1 /* 2 * linux/kernel/irq/manage.c 3 * 4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 5 * Copyright (C) 2005-2006 Thomas Gleixner 6 * 7 * This file contains driver APIs to the irq subsystem. 8 */ 9 10 #define pr_fmt(fmt) "genirq: " fmt 11 12 #include <linux/irq.h> 13 #include <linux/kthread.h> 14 #include <linux/module.h> 15 #include <linux/random.h> 16 #include <linux/interrupt.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <uapi/linux/sched/types.h> 22 #include <linux/task_work.h> 23 24 #include "internals.h" 25 26 #ifdef CONFIG_IRQ_FORCED_THREADING 27 __read_mostly bool force_irqthreads; 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 #ifdef CONFIG_GENERIC_PENDING_IRQ 172 static inline bool irq_can_move_pcntxt(struct irq_data *data) 173 { 174 return irqd_can_move_in_process_context(data); 175 } 176 static inline bool irq_move_pending(struct irq_data *data) 177 { 178 return irqd_is_setaffinity_pending(data); 179 } 180 static inline void 181 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) 182 { 183 cpumask_copy(desc->pending_mask, mask); 184 } 185 static inline void 186 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) 187 { 188 cpumask_copy(mask, desc->pending_mask); 189 } 190 #else 191 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; } 192 static inline bool irq_move_pending(struct irq_data *data) { return false; } 193 static inline void 194 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { } 195 static inline void 196 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { } 197 #endif 198 199 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 200 bool force) 201 { 202 struct irq_desc *desc = irq_data_to_desc(data); 203 struct irq_chip *chip = irq_data_get_irq_chip(data); 204 int ret; 205 206 ret = chip->irq_set_affinity(data, mask, force); 207 switch (ret) { 208 case IRQ_SET_MASK_OK: 209 case IRQ_SET_MASK_OK_DONE: 210 cpumask_copy(desc->irq_common_data.affinity, mask); 211 case IRQ_SET_MASK_OK_NOCOPY: 212 irq_set_thread_affinity(desc); 213 ret = 0; 214 } 215 216 return ret; 217 } 218 219 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 220 bool force) 221 { 222 struct irq_chip *chip = irq_data_get_irq_chip(data); 223 struct irq_desc *desc = irq_data_to_desc(data); 224 int ret = 0; 225 226 if (!chip || !chip->irq_set_affinity) 227 return -EINVAL; 228 229 if (irq_can_move_pcntxt(data)) { 230 ret = irq_do_set_affinity(data, mask, force); 231 } else { 232 irqd_set_move_pending(data); 233 irq_copy_pending(desc, mask); 234 } 235 236 if (desc->affinity_notify) { 237 kref_get(&desc->affinity_notify->kref); 238 schedule_work(&desc->affinity_notify->work); 239 } 240 irqd_set(data, IRQD_AFFINITY_SET); 241 242 return ret; 243 } 244 245 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 246 { 247 struct irq_desc *desc = irq_to_desc(irq); 248 unsigned long flags; 249 int ret; 250 251 if (!desc) 252 return -EINVAL; 253 254 raw_spin_lock_irqsave(&desc->lock, flags); 255 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 256 raw_spin_unlock_irqrestore(&desc->lock, flags); 257 return ret; 258 } 259 260 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 261 { 262 unsigned long flags; 263 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 264 265 if (!desc) 266 return -EINVAL; 267 desc->affinity_hint = m; 268 irq_put_desc_unlock(desc, flags); 269 /* set the initial affinity to prevent every interrupt being on CPU0 */ 270 if (m) 271 __irq_set_affinity(irq, m, false); 272 return 0; 273 } 274 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 275 276 static void irq_affinity_notify(struct work_struct *work) 277 { 278 struct irq_affinity_notify *notify = 279 container_of(work, struct irq_affinity_notify, work); 280 struct irq_desc *desc = irq_to_desc(notify->irq); 281 cpumask_var_t cpumask; 282 unsigned long flags; 283 284 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 285 goto out; 286 287 raw_spin_lock_irqsave(&desc->lock, flags); 288 if (irq_move_pending(&desc->irq_data)) 289 irq_get_pending(cpumask, desc); 290 else 291 cpumask_copy(cpumask, desc->irq_common_data.affinity); 292 raw_spin_unlock_irqrestore(&desc->lock, flags); 293 294 notify->notify(notify, cpumask); 295 296 free_cpumask_var(cpumask); 297 out: 298 kref_put(¬ify->kref, notify->release); 299 } 300 301 /** 302 * irq_set_affinity_notifier - control notification of IRQ affinity changes 303 * @irq: Interrupt for which to enable/disable notification 304 * @notify: Context for notification, or %NULL to disable 305 * notification. Function pointers must be initialised; 306 * the other fields will be initialised by this function. 307 * 308 * Must be called in process context. Notification may only be enabled 309 * after the IRQ is allocated and must be disabled before the IRQ is 310 * freed using free_irq(). 311 */ 312 int 313 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 314 { 315 struct irq_desc *desc = irq_to_desc(irq); 316 struct irq_affinity_notify *old_notify; 317 unsigned long flags; 318 319 /* The release function is promised process context */ 320 might_sleep(); 321 322 if (!desc) 323 return -EINVAL; 324 325 /* Complete initialisation of *notify */ 326 if (notify) { 327 notify->irq = irq; 328 kref_init(¬ify->kref); 329 INIT_WORK(¬ify->work, irq_affinity_notify); 330 } 331 332 raw_spin_lock_irqsave(&desc->lock, flags); 333 old_notify = desc->affinity_notify; 334 desc->affinity_notify = notify; 335 raw_spin_unlock_irqrestore(&desc->lock, flags); 336 337 if (old_notify) 338 kref_put(&old_notify->kref, old_notify->release); 339 340 return 0; 341 } 342 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 343 344 #ifndef CONFIG_AUTO_IRQ_AFFINITY 345 /* 346 * Generic version of the affinity autoselector. 347 */ 348 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask) 349 { 350 struct cpumask *set = irq_default_affinity; 351 int node = irq_desc_get_node(desc); 352 353 /* Excludes PER_CPU and NO_BALANCE interrupts */ 354 if (!__irq_can_set_affinity(desc)) 355 return 0; 356 357 /* 358 * Preserve the managed affinity setting and a userspace affinity 359 * setup, but make sure that one of the targets is online. 360 */ 361 if (irqd_affinity_is_managed(&desc->irq_data) || 362 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 363 if (cpumask_intersects(desc->irq_common_data.affinity, 364 cpu_online_mask)) 365 set = desc->irq_common_data.affinity; 366 else 367 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 368 } 369 370 cpumask_and(mask, cpu_online_mask, set); 371 if (node != NUMA_NO_NODE) { 372 const struct cpumask *nodemask = cpumask_of_node(node); 373 374 /* make sure at least one of the cpus in nodemask is online */ 375 if (cpumask_intersects(mask, nodemask)) 376 cpumask_and(mask, mask, nodemask); 377 } 378 irq_do_set_affinity(&desc->irq_data, mask, false); 379 return 0; 380 } 381 #else 382 /* Wrapper for ALPHA specific affinity selector magic */ 383 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask) 384 { 385 return irq_select_affinity(irq_desc_get_irq(d)); 386 } 387 #endif 388 389 /* 390 * Called when affinity is set via /proc/irq 391 */ 392 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask) 393 { 394 struct irq_desc *desc = irq_to_desc(irq); 395 unsigned long flags; 396 int ret; 397 398 raw_spin_lock_irqsave(&desc->lock, flags); 399 ret = setup_affinity(desc, mask); 400 raw_spin_unlock_irqrestore(&desc->lock, flags); 401 return ret; 402 } 403 404 #else 405 static inline int 406 setup_affinity(struct irq_desc *desc, struct cpumask *mask) 407 { 408 return 0; 409 } 410 #endif 411 412 /** 413 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 414 * @irq: interrupt number to set affinity 415 * @vcpu_info: vCPU specific data 416 * 417 * This function uses the vCPU specific data to set the vCPU 418 * affinity for an irq. The vCPU specific data is passed from 419 * outside, such as KVM. One example code path is as below: 420 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 421 */ 422 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 423 { 424 unsigned long flags; 425 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 426 struct irq_data *data; 427 struct irq_chip *chip; 428 int ret = -ENOSYS; 429 430 if (!desc) 431 return -EINVAL; 432 433 data = irq_desc_get_irq_data(desc); 434 chip = irq_data_get_irq_chip(data); 435 if (chip && chip->irq_set_vcpu_affinity) 436 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 437 irq_put_desc_unlock(desc, flags); 438 439 return ret; 440 } 441 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 442 443 void __disable_irq(struct irq_desc *desc) 444 { 445 if (!desc->depth++) 446 irq_disable(desc); 447 } 448 449 static int __disable_irq_nosync(unsigned int irq) 450 { 451 unsigned long flags; 452 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 453 454 if (!desc) 455 return -EINVAL; 456 __disable_irq(desc); 457 irq_put_desc_busunlock(desc, flags); 458 return 0; 459 } 460 461 /** 462 * disable_irq_nosync - disable an irq without waiting 463 * @irq: Interrupt to disable 464 * 465 * Disable the selected interrupt line. Disables and Enables are 466 * nested. 467 * Unlike disable_irq(), this function does not ensure existing 468 * instances of the IRQ handler have completed before returning. 469 * 470 * This function may be called from IRQ context. 471 */ 472 void disable_irq_nosync(unsigned int irq) 473 { 474 __disable_irq_nosync(irq); 475 } 476 EXPORT_SYMBOL(disable_irq_nosync); 477 478 /** 479 * disable_irq - disable an irq and wait for completion 480 * @irq: Interrupt to disable 481 * 482 * Disable the selected interrupt line. Enables and Disables are 483 * nested. 484 * This function waits for any pending IRQ handlers for this interrupt 485 * to complete before returning. If you use this function while 486 * holding a resource the IRQ handler may need you will deadlock. 487 * 488 * This function may be called - with care - from IRQ context. 489 */ 490 void disable_irq(unsigned int irq) 491 { 492 if (!__disable_irq_nosync(irq)) 493 synchronize_irq(irq); 494 } 495 EXPORT_SYMBOL(disable_irq); 496 497 /** 498 * disable_hardirq - disables an irq and waits for hardirq completion 499 * @irq: Interrupt to disable 500 * 501 * Disable the selected interrupt line. Enables and Disables are 502 * nested. 503 * This function waits for any pending hard IRQ handlers for this 504 * interrupt to complete before returning. If you use this function while 505 * holding a resource the hard IRQ handler may need you will deadlock. 506 * 507 * When used to optimistically disable an interrupt from atomic context 508 * the return value must be checked. 509 * 510 * Returns: false if a threaded handler is active. 511 * 512 * This function may be called - with care - from IRQ context. 513 */ 514 bool disable_hardirq(unsigned int irq) 515 { 516 if (!__disable_irq_nosync(irq)) 517 return synchronize_hardirq(irq); 518 519 return false; 520 } 521 EXPORT_SYMBOL_GPL(disable_hardirq); 522 523 void __enable_irq(struct irq_desc *desc) 524 { 525 switch (desc->depth) { 526 case 0: 527 err_out: 528 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 529 irq_desc_get_irq(desc)); 530 break; 531 case 1: { 532 if (desc->istate & IRQS_SUSPENDED) 533 goto err_out; 534 /* Prevent probing on this irq: */ 535 irq_settings_set_noprobe(desc); 536 irq_enable(desc); 537 check_irq_resend(desc); 538 /* fall-through */ 539 } 540 default: 541 desc->depth--; 542 } 543 } 544 545 /** 546 * enable_irq - enable handling of an irq 547 * @irq: Interrupt to enable 548 * 549 * Undoes the effect of one call to disable_irq(). If this 550 * matches the last disable, processing of interrupts on this 551 * IRQ line is re-enabled. 552 * 553 * This function may be called from IRQ context only when 554 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 555 */ 556 void enable_irq(unsigned int irq) 557 { 558 unsigned long flags; 559 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 560 561 if (!desc) 562 return; 563 if (WARN(!desc->irq_data.chip, 564 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 565 goto out; 566 567 __enable_irq(desc); 568 out: 569 irq_put_desc_busunlock(desc, flags); 570 } 571 EXPORT_SYMBOL(enable_irq); 572 573 static int set_irq_wake_real(unsigned int irq, unsigned int on) 574 { 575 struct irq_desc *desc = irq_to_desc(irq); 576 int ret = -ENXIO; 577 578 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 579 return 0; 580 581 if (desc->irq_data.chip->irq_set_wake) 582 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 583 584 return ret; 585 } 586 587 /** 588 * irq_set_irq_wake - control irq power management wakeup 589 * @irq: interrupt to control 590 * @on: enable/disable power management wakeup 591 * 592 * Enable/disable power management wakeup mode, which is 593 * disabled by default. Enables and disables must match, 594 * just as they match for non-wakeup mode support. 595 * 596 * Wakeup mode lets this IRQ wake the system from sleep 597 * states like "suspend to RAM". 598 */ 599 int irq_set_irq_wake(unsigned int irq, unsigned int on) 600 { 601 unsigned long flags; 602 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 603 int ret = 0; 604 605 if (!desc) 606 return -EINVAL; 607 608 /* wakeup-capable irqs can be shared between drivers that 609 * don't need to have the same sleep mode behaviors. 610 */ 611 if (on) { 612 if (desc->wake_depth++ == 0) { 613 ret = set_irq_wake_real(irq, on); 614 if (ret) 615 desc->wake_depth = 0; 616 else 617 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 618 } 619 } else { 620 if (desc->wake_depth == 0) { 621 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 622 } else if (--desc->wake_depth == 0) { 623 ret = set_irq_wake_real(irq, on); 624 if (ret) 625 desc->wake_depth = 1; 626 else 627 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 628 } 629 } 630 irq_put_desc_busunlock(desc, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(irq_set_irq_wake); 634 635 /* 636 * Internal function that tells the architecture code whether a 637 * particular irq has been exclusively allocated or is available 638 * for driver use. 639 */ 640 int can_request_irq(unsigned int irq, unsigned long irqflags) 641 { 642 unsigned long flags; 643 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 644 int canrequest = 0; 645 646 if (!desc) 647 return 0; 648 649 if (irq_settings_can_request(desc)) { 650 if (!desc->action || 651 irqflags & desc->action->flags & IRQF_SHARED) 652 canrequest = 1; 653 } 654 irq_put_desc_unlock(desc, flags); 655 return canrequest; 656 } 657 658 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 659 { 660 struct irq_chip *chip = desc->irq_data.chip; 661 int ret, unmask = 0; 662 663 if (!chip || !chip->irq_set_type) { 664 /* 665 * IRQF_TRIGGER_* but the PIC does not support multiple 666 * flow-types? 667 */ 668 pr_debug("No set_type function for IRQ %d (%s)\n", 669 irq_desc_get_irq(desc), 670 chip ? (chip->name ? : "unknown") : "unknown"); 671 return 0; 672 } 673 674 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 675 if (!irqd_irq_masked(&desc->irq_data)) 676 mask_irq(desc); 677 if (!irqd_irq_disabled(&desc->irq_data)) 678 unmask = 1; 679 } 680 681 /* Mask all flags except trigger mode */ 682 flags &= IRQ_TYPE_SENSE_MASK; 683 ret = chip->irq_set_type(&desc->irq_data, flags); 684 685 switch (ret) { 686 case IRQ_SET_MASK_OK: 687 case IRQ_SET_MASK_OK_DONE: 688 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 689 irqd_set(&desc->irq_data, flags); 690 691 case IRQ_SET_MASK_OK_NOCOPY: 692 flags = irqd_get_trigger_type(&desc->irq_data); 693 irq_settings_set_trigger_mask(desc, flags); 694 irqd_clear(&desc->irq_data, IRQD_LEVEL); 695 irq_settings_clr_level(desc); 696 if (flags & IRQ_TYPE_LEVEL_MASK) { 697 irq_settings_set_level(desc); 698 irqd_set(&desc->irq_data, IRQD_LEVEL); 699 } 700 701 ret = 0; 702 break; 703 default: 704 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 705 flags, irq_desc_get_irq(desc), chip->irq_set_type); 706 } 707 if (unmask) 708 unmask_irq(desc); 709 return ret; 710 } 711 712 #ifdef CONFIG_HARDIRQS_SW_RESEND 713 int irq_set_parent(int irq, int parent_irq) 714 { 715 unsigned long flags; 716 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 717 718 if (!desc) 719 return -EINVAL; 720 721 desc->parent_irq = parent_irq; 722 723 irq_put_desc_unlock(desc, flags); 724 return 0; 725 } 726 EXPORT_SYMBOL_GPL(irq_set_parent); 727 #endif 728 729 /* 730 * Default primary interrupt handler for threaded interrupts. Is 731 * assigned as primary handler when request_threaded_irq is called 732 * with handler == NULL. Useful for oneshot interrupts. 733 */ 734 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 735 { 736 return IRQ_WAKE_THREAD; 737 } 738 739 /* 740 * Primary handler for nested threaded interrupts. Should never be 741 * called. 742 */ 743 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 744 { 745 WARN(1, "Primary handler called for nested irq %d\n", irq); 746 return IRQ_NONE; 747 } 748 749 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 750 { 751 WARN(1, "Secondary action handler called for irq %d\n", irq); 752 return IRQ_NONE; 753 } 754 755 static int irq_wait_for_interrupt(struct irqaction *action) 756 { 757 set_current_state(TASK_INTERRUPTIBLE); 758 759 while (!kthread_should_stop()) { 760 761 if (test_and_clear_bit(IRQTF_RUNTHREAD, 762 &action->thread_flags)) { 763 __set_current_state(TASK_RUNNING); 764 return 0; 765 } 766 schedule(); 767 set_current_state(TASK_INTERRUPTIBLE); 768 } 769 __set_current_state(TASK_RUNNING); 770 return -1; 771 } 772 773 /* 774 * Oneshot interrupts keep the irq line masked until the threaded 775 * handler finished. unmask if the interrupt has not been disabled and 776 * is marked MASKED. 777 */ 778 static void irq_finalize_oneshot(struct irq_desc *desc, 779 struct irqaction *action) 780 { 781 if (!(desc->istate & IRQS_ONESHOT) || 782 action->handler == irq_forced_secondary_handler) 783 return; 784 again: 785 chip_bus_lock(desc); 786 raw_spin_lock_irq(&desc->lock); 787 788 /* 789 * Implausible though it may be we need to protect us against 790 * the following scenario: 791 * 792 * The thread is faster done than the hard interrupt handler 793 * on the other CPU. If we unmask the irq line then the 794 * interrupt can come in again and masks the line, leaves due 795 * to IRQS_INPROGRESS and the irq line is masked forever. 796 * 797 * This also serializes the state of shared oneshot handlers 798 * versus "desc->threads_onehsot |= action->thread_mask;" in 799 * irq_wake_thread(). See the comment there which explains the 800 * serialization. 801 */ 802 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 803 raw_spin_unlock_irq(&desc->lock); 804 chip_bus_sync_unlock(desc); 805 cpu_relax(); 806 goto again; 807 } 808 809 /* 810 * Now check again, whether the thread should run. Otherwise 811 * we would clear the threads_oneshot bit of this thread which 812 * was just set. 813 */ 814 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 815 goto out_unlock; 816 817 desc->threads_oneshot &= ~action->thread_mask; 818 819 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 820 irqd_irq_masked(&desc->irq_data)) 821 unmask_threaded_irq(desc); 822 823 out_unlock: 824 raw_spin_unlock_irq(&desc->lock); 825 chip_bus_sync_unlock(desc); 826 } 827 828 #ifdef CONFIG_SMP 829 /* 830 * Check whether we need to change the affinity of the interrupt thread. 831 */ 832 static void 833 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 834 { 835 cpumask_var_t mask; 836 bool valid = true; 837 838 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 839 return; 840 841 /* 842 * In case we are out of memory we set IRQTF_AFFINITY again and 843 * try again next time 844 */ 845 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 846 set_bit(IRQTF_AFFINITY, &action->thread_flags); 847 return; 848 } 849 850 raw_spin_lock_irq(&desc->lock); 851 /* 852 * This code is triggered unconditionally. Check the affinity 853 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 854 */ 855 if (cpumask_available(desc->irq_common_data.affinity)) 856 cpumask_copy(mask, desc->irq_common_data.affinity); 857 else 858 valid = false; 859 raw_spin_unlock_irq(&desc->lock); 860 861 if (valid) 862 set_cpus_allowed_ptr(current, mask); 863 free_cpumask_var(mask); 864 } 865 #else 866 static inline void 867 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 868 #endif 869 870 /* 871 * Interrupts which are not explicitely requested as threaded 872 * interrupts rely on the implicit bh/preempt disable of the hard irq 873 * context. So we need to disable bh here to avoid deadlocks and other 874 * side effects. 875 */ 876 static irqreturn_t 877 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 878 { 879 irqreturn_t ret; 880 881 local_bh_disable(); 882 ret = action->thread_fn(action->irq, action->dev_id); 883 irq_finalize_oneshot(desc, action); 884 local_bh_enable(); 885 return ret; 886 } 887 888 /* 889 * Interrupts explicitly requested as threaded interrupts want to be 890 * preemtible - many of them need to sleep and wait for slow busses to 891 * complete. 892 */ 893 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 894 struct irqaction *action) 895 { 896 irqreturn_t ret; 897 898 ret = action->thread_fn(action->irq, action->dev_id); 899 irq_finalize_oneshot(desc, action); 900 return ret; 901 } 902 903 static void wake_threads_waitq(struct irq_desc *desc) 904 { 905 if (atomic_dec_and_test(&desc->threads_active)) 906 wake_up(&desc->wait_for_threads); 907 } 908 909 static void irq_thread_dtor(struct callback_head *unused) 910 { 911 struct task_struct *tsk = current; 912 struct irq_desc *desc; 913 struct irqaction *action; 914 915 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 916 return; 917 918 action = kthread_data(tsk); 919 920 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 921 tsk->comm, tsk->pid, action->irq); 922 923 924 desc = irq_to_desc(action->irq); 925 /* 926 * If IRQTF_RUNTHREAD is set, we need to decrement 927 * desc->threads_active and wake possible waiters. 928 */ 929 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 930 wake_threads_waitq(desc); 931 932 /* Prevent a stale desc->threads_oneshot */ 933 irq_finalize_oneshot(desc, action); 934 } 935 936 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 937 { 938 struct irqaction *secondary = action->secondary; 939 940 if (WARN_ON_ONCE(!secondary)) 941 return; 942 943 raw_spin_lock_irq(&desc->lock); 944 __irq_wake_thread(desc, secondary); 945 raw_spin_unlock_irq(&desc->lock); 946 } 947 948 /* 949 * Interrupt handler thread 950 */ 951 static int irq_thread(void *data) 952 { 953 struct callback_head on_exit_work; 954 struct irqaction *action = data; 955 struct irq_desc *desc = irq_to_desc(action->irq); 956 irqreturn_t (*handler_fn)(struct irq_desc *desc, 957 struct irqaction *action); 958 959 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 960 &action->thread_flags)) 961 handler_fn = irq_forced_thread_fn; 962 else 963 handler_fn = irq_thread_fn; 964 965 init_task_work(&on_exit_work, irq_thread_dtor); 966 task_work_add(current, &on_exit_work, false); 967 968 irq_thread_check_affinity(desc, action); 969 970 while (!irq_wait_for_interrupt(action)) { 971 irqreturn_t action_ret; 972 973 irq_thread_check_affinity(desc, action); 974 975 action_ret = handler_fn(desc, action); 976 if (action_ret == IRQ_HANDLED) 977 atomic_inc(&desc->threads_handled); 978 if (action_ret == IRQ_WAKE_THREAD) 979 irq_wake_secondary(desc, action); 980 981 wake_threads_waitq(desc); 982 } 983 984 /* 985 * This is the regular exit path. __free_irq() is stopping the 986 * thread via kthread_stop() after calling 987 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the 988 * oneshot mask bit can be set. We cannot verify that as we 989 * cannot touch the oneshot mask at this point anymore as 990 * __setup_irq() might have given out currents thread_mask 991 * again. 992 */ 993 task_work_cancel(current, irq_thread_dtor); 994 return 0; 995 } 996 997 /** 998 * irq_wake_thread - wake the irq thread for the action identified by dev_id 999 * @irq: Interrupt line 1000 * @dev_id: Device identity for which the thread should be woken 1001 * 1002 */ 1003 void irq_wake_thread(unsigned int irq, void *dev_id) 1004 { 1005 struct irq_desc *desc = irq_to_desc(irq); 1006 struct irqaction *action; 1007 unsigned long flags; 1008 1009 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1010 return; 1011 1012 raw_spin_lock_irqsave(&desc->lock, flags); 1013 for_each_action_of_desc(desc, action) { 1014 if (action->dev_id == dev_id) { 1015 if (action->thread) 1016 __irq_wake_thread(desc, action); 1017 break; 1018 } 1019 } 1020 raw_spin_unlock_irqrestore(&desc->lock, flags); 1021 } 1022 EXPORT_SYMBOL_GPL(irq_wake_thread); 1023 1024 static int irq_setup_forced_threading(struct irqaction *new) 1025 { 1026 if (!force_irqthreads) 1027 return 0; 1028 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1029 return 0; 1030 1031 new->flags |= IRQF_ONESHOT; 1032 1033 /* 1034 * Handle the case where we have a real primary handler and a 1035 * thread handler. We force thread them as well by creating a 1036 * secondary action. 1037 */ 1038 if (new->handler != irq_default_primary_handler && new->thread_fn) { 1039 /* Allocate the secondary action */ 1040 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1041 if (!new->secondary) 1042 return -ENOMEM; 1043 new->secondary->handler = irq_forced_secondary_handler; 1044 new->secondary->thread_fn = new->thread_fn; 1045 new->secondary->dev_id = new->dev_id; 1046 new->secondary->irq = new->irq; 1047 new->secondary->name = new->name; 1048 } 1049 /* Deal with the primary handler */ 1050 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1051 new->thread_fn = new->handler; 1052 new->handler = irq_default_primary_handler; 1053 return 0; 1054 } 1055 1056 static int irq_request_resources(struct irq_desc *desc) 1057 { 1058 struct irq_data *d = &desc->irq_data; 1059 struct irq_chip *c = d->chip; 1060 1061 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1062 } 1063 1064 static void irq_release_resources(struct irq_desc *desc) 1065 { 1066 struct irq_data *d = &desc->irq_data; 1067 struct irq_chip *c = d->chip; 1068 1069 if (c->irq_release_resources) 1070 c->irq_release_resources(d); 1071 } 1072 1073 static int 1074 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1075 { 1076 struct task_struct *t; 1077 struct sched_param param = { 1078 .sched_priority = MAX_USER_RT_PRIO/2, 1079 }; 1080 1081 if (!secondary) { 1082 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1083 new->name); 1084 } else { 1085 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1086 new->name); 1087 param.sched_priority -= 1; 1088 } 1089 1090 if (IS_ERR(t)) 1091 return PTR_ERR(t); 1092 1093 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1094 1095 /* 1096 * We keep the reference to the task struct even if 1097 * the thread dies to avoid that the interrupt code 1098 * references an already freed task_struct. 1099 */ 1100 get_task_struct(t); 1101 new->thread = t; 1102 /* 1103 * Tell the thread to set its affinity. This is 1104 * important for shared interrupt handlers as we do 1105 * not invoke setup_affinity() for the secondary 1106 * handlers as everything is already set up. Even for 1107 * interrupts marked with IRQF_NO_BALANCE this is 1108 * correct as we want the thread to move to the cpu(s) 1109 * on which the requesting code placed the interrupt. 1110 */ 1111 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1112 return 0; 1113 } 1114 1115 /* 1116 * Internal function to register an irqaction - typically used to 1117 * allocate special interrupts that are part of the architecture. 1118 */ 1119 static int 1120 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1121 { 1122 struct irqaction *old, **old_ptr; 1123 unsigned long flags, thread_mask = 0; 1124 int ret, nested, shared = 0; 1125 cpumask_var_t mask; 1126 1127 if (!desc) 1128 return -EINVAL; 1129 1130 if (desc->irq_data.chip == &no_irq_chip) 1131 return -ENOSYS; 1132 if (!try_module_get(desc->owner)) 1133 return -ENODEV; 1134 1135 new->irq = irq; 1136 1137 /* 1138 * If the trigger type is not specified by the caller, 1139 * then use the default for this interrupt. 1140 */ 1141 if (!(new->flags & IRQF_TRIGGER_MASK)) 1142 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1143 1144 /* 1145 * Check whether the interrupt nests into another interrupt 1146 * thread. 1147 */ 1148 nested = irq_settings_is_nested_thread(desc); 1149 if (nested) { 1150 if (!new->thread_fn) { 1151 ret = -EINVAL; 1152 goto out_mput; 1153 } 1154 /* 1155 * Replace the primary handler which was provided from 1156 * the driver for non nested interrupt handling by the 1157 * dummy function which warns when called. 1158 */ 1159 new->handler = irq_nested_primary_handler; 1160 } else { 1161 if (irq_settings_can_thread(desc)) { 1162 ret = irq_setup_forced_threading(new); 1163 if (ret) 1164 goto out_mput; 1165 } 1166 } 1167 1168 /* 1169 * Create a handler thread when a thread function is supplied 1170 * and the interrupt does not nest into another interrupt 1171 * thread. 1172 */ 1173 if (new->thread_fn && !nested) { 1174 ret = setup_irq_thread(new, irq, false); 1175 if (ret) 1176 goto out_mput; 1177 if (new->secondary) { 1178 ret = setup_irq_thread(new->secondary, irq, true); 1179 if (ret) 1180 goto out_thread; 1181 } 1182 } 1183 1184 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1185 ret = -ENOMEM; 1186 goto out_thread; 1187 } 1188 1189 /* 1190 * Drivers are often written to work w/o knowledge about the 1191 * underlying irq chip implementation, so a request for a 1192 * threaded irq without a primary hard irq context handler 1193 * requires the ONESHOT flag to be set. Some irq chips like 1194 * MSI based interrupts are per se one shot safe. Check the 1195 * chip flags, so we can avoid the unmask dance at the end of 1196 * the threaded handler for those. 1197 */ 1198 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1199 new->flags &= ~IRQF_ONESHOT; 1200 1201 /* 1202 * The following block of code has to be executed atomically 1203 */ 1204 raw_spin_lock_irqsave(&desc->lock, flags); 1205 old_ptr = &desc->action; 1206 old = *old_ptr; 1207 if (old) { 1208 /* 1209 * Can't share interrupts unless both agree to and are 1210 * the same type (level, edge, polarity). So both flag 1211 * fields must have IRQF_SHARED set and the bits which 1212 * set the trigger type must match. Also all must 1213 * agree on ONESHOT. 1214 */ 1215 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data); 1216 1217 if (!((old->flags & new->flags) & IRQF_SHARED) || 1218 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1219 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1220 goto mismatch; 1221 1222 /* All handlers must agree on per-cpuness */ 1223 if ((old->flags & IRQF_PERCPU) != 1224 (new->flags & IRQF_PERCPU)) 1225 goto mismatch; 1226 1227 /* add new interrupt at end of irq queue */ 1228 do { 1229 /* 1230 * Or all existing action->thread_mask bits, 1231 * so we can find the next zero bit for this 1232 * new action. 1233 */ 1234 thread_mask |= old->thread_mask; 1235 old_ptr = &old->next; 1236 old = *old_ptr; 1237 } while (old); 1238 shared = 1; 1239 } 1240 1241 /* 1242 * Setup the thread mask for this irqaction for ONESHOT. For 1243 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1244 * conditional in irq_wake_thread(). 1245 */ 1246 if (new->flags & IRQF_ONESHOT) { 1247 /* 1248 * Unlikely to have 32 resp 64 irqs sharing one line, 1249 * but who knows. 1250 */ 1251 if (thread_mask == ~0UL) { 1252 ret = -EBUSY; 1253 goto out_mask; 1254 } 1255 /* 1256 * The thread_mask for the action is or'ed to 1257 * desc->thread_active to indicate that the 1258 * IRQF_ONESHOT thread handler has been woken, but not 1259 * yet finished. The bit is cleared when a thread 1260 * completes. When all threads of a shared interrupt 1261 * line have completed desc->threads_active becomes 1262 * zero and the interrupt line is unmasked. See 1263 * handle.c:irq_wake_thread() for further information. 1264 * 1265 * If no thread is woken by primary (hard irq context) 1266 * interrupt handlers, then desc->threads_active is 1267 * also checked for zero to unmask the irq line in the 1268 * affected hard irq flow handlers 1269 * (handle_[fasteoi|level]_irq). 1270 * 1271 * The new action gets the first zero bit of 1272 * thread_mask assigned. See the loop above which or's 1273 * all existing action->thread_mask bits. 1274 */ 1275 new->thread_mask = 1 << ffz(thread_mask); 1276 1277 } else if (new->handler == irq_default_primary_handler && 1278 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1279 /* 1280 * The interrupt was requested with handler = NULL, so 1281 * we use the default primary handler for it. But it 1282 * does not have the oneshot flag set. In combination 1283 * with level interrupts this is deadly, because the 1284 * default primary handler just wakes the thread, then 1285 * the irq lines is reenabled, but the device still 1286 * has the level irq asserted. Rinse and repeat.... 1287 * 1288 * While this works for edge type interrupts, we play 1289 * it safe and reject unconditionally because we can't 1290 * say for sure which type this interrupt really 1291 * has. The type flags are unreliable as the 1292 * underlying chip implementation can override them. 1293 */ 1294 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1295 irq); 1296 ret = -EINVAL; 1297 goto out_mask; 1298 } 1299 1300 if (!shared) { 1301 ret = irq_request_resources(desc); 1302 if (ret) { 1303 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1304 new->name, irq, desc->irq_data.chip->name); 1305 goto out_mask; 1306 } 1307 1308 init_waitqueue_head(&desc->wait_for_threads); 1309 1310 /* Setup the type (level, edge polarity) if configured: */ 1311 if (new->flags & IRQF_TRIGGER_MASK) { 1312 ret = __irq_set_trigger(desc, 1313 new->flags & IRQF_TRIGGER_MASK); 1314 1315 if (ret) 1316 goto out_mask; 1317 } 1318 1319 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1320 IRQS_ONESHOT | IRQS_WAITING); 1321 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1322 1323 if (new->flags & IRQF_PERCPU) { 1324 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1325 irq_settings_set_per_cpu(desc); 1326 } 1327 1328 if (new->flags & IRQF_ONESHOT) 1329 desc->istate |= IRQS_ONESHOT; 1330 1331 if (irq_settings_can_autoenable(desc)) 1332 irq_startup(desc, true); 1333 else 1334 /* Undo nested disables: */ 1335 desc->depth = 1; 1336 1337 /* Exclude IRQ from balancing if requested */ 1338 if (new->flags & IRQF_NOBALANCING) { 1339 irq_settings_set_no_balancing(desc); 1340 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1341 } 1342 1343 /* Set default affinity mask once everything is setup */ 1344 setup_affinity(desc, mask); 1345 1346 } else if (new->flags & IRQF_TRIGGER_MASK) { 1347 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1348 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1349 1350 if (nmsk != omsk) 1351 /* hope the handler works with current trigger mode */ 1352 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1353 irq, omsk, nmsk); 1354 } 1355 1356 *old_ptr = new; 1357 1358 irq_pm_install_action(desc, new); 1359 1360 /* Reset broken irq detection when installing new handler */ 1361 desc->irq_count = 0; 1362 desc->irqs_unhandled = 0; 1363 1364 /* 1365 * Check whether we disabled the irq via the spurious handler 1366 * before. Reenable it and give it another chance. 1367 */ 1368 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1369 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1370 __enable_irq(desc); 1371 } 1372 1373 raw_spin_unlock_irqrestore(&desc->lock, flags); 1374 1375 /* 1376 * Strictly no need to wake it up, but hung_task complains 1377 * when no hard interrupt wakes the thread up. 1378 */ 1379 if (new->thread) 1380 wake_up_process(new->thread); 1381 if (new->secondary) 1382 wake_up_process(new->secondary->thread); 1383 1384 register_irq_proc(irq, desc); 1385 new->dir = NULL; 1386 register_handler_proc(irq, new); 1387 free_cpumask_var(mask); 1388 1389 return 0; 1390 1391 mismatch: 1392 if (!(new->flags & IRQF_PROBE_SHARED)) { 1393 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1394 irq, new->flags, new->name, old->flags, old->name); 1395 #ifdef CONFIG_DEBUG_SHIRQ 1396 dump_stack(); 1397 #endif 1398 } 1399 ret = -EBUSY; 1400 1401 out_mask: 1402 raw_spin_unlock_irqrestore(&desc->lock, flags); 1403 free_cpumask_var(mask); 1404 1405 out_thread: 1406 if (new->thread) { 1407 struct task_struct *t = new->thread; 1408 1409 new->thread = NULL; 1410 kthread_stop(t); 1411 put_task_struct(t); 1412 } 1413 if (new->secondary && new->secondary->thread) { 1414 struct task_struct *t = new->secondary->thread; 1415 1416 new->secondary->thread = NULL; 1417 kthread_stop(t); 1418 put_task_struct(t); 1419 } 1420 out_mput: 1421 module_put(desc->owner); 1422 return ret; 1423 } 1424 1425 /** 1426 * setup_irq - setup an interrupt 1427 * @irq: Interrupt line to setup 1428 * @act: irqaction for the interrupt 1429 * 1430 * Used to statically setup interrupts in the early boot process. 1431 */ 1432 int setup_irq(unsigned int irq, struct irqaction *act) 1433 { 1434 int retval; 1435 struct irq_desc *desc = irq_to_desc(irq); 1436 1437 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1438 return -EINVAL; 1439 1440 retval = irq_chip_pm_get(&desc->irq_data); 1441 if (retval < 0) 1442 return retval; 1443 1444 chip_bus_lock(desc); 1445 retval = __setup_irq(irq, desc, act); 1446 chip_bus_sync_unlock(desc); 1447 1448 if (retval) 1449 irq_chip_pm_put(&desc->irq_data); 1450 1451 return retval; 1452 } 1453 EXPORT_SYMBOL_GPL(setup_irq); 1454 1455 /* 1456 * Internal function to unregister an irqaction - used to free 1457 * regular and special interrupts that are part of the architecture. 1458 */ 1459 static struct irqaction *__free_irq(unsigned int irq, void *dev_id) 1460 { 1461 struct irq_desc *desc = irq_to_desc(irq); 1462 struct irqaction *action, **action_ptr; 1463 unsigned long flags; 1464 1465 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1466 1467 if (!desc) 1468 return NULL; 1469 1470 chip_bus_lock(desc); 1471 raw_spin_lock_irqsave(&desc->lock, flags); 1472 1473 /* 1474 * There can be multiple actions per IRQ descriptor, find the right 1475 * one based on the dev_id: 1476 */ 1477 action_ptr = &desc->action; 1478 for (;;) { 1479 action = *action_ptr; 1480 1481 if (!action) { 1482 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1483 raw_spin_unlock_irqrestore(&desc->lock, flags); 1484 chip_bus_sync_unlock(desc); 1485 return NULL; 1486 } 1487 1488 if (action->dev_id == dev_id) 1489 break; 1490 action_ptr = &action->next; 1491 } 1492 1493 /* Found it - now remove it from the list of entries: */ 1494 *action_ptr = action->next; 1495 1496 irq_pm_remove_action(desc, action); 1497 1498 /* If this was the last handler, shut down the IRQ line: */ 1499 if (!desc->action) { 1500 irq_settings_clr_disable_unlazy(desc); 1501 irq_shutdown(desc); 1502 irq_release_resources(desc); 1503 } 1504 1505 #ifdef CONFIG_SMP 1506 /* make sure affinity_hint is cleaned up */ 1507 if (WARN_ON_ONCE(desc->affinity_hint)) 1508 desc->affinity_hint = NULL; 1509 #endif 1510 1511 raw_spin_unlock_irqrestore(&desc->lock, flags); 1512 chip_bus_sync_unlock(desc); 1513 1514 unregister_handler_proc(irq, action); 1515 1516 /* Make sure it's not being used on another CPU: */ 1517 synchronize_irq(irq); 1518 1519 #ifdef CONFIG_DEBUG_SHIRQ 1520 /* 1521 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1522 * event to happen even now it's being freed, so let's make sure that 1523 * is so by doing an extra call to the handler .... 1524 * 1525 * ( We do this after actually deregistering it, to make sure that a 1526 * 'real' IRQ doesn't run in * parallel with our fake. ) 1527 */ 1528 if (action->flags & IRQF_SHARED) { 1529 local_irq_save(flags); 1530 action->handler(irq, dev_id); 1531 local_irq_restore(flags); 1532 } 1533 #endif 1534 1535 if (action->thread) { 1536 kthread_stop(action->thread); 1537 put_task_struct(action->thread); 1538 if (action->secondary && action->secondary->thread) { 1539 kthread_stop(action->secondary->thread); 1540 put_task_struct(action->secondary->thread); 1541 } 1542 } 1543 1544 irq_chip_pm_put(&desc->irq_data); 1545 module_put(desc->owner); 1546 kfree(action->secondary); 1547 return action; 1548 } 1549 1550 /** 1551 * remove_irq - free an interrupt 1552 * @irq: Interrupt line to free 1553 * @act: irqaction for the interrupt 1554 * 1555 * Used to remove interrupts statically setup by the early boot process. 1556 */ 1557 void remove_irq(unsigned int irq, struct irqaction *act) 1558 { 1559 struct irq_desc *desc = irq_to_desc(irq); 1560 1561 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1562 __free_irq(irq, act->dev_id); 1563 } 1564 EXPORT_SYMBOL_GPL(remove_irq); 1565 1566 /** 1567 * free_irq - free an interrupt allocated with request_irq 1568 * @irq: Interrupt line to free 1569 * @dev_id: Device identity to free 1570 * 1571 * Remove an interrupt handler. The handler is removed and if the 1572 * interrupt line is no longer in use by any driver it is disabled. 1573 * On a shared IRQ the caller must ensure the interrupt is disabled 1574 * on the card it drives before calling this function. The function 1575 * does not return until any executing interrupts for this IRQ 1576 * have completed. 1577 * 1578 * This function must not be called from interrupt context. 1579 * 1580 * Returns the devname argument passed to request_irq. 1581 */ 1582 const void *free_irq(unsigned int irq, void *dev_id) 1583 { 1584 struct irq_desc *desc = irq_to_desc(irq); 1585 struct irqaction *action; 1586 const char *devname; 1587 1588 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1589 return NULL; 1590 1591 #ifdef CONFIG_SMP 1592 if (WARN_ON(desc->affinity_notify)) 1593 desc->affinity_notify = NULL; 1594 #endif 1595 1596 action = __free_irq(irq, dev_id); 1597 devname = action->name; 1598 kfree(action); 1599 return devname; 1600 } 1601 EXPORT_SYMBOL(free_irq); 1602 1603 /** 1604 * request_threaded_irq - allocate an interrupt line 1605 * @irq: Interrupt line to allocate 1606 * @handler: Function to be called when the IRQ occurs. 1607 * Primary handler for threaded interrupts 1608 * If NULL and thread_fn != NULL the default 1609 * primary handler is installed 1610 * @thread_fn: Function called from the irq handler thread 1611 * If NULL, no irq thread is created 1612 * @irqflags: Interrupt type flags 1613 * @devname: An ascii name for the claiming device 1614 * @dev_id: A cookie passed back to the handler function 1615 * 1616 * This call allocates interrupt resources and enables the 1617 * interrupt line and IRQ handling. From the point this 1618 * call is made your handler function may be invoked. Since 1619 * your handler function must clear any interrupt the board 1620 * raises, you must take care both to initialise your hardware 1621 * and to set up the interrupt handler in the right order. 1622 * 1623 * If you want to set up a threaded irq handler for your device 1624 * then you need to supply @handler and @thread_fn. @handler is 1625 * still called in hard interrupt context and has to check 1626 * whether the interrupt originates from the device. If yes it 1627 * needs to disable the interrupt on the device and return 1628 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1629 * @thread_fn. This split handler design is necessary to support 1630 * shared interrupts. 1631 * 1632 * Dev_id must be globally unique. Normally the address of the 1633 * device data structure is used as the cookie. Since the handler 1634 * receives this value it makes sense to use it. 1635 * 1636 * If your interrupt is shared you must pass a non NULL dev_id 1637 * as this is required when freeing the interrupt. 1638 * 1639 * Flags: 1640 * 1641 * IRQF_SHARED Interrupt is shared 1642 * IRQF_TRIGGER_* Specify active edge(s) or level 1643 * 1644 */ 1645 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1646 irq_handler_t thread_fn, unsigned long irqflags, 1647 const char *devname, void *dev_id) 1648 { 1649 struct irqaction *action; 1650 struct irq_desc *desc; 1651 int retval; 1652 1653 if (irq == IRQ_NOTCONNECTED) 1654 return -ENOTCONN; 1655 1656 /* 1657 * Sanity-check: shared interrupts must pass in a real dev-ID, 1658 * otherwise we'll have trouble later trying to figure out 1659 * which interrupt is which (messes up the interrupt freeing 1660 * logic etc). 1661 * 1662 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1663 * it cannot be set along with IRQF_NO_SUSPEND. 1664 */ 1665 if (((irqflags & IRQF_SHARED) && !dev_id) || 1666 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1667 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1668 return -EINVAL; 1669 1670 desc = irq_to_desc(irq); 1671 if (!desc) 1672 return -EINVAL; 1673 1674 if (!irq_settings_can_request(desc) || 1675 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1676 return -EINVAL; 1677 1678 if (!handler) { 1679 if (!thread_fn) 1680 return -EINVAL; 1681 handler = irq_default_primary_handler; 1682 } 1683 1684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1685 if (!action) 1686 return -ENOMEM; 1687 1688 action->handler = handler; 1689 action->thread_fn = thread_fn; 1690 action->flags = irqflags; 1691 action->name = devname; 1692 action->dev_id = dev_id; 1693 1694 retval = irq_chip_pm_get(&desc->irq_data); 1695 if (retval < 0) { 1696 kfree(action); 1697 return retval; 1698 } 1699 1700 chip_bus_lock(desc); 1701 retval = __setup_irq(irq, desc, action); 1702 chip_bus_sync_unlock(desc); 1703 1704 if (retval) { 1705 irq_chip_pm_put(&desc->irq_data); 1706 kfree(action->secondary); 1707 kfree(action); 1708 } 1709 1710 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1711 if (!retval && (irqflags & IRQF_SHARED)) { 1712 /* 1713 * It's a shared IRQ -- the driver ought to be prepared for it 1714 * to happen immediately, so let's make sure.... 1715 * We disable the irq to make sure that a 'real' IRQ doesn't 1716 * run in parallel with our fake. 1717 */ 1718 unsigned long flags; 1719 1720 disable_irq(irq); 1721 local_irq_save(flags); 1722 1723 handler(irq, dev_id); 1724 1725 local_irq_restore(flags); 1726 enable_irq(irq); 1727 } 1728 #endif 1729 return retval; 1730 } 1731 EXPORT_SYMBOL(request_threaded_irq); 1732 1733 /** 1734 * request_any_context_irq - allocate an interrupt line 1735 * @irq: Interrupt line to allocate 1736 * @handler: Function to be called when the IRQ occurs. 1737 * Threaded handler for threaded interrupts. 1738 * @flags: Interrupt type flags 1739 * @name: An ascii name for the claiming device 1740 * @dev_id: A cookie passed back to the handler function 1741 * 1742 * This call allocates interrupt resources and enables the 1743 * interrupt line and IRQ handling. It selects either a 1744 * hardirq or threaded handling method depending on the 1745 * context. 1746 * 1747 * On failure, it returns a negative value. On success, 1748 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1749 */ 1750 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1751 unsigned long flags, const char *name, void *dev_id) 1752 { 1753 struct irq_desc *desc; 1754 int ret; 1755 1756 if (irq == IRQ_NOTCONNECTED) 1757 return -ENOTCONN; 1758 1759 desc = irq_to_desc(irq); 1760 if (!desc) 1761 return -EINVAL; 1762 1763 if (irq_settings_is_nested_thread(desc)) { 1764 ret = request_threaded_irq(irq, NULL, handler, 1765 flags, name, dev_id); 1766 return !ret ? IRQC_IS_NESTED : ret; 1767 } 1768 1769 ret = request_irq(irq, handler, flags, name, dev_id); 1770 return !ret ? IRQC_IS_HARDIRQ : ret; 1771 } 1772 EXPORT_SYMBOL_GPL(request_any_context_irq); 1773 1774 void enable_percpu_irq(unsigned int irq, unsigned int type) 1775 { 1776 unsigned int cpu = smp_processor_id(); 1777 unsigned long flags; 1778 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1779 1780 if (!desc) 1781 return; 1782 1783 /* 1784 * If the trigger type is not specified by the caller, then 1785 * use the default for this interrupt. 1786 */ 1787 type &= IRQ_TYPE_SENSE_MASK; 1788 if (type == IRQ_TYPE_NONE) 1789 type = irqd_get_trigger_type(&desc->irq_data); 1790 1791 if (type != IRQ_TYPE_NONE) { 1792 int ret; 1793 1794 ret = __irq_set_trigger(desc, type); 1795 1796 if (ret) { 1797 WARN(1, "failed to set type for IRQ%d\n", irq); 1798 goto out; 1799 } 1800 } 1801 1802 irq_percpu_enable(desc, cpu); 1803 out: 1804 irq_put_desc_unlock(desc, flags); 1805 } 1806 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1807 1808 /** 1809 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1810 * @irq: Linux irq number to check for 1811 * 1812 * Must be called from a non migratable context. Returns the enable 1813 * state of a per cpu interrupt on the current cpu. 1814 */ 1815 bool irq_percpu_is_enabled(unsigned int irq) 1816 { 1817 unsigned int cpu = smp_processor_id(); 1818 struct irq_desc *desc; 1819 unsigned long flags; 1820 bool is_enabled; 1821 1822 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1823 if (!desc) 1824 return false; 1825 1826 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1827 irq_put_desc_unlock(desc, flags); 1828 1829 return is_enabled; 1830 } 1831 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1832 1833 void disable_percpu_irq(unsigned int irq) 1834 { 1835 unsigned int cpu = smp_processor_id(); 1836 unsigned long flags; 1837 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1838 1839 if (!desc) 1840 return; 1841 1842 irq_percpu_disable(desc, cpu); 1843 irq_put_desc_unlock(desc, flags); 1844 } 1845 EXPORT_SYMBOL_GPL(disable_percpu_irq); 1846 1847 /* 1848 * Internal function to unregister a percpu irqaction. 1849 */ 1850 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1851 { 1852 struct irq_desc *desc = irq_to_desc(irq); 1853 struct irqaction *action; 1854 unsigned long flags; 1855 1856 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1857 1858 if (!desc) 1859 return NULL; 1860 1861 raw_spin_lock_irqsave(&desc->lock, flags); 1862 1863 action = desc->action; 1864 if (!action || action->percpu_dev_id != dev_id) { 1865 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1866 goto bad; 1867 } 1868 1869 if (!cpumask_empty(desc->percpu_enabled)) { 1870 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 1871 irq, cpumask_first(desc->percpu_enabled)); 1872 goto bad; 1873 } 1874 1875 /* Found it - now remove it from the list of entries: */ 1876 desc->action = NULL; 1877 1878 raw_spin_unlock_irqrestore(&desc->lock, flags); 1879 1880 unregister_handler_proc(irq, action); 1881 1882 irq_chip_pm_put(&desc->irq_data); 1883 module_put(desc->owner); 1884 return action; 1885 1886 bad: 1887 raw_spin_unlock_irqrestore(&desc->lock, flags); 1888 return NULL; 1889 } 1890 1891 /** 1892 * remove_percpu_irq - free a per-cpu interrupt 1893 * @irq: Interrupt line to free 1894 * @act: irqaction for the interrupt 1895 * 1896 * Used to remove interrupts statically setup by the early boot process. 1897 */ 1898 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 1899 { 1900 struct irq_desc *desc = irq_to_desc(irq); 1901 1902 if (desc && irq_settings_is_per_cpu_devid(desc)) 1903 __free_percpu_irq(irq, act->percpu_dev_id); 1904 } 1905 1906 /** 1907 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 1908 * @irq: Interrupt line to free 1909 * @dev_id: Device identity to free 1910 * 1911 * Remove a percpu interrupt handler. The handler is removed, but 1912 * the interrupt line is not disabled. This must be done on each 1913 * CPU before calling this function. The function does not return 1914 * until any executing interrupts for this IRQ have completed. 1915 * 1916 * This function must not be called from interrupt context. 1917 */ 1918 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 1919 { 1920 struct irq_desc *desc = irq_to_desc(irq); 1921 1922 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1923 return; 1924 1925 chip_bus_lock(desc); 1926 kfree(__free_percpu_irq(irq, dev_id)); 1927 chip_bus_sync_unlock(desc); 1928 } 1929 EXPORT_SYMBOL_GPL(free_percpu_irq); 1930 1931 /** 1932 * setup_percpu_irq - setup a per-cpu interrupt 1933 * @irq: Interrupt line to setup 1934 * @act: irqaction for the interrupt 1935 * 1936 * Used to statically setup per-cpu interrupts in the early boot process. 1937 */ 1938 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 1939 { 1940 struct irq_desc *desc = irq_to_desc(irq); 1941 int retval; 1942 1943 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 1944 return -EINVAL; 1945 1946 retval = irq_chip_pm_get(&desc->irq_data); 1947 if (retval < 0) 1948 return retval; 1949 1950 chip_bus_lock(desc); 1951 retval = __setup_irq(irq, desc, act); 1952 chip_bus_sync_unlock(desc); 1953 1954 if (retval) 1955 irq_chip_pm_put(&desc->irq_data); 1956 1957 return retval; 1958 } 1959 1960 /** 1961 * request_percpu_irq - allocate a percpu interrupt line 1962 * @irq: Interrupt line to allocate 1963 * @handler: Function to be called when the IRQ occurs. 1964 * @devname: An ascii name for the claiming device 1965 * @dev_id: A percpu cookie passed back to the handler function 1966 * 1967 * This call allocates interrupt resources and enables the 1968 * interrupt on the local CPU. If the interrupt is supposed to be 1969 * enabled on other CPUs, it has to be done on each CPU using 1970 * enable_percpu_irq(). 1971 * 1972 * Dev_id must be globally unique. It is a per-cpu variable, and 1973 * the handler gets called with the interrupted CPU's instance of 1974 * that variable. 1975 */ 1976 int request_percpu_irq(unsigned int irq, irq_handler_t handler, 1977 const char *devname, void __percpu *dev_id) 1978 { 1979 struct irqaction *action; 1980 struct irq_desc *desc; 1981 int retval; 1982 1983 if (!dev_id) 1984 return -EINVAL; 1985 1986 desc = irq_to_desc(irq); 1987 if (!desc || !irq_settings_can_request(desc) || 1988 !irq_settings_is_per_cpu_devid(desc)) 1989 return -EINVAL; 1990 1991 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1992 if (!action) 1993 return -ENOMEM; 1994 1995 action->handler = handler; 1996 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND; 1997 action->name = devname; 1998 action->percpu_dev_id = dev_id; 1999 2000 retval = irq_chip_pm_get(&desc->irq_data); 2001 if (retval < 0) { 2002 kfree(action); 2003 return retval; 2004 } 2005 2006 chip_bus_lock(desc); 2007 retval = __setup_irq(irq, desc, action); 2008 chip_bus_sync_unlock(desc); 2009 2010 if (retval) { 2011 irq_chip_pm_put(&desc->irq_data); 2012 kfree(action); 2013 } 2014 2015 return retval; 2016 } 2017 EXPORT_SYMBOL_GPL(request_percpu_irq); 2018 2019 /** 2020 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2021 * @irq: Interrupt line that is forwarded to a VM 2022 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2023 * @state: a pointer to a boolean where the state is to be storeed 2024 * 2025 * This call snapshots the internal irqchip state of an 2026 * interrupt, returning into @state the bit corresponding to 2027 * stage @which 2028 * 2029 * This function should be called with preemption disabled if the 2030 * interrupt controller has per-cpu registers. 2031 */ 2032 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2033 bool *state) 2034 { 2035 struct irq_desc *desc; 2036 struct irq_data *data; 2037 struct irq_chip *chip; 2038 unsigned long flags; 2039 int err = -EINVAL; 2040 2041 desc = irq_get_desc_buslock(irq, &flags, 0); 2042 if (!desc) 2043 return err; 2044 2045 data = irq_desc_get_irq_data(desc); 2046 2047 do { 2048 chip = irq_data_get_irq_chip(data); 2049 if (chip->irq_get_irqchip_state) 2050 break; 2051 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2052 data = data->parent_data; 2053 #else 2054 data = NULL; 2055 #endif 2056 } while (data); 2057 2058 if (data) 2059 err = chip->irq_get_irqchip_state(data, which, state); 2060 2061 irq_put_desc_busunlock(desc, flags); 2062 return err; 2063 } 2064 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2065 2066 /** 2067 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2068 * @irq: Interrupt line that is forwarded to a VM 2069 * @which: State to be restored (one of IRQCHIP_STATE_*) 2070 * @val: Value corresponding to @which 2071 * 2072 * This call sets the internal irqchip state of an interrupt, 2073 * depending on the value of @which. 2074 * 2075 * This function should be called with preemption disabled if the 2076 * interrupt controller has per-cpu registers. 2077 */ 2078 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2079 bool val) 2080 { 2081 struct irq_desc *desc; 2082 struct irq_data *data; 2083 struct irq_chip *chip; 2084 unsigned long flags; 2085 int err = -EINVAL; 2086 2087 desc = irq_get_desc_buslock(irq, &flags, 0); 2088 if (!desc) 2089 return err; 2090 2091 data = irq_desc_get_irq_data(desc); 2092 2093 do { 2094 chip = irq_data_get_irq_chip(data); 2095 if (chip->irq_set_irqchip_state) 2096 break; 2097 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2098 data = data->parent_data; 2099 #else 2100 data = NULL; 2101 #endif 2102 } while (data); 2103 2104 if (data) 2105 err = chip->irq_set_irqchip_state(data, which, val); 2106 2107 irq_put_desc_busunlock(desc, flags); 2108 return err; 2109 } 2110 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2111