1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 EXPORT_SYMBOL_GPL(force_irqthreads); 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 case IRQ_SET_MASK_OK_NOCOPY: 200 irq_validate_effective_affinity(data); 201 irq_set_thread_affinity(desc); 202 ret = 0; 203 } 204 205 return ret; 206 } 207 208 #ifdef CONFIG_GENERIC_PENDING_IRQ 209 static inline int irq_set_affinity_pending(struct irq_data *data, 210 const struct cpumask *dest) 211 { 212 struct irq_desc *desc = irq_data_to_desc(data); 213 214 irqd_set_move_pending(data); 215 irq_copy_pending(desc, dest); 216 return 0; 217 } 218 #else 219 static inline int irq_set_affinity_pending(struct irq_data *data, 220 const struct cpumask *dest) 221 { 222 return -EBUSY; 223 } 224 #endif 225 226 static int irq_try_set_affinity(struct irq_data *data, 227 const struct cpumask *dest, bool force) 228 { 229 int ret = irq_do_set_affinity(data, dest, force); 230 231 /* 232 * In case that the underlying vector management is busy and the 233 * architecture supports the generic pending mechanism then utilize 234 * this to avoid returning an error to user space. 235 */ 236 if (ret == -EBUSY && !force) 237 ret = irq_set_affinity_pending(data, dest); 238 return ret; 239 } 240 241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 242 bool force) 243 { 244 struct irq_chip *chip = irq_data_get_irq_chip(data); 245 struct irq_desc *desc = irq_data_to_desc(data); 246 int ret = 0; 247 248 if (!chip || !chip->irq_set_affinity) 249 return -EINVAL; 250 251 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 252 ret = irq_try_set_affinity(data, mask, force); 253 } else { 254 irqd_set_move_pending(data); 255 irq_copy_pending(desc, mask); 256 } 257 258 if (desc->affinity_notify) { 259 kref_get(&desc->affinity_notify->kref); 260 schedule_work(&desc->affinity_notify->work); 261 } 262 irqd_set(data, IRQD_AFFINITY_SET); 263 264 return ret; 265 } 266 267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 268 { 269 struct irq_desc *desc = irq_to_desc(irq); 270 unsigned long flags; 271 int ret; 272 273 if (!desc) 274 return -EINVAL; 275 276 raw_spin_lock_irqsave(&desc->lock, flags); 277 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 278 raw_spin_unlock_irqrestore(&desc->lock, flags); 279 return ret; 280 } 281 282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 283 { 284 unsigned long flags; 285 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 286 287 if (!desc) 288 return -EINVAL; 289 desc->affinity_hint = m; 290 irq_put_desc_unlock(desc, flags); 291 /* set the initial affinity to prevent every interrupt being on CPU0 */ 292 if (m) 293 __irq_set_affinity(irq, m, false); 294 return 0; 295 } 296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 297 298 static void irq_affinity_notify(struct work_struct *work) 299 { 300 struct irq_affinity_notify *notify = 301 container_of(work, struct irq_affinity_notify, work); 302 struct irq_desc *desc = irq_to_desc(notify->irq); 303 cpumask_var_t cpumask; 304 unsigned long flags; 305 306 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 307 goto out; 308 309 raw_spin_lock_irqsave(&desc->lock, flags); 310 if (irq_move_pending(&desc->irq_data)) 311 irq_get_pending(cpumask, desc); 312 else 313 cpumask_copy(cpumask, desc->irq_common_data.affinity); 314 raw_spin_unlock_irqrestore(&desc->lock, flags); 315 316 notify->notify(notify, cpumask); 317 318 free_cpumask_var(cpumask); 319 out: 320 kref_put(¬ify->kref, notify->release); 321 } 322 323 /** 324 * irq_set_affinity_notifier - control notification of IRQ affinity changes 325 * @irq: Interrupt for which to enable/disable notification 326 * @notify: Context for notification, or %NULL to disable 327 * notification. Function pointers must be initialised; 328 * the other fields will be initialised by this function. 329 * 330 * Must be called in process context. Notification may only be enabled 331 * after the IRQ is allocated and must be disabled before the IRQ is 332 * freed using free_irq(). 333 */ 334 int 335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 336 { 337 struct irq_desc *desc = irq_to_desc(irq); 338 struct irq_affinity_notify *old_notify; 339 unsigned long flags; 340 341 /* The release function is promised process context */ 342 might_sleep(); 343 344 if (!desc) 345 return -EINVAL; 346 347 /* Complete initialisation of *notify */ 348 if (notify) { 349 notify->irq = irq; 350 kref_init(¬ify->kref); 351 INIT_WORK(¬ify->work, irq_affinity_notify); 352 } 353 354 raw_spin_lock_irqsave(&desc->lock, flags); 355 old_notify = desc->affinity_notify; 356 desc->affinity_notify = notify; 357 raw_spin_unlock_irqrestore(&desc->lock, flags); 358 359 if (old_notify) 360 kref_put(&old_notify->kref, old_notify->release); 361 362 return 0; 363 } 364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 365 366 #ifndef CONFIG_AUTO_IRQ_AFFINITY 367 /* 368 * Generic version of the affinity autoselector. 369 */ 370 int irq_setup_affinity(struct irq_desc *desc) 371 { 372 struct cpumask *set = irq_default_affinity; 373 int ret, node = irq_desc_get_node(desc); 374 static DEFINE_RAW_SPINLOCK(mask_lock); 375 static struct cpumask mask; 376 377 /* Excludes PER_CPU and NO_BALANCE interrupts */ 378 if (!__irq_can_set_affinity(desc)) 379 return 0; 380 381 raw_spin_lock(&mask_lock); 382 /* 383 * Preserve the managed affinity setting and a userspace affinity 384 * setup, but make sure that one of the targets is online. 385 */ 386 if (irqd_affinity_is_managed(&desc->irq_data) || 387 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 388 if (cpumask_intersects(desc->irq_common_data.affinity, 389 cpu_online_mask)) 390 set = desc->irq_common_data.affinity; 391 else 392 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 393 } 394 395 cpumask_and(&mask, cpu_online_mask, set); 396 if (node != NUMA_NO_NODE) { 397 const struct cpumask *nodemask = cpumask_of_node(node); 398 399 /* make sure at least one of the cpus in nodemask is online */ 400 if (cpumask_intersects(&mask, nodemask)) 401 cpumask_and(&mask, &mask, nodemask); 402 } 403 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 404 raw_spin_unlock(&mask_lock); 405 return ret; 406 } 407 #else 408 /* Wrapper for ALPHA specific affinity selector magic */ 409 int irq_setup_affinity(struct irq_desc *desc) 410 { 411 return irq_select_affinity(irq_desc_get_irq(desc)); 412 } 413 #endif 414 415 /* 416 * Called when a bogus affinity is set via /proc/irq 417 */ 418 int irq_select_affinity_usr(unsigned int irq) 419 { 420 struct irq_desc *desc = irq_to_desc(irq); 421 unsigned long flags; 422 int ret; 423 424 raw_spin_lock_irqsave(&desc->lock, flags); 425 ret = irq_setup_affinity(desc); 426 raw_spin_unlock_irqrestore(&desc->lock, flags); 427 return ret; 428 } 429 #endif 430 431 /** 432 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 433 * @irq: interrupt number to set affinity 434 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 435 * specific data for percpu_devid interrupts 436 * 437 * This function uses the vCPU specific data to set the vCPU 438 * affinity for an irq. The vCPU specific data is passed from 439 * outside, such as KVM. One example code path is as below: 440 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 441 */ 442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 443 { 444 unsigned long flags; 445 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 446 struct irq_data *data; 447 struct irq_chip *chip; 448 int ret = -ENOSYS; 449 450 if (!desc) 451 return -EINVAL; 452 453 data = irq_desc_get_irq_data(desc); 454 do { 455 chip = irq_data_get_irq_chip(data); 456 if (chip && chip->irq_set_vcpu_affinity) 457 break; 458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 459 data = data->parent_data; 460 #else 461 data = NULL; 462 #endif 463 } while (data); 464 465 if (data) 466 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 467 irq_put_desc_unlock(desc, flags); 468 469 return ret; 470 } 471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 472 473 void __disable_irq(struct irq_desc *desc) 474 { 475 if (!desc->depth++) 476 irq_disable(desc); 477 } 478 479 static int __disable_irq_nosync(unsigned int irq) 480 { 481 unsigned long flags; 482 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 483 484 if (!desc) 485 return -EINVAL; 486 __disable_irq(desc); 487 irq_put_desc_busunlock(desc, flags); 488 return 0; 489 } 490 491 /** 492 * disable_irq_nosync - disable an irq without waiting 493 * @irq: Interrupt to disable 494 * 495 * Disable the selected interrupt line. Disables and Enables are 496 * nested. 497 * Unlike disable_irq(), this function does not ensure existing 498 * instances of the IRQ handler have completed before returning. 499 * 500 * This function may be called from IRQ context. 501 */ 502 void disable_irq_nosync(unsigned int irq) 503 { 504 __disable_irq_nosync(irq); 505 } 506 EXPORT_SYMBOL(disable_irq_nosync); 507 508 /** 509 * disable_irq - disable an irq and wait for completion 510 * @irq: Interrupt to disable 511 * 512 * Disable the selected interrupt line. Enables and Disables are 513 * nested. 514 * This function waits for any pending IRQ handlers for this interrupt 515 * to complete before returning. If you use this function while 516 * holding a resource the IRQ handler may need you will deadlock. 517 * 518 * This function may be called - with care - from IRQ context. 519 */ 520 void disable_irq(unsigned int irq) 521 { 522 if (!__disable_irq_nosync(irq)) 523 synchronize_irq(irq); 524 } 525 EXPORT_SYMBOL(disable_irq); 526 527 /** 528 * disable_hardirq - disables an irq and waits for hardirq completion 529 * @irq: Interrupt to disable 530 * 531 * Disable the selected interrupt line. Enables and Disables are 532 * nested. 533 * This function waits for any pending hard IRQ handlers for this 534 * interrupt to complete before returning. If you use this function while 535 * holding a resource the hard IRQ handler may need you will deadlock. 536 * 537 * When used to optimistically disable an interrupt from atomic context 538 * the return value must be checked. 539 * 540 * Returns: false if a threaded handler is active. 541 * 542 * This function may be called - with care - from IRQ context. 543 */ 544 bool disable_hardirq(unsigned int irq) 545 { 546 if (!__disable_irq_nosync(irq)) 547 return synchronize_hardirq(irq); 548 549 return false; 550 } 551 EXPORT_SYMBOL_GPL(disable_hardirq); 552 553 void __enable_irq(struct irq_desc *desc) 554 { 555 switch (desc->depth) { 556 case 0: 557 err_out: 558 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 559 irq_desc_get_irq(desc)); 560 break; 561 case 1: { 562 if (desc->istate & IRQS_SUSPENDED) 563 goto err_out; 564 /* Prevent probing on this irq: */ 565 irq_settings_set_noprobe(desc); 566 /* 567 * Call irq_startup() not irq_enable() here because the 568 * interrupt might be marked NOAUTOEN. So irq_startup() 569 * needs to be invoked when it gets enabled the first 570 * time. If it was already started up, then irq_startup() 571 * will invoke irq_enable() under the hood. 572 */ 573 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 574 break; 575 } 576 default: 577 desc->depth--; 578 } 579 } 580 581 /** 582 * enable_irq - enable handling of an irq 583 * @irq: Interrupt to enable 584 * 585 * Undoes the effect of one call to disable_irq(). If this 586 * matches the last disable, processing of interrupts on this 587 * IRQ line is re-enabled. 588 * 589 * This function may be called from IRQ context only when 590 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 591 */ 592 void enable_irq(unsigned int irq) 593 { 594 unsigned long flags; 595 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 596 597 if (!desc) 598 return; 599 if (WARN(!desc->irq_data.chip, 600 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 601 goto out; 602 603 __enable_irq(desc); 604 out: 605 irq_put_desc_busunlock(desc, flags); 606 } 607 EXPORT_SYMBOL(enable_irq); 608 609 static int set_irq_wake_real(unsigned int irq, unsigned int on) 610 { 611 struct irq_desc *desc = irq_to_desc(irq); 612 int ret = -ENXIO; 613 614 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 615 return 0; 616 617 if (desc->irq_data.chip->irq_set_wake) 618 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 619 620 return ret; 621 } 622 623 /** 624 * irq_set_irq_wake - control irq power management wakeup 625 * @irq: interrupt to control 626 * @on: enable/disable power management wakeup 627 * 628 * Enable/disable power management wakeup mode, which is 629 * disabled by default. Enables and disables must match, 630 * just as they match for non-wakeup mode support. 631 * 632 * Wakeup mode lets this IRQ wake the system from sleep 633 * states like "suspend to RAM". 634 */ 635 int irq_set_irq_wake(unsigned int irq, unsigned int on) 636 { 637 unsigned long flags; 638 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 639 int ret = 0; 640 641 if (!desc) 642 return -EINVAL; 643 644 /* wakeup-capable irqs can be shared between drivers that 645 * don't need to have the same sleep mode behaviors. 646 */ 647 if (on) { 648 if (desc->wake_depth++ == 0) { 649 ret = set_irq_wake_real(irq, on); 650 if (ret) 651 desc->wake_depth = 0; 652 else 653 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 654 } 655 } else { 656 if (desc->wake_depth == 0) { 657 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 658 } else if (--desc->wake_depth == 0) { 659 ret = set_irq_wake_real(irq, on); 660 if (ret) 661 desc->wake_depth = 1; 662 else 663 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 664 } 665 } 666 irq_put_desc_busunlock(desc, flags); 667 return ret; 668 } 669 EXPORT_SYMBOL(irq_set_irq_wake); 670 671 /* 672 * Internal function that tells the architecture code whether a 673 * particular irq has been exclusively allocated or is available 674 * for driver use. 675 */ 676 int can_request_irq(unsigned int irq, unsigned long irqflags) 677 { 678 unsigned long flags; 679 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 680 int canrequest = 0; 681 682 if (!desc) 683 return 0; 684 685 if (irq_settings_can_request(desc)) { 686 if (!desc->action || 687 irqflags & desc->action->flags & IRQF_SHARED) 688 canrequest = 1; 689 } 690 irq_put_desc_unlock(desc, flags); 691 return canrequest; 692 } 693 694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 695 { 696 struct irq_chip *chip = desc->irq_data.chip; 697 int ret, unmask = 0; 698 699 if (!chip || !chip->irq_set_type) { 700 /* 701 * IRQF_TRIGGER_* but the PIC does not support multiple 702 * flow-types? 703 */ 704 pr_debug("No set_type function for IRQ %d (%s)\n", 705 irq_desc_get_irq(desc), 706 chip ? (chip->name ? : "unknown") : "unknown"); 707 return 0; 708 } 709 710 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 711 if (!irqd_irq_masked(&desc->irq_data)) 712 mask_irq(desc); 713 if (!irqd_irq_disabled(&desc->irq_data)) 714 unmask = 1; 715 } 716 717 /* Mask all flags except trigger mode */ 718 flags &= IRQ_TYPE_SENSE_MASK; 719 ret = chip->irq_set_type(&desc->irq_data, flags); 720 721 switch (ret) { 722 case IRQ_SET_MASK_OK: 723 case IRQ_SET_MASK_OK_DONE: 724 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 725 irqd_set(&desc->irq_data, flags); 726 727 case IRQ_SET_MASK_OK_NOCOPY: 728 flags = irqd_get_trigger_type(&desc->irq_data); 729 irq_settings_set_trigger_mask(desc, flags); 730 irqd_clear(&desc->irq_data, IRQD_LEVEL); 731 irq_settings_clr_level(desc); 732 if (flags & IRQ_TYPE_LEVEL_MASK) { 733 irq_settings_set_level(desc); 734 irqd_set(&desc->irq_data, IRQD_LEVEL); 735 } 736 737 ret = 0; 738 break; 739 default: 740 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 741 flags, irq_desc_get_irq(desc), chip->irq_set_type); 742 } 743 if (unmask) 744 unmask_irq(desc); 745 return ret; 746 } 747 748 #ifdef CONFIG_HARDIRQS_SW_RESEND 749 int irq_set_parent(int irq, int parent_irq) 750 { 751 unsigned long flags; 752 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 753 754 if (!desc) 755 return -EINVAL; 756 757 desc->parent_irq = parent_irq; 758 759 irq_put_desc_unlock(desc, flags); 760 return 0; 761 } 762 EXPORT_SYMBOL_GPL(irq_set_parent); 763 #endif 764 765 /* 766 * Default primary interrupt handler for threaded interrupts. Is 767 * assigned as primary handler when request_threaded_irq is called 768 * with handler == NULL. Useful for oneshot interrupts. 769 */ 770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 771 { 772 return IRQ_WAKE_THREAD; 773 } 774 775 /* 776 * Primary handler for nested threaded interrupts. Should never be 777 * called. 778 */ 779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 780 { 781 WARN(1, "Primary handler called for nested irq %d\n", irq); 782 return IRQ_NONE; 783 } 784 785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 786 { 787 WARN(1, "Secondary action handler called for irq %d\n", irq); 788 return IRQ_NONE; 789 } 790 791 static int irq_wait_for_interrupt(struct irqaction *action) 792 { 793 for (;;) { 794 set_current_state(TASK_INTERRUPTIBLE); 795 796 if (kthread_should_stop()) { 797 /* may need to run one last time */ 798 if (test_and_clear_bit(IRQTF_RUNTHREAD, 799 &action->thread_flags)) { 800 __set_current_state(TASK_RUNNING); 801 return 0; 802 } 803 __set_current_state(TASK_RUNNING); 804 return -1; 805 } 806 807 if (test_and_clear_bit(IRQTF_RUNTHREAD, 808 &action->thread_flags)) { 809 __set_current_state(TASK_RUNNING); 810 return 0; 811 } 812 schedule(); 813 } 814 } 815 816 /* 817 * Oneshot interrupts keep the irq line masked until the threaded 818 * handler finished. unmask if the interrupt has not been disabled and 819 * is marked MASKED. 820 */ 821 static void irq_finalize_oneshot(struct irq_desc *desc, 822 struct irqaction *action) 823 { 824 if (!(desc->istate & IRQS_ONESHOT) || 825 action->handler == irq_forced_secondary_handler) 826 return; 827 again: 828 chip_bus_lock(desc); 829 raw_spin_lock_irq(&desc->lock); 830 831 /* 832 * Implausible though it may be we need to protect us against 833 * the following scenario: 834 * 835 * The thread is faster done than the hard interrupt handler 836 * on the other CPU. If we unmask the irq line then the 837 * interrupt can come in again and masks the line, leaves due 838 * to IRQS_INPROGRESS and the irq line is masked forever. 839 * 840 * This also serializes the state of shared oneshot handlers 841 * versus "desc->threads_onehsot |= action->thread_mask;" in 842 * irq_wake_thread(). See the comment there which explains the 843 * serialization. 844 */ 845 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 846 raw_spin_unlock_irq(&desc->lock); 847 chip_bus_sync_unlock(desc); 848 cpu_relax(); 849 goto again; 850 } 851 852 /* 853 * Now check again, whether the thread should run. Otherwise 854 * we would clear the threads_oneshot bit of this thread which 855 * was just set. 856 */ 857 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 858 goto out_unlock; 859 860 desc->threads_oneshot &= ~action->thread_mask; 861 862 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 863 irqd_irq_masked(&desc->irq_data)) 864 unmask_threaded_irq(desc); 865 866 out_unlock: 867 raw_spin_unlock_irq(&desc->lock); 868 chip_bus_sync_unlock(desc); 869 } 870 871 #ifdef CONFIG_SMP 872 /* 873 * Check whether we need to change the affinity of the interrupt thread. 874 */ 875 static void 876 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 877 { 878 cpumask_var_t mask; 879 bool valid = true; 880 881 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 882 return; 883 884 /* 885 * In case we are out of memory we set IRQTF_AFFINITY again and 886 * try again next time 887 */ 888 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 889 set_bit(IRQTF_AFFINITY, &action->thread_flags); 890 return; 891 } 892 893 raw_spin_lock_irq(&desc->lock); 894 /* 895 * This code is triggered unconditionally. Check the affinity 896 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 897 */ 898 if (cpumask_available(desc->irq_common_data.affinity)) { 899 const struct cpumask *m; 900 901 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 902 cpumask_copy(mask, m); 903 } else { 904 valid = false; 905 } 906 raw_spin_unlock_irq(&desc->lock); 907 908 if (valid) 909 set_cpus_allowed_ptr(current, mask); 910 free_cpumask_var(mask); 911 } 912 #else 913 static inline void 914 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 915 #endif 916 917 /* 918 * Interrupts which are not explicitely requested as threaded 919 * interrupts rely on the implicit bh/preempt disable of the hard irq 920 * context. So we need to disable bh here to avoid deadlocks and other 921 * side effects. 922 */ 923 static irqreturn_t 924 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 925 { 926 irqreturn_t ret; 927 928 local_bh_disable(); 929 ret = action->thread_fn(action->irq, action->dev_id); 930 irq_finalize_oneshot(desc, action); 931 local_bh_enable(); 932 return ret; 933 } 934 935 /* 936 * Interrupts explicitly requested as threaded interrupts want to be 937 * preemtible - many of them need to sleep and wait for slow busses to 938 * complete. 939 */ 940 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 941 struct irqaction *action) 942 { 943 irqreturn_t ret; 944 945 ret = action->thread_fn(action->irq, action->dev_id); 946 irq_finalize_oneshot(desc, action); 947 return ret; 948 } 949 950 static void wake_threads_waitq(struct irq_desc *desc) 951 { 952 if (atomic_dec_and_test(&desc->threads_active)) 953 wake_up(&desc->wait_for_threads); 954 } 955 956 static void irq_thread_dtor(struct callback_head *unused) 957 { 958 struct task_struct *tsk = current; 959 struct irq_desc *desc; 960 struct irqaction *action; 961 962 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 963 return; 964 965 action = kthread_data(tsk); 966 967 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 968 tsk->comm, tsk->pid, action->irq); 969 970 971 desc = irq_to_desc(action->irq); 972 /* 973 * If IRQTF_RUNTHREAD is set, we need to decrement 974 * desc->threads_active and wake possible waiters. 975 */ 976 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 977 wake_threads_waitq(desc); 978 979 /* Prevent a stale desc->threads_oneshot */ 980 irq_finalize_oneshot(desc, action); 981 } 982 983 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 984 { 985 struct irqaction *secondary = action->secondary; 986 987 if (WARN_ON_ONCE(!secondary)) 988 return; 989 990 raw_spin_lock_irq(&desc->lock); 991 __irq_wake_thread(desc, secondary); 992 raw_spin_unlock_irq(&desc->lock); 993 } 994 995 /* 996 * Interrupt handler thread 997 */ 998 static int irq_thread(void *data) 999 { 1000 struct callback_head on_exit_work; 1001 struct irqaction *action = data; 1002 struct irq_desc *desc = irq_to_desc(action->irq); 1003 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1004 struct irqaction *action); 1005 1006 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1007 &action->thread_flags)) 1008 handler_fn = irq_forced_thread_fn; 1009 else 1010 handler_fn = irq_thread_fn; 1011 1012 init_task_work(&on_exit_work, irq_thread_dtor); 1013 task_work_add(current, &on_exit_work, false); 1014 1015 irq_thread_check_affinity(desc, action); 1016 1017 while (!irq_wait_for_interrupt(action)) { 1018 irqreturn_t action_ret; 1019 1020 irq_thread_check_affinity(desc, action); 1021 1022 action_ret = handler_fn(desc, action); 1023 if (action_ret == IRQ_HANDLED) 1024 atomic_inc(&desc->threads_handled); 1025 if (action_ret == IRQ_WAKE_THREAD) 1026 irq_wake_secondary(desc, action); 1027 1028 wake_threads_waitq(desc); 1029 } 1030 1031 /* 1032 * This is the regular exit path. __free_irq() is stopping the 1033 * thread via kthread_stop() after calling 1034 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1035 * oneshot mask bit can be set. 1036 */ 1037 task_work_cancel(current, irq_thread_dtor); 1038 return 0; 1039 } 1040 1041 /** 1042 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1043 * @irq: Interrupt line 1044 * @dev_id: Device identity for which the thread should be woken 1045 * 1046 */ 1047 void irq_wake_thread(unsigned int irq, void *dev_id) 1048 { 1049 struct irq_desc *desc = irq_to_desc(irq); 1050 struct irqaction *action; 1051 unsigned long flags; 1052 1053 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1054 return; 1055 1056 raw_spin_lock_irqsave(&desc->lock, flags); 1057 for_each_action_of_desc(desc, action) { 1058 if (action->dev_id == dev_id) { 1059 if (action->thread) 1060 __irq_wake_thread(desc, action); 1061 break; 1062 } 1063 } 1064 raw_spin_unlock_irqrestore(&desc->lock, flags); 1065 } 1066 EXPORT_SYMBOL_GPL(irq_wake_thread); 1067 1068 static int irq_setup_forced_threading(struct irqaction *new) 1069 { 1070 if (!force_irqthreads) 1071 return 0; 1072 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1073 return 0; 1074 1075 /* 1076 * No further action required for interrupts which are requested as 1077 * threaded interrupts already 1078 */ 1079 if (new->handler == irq_default_primary_handler) 1080 return 0; 1081 1082 new->flags |= IRQF_ONESHOT; 1083 1084 /* 1085 * Handle the case where we have a real primary handler and a 1086 * thread handler. We force thread them as well by creating a 1087 * secondary action. 1088 */ 1089 if (new->handler && new->thread_fn) { 1090 /* Allocate the secondary action */ 1091 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1092 if (!new->secondary) 1093 return -ENOMEM; 1094 new->secondary->handler = irq_forced_secondary_handler; 1095 new->secondary->thread_fn = new->thread_fn; 1096 new->secondary->dev_id = new->dev_id; 1097 new->secondary->irq = new->irq; 1098 new->secondary->name = new->name; 1099 } 1100 /* Deal with the primary handler */ 1101 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1102 new->thread_fn = new->handler; 1103 new->handler = irq_default_primary_handler; 1104 return 0; 1105 } 1106 1107 static int irq_request_resources(struct irq_desc *desc) 1108 { 1109 struct irq_data *d = &desc->irq_data; 1110 struct irq_chip *c = d->chip; 1111 1112 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1113 } 1114 1115 static void irq_release_resources(struct irq_desc *desc) 1116 { 1117 struct irq_data *d = &desc->irq_data; 1118 struct irq_chip *c = d->chip; 1119 1120 if (c->irq_release_resources) 1121 c->irq_release_resources(d); 1122 } 1123 1124 static int 1125 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1126 { 1127 struct task_struct *t; 1128 struct sched_param param = { 1129 .sched_priority = MAX_USER_RT_PRIO/2, 1130 }; 1131 1132 if (!secondary) { 1133 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1134 new->name); 1135 } else { 1136 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1137 new->name); 1138 param.sched_priority -= 1; 1139 } 1140 1141 if (IS_ERR(t)) 1142 return PTR_ERR(t); 1143 1144 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1145 1146 /* 1147 * We keep the reference to the task struct even if 1148 * the thread dies to avoid that the interrupt code 1149 * references an already freed task_struct. 1150 */ 1151 get_task_struct(t); 1152 new->thread = t; 1153 /* 1154 * Tell the thread to set its affinity. This is 1155 * important for shared interrupt handlers as we do 1156 * not invoke setup_affinity() for the secondary 1157 * handlers as everything is already set up. Even for 1158 * interrupts marked with IRQF_NO_BALANCE this is 1159 * correct as we want the thread to move to the cpu(s) 1160 * on which the requesting code placed the interrupt. 1161 */ 1162 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1163 return 0; 1164 } 1165 1166 /* 1167 * Internal function to register an irqaction - typically used to 1168 * allocate special interrupts that are part of the architecture. 1169 * 1170 * Locking rules: 1171 * 1172 * desc->request_mutex Provides serialization against a concurrent free_irq() 1173 * chip_bus_lock Provides serialization for slow bus operations 1174 * desc->lock Provides serialization against hard interrupts 1175 * 1176 * chip_bus_lock and desc->lock are sufficient for all other management and 1177 * interrupt related functions. desc->request_mutex solely serializes 1178 * request/free_irq(). 1179 */ 1180 static int 1181 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1182 { 1183 struct irqaction *old, **old_ptr; 1184 unsigned long flags, thread_mask = 0; 1185 int ret, nested, shared = 0; 1186 1187 if (!desc) 1188 return -EINVAL; 1189 1190 if (desc->irq_data.chip == &no_irq_chip) 1191 return -ENOSYS; 1192 if (!try_module_get(desc->owner)) 1193 return -ENODEV; 1194 1195 new->irq = irq; 1196 1197 /* 1198 * If the trigger type is not specified by the caller, 1199 * then use the default for this interrupt. 1200 */ 1201 if (!(new->flags & IRQF_TRIGGER_MASK)) 1202 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1203 1204 /* 1205 * Check whether the interrupt nests into another interrupt 1206 * thread. 1207 */ 1208 nested = irq_settings_is_nested_thread(desc); 1209 if (nested) { 1210 if (!new->thread_fn) { 1211 ret = -EINVAL; 1212 goto out_mput; 1213 } 1214 /* 1215 * Replace the primary handler which was provided from 1216 * the driver for non nested interrupt handling by the 1217 * dummy function which warns when called. 1218 */ 1219 new->handler = irq_nested_primary_handler; 1220 } else { 1221 if (irq_settings_can_thread(desc)) { 1222 ret = irq_setup_forced_threading(new); 1223 if (ret) 1224 goto out_mput; 1225 } 1226 } 1227 1228 /* 1229 * Create a handler thread when a thread function is supplied 1230 * and the interrupt does not nest into another interrupt 1231 * thread. 1232 */ 1233 if (new->thread_fn && !nested) { 1234 ret = setup_irq_thread(new, irq, false); 1235 if (ret) 1236 goto out_mput; 1237 if (new->secondary) { 1238 ret = setup_irq_thread(new->secondary, irq, true); 1239 if (ret) 1240 goto out_thread; 1241 } 1242 } 1243 1244 /* 1245 * Drivers are often written to work w/o knowledge about the 1246 * underlying irq chip implementation, so a request for a 1247 * threaded irq without a primary hard irq context handler 1248 * requires the ONESHOT flag to be set. Some irq chips like 1249 * MSI based interrupts are per se one shot safe. Check the 1250 * chip flags, so we can avoid the unmask dance at the end of 1251 * the threaded handler for those. 1252 */ 1253 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1254 new->flags &= ~IRQF_ONESHOT; 1255 1256 /* 1257 * Protects against a concurrent __free_irq() call which might wait 1258 * for synchronize_hardirq() to complete without holding the optional 1259 * chip bus lock and desc->lock. Also protects against handing out 1260 * a recycled oneshot thread_mask bit while it's still in use by 1261 * its previous owner. 1262 */ 1263 mutex_lock(&desc->request_mutex); 1264 1265 /* 1266 * Acquire bus lock as the irq_request_resources() callback below 1267 * might rely on the serialization or the magic power management 1268 * functions which are abusing the irq_bus_lock() callback, 1269 */ 1270 chip_bus_lock(desc); 1271 1272 /* First installed action requests resources. */ 1273 if (!desc->action) { 1274 ret = irq_request_resources(desc); 1275 if (ret) { 1276 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1277 new->name, irq, desc->irq_data.chip->name); 1278 goto out_bus_unlock; 1279 } 1280 } 1281 1282 /* 1283 * The following block of code has to be executed atomically 1284 * protected against a concurrent interrupt and any of the other 1285 * management calls which are not serialized via 1286 * desc->request_mutex or the optional bus lock. 1287 */ 1288 raw_spin_lock_irqsave(&desc->lock, flags); 1289 old_ptr = &desc->action; 1290 old = *old_ptr; 1291 if (old) { 1292 /* 1293 * Can't share interrupts unless both agree to and are 1294 * the same type (level, edge, polarity). So both flag 1295 * fields must have IRQF_SHARED set and the bits which 1296 * set the trigger type must match. Also all must 1297 * agree on ONESHOT. 1298 */ 1299 unsigned int oldtype; 1300 1301 /* 1302 * If nobody did set the configuration before, inherit 1303 * the one provided by the requester. 1304 */ 1305 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1306 oldtype = irqd_get_trigger_type(&desc->irq_data); 1307 } else { 1308 oldtype = new->flags & IRQF_TRIGGER_MASK; 1309 irqd_set_trigger_type(&desc->irq_data, oldtype); 1310 } 1311 1312 if (!((old->flags & new->flags) & IRQF_SHARED) || 1313 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1314 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1315 goto mismatch; 1316 1317 /* All handlers must agree on per-cpuness */ 1318 if ((old->flags & IRQF_PERCPU) != 1319 (new->flags & IRQF_PERCPU)) 1320 goto mismatch; 1321 1322 /* add new interrupt at end of irq queue */ 1323 do { 1324 /* 1325 * Or all existing action->thread_mask bits, 1326 * so we can find the next zero bit for this 1327 * new action. 1328 */ 1329 thread_mask |= old->thread_mask; 1330 old_ptr = &old->next; 1331 old = *old_ptr; 1332 } while (old); 1333 shared = 1; 1334 } 1335 1336 /* 1337 * Setup the thread mask for this irqaction for ONESHOT. For 1338 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1339 * conditional in irq_wake_thread(). 1340 */ 1341 if (new->flags & IRQF_ONESHOT) { 1342 /* 1343 * Unlikely to have 32 resp 64 irqs sharing one line, 1344 * but who knows. 1345 */ 1346 if (thread_mask == ~0UL) { 1347 ret = -EBUSY; 1348 goto out_unlock; 1349 } 1350 /* 1351 * The thread_mask for the action is or'ed to 1352 * desc->thread_active to indicate that the 1353 * IRQF_ONESHOT thread handler has been woken, but not 1354 * yet finished. The bit is cleared when a thread 1355 * completes. When all threads of a shared interrupt 1356 * line have completed desc->threads_active becomes 1357 * zero and the interrupt line is unmasked. See 1358 * handle.c:irq_wake_thread() for further information. 1359 * 1360 * If no thread is woken by primary (hard irq context) 1361 * interrupt handlers, then desc->threads_active is 1362 * also checked for zero to unmask the irq line in the 1363 * affected hard irq flow handlers 1364 * (handle_[fasteoi|level]_irq). 1365 * 1366 * The new action gets the first zero bit of 1367 * thread_mask assigned. See the loop above which or's 1368 * all existing action->thread_mask bits. 1369 */ 1370 new->thread_mask = 1UL << ffz(thread_mask); 1371 1372 } else if (new->handler == irq_default_primary_handler && 1373 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1374 /* 1375 * The interrupt was requested with handler = NULL, so 1376 * we use the default primary handler for it. But it 1377 * does not have the oneshot flag set. In combination 1378 * with level interrupts this is deadly, because the 1379 * default primary handler just wakes the thread, then 1380 * the irq lines is reenabled, but the device still 1381 * has the level irq asserted. Rinse and repeat.... 1382 * 1383 * While this works for edge type interrupts, we play 1384 * it safe and reject unconditionally because we can't 1385 * say for sure which type this interrupt really 1386 * has. The type flags are unreliable as the 1387 * underlying chip implementation can override them. 1388 */ 1389 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1390 irq); 1391 ret = -EINVAL; 1392 goto out_unlock; 1393 } 1394 1395 if (!shared) { 1396 init_waitqueue_head(&desc->wait_for_threads); 1397 1398 /* Setup the type (level, edge polarity) if configured: */ 1399 if (new->flags & IRQF_TRIGGER_MASK) { 1400 ret = __irq_set_trigger(desc, 1401 new->flags & IRQF_TRIGGER_MASK); 1402 1403 if (ret) 1404 goto out_unlock; 1405 } 1406 1407 /* 1408 * Activate the interrupt. That activation must happen 1409 * independently of IRQ_NOAUTOEN. request_irq() can fail 1410 * and the callers are supposed to handle 1411 * that. enable_irq() of an interrupt requested with 1412 * IRQ_NOAUTOEN is not supposed to fail. The activation 1413 * keeps it in shutdown mode, it merily associates 1414 * resources if necessary and if that's not possible it 1415 * fails. Interrupts which are in managed shutdown mode 1416 * will simply ignore that activation request. 1417 */ 1418 ret = irq_activate(desc); 1419 if (ret) 1420 goto out_unlock; 1421 1422 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1423 IRQS_ONESHOT | IRQS_WAITING); 1424 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1425 1426 if (new->flags & IRQF_PERCPU) { 1427 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1428 irq_settings_set_per_cpu(desc); 1429 } 1430 1431 if (new->flags & IRQF_ONESHOT) 1432 desc->istate |= IRQS_ONESHOT; 1433 1434 /* Exclude IRQ from balancing if requested */ 1435 if (new->flags & IRQF_NOBALANCING) { 1436 irq_settings_set_no_balancing(desc); 1437 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1438 } 1439 1440 if (irq_settings_can_autoenable(desc)) { 1441 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1442 } else { 1443 /* 1444 * Shared interrupts do not go well with disabling 1445 * auto enable. The sharing interrupt might request 1446 * it while it's still disabled and then wait for 1447 * interrupts forever. 1448 */ 1449 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1450 /* Undo nested disables: */ 1451 desc->depth = 1; 1452 } 1453 1454 } else if (new->flags & IRQF_TRIGGER_MASK) { 1455 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1456 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1457 1458 if (nmsk != omsk) 1459 /* hope the handler works with current trigger mode */ 1460 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1461 irq, omsk, nmsk); 1462 } 1463 1464 *old_ptr = new; 1465 1466 irq_pm_install_action(desc, new); 1467 1468 /* Reset broken irq detection when installing new handler */ 1469 desc->irq_count = 0; 1470 desc->irqs_unhandled = 0; 1471 1472 /* 1473 * Check whether we disabled the irq via the spurious handler 1474 * before. Reenable it and give it another chance. 1475 */ 1476 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1477 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1478 __enable_irq(desc); 1479 } 1480 1481 raw_spin_unlock_irqrestore(&desc->lock, flags); 1482 chip_bus_sync_unlock(desc); 1483 mutex_unlock(&desc->request_mutex); 1484 1485 irq_setup_timings(desc, new); 1486 1487 /* 1488 * Strictly no need to wake it up, but hung_task complains 1489 * when no hard interrupt wakes the thread up. 1490 */ 1491 if (new->thread) 1492 wake_up_process(new->thread); 1493 if (new->secondary) 1494 wake_up_process(new->secondary->thread); 1495 1496 register_irq_proc(irq, desc); 1497 new->dir = NULL; 1498 register_handler_proc(irq, new); 1499 return 0; 1500 1501 mismatch: 1502 if (!(new->flags & IRQF_PROBE_SHARED)) { 1503 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1504 irq, new->flags, new->name, old->flags, old->name); 1505 #ifdef CONFIG_DEBUG_SHIRQ 1506 dump_stack(); 1507 #endif 1508 } 1509 ret = -EBUSY; 1510 1511 out_unlock: 1512 raw_spin_unlock_irqrestore(&desc->lock, flags); 1513 1514 if (!desc->action) 1515 irq_release_resources(desc); 1516 out_bus_unlock: 1517 chip_bus_sync_unlock(desc); 1518 mutex_unlock(&desc->request_mutex); 1519 1520 out_thread: 1521 if (new->thread) { 1522 struct task_struct *t = new->thread; 1523 1524 new->thread = NULL; 1525 kthread_stop(t); 1526 put_task_struct(t); 1527 } 1528 if (new->secondary && new->secondary->thread) { 1529 struct task_struct *t = new->secondary->thread; 1530 1531 new->secondary->thread = NULL; 1532 kthread_stop(t); 1533 put_task_struct(t); 1534 } 1535 out_mput: 1536 module_put(desc->owner); 1537 return ret; 1538 } 1539 1540 /** 1541 * setup_irq - setup an interrupt 1542 * @irq: Interrupt line to setup 1543 * @act: irqaction for the interrupt 1544 * 1545 * Used to statically setup interrupts in the early boot process. 1546 */ 1547 int setup_irq(unsigned int irq, struct irqaction *act) 1548 { 1549 int retval; 1550 struct irq_desc *desc = irq_to_desc(irq); 1551 1552 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1553 return -EINVAL; 1554 1555 retval = irq_chip_pm_get(&desc->irq_data); 1556 if (retval < 0) 1557 return retval; 1558 1559 retval = __setup_irq(irq, desc, act); 1560 1561 if (retval) 1562 irq_chip_pm_put(&desc->irq_data); 1563 1564 return retval; 1565 } 1566 EXPORT_SYMBOL_GPL(setup_irq); 1567 1568 /* 1569 * Internal function to unregister an irqaction - used to free 1570 * regular and special interrupts that are part of the architecture. 1571 */ 1572 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1573 { 1574 unsigned irq = desc->irq_data.irq; 1575 struct irqaction *action, **action_ptr; 1576 unsigned long flags; 1577 1578 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1579 1580 mutex_lock(&desc->request_mutex); 1581 chip_bus_lock(desc); 1582 raw_spin_lock_irqsave(&desc->lock, flags); 1583 1584 /* 1585 * There can be multiple actions per IRQ descriptor, find the right 1586 * one based on the dev_id: 1587 */ 1588 action_ptr = &desc->action; 1589 for (;;) { 1590 action = *action_ptr; 1591 1592 if (!action) { 1593 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1594 raw_spin_unlock_irqrestore(&desc->lock, flags); 1595 chip_bus_sync_unlock(desc); 1596 mutex_unlock(&desc->request_mutex); 1597 return NULL; 1598 } 1599 1600 if (action->dev_id == dev_id) 1601 break; 1602 action_ptr = &action->next; 1603 } 1604 1605 /* Found it - now remove it from the list of entries: */ 1606 *action_ptr = action->next; 1607 1608 irq_pm_remove_action(desc, action); 1609 1610 /* If this was the last handler, shut down the IRQ line: */ 1611 if (!desc->action) { 1612 irq_settings_clr_disable_unlazy(desc); 1613 irq_shutdown(desc); 1614 } 1615 1616 #ifdef CONFIG_SMP 1617 /* make sure affinity_hint is cleaned up */ 1618 if (WARN_ON_ONCE(desc->affinity_hint)) 1619 desc->affinity_hint = NULL; 1620 #endif 1621 1622 raw_spin_unlock_irqrestore(&desc->lock, flags); 1623 /* 1624 * Drop bus_lock here so the changes which were done in the chip 1625 * callbacks above are synced out to the irq chips which hang 1626 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1627 * 1628 * Aside of that the bus_lock can also be taken from the threaded 1629 * handler in irq_finalize_oneshot() which results in a deadlock 1630 * because kthread_stop() would wait forever for the thread to 1631 * complete, which is blocked on the bus lock. 1632 * 1633 * The still held desc->request_mutex() protects against a 1634 * concurrent request_irq() of this irq so the release of resources 1635 * and timing data is properly serialized. 1636 */ 1637 chip_bus_sync_unlock(desc); 1638 1639 unregister_handler_proc(irq, action); 1640 1641 /* Make sure it's not being used on another CPU: */ 1642 synchronize_hardirq(irq); 1643 1644 #ifdef CONFIG_DEBUG_SHIRQ 1645 /* 1646 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1647 * event to happen even now it's being freed, so let's make sure that 1648 * is so by doing an extra call to the handler .... 1649 * 1650 * ( We do this after actually deregistering it, to make sure that a 1651 * 'real' IRQ doesn't run in parallel with our fake. ) 1652 */ 1653 if (action->flags & IRQF_SHARED) { 1654 local_irq_save(flags); 1655 action->handler(irq, dev_id); 1656 local_irq_restore(flags); 1657 } 1658 #endif 1659 1660 /* 1661 * The action has already been removed above, but the thread writes 1662 * its oneshot mask bit when it completes. Though request_mutex is 1663 * held across this which prevents __setup_irq() from handing out 1664 * the same bit to a newly requested action. 1665 */ 1666 if (action->thread) { 1667 kthread_stop(action->thread); 1668 put_task_struct(action->thread); 1669 if (action->secondary && action->secondary->thread) { 1670 kthread_stop(action->secondary->thread); 1671 put_task_struct(action->secondary->thread); 1672 } 1673 } 1674 1675 /* Last action releases resources */ 1676 if (!desc->action) { 1677 /* 1678 * Reaquire bus lock as irq_release_resources() might 1679 * require it to deallocate resources over the slow bus. 1680 */ 1681 chip_bus_lock(desc); 1682 irq_release_resources(desc); 1683 chip_bus_sync_unlock(desc); 1684 irq_remove_timings(desc); 1685 } 1686 1687 mutex_unlock(&desc->request_mutex); 1688 1689 irq_chip_pm_put(&desc->irq_data); 1690 module_put(desc->owner); 1691 kfree(action->secondary); 1692 return action; 1693 } 1694 1695 /** 1696 * remove_irq - free an interrupt 1697 * @irq: Interrupt line to free 1698 * @act: irqaction for the interrupt 1699 * 1700 * Used to remove interrupts statically setup by the early boot process. 1701 */ 1702 void remove_irq(unsigned int irq, struct irqaction *act) 1703 { 1704 struct irq_desc *desc = irq_to_desc(irq); 1705 1706 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1707 __free_irq(desc, act->dev_id); 1708 } 1709 EXPORT_SYMBOL_GPL(remove_irq); 1710 1711 /** 1712 * free_irq - free an interrupt allocated with request_irq 1713 * @irq: Interrupt line to free 1714 * @dev_id: Device identity to free 1715 * 1716 * Remove an interrupt handler. The handler is removed and if the 1717 * interrupt line is no longer in use by any driver it is disabled. 1718 * On a shared IRQ the caller must ensure the interrupt is disabled 1719 * on the card it drives before calling this function. The function 1720 * does not return until any executing interrupts for this IRQ 1721 * have completed. 1722 * 1723 * This function must not be called from interrupt context. 1724 * 1725 * Returns the devname argument passed to request_irq. 1726 */ 1727 const void *free_irq(unsigned int irq, void *dev_id) 1728 { 1729 struct irq_desc *desc = irq_to_desc(irq); 1730 struct irqaction *action; 1731 const char *devname; 1732 1733 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1734 return NULL; 1735 1736 #ifdef CONFIG_SMP 1737 if (WARN_ON(desc->affinity_notify)) 1738 desc->affinity_notify = NULL; 1739 #endif 1740 1741 action = __free_irq(desc, dev_id); 1742 1743 if (!action) 1744 return NULL; 1745 1746 devname = action->name; 1747 kfree(action); 1748 return devname; 1749 } 1750 EXPORT_SYMBOL(free_irq); 1751 1752 /** 1753 * request_threaded_irq - allocate an interrupt line 1754 * @irq: Interrupt line to allocate 1755 * @handler: Function to be called when the IRQ occurs. 1756 * Primary handler for threaded interrupts 1757 * If NULL and thread_fn != NULL the default 1758 * primary handler is installed 1759 * @thread_fn: Function called from the irq handler thread 1760 * If NULL, no irq thread is created 1761 * @irqflags: Interrupt type flags 1762 * @devname: An ascii name for the claiming device 1763 * @dev_id: A cookie passed back to the handler function 1764 * 1765 * This call allocates interrupt resources and enables the 1766 * interrupt line and IRQ handling. From the point this 1767 * call is made your handler function may be invoked. Since 1768 * your handler function must clear any interrupt the board 1769 * raises, you must take care both to initialise your hardware 1770 * and to set up the interrupt handler in the right order. 1771 * 1772 * If you want to set up a threaded irq handler for your device 1773 * then you need to supply @handler and @thread_fn. @handler is 1774 * still called in hard interrupt context and has to check 1775 * whether the interrupt originates from the device. If yes it 1776 * needs to disable the interrupt on the device and return 1777 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1778 * @thread_fn. This split handler design is necessary to support 1779 * shared interrupts. 1780 * 1781 * Dev_id must be globally unique. Normally the address of the 1782 * device data structure is used as the cookie. Since the handler 1783 * receives this value it makes sense to use it. 1784 * 1785 * If your interrupt is shared you must pass a non NULL dev_id 1786 * as this is required when freeing the interrupt. 1787 * 1788 * Flags: 1789 * 1790 * IRQF_SHARED Interrupt is shared 1791 * IRQF_TRIGGER_* Specify active edge(s) or level 1792 * 1793 */ 1794 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1795 irq_handler_t thread_fn, unsigned long irqflags, 1796 const char *devname, void *dev_id) 1797 { 1798 struct irqaction *action; 1799 struct irq_desc *desc; 1800 int retval; 1801 1802 if (irq == IRQ_NOTCONNECTED) 1803 return -ENOTCONN; 1804 1805 /* 1806 * Sanity-check: shared interrupts must pass in a real dev-ID, 1807 * otherwise we'll have trouble later trying to figure out 1808 * which interrupt is which (messes up the interrupt freeing 1809 * logic etc). 1810 * 1811 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1812 * it cannot be set along with IRQF_NO_SUSPEND. 1813 */ 1814 if (((irqflags & IRQF_SHARED) && !dev_id) || 1815 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1816 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1817 return -EINVAL; 1818 1819 desc = irq_to_desc(irq); 1820 if (!desc) 1821 return -EINVAL; 1822 1823 if (!irq_settings_can_request(desc) || 1824 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1825 return -EINVAL; 1826 1827 if (!handler) { 1828 if (!thread_fn) 1829 return -EINVAL; 1830 handler = irq_default_primary_handler; 1831 } 1832 1833 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1834 if (!action) 1835 return -ENOMEM; 1836 1837 action->handler = handler; 1838 action->thread_fn = thread_fn; 1839 action->flags = irqflags; 1840 action->name = devname; 1841 action->dev_id = dev_id; 1842 1843 retval = irq_chip_pm_get(&desc->irq_data); 1844 if (retval < 0) { 1845 kfree(action); 1846 return retval; 1847 } 1848 1849 retval = __setup_irq(irq, desc, action); 1850 1851 if (retval) { 1852 irq_chip_pm_put(&desc->irq_data); 1853 kfree(action->secondary); 1854 kfree(action); 1855 } 1856 1857 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1858 if (!retval && (irqflags & IRQF_SHARED)) { 1859 /* 1860 * It's a shared IRQ -- the driver ought to be prepared for it 1861 * to happen immediately, so let's make sure.... 1862 * We disable the irq to make sure that a 'real' IRQ doesn't 1863 * run in parallel with our fake. 1864 */ 1865 unsigned long flags; 1866 1867 disable_irq(irq); 1868 local_irq_save(flags); 1869 1870 handler(irq, dev_id); 1871 1872 local_irq_restore(flags); 1873 enable_irq(irq); 1874 } 1875 #endif 1876 return retval; 1877 } 1878 EXPORT_SYMBOL(request_threaded_irq); 1879 1880 /** 1881 * request_any_context_irq - allocate an interrupt line 1882 * @irq: Interrupt line to allocate 1883 * @handler: Function to be called when the IRQ occurs. 1884 * Threaded handler for threaded interrupts. 1885 * @flags: Interrupt type flags 1886 * @name: An ascii name for the claiming device 1887 * @dev_id: A cookie passed back to the handler function 1888 * 1889 * This call allocates interrupt resources and enables the 1890 * interrupt line and IRQ handling. It selects either a 1891 * hardirq or threaded handling method depending on the 1892 * context. 1893 * 1894 * On failure, it returns a negative value. On success, 1895 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1896 */ 1897 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1898 unsigned long flags, const char *name, void *dev_id) 1899 { 1900 struct irq_desc *desc; 1901 int ret; 1902 1903 if (irq == IRQ_NOTCONNECTED) 1904 return -ENOTCONN; 1905 1906 desc = irq_to_desc(irq); 1907 if (!desc) 1908 return -EINVAL; 1909 1910 if (irq_settings_is_nested_thread(desc)) { 1911 ret = request_threaded_irq(irq, NULL, handler, 1912 flags, name, dev_id); 1913 return !ret ? IRQC_IS_NESTED : ret; 1914 } 1915 1916 ret = request_irq(irq, handler, flags, name, dev_id); 1917 return !ret ? IRQC_IS_HARDIRQ : ret; 1918 } 1919 EXPORT_SYMBOL_GPL(request_any_context_irq); 1920 1921 void enable_percpu_irq(unsigned int irq, unsigned int type) 1922 { 1923 unsigned int cpu = smp_processor_id(); 1924 unsigned long flags; 1925 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1926 1927 if (!desc) 1928 return; 1929 1930 /* 1931 * If the trigger type is not specified by the caller, then 1932 * use the default for this interrupt. 1933 */ 1934 type &= IRQ_TYPE_SENSE_MASK; 1935 if (type == IRQ_TYPE_NONE) 1936 type = irqd_get_trigger_type(&desc->irq_data); 1937 1938 if (type != IRQ_TYPE_NONE) { 1939 int ret; 1940 1941 ret = __irq_set_trigger(desc, type); 1942 1943 if (ret) { 1944 WARN(1, "failed to set type for IRQ%d\n", irq); 1945 goto out; 1946 } 1947 } 1948 1949 irq_percpu_enable(desc, cpu); 1950 out: 1951 irq_put_desc_unlock(desc, flags); 1952 } 1953 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1954 1955 /** 1956 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1957 * @irq: Linux irq number to check for 1958 * 1959 * Must be called from a non migratable context. Returns the enable 1960 * state of a per cpu interrupt on the current cpu. 1961 */ 1962 bool irq_percpu_is_enabled(unsigned int irq) 1963 { 1964 unsigned int cpu = smp_processor_id(); 1965 struct irq_desc *desc; 1966 unsigned long flags; 1967 bool is_enabled; 1968 1969 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1970 if (!desc) 1971 return false; 1972 1973 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1974 irq_put_desc_unlock(desc, flags); 1975 1976 return is_enabled; 1977 } 1978 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1979 1980 void disable_percpu_irq(unsigned int irq) 1981 { 1982 unsigned int cpu = smp_processor_id(); 1983 unsigned long flags; 1984 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1985 1986 if (!desc) 1987 return; 1988 1989 irq_percpu_disable(desc, cpu); 1990 irq_put_desc_unlock(desc, flags); 1991 } 1992 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1993 1994 /* 1995 * Internal function to unregister a percpu irqaction. 1996 */ 1997 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1998 { 1999 struct irq_desc *desc = irq_to_desc(irq); 2000 struct irqaction *action; 2001 unsigned long flags; 2002 2003 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2004 2005 if (!desc) 2006 return NULL; 2007 2008 raw_spin_lock_irqsave(&desc->lock, flags); 2009 2010 action = desc->action; 2011 if (!action || action->percpu_dev_id != dev_id) { 2012 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2013 goto bad; 2014 } 2015 2016 if (!cpumask_empty(desc->percpu_enabled)) { 2017 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2018 irq, cpumask_first(desc->percpu_enabled)); 2019 goto bad; 2020 } 2021 2022 /* Found it - now remove it from the list of entries: */ 2023 desc->action = NULL; 2024 2025 raw_spin_unlock_irqrestore(&desc->lock, flags); 2026 2027 unregister_handler_proc(irq, action); 2028 2029 irq_chip_pm_put(&desc->irq_data); 2030 module_put(desc->owner); 2031 return action; 2032 2033 bad: 2034 raw_spin_unlock_irqrestore(&desc->lock, flags); 2035 return NULL; 2036 } 2037 2038 /** 2039 * remove_percpu_irq - free a per-cpu interrupt 2040 * @irq: Interrupt line to free 2041 * @act: irqaction for the interrupt 2042 * 2043 * Used to remove interrupts statically setup by the early boot process. 2044 */ 2045 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2046 { 2047 struct irq_desc *desc = irq_to_desc(irq); 2048 2049 if (desc && irq_settings_is_per_cpu_devid(desc)) 2050 __free_percpu_irq(irq, act->percpu_dev_id); 2051 } 2052 2053 /** 2054 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2055 * @irq: Interrupt line to free 2056 * @dev_id: Device identity to free 2057 * 2058 * Remove a percpu interrupt handler. The handler is removed, but 2059 * the interrupt line is not disabled. This must be done on each 2060 * CPU before calling this function. The function does not return 2061 * until any executing interrupts for this IRQ have completed. 2062 * 2063 * This function must not be called from interrupt context. 2064 */ 2065 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2066 { 2067 struct irq_desc *desc = irq_to_desc(irq); 2068 2069 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2070 return; 2071 2072 chip_bus_lock(desc); 2073 kfree(__free_percpu_irq(irq, dev_id)); 2074 chip_bus_sync_unlock(desc); 2075 } 2076 EXPORT_SYMBOL_GPL(free_percpu_irq); 2077 2078 /** 2079 * setup_percpu_irq - setup a per-cpu interrupt 2080 * @irq: Interrupt line to setup 2081 * @act: irqaction for the interrupt 2082 * 2083 * Used to statically setup per-cpu interrupts in the early boot process. 2084 */ 2085 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2086 { 2087 struct irq_desc *desc = irq_to_desc(irq); 2088 int retval; 2089 2090 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2091 return -EINVAL; 2092 2093 retval = irq_chip_pm_get(&desc->irq_data); 2094 if (retval < 0) 2095 return retval; 2096 2097 retval = __setup_irq(irq, desc, act); 2098 2099 if (retval) 2100 irq_chip_pm_put(&desc->irq_data); 2101 2102 return retval; 2103 } 2104 2105 /** 2106 * __request_percpu_irq - allocate a percpu interrupt line 2107 * @irq: Interrupt line to allocate 2108 * @handler: Function to be called when the IRQ occurs. 2109 * @flags: Interrupt type flags (IRQF_TIMER only) 2110 * @devname: An ascii name for the claiming device 2111 * @dev_id: A percpu cookie passed back to the handler function 2112 * 2113 * This call allocates interrupt resources and enables the 2114 * interrupt on the local CPU. If the interrupt is supposed to be 2115 * enabled on other CPUs, it has to be done on each CPU using 2116 * enable_percpu_irq(). 2117 * 2118 * Dev_id must be globally unique. It is a per-cpu variable, and 2119 * the handler gets called with the interrupted CPU's instance of 2120 * that variable. 2121 */ 2122 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2123 unsigned long flags, const char *devname, 2124 void __percpu *dev_id) 2125 { 2126 struct irqaction *action; 2127 struct irq_desc *desc; 2128 int retval; 2129 2130 if (!dev_id) 2131 return -EINVAL; 2132 2133 desc = irq_to_desc(irq); 2134 if (!desc || !irq_settings_can_request(desc) || 2135 !irq_settings_is_per_cpu_devid(desc)) 2136 return -EINVAL; 2137 2138 if (flags && flags != IRQF_TIMER) 2139 return -EINVAL; 2140 2141 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2142 if (!action) 2143 return -ENOMEM; 2144 2145 action->handler = handler; 2146 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2147 action->name = devname; 2148 action->percpu_dev_id = dev_id; 2149 2150 retval = irq_chip_pm_get(&desc->irq_data); 2151 if (retval < 0) { 2152 kfree(action); 2153 return retval; 2154 } 2155 2156 retval = __setup_irq(irq, desc, action); 2157 2158 if (retval) { 2159 irq_chip_pm_put(&desc->irq_data); 2160 kfree(action); 2161 } 2162 2163 return retval; 2164 } 2165 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2166 2167 /** 2168 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2169 * @irq: Interrupt line that is forwarded to a VM 2170 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2171 * @state: a pointer to a boolean where the state is to be storeed 2172 * 2173 * This call snapshots the internal irqchip state of an 2174 * interrupt, returning into @state the bit corresponding to 2175 * stage @which 2176 * 2177 * This function should be called with preemption disabled if the 2178 * interrupt controller has per-cpu registers. 2179 */ 2180 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2181 bool *state) 2182 { 2183 struct irq_desc *desc; 2184 struct irq_data *data; 2185 struct irq_chip *chip; 2186 unsigned long flags; 2187 int err = -EINVAL; 2188 2189 desc = irq_get_desc_buslock(irq, &flags, 0); 2190 if (!desc) 2191 return err; 2192 2193 data = irq_desc_get_irq_data(desc); 2194 2195 do { 2196 chip = irq_data_get_irq_chip(data); 2197 if (chip->irq_get_irqchip_state) 2198 break; 2199 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2200 data = data->parent_data; 2201 #else 2202 data = NULL; 2203 #endif 2204 } while (data); 2205 2206 if (data) 2207 err = chip->irq_get_irqchip_state(data, which, state); 2208 2209 irq_put_desc_busunlock(desc, flags); 2210 return err; 2211 } 2212 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2213 2214 /** 2215 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2216 * @irq: Interrupt line that is forwarded to a VM 2217 * @which: State to be restored (one of IRQCHIP_STATE_*) 2218 * @val: Value corresponding to @which 2219 * 2220 * This call sets the internal irqchip state of an interrupt, 2221 * depending on the value of @which. 2222 * 2223 * This function should be called with preemption disabled if the 2224 * interrupt controller has per-cpu registers. 2225 */ 2226 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2227 bool val) 2228 { 2229 struct irq_desc *desc; 2230 struct irq_data *data; 2231 struct irq_chip *chip; 2232 unsigned long flags; 2233 int err = -EINVAL; 2234 2235 desc = irq_get_desc_buslock(irq, &flags, 0); 2236 if (!desc) 2237 return err; 2238 2239 data = irq_desc_get_irq_data(desc); 2240 2241 do { 2242 chip = irq_data_get_irq_chip(data); 2243 if (chip->irq_set_irqchip_state) 2244 break; 2245 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2246 data = data->parent_data; 2247 #else 2248 data = NULL; 2249 #endif 2250 } while (data); 2251 2252 if (data) 2253 err = chip->irq_set_irqchip_state(data, which, val); 2254 2255 irq_put_desc_busunlock(desc, flags); 2256 return err; 2257 } 2258 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2259