138 	struct irq_desc *desc = irq_to_desc(irq);
139 
140 	if (desc)
141 		__synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144 
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147 
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 		return false;
153 	return true;
154 }
155 
156 /**
157  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *	@irq:		Interrupt to check
159  *
160  */
161 int irq_can_set_affinity(unsigned int irq)
162 {
163 	return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165 
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:	Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 	struct irq_desc *desc = irq_to_desc(irq);
176 
177 	return __irq_can_set_affinity(desc) &&
178 		!irqd_affinity_is_managed(&desc->irq_data);
179 }
180 
181 /**
182  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *	@desc:		irq descriptor which has affinity changed
184  *
185  *	We just set IRQTF_AFFINITY and delegate the affinity setting
186  *	to the interrupt thread itself. We can not call
187  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *	code can be called from hard interrupt context.
189  */
190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 	struct irqaction *action;
193 
194 	for_each_action_of_desc(desc, action) {
195 		if (action->thread) {
196 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 			wake_up_process(action->thread);
198 		}
199 		if (action->secondary && action->secondary->thread) {
200 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 			wake_up_process(action->secondary->thread);
202 		}
203 	}
204 }
205 
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207 static void irq_validate_effective_affinity(struct irq_data *data)
208 {
209 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 	struct irq_chip *chip = irq_data_get_irq_chip(data);
211 
212 	if (!cpumask_empty(m))
213 		return;
214 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 		     chip->name, data->irq);
216 }
217 #else
218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
220 
221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 	static struct cpumask tmp_mask;
231 
232 	if (!chip || !chip->irq_set_affinity)
233 		return -EINVAL;
234 
235 	raw_spin_lock(&tmp_mask_lock);
236 	/*
237 	 * If this is a managed interrupt and housekeeping is enabled on
238 	 * it check whether the requested affinity mask intersects with
239 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 	 * the mask and just keep the housekeeping CPU(s). This prevents
241 	 * the affinity setter from routing the interrupt to an isolated
242 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 	 * interrupts on an isolated one.
244 	 *
245 	 * If the masks do not intersect or include online CPU(s) then
246 	 * keep the requested mask. The isolated target CPUs are only
247 	 * receiving interrupts when the I/O operation was submitted
248 	 * directly from them.
249 	 *
250 	 * If all housekeeping CPUs in the affinity mask are offline, the
251 	 * interrupt will be migrated by the CPU hotplug code once a
252 	 * housekeeping CPU which belongs to the affinity mask comes
253 	 * online.
254 	 */
255 	if (irqd_affinity_is_managed(data) &&
256 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257 		const struct cpumask *hk_mask;
258 
259 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260 
261 		cpumask_and(&tmp_mask, mask, hk_mask);
262 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 			prog_mask = mask;
264 		else
265 			prog_mask = &tmp_mask;
266 	} else {
267 		prog_mask = mask;
268 	}
269 
270 	/*
271 	 * Make sure we only provide online CPUs to the irqchip,
272 	 * unless we are being asked to force the affinity (in which
273 	 * case we do as we are told).
274 	 */
275 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 	if (!force && !cpumask_empty(&tmp_mask))
277 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 	else if (force)
279 		ret = chip->irq_set_affinity(data, mask, force);
280 	else
281 		ret = -EINVAL;
282 
283 	raw_spin_unlock(&tmp_mask_lock);
284 
285 	switch (ret) {
286 	case IRQ_SET_MASK_OK:
287 	case IRQ_SET_MASK_OK_DONE:
288 		cpumask_copy(desc->irq_common_data.affinity, mask);
289 		fallthrough;
290 	case IRQ_SET_MASK_OK_NOCOPY:
291 		irq_validate_effective_affinity(data);
292 		irq_set_thread_affinity(desc);
293 		ret = 0;
294 	}
295 
296 	return ret;
297 }
298 
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
300 static inline int irq_set_affinity_pending(struct irq_data *data,
301 					   const struct cpumask *dest)
302 {
303 	struct irq_desc *desc = irq_data_to_desc(data);
304 
305 	irqd_set_move_pending(data);
306 	irq_copy_pending(desc, dest);
307 	return 0;
308 }
309 #else
310 static inline int irq_set_affinity_pending(struct irq_data *data,
311 					   const struct cpumask *dest)
312 {
313 	return -EBUSY;
314 }
315 #endif
316 
317 static int irq_try_set_affinity(struct irq_data *data,
318 				const struct cpumask *dest, bool force)
319 {
320 	int ret = irq_do_set_affinity(data, dest, force);
321 
322 	/*
323 	 * In case that the underlying vector management is busy and the
324 	 * architecture supports the generic pending mechanism then utilize
325 	 * this to avoid returning an error to user space.
326 	 */
327 	if (ret == -EBUSY && !force)
328 		ret = irq_set_affinity_pending(data, dest);
329 	return ret;
330 }
331 
332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333 					 const struct cpumask *mask)
334 {
335 	struct irq_desc *desc = irq_data_to_desc(data);
336 
337 	/*
338 	 * Handle irq chips which can handle affinity only in activated
339 	 * state correctly
340 	 *
341 	 * If the interrupt is not yet activated, just store the affinity
342 	 * mask and do not call the chip driver at all. On activation the
343 	 * driver has to make sure anyway that the interrupt is in a
344 	 * usable state so startup works.
345 	 */
346 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 		return false;
349 
350 	cpumask_copy(desc->irq_common_data.affinity, mask);
351 	irq_data_update_effective_affinity(data, mask);
352 	irqd_set(data, IRQD_AFFINITY_SET);
353 	return true;
354 }
355 
356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 			    bool force)
358 {
359 	struct irq_chip *chip = irq_data_get_irq_chip(data);
360 	struct irq_desc *desc = irq_data_to_desc(data);
361 	int ret = 0;
362 
363 	if (!chip || !chip->irq_set_affinity)
364 		return -EINVAL;
365 
366 	if (irq_set_affinity_deactivated(data, mask))
367 		return 0;
368 
369 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 		ret = irq_try_set_affinity(data, mask, force);
371 	} else {
372 		irqd_set_move_pending(data);
373 		irq_copy_pending(desc, mask);
374 	}
375 
376 	if (desc->affinity_notify) {
377 		kref_get(&desc->affinity_notify->kref);
378 		if (!schedule_work(&desc->affinity_notify->work)) {
379 			/* Work was already scheduled, drop our extra ref */
380 			kref_put(&desc->affinity_notify->kref,
381 				 desc->affinity_notify->release);
382 		}
383 	}
384 	irqd_set(data, IRQD_AFFINITY_SET);
385 
386 	return ret;
387 }
388 
389 /**
390  * irq_update_affinity_desc - Update affinity management for an interrupt
391  * @irq:	The interrupt number to update
392  * @affinity:	Pointer to the affinity descriptor
393  *
394  * This interface can be used to configure the affinity management of
395  * interrupts which have been allocated already.
396  *
397  * There are certain limitations on when it may be used - attempts to use it
398  * for when the kernel is configured for generic IRQ reservation mode (in
399  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400  * managed/non-managed interrupt accounting. In addition, attempts to use it on
401  * an interrupt which is already started or which has already been configured
402  * as managed will also fail, as these mean invalid init state or double init.
403  */
404 int irq_update_affinity_desc(unsigned int irq,
405 			     struct irq_affinity_desc *affinity)
406 {
407 	struct irq_desc *desc;
408 	unsigned long flags;
409 	bool activated;
410 	int ret = 0;
411 
412 	/*
413 	 * Supporting this with the reservation scheme used by x86 needs
414 	 * some more thought. Fail it for now.
415 	 */
416 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417 		return -EOPNOTSUPP;
418 
419 	desc = irq_get_desc_buslock(irq, &flags, 0);
420 	if (!desc)
421 		return -EINVAL;
422 
423 	/* Requires the interrupt to be shut down */
424 	if (irqd_is_started(&desc->irq_data)) {
425 		ret = -EBUSY;
426 		goto out_unlock;
427 	}
428 
429 	/* Interrupts which are already managed cannot be modified */
430 	if (irqd_affinity_is_managed(&desc->irq_data)) {
431 		ret = -EBUSY;
432 		goto out_unlock;
433 	}
434 
435 	/*
436 	 * Deactivate the interrupt. That's required to undo
437 	 * anything an earlier activation has established.
438 	 */
439 	activated = irqd_is_activated(&desc->irq_data);
440 	if (activated)
441 		irq_domain_deactivate_irq(&desc->irq_data);
442 
443 	if (affinity->is_managed) {
444 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446 	}
447 
448 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449 
450 	/* Restore the activation state */
451 	if (activated)
452 		irq_domain_activate_irq(&desc->irq_data, false);
453 
454 out_unlock:
455 	irq_put_desc_busunlock(desc, flags);
456 	return ret;
457 }
458 
459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460 			      bool force)
461 {
462 	struct irq_desc *desc = irq_to_desc(irq);
463 	unsigned long flags;
464 	int ret;
465 
466 	if (!desc)
467 		return -EINVAL;
468 
469 	raw_spin_lock_irqsave(&desc->lock, flags);
470 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471 	raw_spin_unlock_irqrestore(&desc->lock, flags);
472 	return ret;
473 }
474 
475 /**
476  * irq_set_affinity - Set the irq affinity of a given irq
477  * @irq:	Interrupt to set affinity
478  * @cpumask:	cpumask
479  *
480  * Fails if cpumask does not contain an online CPU
481  */
482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483 {
484 	return __irq_set_affinity(irq, cpumask, false);
485 }
486 EXPORT_SYMBOL_GPL(irq_set_affinity);
487 
488 /**
489  * irq_force_affinity - Force the irq affinity of a given irq
490  * @irq:	Interrupt to set affinity
491  * @cpumask:	cpumask
492  *
493  * Same as irq_set_affinity, but without checking the mask against
494  * online cpus.
495  *
496  * Solely for low level cpu hotplug code, where we need to make per
497  * cpu interrupts affine before the cpu becomes online.
498  */
499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500 {
501 	return __irq_set_affinity(irq, cpumask, true);
502 }
503 EXPORT_SYMBOL_GPL(irq_force_affinity);
504 
505 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506 			      bool setaffinity)
507 {
508 	unsigned long flags;
509 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510 
511 	if (!desc)
512 		return -EINVAL;
513 	desc->affinity_hint = m;
514 	irq_put_desc_unlock(desc, flags);
515 	if (m && setaffinity)
516 		__irq_set_affinity(irq, m, false);
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520 
521 static void irq_affinity_notify(struct work_struct *work)
522 {
523 	struct irq_affinity_notify *notify =
524 		container_of(work, struct irq_affinity_notify, work);
525 	struct irq_desc *desc = irq_to_desc(notify->irq);
526 	cpumask_var_t cpumask;
527 	unsigned long flags;
528 
529 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530 		goto out;
531 
532 	raw_spin_lock_irqsave(&desc->lock, flags);
533 	if (irq_move_pending(&desc->irq_data))
534 		irq_get_pending(cpumask, desc);
535 	else
536 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
537 	raw_spin_unlock_irqrestore(&desc->lock, flags);
538 
539 	notify->notify(notify, cpumask);
540 
541 	free_cpumask_var(cpumask);
542 out:
543 	kref_put(&notify->kref, notify->release);
544 }
545 
546 /**
547  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
548  *	@irq:		Interrupt for which to enable/disable notification
549  *	@notify:	Context for notification, or %NULL to disable
550  *			notification.  Function pointers must be initialised;
551  *			the other fields will be initialised by this function.
552  *
553  *	Must be called in process context.  Notification may only be enabled
554  *	after the IRQ is allocated and must be disabled before the IRQ is
555  *	freed using free_irq().
556  */
557 int
558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559 {
560 	struct irq_desc *desc = irq_to_desc(irq);
561 	struct irq_affinity_notify *old_notify;
562 	unsigned long flags;
563 
564 	/* The release function is promised process context */
565 	might_sleep();
566 
567 	if (!desc || desc->istate & IRQS_NMI)
568 		return -EINVAL;
569 
570 	/* Complete initialisation of *notify */
571 	if (notify) {
572 		notify->irq = irq;
573 		kref_init(&notify->kref);
574 		INIT_WORK(&notify->work, irq_affinity_notify);
575 	}
576 
577 	raw_spin_lock_irqsave(&desc->lock, flags);
578 	old_notify = desc->affinity_notify;
579 	desc->affinity_notify = notify;
580 	raw_spin_unlock_irqrestore(&desc->lock, flags);
581 
582 	if (old_notify) {
583 		if (cancel_work_sync(&old_notify->work)) {
584 			/* Pending work had a ref, put that one too */
585 			kref_put(&old_notify->kref, old_notify->release);
586 		}
587 		kref_put(&old_notify->kref, old_notify->release);
588 	}
589 
590 	return 0;
591 }
592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593 
594 #ifndef CONFIG_AUTO_IRQ_AFFINITY
595 /*
596  * Generic version of the affinity autoselector.
597  */
598 int irq_setup_affinity(struct irq_desc *desc)
599 {
600 	struct cpumask *set = irq_default_affinity;
601 	int ret, node = irq_desc_get_node(desc);
602 	static DEFINE_RAW_SPINLOCK(mask_lock);
603 	static struct cpumask mask;
604 
605 	/* Excludes PER_CPU and NO_BALANCE interrupts */
606 	if (!__irq_can_set_affinity(desc))
607 		return 0;
608 
609 	raw_spin_lock(&mask_lock);
610 	/*
611 	 * Preserve the managed affinity setting and a userspace affinity
612 	 * setup, but make sure that one of the targets is online.
613 	 */
614 	if (irqd_affinity_is_managed(&desc->irq_data) ||
615 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616 		if (cpumask_intersects(desc->irq_common_data.affinity,
617 				       cpu_online_mask))
618 			set = desc->irq_common_data.affinity;
619 		else
620 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621 	}
622 
623 	cpumask_and(&mask, cpu_online_mask, set);
624 	if (cpumask_empty(&mask))
625 		cpumask_copy(&mask, cpu_online_mask);
626 
627 	if (node != NUMA_NO_NODE) {
628 		const struct cpumask *nodemask = cpumask_of_node(node);
629 
630 		/* make sure at least one of the cpus in nodemask is online */
631 		if (cpumask_intersects(&mask, nodemask))
632 			cpumask_and(&mask, &mask, nodemask);
633 	}
634 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635 	raw_spin_unlock(&mask_lock);
636 	return ret;
637 }
638 #else
639 /* Wrapper for ALPHA specific affinity selector magic */
640 int irq_setup_affinity(struct irq_desc *desc)
641 {
642 	return irq_select_affinity(irq_desc_get_irq(desc));
643 }
644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
645 #endif /* CONFIG_SMP */
646 
647 
648 /**
649  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650  *	@irq: interrupt number to set affinity
651  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652  *	            specific data for percpu_devid interrupts
653  *
654  *	This function uses the vCPU specific data to set the vCPU
655  *	affinity for an irq. The vCPU specific data is passed from
656  *	outside, such as KVM. One example code path is as below:
657  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
658  */
659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660 {
661 	unsigned long flags;
662 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663 	struct irq_data *data;
664 	struct irq_chip *chip;
665 	int ret = -ENOSYS;
666 
667 	if (!desc)
668 		return -EINVAL;
669 
670 	data = irq_desc_get_irq_data(desc);
671 	do {
672 		chip = irq_data_get_irq_chip(data);
673 		if (chip && chip->irq_set_vcpu_affinity)
674 			break;
675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676 		data = data->parent_data;
677 #else
678 		data = NULL;
679 #endif
680 	} while (data);
681 
682 	if (data)
683 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684 	irq_put_desc_unlock(desc, flags);
685 
686 	return ret;
687 }
688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689 
690 void __disable_irq(struct irq_desc *desc)
691 {
692 	if (!desc->depth++)
693 		irq_disable(desc);
694 }
695 
696 static int __disable_irq_nosync(unsigned int irq)
697 {
698 	unsigned long flags;
699 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700 
701 	if (!desc)
702 		return -EINVAL;
703 	__disable_irq(desc);
704 	irq_put_desc_busunlock(desc, flags);
705 	return 0;
706 }
707 
708 /**
709  *	disable_irq_nosync - disable an irq without waiting
710  *	@irq: Interrupt to disable
711  *
712  *	Disable the selected interrupt line.  Disables and Enables are
713  *	nested.
714  *	Unlike disable_irq(), this function does not ensure existing
715  *	instances of the IRQ handler have completed before returning.
716  *
717  *	This function may be called from IRQ context.
718  */
719 void disable_irq_nosync(unsigned int irq)
720 {
721 	__disable_irq_nosync(irq);
722 }
723 EXPORT_SYMBOL(disable_irq_nosync);
724 
725 /**
726  *	disable_irq - disable an irq and wait for completion
727  *	@irq: Interrupt to disable
728  *
729  *	Disable the selected interrupt line.  Enables and Disables are
730  *	nested.
731  *	This function waits for any pending IRQ handlers for this interrupt
732  *	to complete before returning. If you use this function while
733  *	holding a resource the IRQ handler may need you will deadlock.
734  *
735  *	Can only be called from preemptible code as it might sleep when
736  *	an interrupt thread is associated to @irq.
737  *
738  */
739 void disable_irq(unsigned int irq)
740 {
741 	might_sleep();
742 	if (!__disable_irq_nosync(irq))
743 		synchronize_irq(irq);
744 }
745 EXPORT_SYMBOL(disable_irq);
746 
747 /**
748  *	disable_hardirq - disables an irq and waits for hardirq completion
749  *	@irq: Interrupt to disable
750  *
751  *	Disable the selected interrupt line.  Enables and Disables are
752  *	nested.
753  *	This function waits for any pending hard IRQ handlers for this
754  *	interrupt to complete before returning. If you use this function while
755  *	holding a resource the hard IRQ handler may need you will deadlock.
756  *
757  *	When used to optimistically disable an interrupt from atomic context
758  *	the return value must be checked.
759  *
760  *	Returns: false if a threaded handler is active.
761  *
762  *	This function may be called - with care - from IRQ context.
763  */
764 bool disable_hardirq(unsigned int irq)
765 {
766 	if (!__disable_irq_nosync(irq))
767 		return synchronize_hardirq(irq);
768 
769 	return false;
770 }
771 EXPORT_SYMBOL_GPL(disable_hardirq);
772 
773 /**
774  *	disable_nmi_nosync - disable an nmi without waiting
775  *	@irq: Interrupt to disable
776  *
777  *	Disable the selected interrupt line. Disables and enables are
778  *	nested.
779  *	The interrupt to disable must have been requested through request_nmi.
780  *	Unlike disable_nmi(), this function does not ensure existing
781  *	instances of the IRQ handler have completed before returning.
782  */
783 void disable_nmi_nosync(unsigned int irq)
784 {
785 	disable_irq_nosync(irq);
786 }
787 
788 void __enable_irq(struct irq_desc *desc)
789 {
790 	switch (desc->depth) {
791 	case 0:
792  err_out:
793 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794 		     irq_desc_get_irq(desc));
795 		break;
796 	case 1: {
797 		if (desc->istate & IRQS_SUSPENDED)
798 			goto err_out;
799 		/* Prevent probing on this irq: */
800 		irq_settings_set_noprobe(desc);
801 		/*
802 		 * Call irq_startup() not irq_enable() here because the
803 		 * interrupt might be marked NOAUTOEN. So irq_startup()
804 		 * needs to be invoked when it gets enabled the first
805 		 * time. If it was already started up, then irq_startup()
806 		 * will invoke irq_enable() under the hood.
807 		 */
808 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
809 		break;
810 	}
811 	default:
812 		desc->depth--;
813 	}
814 }
815 
816 /**
817  *	enable_irq - enable handling of an irq
818  *	@irq: Interrupt to enable
819  *
820  *	Undoes the effect of one call to disable_irq().  If this
821  *	matches the last disable, processing of interrupts on this
822  *	IRQ line is re-enabled.
823  *
824  *	This function may be called from IRQ context only when
825  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
826  */
827 void enable_irq(unsigned int irq)
828 {
829 	unsigned long flags;
830 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
831 
832 	if (!desc)
833 		return;
834 	if (WARN(!desc->irq_data.chip,
835 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
836 		goto out;
837 
838 	__enable_irq(desc);
839 out:
840 	irq_put_desc_busunlock(desc, flags);
841 }
842 EXPORT_SYMBOL(enable_irq);
843 
844 /**
845  *	enable_nmi - enable handling of an nmi
846  *	@irq: Interrupt to enable
847  *
848  *	The interrupt to enable must have been requested through request_nmi.
849  *	Undoes the effect of one call to disable_nmi(). If this
850  *	matches the last disable, processing of interrupts on this
851  *	IRQ line is re-enabled.
852  */
853 void enable_nmi(unsigned int irq)
854 {
855 	enable_irq(irq);
856 }
857 
858 static int set_irq_wake_real(unsigned int irq, unsigned int on)
859 {
860 	struct irq_desc *desc = irq_to_desc(irq);
861 	int ret = -ENXIO;
862 
863 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
864 		return 0;
865 
866 	if (desc->irq_data.chip->irq_set_wake)
867 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
868 
869 	return ret;
870 }
871 
872 /**
873  *	irq_set_irq_wake - control irq power management wakeup
874  *	@irq:	interrupt to control
875  *	@on:	enable/disable power management wakeup
876  *
877  *	Enable/disable power management wakeup mode, which is
878  *	disabled by default.  Enables and disables must match,
879  *	just as they match for non-wakeup mode support.
880  *
881  *	Wakeup mode lets this IRQ wake the system from sleep
882  *	states like "suspend to RAM".
883  *
884  *	Note: irq enable/disable state is completely orthogonal
885  *	to the enable/disable state of irq wake. An irq can be
886  *	disabled with disable_irq() and still wake the system as
887  *	long as the irq has wake enabled. If this does not hold,
888  *	then the underlying irq chip and the related driver need
889  *	to be investigated.
890  */
891 int irq_set_irq_wake(unsigned int irq, unsigned int on)
892 {
893 	unsigned long flags;
894 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
895 	int ret = 0;
896 
897 	if (!desc)
898 		return -EINVAL;
899 
900 	/* Don't use NMIs as wake up interrupts please */
901 	if (desc->istate & IRQS_NMI) {
902 		ret = -EINVAL;
903 		goto out_unlock;
904 	}
905 
906 	/* wakeup-capable irqs can be shared between drivers that
907 	 * don't need to have the same sleep mode behaviors.
908 	 */
909 	if (on) {
910 		if (desc->wake_depth++ == 0) {
911 			ret = set_irq_wake_real(irq, on);
912 			if (ret)
913 				desc->wake_depth = 0;
914 			else
915 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
916 		}
917 	} else {
918 		if (desc->wake_depth == 0) {
919 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
920 		} else if (--desc->wake_depth == 0) {
921 			ret = set_irq_wake_real(irq, on);
922 			if (ret)
923 				desc->wake_depth = 1;
924 			else
925 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
926 		}
927 	}
928 
929 out_unlock:
930 	irq_put_desc_busunlock(desc, flags);
931 	return ret;
932 }
933 EXPORT_SYMBOL(irq_set_irq_wake);
934 
935 /*
936  * Internal function that tells the architecture code whether a
937  * particular irq has been exclusively allocated or is available
938  * for driver use.
939  */
940 int can_request_irq(unsigned int irq, unsigned long irqflags)
941 {
942 	unsigned long flags;
943 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
944 	int canrequest = 0;
945 
946 	if (!desc)
947 		return 0;
948 
949 	if (irq_settings_can_request(desc)) {
950 		if (!desc->action ||
951 		    irqflags & desc->action->flags & IRQF_SHARED)
952 			canrequest = 1;
953 	}
954 	irq_put_desc_unlock(desc, flags);
955 	return canrequest;
956 }
957 
958 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
959 {
960 	struct irq_chip *chip = desc->irq_data.chip;
961 	int ret, unmask = 0;
962 
963 	if (!chip || !chip->irq_set_type) {
964 		/*
965 		 * IRQF_TRIGGER_* but the PIC does not support multiple
966 		 * flow-types?
967 		 */
968 		pr_debug("No set_type function for IRQ %d (%s)\n",
969 			 irq_desc_get_irq(desc),
970 			 chip ? (chip->name ? : "unknown") : "unknown");
971 		return 0;
972 	}
973 
974 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
975 		if (!irqd_irq_masked(&desc->irq_data))
976 			mask_irq(desc);
977 		if (!irqd_irq_disabled(&desc->irq_data))
978 			unmask = 1;
979 	}
980 
981 	/* Mask all flags except trigger mode */
982 	flags &= IRQ_TYPE_SENSE_MASK;
983 	ret = chip->irq_set_type(&desc->irq_data, flags);
984 
985 	switch (ret) {
986 	case IRQ_SET_MASK_OK:
987 	case IRQ_SET_MASK_OK_DONE:
988 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
989 		irqd_set(&desc->irq_data, flags);
990 		fallthrough;
991 
992 	case IRQ_SET_MASK_OK_NOCOPY:
993 		flags = irqd_get_trigger_type(&desc->irq_data);
994 		irq_settings_set_trigger_mask(desc, flags);
995 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
996 		irq_settings_clr_level(desc);
997 		if (flags & IRQ_TYPE_LEVEL_MASK) {
998 			irq_settings_set_level(desc);
999 			irqd_set(&desc->irq_data, IRQD_LEVEL);
1000 		}
1001 
1002 		ret = 0;
1003 		break;
1004 	default:
1005 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007 	}
1008 	if (unmask)
1009 		unmask_irq(desc);
1010 	return ret;
1011 }
1012 
1013 #ifdef CONFIG_HARDIRQS_SW_RESEND
1014 int irq_set_parent(int irq, int parent_irq)
1015 {
1016 	unsigned long flags;
1017 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018 
1019 	if (!desc)
1020 		return -EINVAL;
1021 
1022 	desc->parent_irq = parent_irq;
1023 
1024 	irq_put_desc_unlock(desc, flags);
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(irq_set_parent);
1028 #endif
1029 
1030 /*
1031  * Default primary interrupt handler for threaded interrupts. Is
1032  * assigned as primary handler when request_threaded_irq is called
1033  * with handler == NULL. Useful for oneshot interrupts.
1034  */
1035 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036 {
1037 	return IRQ_WAKE_THREAD;
1038 }
1039 
1040 /*
1041  * Primary handler for nested threaded interrupts. Should never be
1042  * called.
1043  */
1044 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045 {
1046 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1047 	return IRQ_NONE;
1048 }
1049 
1050 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051 {
1052 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1053 	return IRQ_NONE;
1054 }
1055 
1056 #ifdef CONFIG_SMP
1057 /*
1058  * Check whether we need to change the affinity of the interrupt thread.
1059  */
1060 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061 {
1062 	cpumask_var_t mask;
1063 	bool valid = false;
1064 
1065 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066 		return;
1067 
1068 	__set_current_state(TASK_RUNNING);
1069 
1070 	/*
1071 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1072 	 * try again next time
1073 	 */
1074 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076 		return;
1077 	}
1078 
1079 	raw_spin_lock_irq(&desc->lock);
1080 	/*
1081 	 * This code is triggered unconditionally. Check the affinity
1082 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083 	 */
1084 	if (cpumask_available(desc->irq_common_data.affinity)) {
1085 		const struct cpumask *m;
1086 
1087 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088 		cpumask_copy(mask, m);
1089 		valid = true;
1090 	}
1091 	raw_spin_unlock_irq(&desc->lock);
1092 
1093 	if (valid)
1094 		set_cpus_allowed_ptr(current, mask);
1095 	free_cpumask_var(mask);
1096 }
1097 #else
1098 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099 #endif
1100 
1101 static int irq_wait_for_interrupt(struct irq_desc *desc,
1102 				  struct irqaction *action)
1103 {
1104 	for (;;) {
1105 		set_current_state(TASK_INTERRUPTIBLE);
1106 		irq_thread_check_affinity(desc, action);
1107 
1108 		if (kthread_should_stop()) {
1109 			/* may need to run one last time */
1110 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111 					       &action->thread_flags)) {
1112 				__set_current_state(TASK_RUNNING);
1113 				return 0;
1114 			}
1115 			__set_current_state(TASK_RUNNING);
1116 			return -1;
1117 		}
1118 
1119 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120 				       &action->thread_flags)) {
1121 			__set_current_state(TASK_RUNNING);
1122 			return 0;
1123 		}
1124 		schedule();
1125 	}
1126 }
1127 
1128 /*
1129  * Oneshot interrupts keep the irq line masked until the threaded
1130  * handler finished. unmask if the interrupt has not been disabled and
1131  * is marked MASKED.
1132  */
1133 static void irq_finalize_oneshot(struct irq_desc *desc,
1134 				 struct irqaction *action)
1135 {
1136 	if (!(desc->istate & IRQS_ONESHOT) ||
1137 	    action->handler == irq_forced_secondary_handler)
1138 		return;
1139 again:
1140 	chip_bus_lock(desc);
1141 	raw_spin_lock_irq(&desc->lock);
1142 
1143 	/*
1144 	 * Implausible though it may be we need to protect us against
1145 	 * the following scenario:
1146 	 *
1147 	 * The thread is faster done than the hard interrupt handler
1148 	 * on the other CPU. If we unmask the irq line then the
1149 	 * interrupt can come in again and masks the line, leaves due
1150 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1151 	 *
1152 	 * This also serializes the state of shared oneshot handlers
1153 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1154 	 * irq_wake_thread(). See the comment there which explains the
1155 	 * serialization.
1156 	 */
1157 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158 		raw_spin_unlock_irq(&desc->lock);
1159 		chip_bus_sync_unlock(desc);
1160 		cpu_relax();
1161 		goto again;
1162 	}
1163 
1164 	/*
1165 	 * Now check again, whether the thread should run. Otherwise
1166 	 * we would clear the threads_oneshot bit of this thread which
1167 	 * was just set.
1168 	 */
1169 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170 		goto out_unlock;
1171 
1172 	desc->threads_oneshot &= ~action->thread_mask;
1173 
1174 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175 	    irqd_irq_masked(&desc->irq_data))
1176 		unmask_threaded_irq(desc);
1177 
1178 out_unlock:
1179 	raw_spin_unlock_irq(&desc->lock);
1180 	chip_bus_sync_unlock(desc);
1181 }
1182 
1183 /*
1184  * Interrupts which are not explicitly requested as threaded
1185  * interrupts rely on the implicit bh/preempt disable of the hard irq
1186  * context. So we need to disable bh here to avoid deadlocks and other
1187  * side effects.
1188  */
1189 static irqreturn_t
1190 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191 {
1192 	irqreturn_t ret;
1193 
1194 	local_bh_disable();
1195 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196 		local_irq_disable();
1197 	ret = action->thread_fn(action->irq, action->dev_id);
1198 	if (ret == IRQ_HANDLED)
1199 		atomic_inc(&desc->threads_handled);
1200 
1201 	irq_finalize_oneshot(desc, action);
1202 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203 		local_irq_enable();
1204 	local_bh_enable();
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Interrupts explicitly requested as threaded interrupts want to be
1210  * preemptible - many of them need to sleep and wait for slow busses to
1211  * complete.
1212  */
1213 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214 		struct irqaction *action)
1215 {
1216 	irqreturn_t ret;
1217 
1218 	ret = action->thread_fn(action->irq, action->dev_id);
1219 	if (ret == IRQ_HANDLED)
1220 		atomic_inc(&desc->threads_handled);
1221 
1222 	irq_finalize_oneshot(desc, action);
1223 	return ret;
1224 }
1225 
1226 void wake_threads_waitq(struct irq_desc *desc)
1227 {
1228 	if (atomic_dec_and_test(&desc->threads_active))
1229 		wake_up(&desc->wait_for_threads);
1230 }
1231 
1232 static void irq_thread_dtor(struct callback_head *unused)
1233 {
1234 	struct task_struct *tsk = current;
1235 	struct irq_desc *desc;
1236 	struct irqaction *action;
1237 
1238 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239 		return;
1240 
1241 	action = kthread_data(tsk);
1242 
1243 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244 	       tsk->comm, tsk->pid, action->irq);
1245 
1246 
1247 	desc = irq_to_desc(action->irq);
1248 	/*
1249 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1250 	 * desc->threads_active and wake possible waiters.
1251 	 */
1252 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253 		wake_threads_waitq(desc);
1254 
1255 	/* Prevent a stale desc->threads_oneshot */
1256 	irq_finalize_oneshot(desc, action);
1257 }
1258 
1259 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260 {
1261 	struct irqaction *secondary = action->secondary;
1262 
1263 	if (WARN_ON_ONCE(!secondary))
1264 		return;
1265 
1266 	raw_spin_lock_irq(&desc->lock);
1267 	__irq_wake_thread(desc, secondary);
1268 	raw_spin_unlock_irq(&desc->lock);
1269 }
1270 
1271 /*
1272  * Internal function to notify that a interrupt thread is ready.
1273  */
1274 static void irq_thread_set_ready(struct irq_desc *desc,
1275 				 struct irqaction *action)
1276 {
1277 	set_bit(IRQTF_READY, &action->thread_flags);
1278 	wake_up(&desc->wait_for_threads);
1279 }
1280 
1281 /*
1282  * Internal function to wake up a interrupt thread and wait until it is
1283  * ready.
1284  */
1285 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286 						  struct irqaction *action)
1287 {
1288 	if (!action || !action->thread)
1289 		return;
1290 
1291 	wake_up_process(action->thread);
1292 	wait_event(desc->wait_for_threads,
1293 		   test_bit(IRQTF_READY, &action->thread_flags));
1294 }
1295 
1296 /*
1297  * Interrupt handler thread
1298  */
1299 static int irq_thread(void *data)
1300 {
1301 	struct callback_head on_exit_work;
1302 	struct irqaction *action = data;
1303 	struct irq_desc *desc = irq_to_desc(action->irq);
1304 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305 			struct irqaction *action);
1306 
1307 	irq_thread_set_ready(desc, action);
1308 
1309 	sched_set_fifo(current);
1310 
1311 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312 					   &action->thread_flags))
1313 		handler_fn = irq_forced_thread_fn;
1314 	else
1315 		handler_fn = irq_thread_fn;
1316 
1317 	init_task_work(&on_exit_work, irq_thread_dtor);
1318 	task_work_add(current, &on_exit_work, TWA_NONE);
1319 
1320 	while (!irq_wait_for_interrupt(desc, action)) {
1321 		irqreturn_t action_ret;
1322 
1323 		action_ret = handler_fn(desc, action);
1324 		if (action_ret == IRQ_WAKE_THREAD)
1325 			irq_wake_secondary(desc, action);
1326 
1327 		wake_threads_waitq(desc);
1328 	}
1329 
1330 	/*
1331 	 * This is the regular exit path. __free_irq() is stopping the
1332 	 * thread via kthread_stop() after calling
1333 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334 	 * oneshot mask bit can be set.
1335 	 */
1336 	task_work_cancel(current, irq_thread_dtor);
1337 	return 0;
1338 }
1339 
1340 /**
1341  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1342  *	@irq:		Interrupt line
1343  *	@dev_id:	Device identity for which the thread should be woken
1344  *
1345  */
1346 void irq_wake_thread(unsigned int irq, void *dev_id)
1347 {
1348 	struct irq_desc *desc = irq_to_desc(irq);
1349 	struct irqaction *action;
1350 	unsigned long flags;
1351 
1352 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353 		return;
1354 
1355 	raw_spin_lock_irqsave(&desc->lock, flags);
1356 	for_each_action_of_desc(desc, action) {
1357 		if (action->dev_id == dev_id) {
1358 			if (action->thread)
1359 				__irq_wake_thread(desc, action);
1360 			break;
1361 		}
1362 	}
1363 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1364 }
1365 EXPORT_SYMBOL_GPL(irq_wake_thread);
1366 
1367 static int irq_setup_forced_threading(struct irqaction *new)
1368 {
1369 	if (!force_irqthreads())
1370 		return 0;
1371 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372 		return 0;
1373 
1374 	/*
1375 	 * No further action required for interrupts which are requested as
1376 	 * threaded interrupts already
1377 	 */
1378 	if (new->handler == irq_default_primary_handler)
1379 		return 0;
1380 
1381 	new->flags |= IRQF_ONESHOT;
1382 
1383 	/*
1384 	 * Handle the case where we have a real primary handler and a
1385 	 * thread handler. We force thread them as well by creating a
1386 	 * secondary action.
1387 	 */
1388 	if (new->handler && new->thread_fn) {
1389 		/* Allocate the secondary action */
1390 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391 		if (!new->secondary)
1392 			return -ENOMEM;
1393 		new->secondary->handler = irq_forced_secondary_handler;
1394 		new->secondary->thread_fn = new->thread_fn;
1395 		new->secondary->dev_id = new->dev_id;
1396 		new->secondary->irq = new->irq;
1397 		new->secondary->name = new->name;
1398 	}
1399 	/* Deal with the primary handler */
1400 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401 	new->thread_fn = new->handler;
1402 	new->handler = irq_default_primary_handler;
1403 	return 0;
1404 }
1405 
1406 static int irq_request_resources(struct irq_desc *desc)
1407 {
1408 	struct irq_data *d = &desc->irq_data;
1409 	struct irq_chip *c = d->chip;
1410 
1411 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412 }
1413 
1414 static void irq_release_resources(struct irq_desc *desc)
1415 {
1416 	struct irq_data *d = &desc->irq_data;
1417 	struct irq_chip *c = d->chip;
1418 
1419 	if (c->irq_release_resources)
1420 		c->irq_release_resources(d);
1421 }
1422 
1423 static bool irq_supports_nmi(struct irq_desc *desc)
1424 {
1425 	struct irq_data *d = irq_desc_get_irq_data(desc);
1426 
1427 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1429 	if (d->parent_data)
1430 		return false;
1431 #endif
1432 	/* Don't support NMIs for chips behind a slow bus */
1433 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434 		return false;
1435 
1436 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437 }
1438 
1439 static int irq_nmi_setup(struct irq_desc *desc)
1440 {
1441 	struct irq_data *d = irq_desc_get_irq_data(desc);
1442 	struct irq_chip *c = d->chip;
1443 
1444 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445 }
1446 
1447 static void irq_nmi_teardown(struct irq_desc *desc)
1448 {
1449 	struct irq_data *d = irq_desc_get_irq_data(desc);
1450 	struct irq_chip *c = d->chip;
1451 
1452 	if (c->irq_nmi_teardown)
1453 		c->irq_nmi_teardown(d);
1454 }
1455 
1456 static int
1457 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458 {
1459 	struct task_struct *t;
1460 
1461 	if (!secondary) {
1462 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463 				   new->name);
1464 	} else {
1465 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466 				   new->name);
1467 	}
1468 
1469 	if (IS_ERR(t))
1470 		return PTR_ERR(t);
1471 
1472 	/*
1473 	 * We keep the reference to the task struct even if
1474 	 * the thread dies to avoid that the interrupt code
1475 	 * references an already freed task_struct.
1476 	 */
1477 	new->thread = get_task_struct(t);
1478 	/*
1479 	 * Tell the thread to set its affinity. This is
1480 	 * important for shared interrupt handlers as we do
1481 	 * not invoke setup_affinity() for the secondary
1482 	 * handlers as everything is already set up. Even for
1483 	 * interrupts marked with IRQF_NO_BALANCE this is
1484 	 * correct as we want the thread to move to the cpu(s)
1485 	 * on which the requesting code placed the interrupt.
1486 	 */
1487 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Internal function to register an irqaction - typically used to
1493  * allocate special interrupts that are part of the architecture.
1494  *
1495  * Locking rules:
1496  *
1497  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1498  *   chip_bus_lock	Provides serialization for slow bus operations
1499  *     desc->lock	Provides serialization against hard interrupts
1500  *
1501  * chip_bus_lock and desc->lock are sufficient for all other management and
1502  * interrupt related functions. desc->request_mutex solely serializes
1503  * request/free_irq().
1504  */
1505 static int
1506 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507 {
1508 	struct irqaction *old, **old_ptr;
1509 	unsigned long flags, thread_mask = 0;
1510 	int ret, nested, shared = 0;
1511 
1512 	if (!desc)
1513 		return -EINVAL;
1514 
1515 	if (desc->irq_data.chip == &no_irq_chip)
1516 		return -ENOSYS;
1517 	if (!try_module_get(desc->owner))
1518 		return -ENODEV;
1519 
1520 	new->irq = irq;
1521 
1522 	/*
1523 	 * If the trigger type is not specified by the caller,
1524 	 * then use the default for this interrupt.
1525 	 */
1526 	if (!(new->flags & IRQF_TRIGGER_MASK))
1527 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528 
1529 	/*
1530 	 * Check whether the interrupt nests into another interrupt
1531 	 * thread.
1532 	 */
1533 	nested = irq_settings_is_nested_thread(desc);
1534 	if (nested) {
1535 		if (!new->thread_fn) {
1536 			ret = -EINVAL;
1537 			goto out_mput;
1538 		}
1539 		/*
1540 		 * Replace the primary handler which was provided from
1541 		 * the driver for non nested interrupt handling by the
1542 		 * dummy function which warns when called.
1543 		 */
1544 		new->handler = irq_nested_primary_handler;
1545 	} else {
1546 		if (irq_settings_can_thread(desc)) {
1547 			ret = irq_setup_forced_threading(new);
1548 			if (ret)
1549 				goto out_mput;
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Create a handler thread when a thread function is supplied
1555 	 * and the interrupt does not nest into another interrupt
1556 	 * thread.
1557 	 */
1558 	if (new->thread_fn && !nested) {
1559 		ret = setup_irq_thread(new, irq, false);
1560 		if (ret)
1561 			goto out_mput;
1562 		if (new->secondary) {
1563 			ret = setup_irq_thread(new->secondary, irq, true);
1564 			if (ret)
1565 				goto out_thread;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Drivers are often written to work w/o knowledge about the
1571 	 * underlying irq chip implementation, so a request for a
1572 	 * threaded irq without a primary hard irq context handler
1573 	 * requires the ONESHOT flag to be set. Some irq chips like
1574 	 * MSI based interrupts are per se one shot safe. Check the
1575 	 * chip flags, so we can avoid the unmask dance at the end of
1576 	 * the threaded handler for those.
1577 	 */
1578 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579 		new->flags &= ~IRQF_ONESHOT;
1580 
1581 	/*
1582 	 * Protects against a concurrent __free_irq() call which might wait
1583 	 * for synchronize_hardirq() to complete without holding the optional
1584 	 * chip bus lock and desc->lock. Also protects against handing out
1585 	 * a recycled oneshot thread_mask bit while it's still in use by
1586 	 * its previous owner.
1587 	 */
1588 	mutex_lock(&desc->request_mutex);
1589 
1590 	/*
1591 	 * Acquire bus lock as the irq_request_resources() callback below
1592 	 * might rely on the serialization or the magic power management
1593 	 * functions which are abusing the irq_bus_lock() callback,
1594 	 */
1595 	chip_bus_lock(desc);
1596 
1597 	/* First installed action requests resources. */
1598 	if (!desc->action) {
1599 		ret = irq_request_resources(desc);
1600 		if (ret) {
1601 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602 			       new->name, irq, desc->irq_data.chip->name);
1603 			goto out_bus_unlock;
1604 		}
1605 	}
1606 
1607 	/*
1608 	 * The following block of code has to be executed atomically
1609 	 * protected against a concurrent interrupt and any of the other
1610 	 * management calls which are not serialized via
1611 	 * desc->request_mutex or the optional bus lock.
1612 	 */
1613 	raw_spin_lock_irqsave(&desc->lock, flags);
1614 	old_ptr = &desc->action;
1615 	old = *old_ptr;
1616 	if (old) {
1617 		/*
1618 		 * Can't share interrupts unless both agree to and are
1619 		 * the same type (level, edge, polarity). So both flag
1620 		 * fields must have IRQF_SHARED set and the bits which
1621 		 * set the trigger type must match. Also all must
1622 		 * agree on ONESHOT.
1623 		 * Interrupt lines used for NMIs cannot be shared.
1624 		 */
1625 		unsigned int oldtype;
1626 
1627 		if (desc->istate & IRQS_NMI) {
1628 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629 				new->name, irq, desc->irq_data.chip->name);
1630 			ret = -EINVAL;
1631 			goto out_unlock;
1632 		}
1633 
1634 		/*
1635 		 * If nobody did set the configuration before, inherit
1636 		 * the one provided by the requester.
1637 		 */
1638 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1640 		} else {
1641 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1642 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1643 		}
1644 
1645 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1647 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1648 			goto mismatch;
1649 
1650 		/* All handlers must agree on per-cpuness */
1651 		if ((old->flags & IRQF_PERCPU) !=
1652 		    (new->flags & IRQF_PERCPU))
1653 			goto mismatch;
1654 
1655 		/* add new interrupt at end of irq queue */
1656 		do {
1657 			/*
1658 			 * Or all existing action->thread_mask bits,
1659 			 * so we can find the next zero bit for this
1660 			 * new action.
1661 			 */
1662 			thread_mask |= old->thread_mask;
1663 			old_ptr = &old->next;
1664 			old = *old_ptr;
1665 		} while (old);
1666 		shared = 1;
1667 	}
1668 
1669 	/*
1670 	 * Setup the thread mask for this irqaction for ONESHOT. For
1671 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1672 	 * conditional in irq_wake_thread().
1673 	 */
1674 	if (new->flags & IRQF_ONESHOT) {
1675 		/*
1676 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1677 		 * but who knows.
1678 		 */
1679 		if (thread_mask == ~0UL) {
1680 			ret = -EBUSY;
1681 			goto out_unlock;
1682 		}
1683 		/*
1684 		 * The thread_mask for the action is or'ed to
1685 		 * desc->thread_active to indicate that the
1686 		 * IRQF_ONESHOT thread handler has been woken, but not
1687 		 * yet finished. The bit is cleared when a thread
1688 		 * completes. When all threads of a shared interrupt
1689 		 * line have completed desc->threads_active becomes
1690 		 * zero and the interrupt line is unmasked. See
1691 		 * handle.c:irq_wake_thread() for further information.
1692 		 *
1693 		 * If no thread is woken by primary (hard irq context)
1694 		 * interrupt handlers, then desc->threads_active is
1695 		 * also checked for zero to unmask the irq line in the
1696 		 * affected hard irq flow handlers
1697 		 * (handle_[fasteoi|level]_irq).
1698 		 *
1699 		 * The new action gets the first zero bit of
1700 		 * thread_mask assigned. See the loop above which or's
1701 		 * all existing action->thread_mask bits.
1702 		 */
1703 		new->thread_mask = 1UL << ffz(thread_mask);
1704 
1705 	} else if (new->handler == irq_default_primary_handler &&
1706 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1707 		/*
1708 		 * The interrupt was requested with handler = NULL, so
1709 		 * we use the default primary handler for it. But it
1710 		 * does not have the oneshot flag set. In combination
1711 		 * with level interrupts this is deadly, because the
1712 		 * default primary handler just wakes the thread, then
1713 		 * the irq lines is reenabled, but the device still
1714 		 * has the level irq asserted. Rinse and repeat....
1715 		 *
1716 		 * While this works for edge type interrupts, we play
1717 		 * it safe and reject unconditionally because we can't
1718 		 * say for sure which type this interrupt really
1719 		 * has. The type flags are unreliable as the
1720 		 * underlying chip implementation can override them.
1721 		 */
1722 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1723 		       new->name, irq);
1724 		ret = -EINVAL;
1725 		goto out_unlock;
1726 	}
1727 
1728 	if (!shared) {
1729 		/* Setup the type (level, edge polarity) if configured: */
1730 		if (new->flags & IRQF_TRIGGER_MASK) {
1731 			ret = __irq_set_trigger(desc,
1732 						new->flags & IRQF_TRIGGER_MASK);
1733 
1734 			if (ret)
1735 				goto out_unlock;
1736 		}
1737 
1738 		/*
1739 		 * Activate the interrupt. That activation must happen
1740 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1741 		 * and the callers are supposed to handle
1742 		 * that. enable_irq() of an interrupt requested with
1743 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1744 		 * keeps it in shutdown mode, it merily associates
1745 		 * resources if necessary and if that's not possible it
1746 		 * fails. Interrupts which are in managed shutdown mode
1747 		 * will simply ignore that activation request.
1748 		 */
1749 		ret = irq_activate(desc);
1750 		if (ret)
1751 			goto out_unlock;
1752 
1753 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1754 				  IRQS_ONESHOT | IRQS_WAITING);
1755 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1756 
1757 		if (new->flags & IRQF_PERCPU) {
1758 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1759 			irq_settings_set_per_cpu(desc);
1760 			if (new->flags & IRQF_NO_DEBUG)
1761 				irq_settings_set_no_debug(desc);
1762 		}
1763 
1764 		if (noirqdebug)
1765 			irq_settings_set_no_debug(desc);
1766 
1767 		if (new->flags & IRQF_ONESHOT)
1768 			desc->istate |= IRQS_ONESHOT;
1769 
1770 		/* Exclude IRQ from balancing if requested */
1771 		if (new->flags & IRQF_NOBALANCING) {
1772 			irq_settings_set_no_balancing(desc);
1773 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1774 		}
1775 
1776 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1777 		    irq_settings_can_autoenable(desc)) {
1778 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1779 		} else {
1780 			/*
1781 			 * Shared interrupts do not go well with disabling
1782 			 * auto enable. The sharing interrupt might request
1783 			 * it while it's still disabled and then wait for
1784 			 * interrupts forever.
1785 			 */
1786 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1787 			/* Undo nested disables: */
1788 			desc->depth = 1;
1789 		}
1790 
1791 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1792 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1793 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1794 
1795 		if (nmsk != omsk)
1796 			/* hope the handler works with current  trigger mode */
1797 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1798 				irq, omsk, nmsk);
1799 	}
1800 
1801 	*old_ptr = new;
1802 
1803 	irq_pm_install_action(desc, new);
1804 
1805 	/* Reset broken irq detection when installing new handler */
1806 	desc->irq_count = 0;
1807 	desc->irqs_unhandled = 0;
1808 
1809 	/*
1810 	 * Check whether we disabled the irq via the spurious handler
1811 	 * before. Reenable it and give it another chance.
1812 	 */
1813 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1814 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1815 		__enable_irq(desc);
1816 	}
1817 
1818 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1819 	chip_bus_sync_unlock(desc);
1820 	mutex_unlock(&desc->request_mutex);
1821 
1822 	irq_setup_timings(desc, new);
1823 
1824 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1825 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1826 
1827 	register_irq_proc(irq, desc);
1828 	new->dir = NULL;
1829 	register_handler_proc(irq, new);
1830 	return 0;
1831 
1832 mismatch:
1833 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1834 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1835 		       irq, new->flags, new->name, old->flags, old->name);
1836 #ifdef CONFIG_DEBUG_SHIRQ
1837 		dump_stack();
1838 #endif
1839 	}
1840 	ret = -EBUSY;
1841 
1842 out_unlock:
1843 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1844 
1845 	if (!desc->action)
1846 		irq_release_resources(desc);
1847 out_bus_unlock:
1848 	chip_bus_sync_unlock(desc);
1849 	mutex_unlock(&desc->request_mutex);
1850 
1851 out_thread:
1852 	if (new->thread) {
1853 		struct task_struct *t = new->thread;
1854 
1855 		new->thread = NULL;
1856 		kthread_stop_put(t);
1857 	}
1858 	if (new->secondary && new->secondary->thread) {
1859 		struct task_struct *t = new->secondary->thread;
1860 
1861 		new->secondary->thread = NULL;
1862 		kthread_stop_put(t);
1863 	}
1864 out_mput:
1865 	module_put(desc->owner);
1866 	return ret;
1867 }
1868 
1869 /*
1870  * Internal function to unregister an irqaction - used to free
1871  * regular and special interrupts that are part of the architecture.
1872  */
1873 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1874 {
1875 	unsigned irq = desc->irq_data.irq;
1876 	struct irqaction *action, **action_ptr;
1877 	unsigned long flags;
1878 
1879 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1880 
1881 	mutex_lock(&desc->request_mutex);
1882 	chip_bus_lock(desc);
1883 	raw_spin_lock_irqsave(&desc->lock, flags);
1884 
1885 	/*
1886 	 * There can be multiple actions per IRQ descriptor, find the right
1887 	 * one based on the dev_id:
1888 	 */
1889 	action_ptr = &desc->action;
1890 	for (;;) {
1891 		action = *action_ptr;
1892 
1893 		if (!action) {
1894 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1895 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1896 			chip_bus_sync_unlock(desc);
1897 			mutex_unlock(&desc->request_mutex);
1898 			return NULL;
1899 		}
1900 
1901 		if (action->dev_id == dev_id)
1902 			break;
1903 		action_ptr = &action->next;
1904 	}
1905 
1906 	/* Found it - now remove it from the list of entries: */
1907 	*action_ptr = action->next;
1908 
1909 	irq_pm_remove_action(desc, action);
1910 
1911 	/* If this was the last handler, shut down the IRQ line: */
1912 	if (!desc->action) {
1913 		irq_settings_clr_disable_unlazy(desc);
1914 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1915 		irq_shutdown(desc);
1916 	}
1917 
1918 #ifdef CONFIG_SMP
1919 	/* make sure affinity_hint is cleaned up */
1920 	if (WARN_ON_ONCE(desc->affinity_hint))
1921 		desc->affinity_hint = NULL;
1922 #endif
1923 
1924 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1925 	/*
1926 	 * Drop bus_lock here so the changes which were done in the chip
1927 	 * callbacks above are synced out to the irq chips which hang
1928 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1929 	 *
1930 	 * Aside of that the bus_lock can also be taken from the threaded
1931 	 * handler in irq_finalize_oneshot() which results in a deadlock
1932 	 * because kthread_stop() would wait forever for the thread to
1933 	 * complete, which is blocked on the bus lock.
1934 	 *
1935 	 * The still held desc->request_mutex() protects against a
1936 	 * concurrent request_irq() of this irq so the release of resources
1937 	 * and timing data is properly serialized.
1938 	 */
1939 	chip_bus_sync_unlock(desc);
1940 
1941 	unregister_handler_proc(irq, action);
1942 
1943 	/*
1944 	 * Make sure it's not being used on another CPU and if the chip
1945 	 * supports it also make sure that there is no (not yet serviced)
1946 	 * interrupt in flight at the hardware level.
1947 	 */
1948 	__synchronize_irq(desc);
1949 
1950 #ifdef CONFIG_DEBUG_SHIRQ
1951 	/*
1952 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1953 	 * event to happen even now it's being freed, so let's make sure that
1954 	 * is so by doing an extra call to the handler ....
1955 	 *
1956 	 * ( We do this after actually deregistering it, to make sure that a
1957 	 *   'real' IRQ doesn't run in parallel with our fake. )
1958 	 */
1959 	if (action->flags & IRQF_SHARED) {
1960 		local_irq_save(flags);
1961 		action->handler(irq, dev_id);
1962 		local_irq_restore(flags);
1963 	}
1964 #endif
1965 
1966 	/*
1967 	 * The action has already been removed above, but the thread writes
1968 	 * its oneshot mask bit when it completes. Though request_mutex is
1969 	 * held across this which prevents __setup_irq() from handing out
1970 	 * the same bit to a newly requested action.
1971 	 */
1972 	if (action->thread) {
1973 		kthread_stop_put(action->thread);
1974 		if (action->secondary && action->secondary->thread)
1975 			kthread_stop_put(action->secondary->thread);
1976 	}
1977 
1978 	/* Last action releases resources */
1979 	if (!desc->action) {
1980 		/*
1981 		 * Reacquire bus lock as irq_release_resources() might
1982 		 * require it to deallocate resources over the slow bus.
1983 		 */
1984 		chip_bus_lock(desc);
1985 		/*
1986 		 * There is no interrupt on the fly anymore. Deactivate it
1987 		 * completely.
1988 		 */
1989 		raw_spin_lock_irqsave(&desc->lock, flags);
1990 		irq_domain_deactivate_irq(&desc->irq_data);
1991 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1992 
1993 		irq_release_resources(desc);
1994 		chip_bus_sync_unlock(desc);
1995 		irq_remove_timings(desc);
1996 	}
1997 
1998 	mutex_unlock(&desc->request_mutex);
1999 
2000 	irq_chip_pm_put(&desc->irq_data);
2001 	module_put(desc->owner);
2002 	kfree(action->secondary);
2003 	return action;
2004 }
2005 
2006 /**
2007  *	free_irq - free an interrupt allocated with request_irq
2008  *	@irq: Interrupt line to free
2009  *	@dev_id: Device identity to free
2010  *
2011  *	Remove an interrupt handler. The handler is removed and if the
2012  *	interrupt line is no longer in use by any driver it is disabled.
2013  *	On a shared IRQ the caller must ensure the interrupt is disabled
2014  *	on the card it drives before calling this function. The function
2015  *	does not return until any executing interrupts for this IRQ
2016  *	have completed.
2017  *
2018  *	This function must not be called from interrupt context.
2019  *
2020  *	Returns the devname argument passed to request_irq.
2021  */
2022 const void *free_irq(unsigned int irq, void *dev_id)
2023 {
2024 	struct irq_desc *desc = irq_to_desc(irq);
2025 	struct irqaction *action;
2026 	const char *devname;
2027 
2028 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2029 		return NULL;
2030 
2031 #ifdef CONFIG_SMP
2032 	if (WARN_ON(desc->affinity_notify))
2033 		desc->affinity_notify = NULL;
2034 #endif
2035 
2036 	action = __free_irq(desc, dev_id);
2037 
2038 	if (!action)
2039 		return NULL;
2040 
2041 	devname = action->name;
2042 	kfree(action);
2043 	return devname;
2044 }
2045 EXPORT_SYMBOL(free_irq);
2046 
2047 /* This function must be called with desc->lock held */
2048 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2049 {
2050 	const char *devname = NULL;
2051 
2052 	desc->istate &= ~IRQS_NMI;
2053 
2054 	if (!WARN_ON(desc->action == NULL)) {
2055 		irq_pm_remove_action(desc, desc->action);
2056 		devname = desc->action->name;
2057 		unregister_handler_proc(irq, desc->action);
2058 
2059 		kfree(desc->action);
2060 		desc->action = NULL;
2061 	}
2062 
2063 	irq_settings_clr_disable_unlazy(desc);
2064 	irq_shutdown_and_deactivate(desc);
2065 
2066 	irq_release_resources(desc);
2067 
2068 	irq_chip_pm_put(&desc->irq_data);
2069 	module_put(desc->owner);
2070 
2071 	return devname;
2072 }
2073 
2074 const void *free_nmi(unsigned int irq, void *dev_id)
2075 {
2076 	struct irq_desc *desc = irq_to_desc(irq);
2077 	unsigned long flags;
2078 	const void *devname;
2079 
2080 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2081 		return NULL;
2082 
2083 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2084 		return NULL;
2085 
2086 	/* NMI still enabled */
2087 	if (WARN_ON(desc->depth == 0))
2088 		disable_nmi_nosync(irq);
2089 
2090 	raw_spin_lock_irqsave(&desc->lock, flags);
2091 
2092 	irq_nmi_teardown(desc);
2093 	devname = __cleanup_nmi(irq, desc);
2094 
2095 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2096 
2097 	return devname;
2098 }
2099 
2100 /**
2101  *	request_threaded_irq - allocate an interrupt line
2102  *	@irq: Interrupt line to allocate
2103  *	@handler: Function to be called when the IRQ occurs.
2104  *		  Primary handler for threaded interrupts.
2105  *		  If handler is NULL and thread_fn != NULL
2106  *		  the default primary handler is installed.
2107  *	@thread_fn: Function called from the irq handler thread
2108  *		    If NULL, no irq thread is created
2109  *	@irqflags: Interrupt type flags
2110  *	@devname: An ascii name for the claiming device
2111  *	@dev_id: A cookie passed back to the handler function
2112  *
2113  *	This call allocates interrupt resources and enables the
2114  *	interrupt line and IRQ handling. From the point this
2115  *	call is made your handler function may be invoked. Since
2116  *	your handler function must clear any interrupt the board
2117  *	raises, you must take care both to initialise your hardware
2118  *	and to set up the interrupt handler in the right order.
2119  *
2120  *	If you want to set up a threaded irq handler for your device
2121  *	then you need to supply @handler and @thread_fn. @handler is
2122  *	still called in hard interrupt context and has to check
2123  *	whether the interrupt originates from the device. If yes it
2124  *	needs to disable the interrupt on the device and return
2125  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2126  *	@thread_fn. This split handler design is necessary to support
2127  *	shared interrupts.
2128  *
2129  *	Dev_id must be globally unique. Normally the address of the
2130  *	device data structure is used as the cookie. Since the handler
2131  *	receives this value it makes sense to use it.
2132  *
2133  *	If your interrupt is shared you must pass a non NULL dev_id
2134  *	as this is required when freeing the interrupt.
2135  *
2136  *	Flags:
2137  *
2138  *	IRQF_SHARED		Interrupt is shared
2139  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2140  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2141  */
2142 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2143 			 irq_handler_t thread_fn, unsigned long irqflags,
2144 			 const char *devname, void *dev_id)
2145 {
2146 	struct irqaction *action;
2147 	struct irq_desc *desc;
2148 	int retval;
2149 
2150 	if (irq == IRQ_NOTCONNECTED)
2151 		return -ENOTCONN;
2152 
2153 	/*
2154 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2155 	 * otherwise we'll have trouble later trying to figure out
2156 	 * which interrupt is which (messes up the interrupt freeing
2157 	 * logic etc).
2158 	 *
2159 	 * Also shared interrupts do not go well with disabling auto enable.
2160 	 * The sharing interrupt might request it while it's still disabled
2161 	 * and then wait for interrupts forever.
2162 	 *
2163 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2164 	 * it cannot be set along with IRQF_NO_SUSPEND.
2165 	 */
2166 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2167 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2168 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2169 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2170 		return -EINVAL;
2171 
2172 	desc = irq_to_desc(irq);
2173 	if (!desc)
2174 		return -EINVAL;
2175 
2176 	if (!irq_settings_can_request(desc) ||
2177 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2178 		return -EINVAL;
2179 
2180 	if (!handler) {
2181 		if (!thread_fn)
2182 			return -EINVAL;
2183 		handler = irq_default_primary_handler;
2184 	}
2185 
2186 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2187 	if (!action)
2188 		return -ENOMEM;
2189 
2190 	action->handler = handler;
2191 	action->thread_fn = thread_fn;
2192 	action->flags = irqflags;
2193 	action->name = devname;
2194 	action->dev_id = dev_id;
2195 
2196 	retval = irq_chip_pm_get(&desc->irq_data);
2197 	if (retval < 0) {
2198 		kfree(action);
2199 		return retval;
2200 	}
2201 
2202 	retval = __setup_irq(irq, desc, action);
2203 
2204 	if (retval) {
2205 		irq_chip_pm_put(&desc->irq_data);
2206 		kfree(action->secondary);
2207 		kfree(action);
2208 	}
2209 
2210 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2211 	if (!retval && (irqflags & IRQF_SHARED)) {
2212 		/*
2213 		 * It's a shared IRQ -- the driver ought to be prepared for it
2214 		 * to happen immediately, so let's make sure....
2215 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2216 		 * run in parallel with our fake.
2217 		 */
2218 		unsigned long flags;
2219 
2220 		disable_irq(irq);
2221 		local_irq_save(flags);
2222 
2223 		handler(irq, dev_id);
2224 
2225 		local_irq_restore(flags);
2226 		enable_irq(irq);
2227 	}
2228 #endif
2229 	return retval;
2230 }
2231 EXPORT_SYMBOL(request_threaded_irq);
2232 
2233 /**
2234  *	request_any_context_irq - allocate an interrupt line
2235  *	@irq: Interrupt line to allocate
2236  *	@handler: Function to be called when the IRQ occurs.
2237  *		  Threaded handler for threaded interrupts.
2238  *	@flags: Interrupt type flags
2239  *	@name: An ascii name for the claiming device
2240  *	@dev_id: A cookie passed back to the handler function
2241  *
2242  *	This call allocates interrupt resources and enables the
2243  *	interrupt line and IRQ handling. It selects either a
2244  *	hardirq or threaded handling method depending on the
2245  *	context.
2246  *
2247  *	On failure, it returns a negative value. On success,
2248  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2249  */
2250 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2251 			    unsigned long flags, const char *name, void *dev_id)
2252 {
2253 	struct irq_desc *desc;
2254 	int ret;
2255 
2256 	if (irq == IRQ_NOTCONNECTED)
2257 		return -ENOTCONN;
2258 
2259 	desc = irq_to_desc(irq);
2260 	if (!desc)
2261 		return -EINVAL;
2262 
2263 	if (irq_settings_is_nested_thread(desc)) {
2264 		ret = request_threaded_irq(irq, NULL, handler,
2265 					   flags, name, dev_id);
2266 		return !ret ? IRQC_IS_NESTED : ret;
2267 	}
2268 
2269 	ret = request_irq(irq, handler, flags, name, dev_id);
2270 	return !ret ? IRQC_IS_HARDIRQ : ret;
2271 }
2272 EXPORT_SYMBOL_GPL(request_any_context_irq);
2273 
2274 /**
2275  *	request_nmi - allocate an interrupt line for NMI delivery
2276  *	@irq: Interrupt line to allocate
2277  *	@handler: Function to be called when the IRQ occurs.
2278  *		  Threaded handler for threaded interrupts.
2279  *	@irqflags: Interrupt type flags
2280  *	@name: An ascii name for the claiming device
2281  *	@dev_id: A cookie passed back to the handler function
2282  *
2283  *	This call allocates interrupt resources and enables the
2284  *	interrupt line and IRQ handling. It sets up the IRQ line
2285  *	to be handled as an NMI.
2286  *
2287  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2288  *	cannot be threaded.
2289  *
2290  *	Interrupt lines requested for NMI delivering must produce per cpu
2291  *	interrupts and have auto enabling setting disabled.
2292  *
2293  *	Dev_id must be globally unique. Normally the address of the
2294  *	device data structure is used as the cookie. Since the handler
2295  *	receives this value it makes sense to use it.
2296  *
2297  *	If the interrupt line cannot be used to deliver NMIs, function
2298  *	will fail and return a negative value.
2299  */
2300 int request_nmi(unsigned int irq, irq_handler_t handler,
2301 		unsigned long irqflags, const char *name, void *dev_id)
2302 {
2303 	struct irqaction *action;
2304 	struct irq_desc *desc;
2305 	unsigned long flags;
2306 	int retval;
2307 
2308 	if (irq == IRQ_NOTCONNECTED)
2309 		return -ENOTCONN;
2310 
2311 	/* NMI cannot be shared, used for Polling */
2312 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2313 		return -EINVAL;
2314 
2315 	if (!(irqflags & IRQF_PERCPU))
2316 		return -EINVAL;
2317 
2318 	if (!handler)
2319 		return -EINVAL;
2320 
2321 	desc = irq_to_desc(irq);
2322 
2323 	if (!desc || (irq_settings_can_autoenable(desc) &&
2324 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2325 	    !irq_settings_can_request(desc) ||
2326 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2327 	    !irq_supports_nmi(desc))
2328 		return -EINVAL;
2329 
2330 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2331 	if (!action)
2332 		return -ENOMEM;
2333 
2334 	action->handler = handler;
2335 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2336 	action->name = name;
2337 	action->dev_id = dev_id;
2338 
2339 	retval = irq_chip_pm_get(&desc->irq_data);
2340 	if (retval < 0)
2341 		goto err_out;
2342 
2343 	retval = __setup_irq(irq, desc, action);
2344 	if (retval)
2345 		goto err_irq_setup;
2346 
2347 	raw_spin_lock_irqsave(&desc->lock, flags);
2348 
2349 	/* Setup NMI state */
2350 	desc->istate |= IRQS_NMI;
2351 	retval = irq_nmi_setup(desc);
2352 	if (retval) {
2353 		__cleanup_nmi(irq, desc);
2354 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2355 		return -EINVAL;
2356 	}
2357 
2358 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2359 
2360 	return 0;
2361 
2362 err_irq_setup:
2363 	irq_chip_pm_put(&desc->irq_data);
2364 err_out:
2365 	kfree(action);
2366 
2367 	return retval;
2368 }
2369 
2370 void enable_percpu_irq(unsigned int irq, unsigned int type)
2371 {
2372 	unsigned int cpu = smp_processor_id();
2373 	unsigned long flags;
2374 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2375 
2376 	if (!desc)
2377 		return;
2378 
2379 	/*
2380 	 * If the trigger type is not specified by the caller, then
2381 	 * use the default for this interrupt.
2382 	 */
2383 	type &= IRQ_TYPE_SENSE_MASK;
2384 	if (type == IRQ_TYPE_NONE)
2385 		type = irqd_get_trigger_type(&desc->irq_data);
2386 
2387 	if (type != IRQ_TYPE_NONE) {
2388 		int ret;
2389 
2390 		ret = __irq_set_trigger(desc, type);
2391 
2392 		if (ret) {
2393 			WARN(1, "failed to set type for IRQ%d\n", irq);
2394 			goto out;
2395 		}
2396 	}
2397 
2398 	irq_percpu_enable(desc, cpu);
2399 out:
2400 	irq_put_desc_unlock(desc, flags);
2401 }
2402 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2403 
2404 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2405 {
2406 	enable_percpu_irq(irq, type);
2407 }
2408 
2409 /**
2410  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2411  * @irq:	Linux irq number to check for
2412  *
2413  * Must be called from a non migratable context. Returns the enable
2414  * state of a per cpu interrupt on the current cpu.
2415  */
2416 bool irq_percpu_is_enabled(unsigned int irq)
2417 {
2418 	unsigned int cpu = smp_processor_id();
2419 	struct irq_desc *desc;
2420 	unsigned long flags;
2421 	bool is_enabled;
2422 
2423 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2424 	if (!desc)
2425 		return false;
2426 
2427 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2428 	irq_put_desc_unlock(desc, flags);
2429 
2430 	return is_enabled;
2431 }
2432 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2433 
2434 void disable_percpu_irq(unsigned int irq)
2435 {
2436 	unsigned int cpu = smp_processor_id();
2437 	unsigned long flags;
2438 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2439 
2440 	if (!desc)
2441 		return;
2442 
2443 	irq_percpu_disable(desc, cpu);
2444 	irq_put_desc_unlock(desc, flags);
2445 }
2446 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2447 
2448 void disable_percpu_nmi(unsigned int irq)
2449 {
2450 	disable_percpu_irq(irq);
2451 }
2452 
2453 /*
2454  * Internal function to unregister a percpu irqaction.
2455  */
2456 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2457 {
2458 	struct irq_desc *desc = irq_to_desc(irq);
2459 	struct irqaction *action;
2460 	unsigned long flags;
2461 
2462 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2463 
2464 	if (!desc)
2465 		return NULL;
2466 
2467 	raw_spin_lock_irqsave(&desc->lock, flags);
2468 
2469 	action = desc->action;
2470 	if (!action || action->percpu_dev_id != dev_id) {
2471 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2472 		goto bad;
2473 	}
2474 
2475 	if (!cpumask_empty(desc->percpu_enabled)) {
2476 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2477 		     irq, cpumask_first(desc->percpu_enabled));
2478 		goto bad;
2479 	}
2480 
2481 	/* Found it - now remove it from the list of entries: */
2482 	desc->action = NULL;
2483 
2484 	desc->istate &= ~IRQS_NMI;
2485 
2486 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2487 
2488 	unregister_handler_proc(irq, action);
2489 
2490 	irq_chip_pm_put(&desc->irq_data);
2491 	module_put(desc->owner);
2492 	return action;
2493 
2494 bad:
2495 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2496 	return NULL;
2497 }
2498 
2499 /**
2500  *	remove_percpu_irq - free a per-cpu interrupt
2501  *	@irq: Interrupt line to free
2502  *	@act: irqaction for the interrupt
2503  *
2504  * Used to remove interrupts statically setup by the early boot process.
2505  */
2506 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2507 {
2508 	struct irq_desc *desc = irq_to_desc(irq);
2509 
2510 	if (desc && irq_settings_is_per_cpu_devid(desc))
2511 	    __free_percpu_irq(irq, act->percpu_dev_id);
2512 }
2513 
2514 /**
2515  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2516  *	@irq: Interrupt line to free
2517  *	@dev_id: Device identity to free
2518  *
2519  *	Remove a percpu interrupt handler. The handler is removed, but
2520  *	the interrupt line is not disabled. This must be done on each
2521  *	CPU before calling this function. The function does not return
2522  *	until any executing interrupts for this IRQ have completed.
2523  *
2524  *	This function must not be called from interrupt context.
2525  */
2526 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2527 {
2528 	struct irq_desc *desc = irq_to_desc(irq);
2529 
2530 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2531 		return;
2532 
2533 	chip_bus_lock(desc);
2534 	kfree(__free_percpu_irq(irq, dev_id));
2535 	chip_bus_sync_unlock(desc);
2536 }
2537 EXPORT_SYMBOL_GPL(free_percpu_irq);
2538 
2539 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2540 {
2541 	struct irq_desc *desc = irq_to_desc(irq);
2542 
2543 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2544 		return;
2545 
2546 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2547 		return;
2548 
2549 	kfree(__free_percpu_irq(irq, dev_id));
2550 }
2551 
2552 /**
2553  *	setup_percpu_irq - setup a per-cpu interrupt
2554  *	@irq: Interrupt line to setup
2555  *	@act: irqaction for the interrupt
2556  *
2557  * Used to statically setup per-cpu interrupts in the early boot process.
2558  */
2559 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2560 {
2561 	struct irq_desc *desc = irq_to_desc(irq);
2562 	int retval;
2563 
2564 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2565 		return -EINVAL;
2566 
2567 	retval = irq_chip_pm_get(&desc->irq_data);
2568 	if (retval < 0)
2569 		return retval;
2570 
2571 	retval = __setup_irq(irq, desc, act);
2572 
2573 	if (retval)
2574 		irq_chip_pm_put(&desc->irq_data);
2575 
2576 	return retval;
2577 }
2578 
2579 /**
2580  *	__request_percpu_irq - allocate a percpu interrupt line
2581  *	@irq: Interrupt line to allocate
2582  *	@handler: Function to be called when the IRQ occurs.
2583  *	@flags: Interrupt type flags (IRQF_TIMER only)
2584  *	@devname: An ascii name for the claiming device
2585  *	@dev_id: A percpu cookie passed back to the handler function
2586  *
2587  *	This call allocates interrupt resources and enables the
2588  *	interrupt on the local CPU. If the interrupt is supposed to be
2589  *	enabled on other CPUs, it has to be done on each CPU using
2590  *	enable_percpu_irq().
2591  *
2592  *	Dev_id must be globally unique. It is a per-cpu variable, and
2593  *	the handler gets called with the interrupted CPU's instance of
2594  *	that variable.
2595  */
2596 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2597 			 unsigned long flags, const char *devname,
2598 			 void __percpu *dev_id)
2599 {
2600 	struct irqaction *action;
2601 	struct irq_desc *desc;
2602 	int retval;
2603 
2604 	if (!dev_id)
2605 		return -EINVAL;
2606 
2607 	desc = irq_to_desc(irq);
2608 	if (!desc || !irq_settings_can_request(desc) ||
2609 	    !irq_settings_is_per_cpu_devid(desc))
2610 		return -EINVAL;
2611 
2612 	if (flags && flags != IRQF_TIMER)
2613 		return -EINVAL;
2614 
2615 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2616 	if (!action)
2617 		return -ENOMEM;
2618 
2619 	action->handler = handler;
2620 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2621 	action->name = devname;
2622 	action->percpu_dev_id = dev_id;
2623 
2624 	retval = irq_chip_pm_get(&desc->irq_data);
2625 	if (retval < 0) {
2626 		kfree(action);
2627 		return retval;
2628 	}
2629 
2630 	retval = __setup_irq(irq, desc, action);
2631 
2632 	if (retval) {
2633 		irq_chip_pm_put(&desc->irq_data);
2634 		kfree(action);
2635 	}
2636 
2637 	return retval;
2638 }
2639 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2640 
2641 /**
2642  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2643  *	@irq: Interrupt line to allocate
2644  *	@handler: Function to be called when the IRQ occurs.
2645  *	@name: An ascii name for the claiming device
2646  *	@dev_id: A percpu cookie passed back to the handler function
2647  *
2648  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2649  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2650  *	being enabled on the same CPU by using enable_percpu_nmi().
2651  *
2652  *	Dev_id must be globally unique. It is a per-cpu variable, and
2653  *	the handler gets called with the interrupted CPU's instance of
2654  *	that variable.
2655  *
2656  *	Interrupt lines requested for NMI delivering should have auto enabling
2657  *	setting disabled.
2658  *
2659  *	If the interrupt line cannot be used to deliver NMIs, function
2660  *	will fail returning a negative value.
2661  */
2662 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2663 		       const char *name, void __percpu *dev_id)
2664 {
2665 	struct irqaction *action;
2666 	struct irq_desc *desc;
2667 	unsigned long flags;
2668 	int retval;
2669 
2670 	if (!handler)
2671 		return -EINVAL;
2672 
2673 	desc = irq_to_desc(irq);
2674 
2675 	if (!desc || !irq_settings_can_request(desc) ||
2676 	    !irq_settings_is_per_cpu_devid(desc) ||
2677 	    irq_settings_can_autoenable(desc) ||
2678 	    !irq_supports_nmi(desc))
2679 		return -EINVAL;
2680 
2681 	/* The line cannot already be NMI */
2682 	if (desc->istate & IRQS_NMI)
2683 		return -EINVAL;
2684 
2685 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2686 	if (!action)
2687 		return -ENOMEM;
2688 
2689 	action->handler = handler;
2690 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2691 		| IRQF_NOBALANCING;
2692 	action->name = name;
2693 	action->percpu_dev_id = dev_id;
2694 
2695 	retval = irq_chip_pm_get(&desc->irq_data);
2696 	if (retval < 0)
2697 		goto err_out;
2698 
2699 	retval = __setup_irq(irq, desc, action);
2700 	if (retval)
2701 		goto err_irq_setup;
2702 
2703 	raw_spin_lock_irqsave(&desc->lock, flags);
2704 	desc->istate |= IRQS_NMI;
2705 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2706 
2707 	return 0;
2708 
2709 err_irq_setup:
2710 	irq_chip_pm_put(&desc->irq_data);
2711 err_out:
2712 	kfree(action);
2713 
2714 	return retval;
2715 }
2716 
2717 /**
2718  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2719  *	@irq: Interrupt line to prepare for NMI delivery
2720  *
2721  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2722  *	before that interrupt line gets enabled with enable_percpu_nmi().
2723  *
2724  *	As a CPU local operation, this should be called from non-preemptible
2725  *	context.
2726  *
2727  *	If the interrupt line cannot be used to deliver NMIs, function
2728  *	will fail returning a negative value.
2729  */
2730 int prepare_percpu_nmi(unsigned int irq)
2731 {
2732 	unsigned long flags;
2733 	struct irq_desc *desc;
2734 	int ret = 0;
2735 
2736 	WARN_ON(preemptible());
2737 
2738 	desc = irq_get_desc_lock(irq, &flags,
2739 				 IRQ_GET_DESC_CHECK_PERCPU);
2740 	if (!desc)
2741 		return -EINVAL;
2742 
2743 	if (WARN(!(desc->istate & IRQS_NMI),
2744 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2745 		 irq)) {
2746 		ret = -EINVAL;
2747 		goto out;
2748 	}
2749 
2750 	ret = irq_nmi_setup(desc);
2751 	if (ret) {
2752 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2753 		goto out;
2754 	}
2755 
2756 out:
2757 	irq_put_desc_unlock(desc, flags);
2758 	return ret;
2759 }
2760 
2761 /**
2762  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2763  *	@irq: Interrupt line from which CPU local NMI configuration should be
2764  *	      removed
2765  *
2766  *	This call undoes the setup done by prepare_percpu_nmi().
2767  *
2768  *	IRQ line should not be enabled for the current CPU.
2769  *
2770  *	As a CPU local operation, this should be called from non-preemptible
2771  *	context.
2772  */
2773 void teardown_percpu_nmi(unsigned int irq)
2774 {
2775 	unsigned long flags;
2776 	struct irq_desc *desc;
2777 
2778 	WARN_ON(preemptible());
2779 
2780 	desc = irq_get_desc_lock(irq, &flags,
2781 				 IRQ_GET_DESC_CHECK_PERCPU);
2782 	if (!desc)
2783 		return;
2784 
2785 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2786 		goto out;
2787 
2788 	irq_nmi_teardown(desc);
2789 out:
2790 	irq_put_desc_unlock(desc, flags);
2791 }
2792 
2793 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2794 			    bool *state)
2795 {
2796 	struct irq_chip *chip;
2797 	int err = -EINVAL;
2798 
2799 	do {
2800 		chip = irq_data_get_irq_chip(data);
2801 		if (WARN_ON_ONCE(!chip))
2802 			return -ENODEV;
2803 		if (chip->irq_get_irqchip_state)
2804 			break;
2805 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2806 		data = data->parent_data;
2807 #else
2808 		data = NULL;
2809 #endif
2810 	} while (data);
2811 
2812 	if (data)
2813 		err = chip->irq_get_irqchip_state(data, which, state);
2814 	return err;
2815 }
2816 
2817 /**
2818  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2819  *	@irq: Interrupt line that is forwarded to a VM
2820  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2821  *	@state: a pointer to a boolean where the state is to be stored
2822  *
2823  *	This call snapshots the internal irqchip state of an
2824  *	interrupt, returning into @state the bit corresponding to
2825  *	stage @which
2826  *
2827  *	This function should be called with preemption disabled if the
2828  *	interrupt controller has per-cpu registers.
2829  */
2830 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2831 			  bool *state)
2832 {
2833 	struct irq_desc *desc;
2834 	struct irq_data *data;
2835 	unsigned long flags;
2836 	int err = -EINVAL;
2837 
2838 	desc = irq_get_desc_buslock(irq, &flags, 0);
2839 	if (!desc)
2840 		return err;
2841 
2842 	data = irq_desc_get_irq_data(desc);
2843 
2844 	err = __irq_get_irqchip_state(data, which, state);
2845 
2846 	irq_put_desc_busunlock(desc, flags);
2847 	return err;
2848 }
2849 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2850 
2851 /**
2852  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2853  *	@irq: Interrupt line that is forwarded to a VM
2854  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2855  *	@val: Value corresponding to @which
2856  *
2857  *	This call sets the internal irqchip state of an interrupt,
2858  *	depending on the value of @which.
2859  *
2860  *	This function should be called with migration disabled if the
2861  *	interrupt controller has per-cpu registers.
2862  */
2863 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2864 			  bool val)
2865 {
2866 	struct irq_desc *desc;
2867 	struct irq_data *data;
2868 	struct irq_chip *chip;
2869 	unsigned long flags;
2870 	int err = -EINVAL;
2871 
2872 	desc = irq_get_desc_buslock(irq, &flags, 0);
2873 	if (!desc)
2874 		return err;
2875 
2876 	data = irq_desc_get_irq_data(desc);
2877 
2878 	do {
2879 		chip = irq_data_get_irq_chip(data);
2880 		if (WARN_ON_ONCE(!chip)) {
2881 			err = -ENODEV;
2882 			goto out_unlock;
2883 		}
2884 		if (chip->irq_set_irqchip_state)
2885 			break;
2886 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2887 		data = data->parent_data;
2888 #else
2889 		data = NULL;
2890 #endif
2891 	} while (data);
2892 
2893 	if (data)
2894 		err = chip->irq_set_irqchip_state(data, which, val);
2895 
2896 out_unlock:
2897 	irq_put_desc_busunlock(desc, flags);
2898 	return err;
2899 }
2900 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2901 
2902 /**
2903  * irq_has_action - Check whether an interrupt is requested
2904  * @irq:	The linux irq number
2905  *
2906  * Returns: A snapshot of the current state
2907  */
2908 bool irq_has_action(unsigned int irq)
2909 {
2910 	bool res;
2911 
2912 	rcu_read_lock();
2913 	res = irq_desc_has_action(irq_to_desc(irq));
2914 	rcu_read_unlock();
2915 	return res;
2916 }
2917 EXPORT_SYMBOL_GPL(irq_has_action);
2918 
2919 /**
2920  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2921  * @irq:	The linux irq number
2922  * @bitmask:	The bitmask to evaluate
2923  *
2924  * Returns: True if one of the bits in @bitmask is set
2925  */
2926 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2927 {
2928 	struct irq_desc *desc;
2929 	bool res = false;
2930 
2931 	rcu_read_lock();
2932 	desc = irq_to_desc(irq);
2933 	if (desc)
2934 		res = !!(desc->status_use_accessors & bitmask);
2935 	rcu_read_unlock();
2936 	return res;
2937 }
2938 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2939