xref: /linux/kernel/irq/manage.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 	__synchronize_hardirq(desc, true);
114 	/*
115 	 * We made sure that no hardirq handler is running. Now verify that no
116 	 * threaded handlers are active.
117 	 */
118 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120 
121 /**
122  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *	@irq: interrupt number to wait for
124  *
125  *	This function waits for any pending IRQ handlers for this interrupt
126  *	to complete before returning. If you use this function while
127  *	holding a resource the IRQ handler may need you will deadlock.
128  *
129  *	Can only be called from preemptible code as it might sleep when
130  *	an interrupt thread is associated to @irq.
131  *
132  *	It optionally makes sure (when the irq chip supports that method)
133  *	that the interrupt is not pending in any CPU and waiting for
134  *	service.
135  */
136 void synchronize_irq(unsigned int irq)
137 {
138 	struct irq_desc *desc = irq_to_desc(irq);
139 
140 	if (desc)
141 		__synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144 
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147 
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 		return false;
153 	return true;
154 }
155 
156 /**
157  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *	@irq:		Interrupt to check
159  *
160  */
161 int irq_can_set_affinity(unsigned int irq)
162 {
163 	return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165 
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:	Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 	struct irq_desc *desc = irq_to_desc(irq);
176 
177 	return __irq_can_set_affinity(desc) &&
178 		!irqd_affinity_is_managed(&desc->irq_data);
179 }
180 
181 /**
182  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *	@desc:		irq descriptor which has affinity changed
184  *
185  *	We just set IRQTF_AFFINITY and delegate the affinity setting
186  *	to the interrupt thread itself. We can not call
187  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *	code can be called from hard interrupt context.
189  */
190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 	struct irqaction *action;
193 
194 	for_each_action_of_desc(desc, action) {
195 		if (action->thread) {
196 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 			wake_up_process(action->thread);
198 		}
199 		if (action->secondary && action->secondary->thread) {
200 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 			wake_up_process(action->secondary->thread);
202 		}
203 	}
204 }
205 
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207 static void irq_validate_effective_affinity(struct irq_data *data)
208 {
209 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 	struct irq_chip *chip = irq_data_get_irq_chip(data);
211 
212 	if (!cpumask_empty(m))
213 		return;
214 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 		     chip->name, data->irq);
216 }
217 #else
218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
220 
221 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
222 
223 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
224 			bool force)
225 {
226 	struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
227 	struct irq_desc *desc = irq_data_to_desc(data);
228 	struct irq_chip *chip = irq_data_get_irq_chip(data);
229 	const struct cpumask  *prog_mask;
230 	int ret;
231 
232 	if (!chip || !chip->irq_set_affinity)
233 		return -EINVAL;
234 
235 	/*
236 	 * If this is a managed interrupt and housekeeping is enabled on
237 	 * it check whether the requested affinity mask intersects with
238 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
239 	 * the mask and just keep the housekeeping CPU(s). This prevents
240 	 * the affinity setter from routing the interrupt to an isolated
241 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
242 	 * interrupts on an isolated one.
243 	 *
244 	 * If the masks do not intersect or include online CPU(s) then
245 	 * keep the requested mask. The isolated target CPUs are only
246 	 * receiving interrupts when the I/O operation was submitted
247 	 * directly from them.
248 	 *
249 	 * If all housekeeping CPUs in the affinity mask are offline, the
250 	 * interrupt will be migrated by the CPU hotplug code once a
251 	 * housekeeping CPU which belongs to the affinity mask comes
252 	 * online.
253 	 */
254 	if (irqd_affinity_is_managed(data) &&
255 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
256 		const struct cpumask *hk_mask;
257 
258 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
259 
260 		cpumask_and(tmp_mask, mask, hk_mask);
261 		if (!cpumask_intersects(tmp_mask, cpu_online_mask))
262 			prog_mask = mask;
263 		else
264 			prog_mask = tmp_mask;
265 	} else {
266 		prog_mask = mask;
267 	}
268 
269 	/*
270 	 * Make sure we only provide online CPUs to the irqchip,
271 	 * unless we are being asked to force the affinity (in which
272 	 * case we do as we are told).
273 	 */
274 	cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
275 	if (!force && !cpumask_empty(tmp_mask))
276 		ret = chip->irq_set_affinity(data, tmp_mask, force);
277 	else if (force)
278 		ret = chip->irq_set_affinity(data, mask, force);
279 	else
280 		ret = -EINVAL;
281 
282 	switch (ret) {
283 	case IRQ_SET_MASK_OK:
284 	case IRQ_SET_MASK_OK_DONE:
285 		cpumask_copy(desc->irq_common_data.affinity, mask);
286 		fallthrough;
287 	case IRQ_SET_MASK_OK_NOCOPY:
288 		irq_validate_effective_affinity(data);
289 		irq_set_thread_affinity(desc);
290 		ret = 0;
291 	}
292 
293 	return ret;
294 }
295 
296 #ifdef CONFIG_GENERIC_PENDING_IRQ
297 static inline int irq_set_affinity_pending(struct irq_data *data,
298 					   const struct cpumask *dest)
299 {
300 	struct irq_desc *desc = irq_data_to_desc(data);
301 
302 	irqd_set_move_pending(data);
303 	irq_copy_pending(desc, dest);
304 	return 0;
305 }
306 #else
307 static inline int irq_set_affinity_pending(struct irq_data *data,
308 					   const struct cpumask *dest)
309 {
310 	return -EBUSY;
311 }
312 #endif
313 
314 static int irq_try_set_affinity(struct irq_data *data,
315 				const struct cpumask *dest, bool force)
316 {
317 	int ret = irq_do_set_affinity(data, dest, force);
318 
319 	/*
320 	 * In case that the underlying vector management is busy and the
321 	 * architecture supports the generic pending mechanism then utilize
322 	 * this to avoid returning an error to user space.
323 	 */
324 	if (ret == -EBUSY && !force)
325 		ret = irq_set_affinity_pending(data, dest);
326 	return ret;
327 }
328 
329 static bool irq_set_affinity_deactivated(struct irq_data *data,
330 					 const struct cpumask *mask)
331 {
332 	struct irq_desc *desc = irq_data_to_desc(data);
333 
334 	/*
335 	 * Handle irq chips which can handle affinity only in activated
336 	 * state correctly
337 	 *
338 	 * If the interrupt is not yet activated, just store the affinity
339 	 * mask and do not call the chip driver at all. On activation the
340 	 * driver has to make sure anyway that the interrupt is in a
341 	 * usable state so startup works.
342 	 */
343 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
344 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
345 		return false;
346 
347 	cpumask_copy(desc->irq_common_data.affinity, mask);
348 	irq_data_update_effective_affinity(data, mask);
349 	irqd_set(data, IRQD_AFFINITY_SET);
350 	return true;
351 }
352 
353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
354 			    bool force)
355 {
356 	struct irq_chip *chip = irq_data_get_irq_chip(data);
357 	struct irq_desc *desc = irq_data_to_desc(data);
358 	int ret = 0;
359 
360 	if (!chip || !chip->irq_set_affinity)
361 		return -EINVAL;
362 
363 	if (irq_set_affinity_deactivated(data, mask))
364 		return 0;
365 
366 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
367 		ret = irq_try_set_affinity(data, mask, force);
368 	} else {
369 		irqd_set_move_pending(data);
370 		irq_copy_pending(desc, mask);
371 	}
372 
373 	if (desc->affinity_notify) {
374 		kref_get(&desc->affinity_notify->kref);
375 		if (!schedule_work(&desc->affinity_notify->work)) {
376 			/* Work was already scheduled, drop our extra ref */
377 			kref_put(&desc->affinity_notify->kref,
378 				 desc->affinity_notify->release);
379 		}
380 	}
381 	irqd_set(data, IRQD_AFFINITY_SET);
382 
383 	return ret;
384 }
385 
386 /**
387  * irq_update_affinity_desc - Update affinity management for an interrupt
388  * @irq:	The interrupt number to update
389  * @affinity:	Pointer to the affinity descriptor
390  *
391  * This interface can be used to configure the affinity management of
392  * interrupts which have been allocated already.
393  *
394  * There are certain limitations on when it may be used - attempts to use it
395  * for when the kernel is configured for generic IRQ reservation mode (in
396  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
397  * managed/non-managed interrupt accounting. In addition, attempts to use it on
398  * an interrupt which is already started or which has already been configured
399  * as managed will also fail, as these mean invalid init state or double init.
400  */
401 int irq_update_affinity_desc(unsigned int irq,
402 			     struct irq_affinity_desc *affinity)
403 {
404 	struct irq_desc *desc;
405 	unsigned long flags;
406 	bool activated;
407 	int ret = 0;
408 
409 	/*
410 	 * Supporting this with the reservation scheme used by x86 needs
411 	 * some more thought. Fail it for now.
412 	 */
413 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
414 		return -EOPNOTSUPP;
415 
416 	desc = irq_get_desc_buslock(irq, &flags, 0);
417 	if (!desc)
418 		return -EINVAL;
419 
420 	/* Requires the interrupt to be shut down */
421 	if (irqd_is_started(&desc->irq_data)) {
422 		ret = -EBUSY;
423 		goto out_unlock;
424 	}
425 
426 	/* Interrupts which are already managed cannot be modified */
427 	if (irqd_affinity_is_managed(&desc->irq_data)) {
428 		ret = -EBUSY;
429 		goto out_unlock;
430 	}
431 
432 	/*
433 	 * Deactivate the interrupt. That's required to undo
434 	 * anything an earlier activation has established.
435 	 */
436 	activated = irqd_is_activated(&desc->irq_data);
437 	if (activated)
438 		irq_domain_deactivate_irq(&desc->irq_data);
439 
440 	if (affinity->is_managed) {
441 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
442 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
443 	}
444 
445 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
446 
447 	/* Restore the activation state */
448 	if (activated)
449 		irq_domain_activate_irq(&desc->irq_data, false);
450 
451 out_unlock:
452 	irq_put_desc_busunlock(desc, flags);
453 	return ret;
454 }
455 
456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
457 			      bool force)
458 {
459 	struct irq_desc *desc = irq_to_desc(irq);
460 	unsigned long flags;
461 	int ret;
462 
463 	if (!desc)
464 		return -EINVAL;
465 
466 	raw_spin_lock_irqsave(&desc->lock, flags);
467 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
468 	raw_spin_unlock_irqrestore(&desc->lock, flags);
469 	return ret;
470 }
471 
472 /**
473  * irq_set_affinity - Set the irq affinity of a given irq
474  * @irq:	Interrupt to set affinity
475  * @cpumask:	cpumask
476  *
477  * Fails if cpumask does not contain an online CPU
478  */
479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
480 {
481 	return __irq_set_affinity(irq, cpumask, false);
482 }
483 EXPORT_SYMBOL_GPL(irq_set_affinity);
484 
485 /**
486  * irq_force_affinity - Force the irq affinity of a given irq
487  * @irq:	Interrupt to set affinity
488  * @cpumask:	cpumask
489  *
490  * Same as irq_set_affinity, but without checking the mask against
491  * online cpus.
492  *
493  * Solely for low level cpu hotplug code, where we need to make per
494  * cpu interrupts affine before the cpu becomes online.
495  */
496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
497 {
498 	return __irq_set_affinity(irq, cpumask, true);
499 }
500 EXPORT_SYMBOL_GPL(irq_force_affinity);
501 
502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
503 			      bool setaffinity)
504 {
505 	unsigned long flags;
506 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
507 
508 	if (!desc)
509 		return -EINVAL;
510 	desc->affinity_hint = m;
511 	irq_put_desc_unlock(desc, flags);
512 	if (m && setaffinity)
513 		__irq_set_affinity(irq, m, false);
514 	return 0;
515 }
516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
517 
518 static void irq_affinity_notify(struct work_struct *work)
519 {
520 	struct irq_affinity_notify *notify =
521 		container_of(work, struct irq_affinity_notify, work);
522 	struct irq_desc *desc = irq_to_desc(notify->irq);
523 	cpumask_var_t cpumask;
524 	unsigned long flags;
525 
526 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
527 		goto out;
528 
529 	raw_spin_lock_irqsave(&desc->lock, flags);
530 	if (irq_move_pending(&desc->irq_data))
531 		irq_get_pending(cpumask, desc);
532 	else
533 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
534 	raw_spin_unlock_irqrestore(&desc->lock, flags);
535 
536 	notify->notify(notify, cpumask);
537 
538 	free_cpumask_var(cpumask);
539 out:
540 	kref_put(&notify->kref, notify->release);
541 }
542 
543 /**
544  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
545  *	@irq:		Interrupt for which to enable/disable notification
546  *	@notify:	Context for notification, or %NULL to disable
547  *			notification.  Function pointers must be initialised;
548  *			the other fields will be initialised by this function.
549  *
550  *	Must be called in process context.  Notification may only be enabled
551  *	after the IRQ is allocated and must be disabled before the IRQ is
552  *	freed using free_irq().
553  */
554 int
555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
556 {
557 	struct irq_desc *desc = irq_to_desc(irq);
558 	struct irq_affinity_notify *old_notify;
559 	unsigned long flags;
560 
561 	/* The release function is promised process context */
562 	might_sleep();
563 
564 	if (!desc || irq_is_nmi(desc))
565 		return -EINVAL;
566 
567 	/* Complete initialisation of *notify */
568 	if (notify) {
569 		notify->irq = irq;
570 		kref_init(&notify->kref);
571 		INIT_WORK(&notify->work, irq_affinity_notify);
572 	}
573 
574 	raw_spin_lock_irqsave(&desc->lock, flags);
575 	old_notify = desc->affinity_notify;
576 	desc->affinity_notify = notify;
577 	raw_spin_unlock_irqrestore(&desc->lock, flags);
578 
579 	if (old_notify) {
580 		if (cancel_work_sync(&old_notify->work)) {
581 			/* Pending work had a ref, put that one too */
582 			kref_put(&old_notify->kref, old_notify->release);
583 		}
584 		kref_put(&old_notify->kref, old_notify->release);
585 	}
586 
587 	return 0;
588 }
589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
590 
591 #ifndef CONFIG_AUTO_IRQ_AFFINITY
592 /*
593  * Generic version of the affinity autoselector.
594  */
595 int irq_setup_affinity(struct irq_desc *desc)
596 {
597 	struct cpumask *set = irq_default_affinity;
598 	int ret, node = irq_desc_get_node(desc);
599 	static DEFINE_RAW_SPINLOCK(mask_lock);
600 	static struct cpumask mask;
601 
602 	/* Excludes PER_CPU and NO_BALANCE interrupts */
603 	if (!__irq_can_set_affinity(desc))
604 		return 0;
605 
606 	raw_spin_lock(&mask_lock);
607 	/*
608 	 * Preserve the managed affinity setting and a userspace affinity
609 	 * setup, but make sure that one of the targets is online.
610 	 */
611 	if (irqd_affinity_is_managed(&desc->irq_data) ||
612 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
613 		if (cpumask_intersects(desc->irq_common_data.affinity,
614 				       cpu_online_mask))
615 			set = desc->irq_common_data.affinity;
616 		else
617 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
618 	}
619 
620 	cpumask_and(&mask, cpu_online_mask, set);
621 	if (cpumask_empty(&mask))
622 		cpumask_copy(&mask, cpu_online_mask);
623 
624 	if (node != NUMA_NO_NODE) {
625 		const struct cpumask *nodemask = cpumask_of_node(node);
626 
627 		/* make sure at least one of the cpus in nodemask is online */
628 		if (cpumask_intersects(&mask, nodemask))
629 			cpumask_and(&mask, &mask, nodemask);
630 	}
631 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
632 	raw_spin_unlock(&mask_lock);
633 	return ret;
634 }
635 #else
636 /* Wrapper for ALPHA specific affinity selector magic */
637 int irq_setup_affinity(struct irq_desc *desc)
638 {
639 	return irq_select_affinity(irq_desc_get_irq(desc));
640 }
641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
642 #endif /* CONFIG_SMP */
643 
644 
645 /**
646  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
647  *	@irq: interrupt number to set affinity
648  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
649  *	            specific data for percpu_devid interrupts
650  *
651  *	This function uses the vCPU specific data to set the vCPU
652  *	affinity for an irq. The vCPU specific data is passed from
653  *	outside, such as KVM. One example code path is as below:
654  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
655  */
656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
657 {
658 	unsigned long flags;
659 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
660 	struct irq_data *data;
661 	struct irq_chip *chip;
662 	int ret = -ENOSYS;
663 
664 	if (!desc)
665 		return -EINVAL;
666 
667 	data = irq_desc_get_irq_data(desc);
668 	do {
669 		chip = irq_data_get_irq_chip(data);
670 		if (chip && chip->irq_set_vcpu_affinity)
671 			break;
672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
673 		data = data->parent_data;
674 #else
675 		data = NULL;
676 #endif
677 	} while (data);
678 
679 	if (data)
680 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
681 	irq_put_desc_unlock(desc, flags);
682 
683 	return ret;
684 }
685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
686 
687 void __disable_irq(struct irq_desc *desc)
688 {
689 	if (!desc->depth++)
690 		irq_disable(desc);
691 }
692 
693 static int __disable_irq_nosync(unsigned int irq)
694 {
695 	unsigned long flags;
696 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
697 
698 	if (!desc)
699 		return -EINVAL;
700 	__disable_irq(desc);
701 	irq_put_desc_busunlock(desc, flags);
702 	return 0;
703 }
704 
705 /**
706  *	disable_irq_nosync - disable an irq without waiting
707  *	@irq: Interrupt to disable
708  *
709  *	Disable the selected interrupt line.  Disables and Enables are
710  *	nested.
711  *	Unlike disable_irq(), this function does not ensure existing
712  *	instances of the IRQ handler have completed before returning.
713  *
714  *	This function may be called from IRQ context.
715  */
716 void disable_irq_nosync(unsigned int irq)
717 {
718 	__disable_irq_nosync(irq);
719 }
720 EXPORT_SYMBOL(disable_irq_nosync);
721 
722 /**
723  *	disable_irq - disable an irq and wait for completion
724  *	@irq: Interrupt to disable
725  *
726  *	Disable the selected interrupt line.  Enables and Disables are
727  *	nested.
728  *	This function waits for any pending IRQ handlers for this interrupt
729  *	to complete before returning. If you use this function while
730  *	holding a resource the IRQ handler may need you will deadlock.
731  *
732  *	Can only be called from preemptible code as it might sleep when
733  *	an interrupt thread is associated to @irq.
734  *
735  */
736 void disable_irq(unsigned int irq)
737 {
738 	might_sleep();
739 	if (!__disable_irq_nosync(irq))
740 		synchronize_irq(irq);
741 }
742 EXPORT_SYMBOL(disable_irq);
743 
744 /**
745  *	disable_hardirq - disables an irq and waits for hardirq completion
746  *	@irq: Interrupt to disable
747  *
748  *	Disable the selected interrupt line.  Enables and Disables are
749  *	nested.
750  *	This function waits for any pending hard IRQ handlers for this
751  *	interrupt to complete before returning. If you use this function while
752  *	holding a resource the hard IRQ handler may need you will deadlock.
753  *
754  *	When used to optimistically disable an interrupt from atomic context
755  *	the return value must be checked.
756  *
757  *	Returns: false if a threaded handler is active.
758  *
759  *	This function may be called - with care - from IRQ context.
760  */
761 bool disable_hardirq(unsigned int irq)
762 {
763 	if (!__disable_irq_nosync(irq))
764 		return synchronize_hardirq(irq);
765 
766 	return false;
767 }
768 EXPORT_SYMBOL_GPL(disable_hardirq);
769 
770 /**
771  *	disable_nmi_nosync - disable an nmi without waiting
772  *	@irq: Interrupt to disable
773  *
774  *	Disable the selected interrupt line. Disables and enables are
775  *	nested.
776  *	The interrupt to disable must have been requested through request_nmi.
777  *	Unlike disable_nmi(), this function does not ensure existing
778  *	instances of the IRQ handler have completed before returning.
779  */
780 void disable_nmi_nosync(unsigned int irq)
781 {
782 	disable_irq_nosync(irq);
783 }
784 
785 void __enable_irq(struct irq_desc *desc)
786 {
787 	switch (desc->depth) {
788 	case 0:
789  err_out:
790 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 		     irq_desc_get_irq(desc));
792 		break;
793 	case 1: {
794 		if (desc->istate & IRQS_SUSPENDED)
795 			goto err_out;
796 		/* Prevent probing on this irq: */
797 		irq_settings_set_noprobe(desc);
798 		/*
799 		 * Call irq_startup() not irq_enable() here because the
800 		 * interrupt might be marked NOAUTOEN so irq_startup()
801 		 * needs to be invoked when it gets enabled the first time.
802 		 * This is also required when __enable_irq() is invoked for
803 		 * a managed and shutdown interrupt from the S3 resume
804 		 * path.
805 		 *
806 		 * If it was already started up, then irq_startup() will
807 		 * invoke irq_enable() under the hood.
808 		 */
809 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
810 		break;
811 	}
812 	default:
813 		desc->depth--;
814 	}
815 }
816 
817 /**
818  *	enable_irq - enable handling of an irq
819  *	@irq: Interrupt to enable
820  *
821  *	Undoes the effect of one call to disable_irq().  If this
822  *	matches the last disable, processing of interrupts on this
823  *	IRQ line is re-enabled.
824  *
825  *	This function may be called from IRQ context only when
826  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
827  */
828 void enable_irq(unsigned int irq)
829 {
830 	unsigned long flags;
831 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
832 
833 	if (!desc)
834 		return;
835 	if (WARN(!desc->irq_data.chip,
836 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
837 		goto out;
838 
839 	__enable_irq(desc);
840 out:
841 	irq_put_desc_busunlock(desc, flags);
842 }
843 EXPORT_SYMBOL(enable_irq);
844 
845 /**
846  *	enable_nmi - enable handling of an nmi
847  *	@irq: Interrupt to enable
848  *
849  *	The interrupt to enable must have been requested through request_nmi.
850  *	Undoes the effect of one call to disable_nmi(). If this
851  *	matches the last disable, processing of interrupts on this
852  *	IRQ line is re-enabled.
853  */
854 void enable_nmi(unsigned int irq)
855 {
856 	enable_irq(irq);
857 }
858 
859 static int set_irq_wake_real(unsigned int irq, unsigned int on)
860 {
861 	struct irq_desc *desc = irq_to_desc(irq);
862 	int ret = -ENXIO;
863 
864 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
865 		return 0;
866 
867 	if (desc->irq_data.chip->irq_set_wake)
868 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
869 
870 	return ret;
871 }
872 
873 /**
874  *	irq_set_irq_wake - control irq power management wakeup
875  *	@irq:	interrupt to control
876  *	@on:	enable/disable power management wakeup
877  *
878  *	Enable/disable power management wakeup mode, which is
879  *	disabled by default.  Enables and disables must match,
880  *	just as they match for non-wakeup mode support.
881  *
882  *	Wakeup mode lets this IRQ wake the system from sleep
883  *	states like "suspend to RAM".
884  *
885  *	Note: irq enable/disable state is completely orthogonal
886  *	to the enable/disable state of irq wake. An irq can be
887  *	disabled with disable_irq() and still wake the system as
888  *	long as the irq has wake enabled. If this does not hold,
889  *	then the underlying irq chip and the related driver need
890  *	to be investigated.
891  */
892 int irq_set_irq_wake(unsigned int irq, unsigned int on)
893 {
894 	unsigned long flags;
895 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
896 	int ret = 0;
897 
898 	if (!desc)
899 		return -EINVAL;
900 
901 	/* Don't use NMIs as wake up interrupts please */
902 	if (irq_is_nmi(desc)) {
903 		ret = -EINVAL;
904 		goto out_unlock;
905 	}
906 
907 	/* wakeup-capable irqs can be shared between drivers that
908 	 * don't need to have the same sleep mode behaviors.
909 	 */
910 	if (on) {
911 		if (desc->wake_depth++ == 0) {
912 			ret = set_irq_wake_real(irq, on);
913 			if (ret)
914 				desc->wake_depth = 0;
915 			else
916 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
917 		}
918 	} else {
919 		if (desc->wake_depth == 0) {
920 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
921 		} else if (--desc->wake_depth == 0) {
922 			ret = set_irq_wake_real(irq, on);
923 			if (ret)
924 				desc->wake_depth = 1;
925 			else
926 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
927 		}
928 	}
929 
930 out_unlock:
931 	irq_put_desc_busunlock(desc, flags);
932 	return ret;
933 }
934 EXPORT_SYMBOL(irq_set_irq_wake);
935 
936 /*
937  * Internal function that tells the architecture code whether a
938  * particular irq has been exclusively allocated or is available
939  * for driver use.
940  */
941 int can_request_irq(unsigned int irq, unsigned long irqflags)
942 {
943 	unsigned long flags;
944 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
945 	int canrequest = 0;
946 
947 	if (!desc)
948 		return 0;
949 
950 	if (irq_settings_can_request(desc)) {
951 		if (!desc->action ||
952 		    irqflags & desc->action->flags & IRQF_SHARED)
953 			canrequest = 1;
954 	}
955 	irq_put_desc_unlock(desc, flags);
956 	return canrequest;
957 }
958 
959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
960 {
961 	struct irq_chip *chip = desc->irq_data.chip;
962 	int ret, unmask = 0;
963 
964 	if (!chip || !chip->irq_set_type) {
965 		/*
966 		 * IRQF_TRIGGER_* but the PIC does not support multiple
967 		 * flow-types?
968 		 */
969 		pr_debug("No set_type function for IRQ %d (%s)\n",
970 			 irq_desc_get_irq(desc),
971 			 chip ? (chip->name ? : "unknown") : "unknown");
972 		return 0;
973 	}
974 
975 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
976 		if (!irqd_irq_masked(&desc->irq_data))
977 			mask_irq(desc);
978 		if (!irqd_irq_disabled(&desc->irq_data))
979 			unmask = 1;
980 	}
981 
982 	/* Mask all flags except trigger mode */
983 	flags &= IRQ_TYPE_SENSE_MASK;
984 	ret = chip->irq_set_type(&desc->irq_data, flags);
985 
986 	switch (ret) {
987 	case IRQ_SET_MASK_OK:
988 	case IRQ_SET_MASK_OK_DONE:
989 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
990 		irqd_set(&desc->irq_data, flags);
991 		fallthrough;
992 
993 	case IRQ_SET_MASK_OK_NOCOPY:
994 		flags = irqd_get_trigger_type(&desc->irq_data);
995 		irq_settings_set_trigger_mask(desc, flags);
996 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
997 		irq_settings_clr_level(desc);
998 		if (flags & IRQ_TYPE_LEVEL_MASK) {
999 			irq_settings_set_level(desc);
1000 			irqd_set(&desc->irq_data, IRQD_LEVEL);
1001 		}
1002 
1003 		ret = 0;
1004 		break;
1005 	default:
1006 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1007 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1008 	}
1009 	if (unmask)
1010 		unmask_irq(desc);
1011 	return ret;
1012 }
1013 
1014 #ifdef CONFIG_HARDIRQS_SW_RESEND
1015 int irq_set_parent(int irq, int parent_irq)
1016 {
1017 	unsigned long flags;
1018 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1019 
1020 	if (!desc)
1021 		return -EINVAL;
1022 
1023 	desc->parent_irq = parent_irq;
1024 
1025 	irq_put_desc_unlock(desc, flags);
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(irq_set_parent);
1029 #endif
1030 
1031 /*
1032  * Default primary interrupt handler for threaded interrupts. Is
1033  * assigned as primary handler when request_threaded_irq is called
1034  * with handler == NULL. Useful for oneshot interrupts.
1035  */
1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1037 {
1038 	return IRQ_WAKE_THREAD;
1039 }
1040 
1041 /*
1042  * Primary handler for nested threaded interrupts. Should never be
1043  * called.
1044  */
1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1046 {
1047 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1048 	return IRQ_NONE;
1049 }
1050 
1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1052 {
1053 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1054 	return IRQ_NONE;
1055 }
1056 
1057 #ifdef CONFIG_SMP
1058 /*
1059  * Check whether we need to change the affinity of the interrupt thread.
1060  */
1061 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1062 {
1063 	cpumask_var_t mask;
1064 	bool valid = false;
1065 
1066 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1067 		return;
1068 
1069 	__set_current_state(TASK_RUNNING);
1070 
1071 	/*
1072 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1073 	 * try again next time
1074 	 */
1075 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1076 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1077 		return;
1078 	}
1079 
1080 	raw_spin_lock_irq(&desc->lock);
1081 	/*
1082 	 * This code is triggered unconditionally. Check the affinity
1083 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1084 	 */
1085 	if (cpumask_available(desc->irq_common_data.affinity)) {
1086 		const struct cpumask *m;
1087 
1088 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1089 		cpumask_copy(mask, m);
1090 		valid = true;
1091 	}
1092 	raw_spin_unlock_irq(&desc->lock);
1093 
1094 	if (valid)
1095 		set_cpus_allowed_ptr(current, mask);
1096 	free_cpumask_var(mask);
1097 }
1098 #else
1099 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1100 #endif
1101 
1102 static int irq_wait_for_interrupt(struct irq_desc *desc,
1103 				  struct irqaction *action)
1104 {
1105 	for (;;) {
1106 		set_current_state(TASK_INTERRUPTIBLE);
1107 		irq_thread_check_affinity(desc, action);
1108 
1109 		if (kthread_should_stop()) {
1110 			/* may need to run one last time */
1111 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1112 					       &action->thread_flags)) {
1113 				__set_current_state(TASK_RUNNING);
1114 				return 0;
1115 			}
1116 			__set_current_state(TASK_RUNNING);
1117 			return -1;
1118 		}
1119 
1120 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1121 				       &action->thread_flags)) {
1122 			__set_current_state(TASK_RUNNING);
1123 			return 0;
1124 		}
1125 		schedule();
1126 	}
1127 }
1128 
1129 /*
1130  * Oneshot interrupts keep the irq line masked until the threaded
1131  * handler finished. unmask if the interrupt has not been disabled and
1132  * is marked MASKED.
1133  */
1134 static void irq_finalize_oneshot(struct irq_desc *desc,
1135 				 struct irqaction *action)
1136 {
1137 	if (!(desc->istate & IRQS_ONESHOT) ||
1138 	    action->handler == irq_forced_secondary_handler)
1139 		return;
1140 again:
1141 	chip_bus_lock(desc);
1142 	raw_spin_lock_irq(&desc->lock);
1143 
1144 	/*
1145 	 * Implausible though it may be we need to protect us against
1146 	 * the following scenario:
1147 	 *
1148 	 * The thread is faster done than the hard interrupt handler
1149 	 * on the other CPU. If we unmask the irq line then the
1150 	 * interrupt can come in again and masks the line, leaves due
1151 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1152 	 *
1153 	 * This also serializes the state of shared oneshot handlers
1154 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1155 	 * irq_wake_thread(). See the comment there which explains the
1156 	 * serialization.
1157 	 */
1158 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1159 		raw_spin_unlock_irq(&desc->lock);
1160 		chip_bus_sync_unlock(desc);
1161 		cpu_relax();
1162 		goto again;
1163 	}
1164 
1165 	/*
1166 	 * Now check again, whether the thread should run. Otherwise
1167 	 * we would clear the threads_oneshot bit of this thread which
1168 	 * was just set.
1169 	 */
1170 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1171 		goto out_unlock;
1172 
1173 	desc->threads_oneshot &= ~action->thread_mask;
1174 
1175 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1176 	    irqd_irq_masked(&desc->irq_data))
1177 		unmask_threaded_irq(desc);
1178 
1179 out_unlock:
1180 	raw_spin_unlock_irq(&desc->lock);
1181 	chip_bus_sync_unlock(desc);
1182 }
1183 
1184 /*
1185  * Interrupts which are not explicitly requested as threaded
1186  * interrupts rely on the implicit bh/preempt disable of the hard irq
1187  * context. So we need to disable bh here to avoid deadlocks and other
1188  * side effects.
1189  */
1190 static irqreturn_t
1191 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1192 {
1193 	irqreturn_t ret;
1194 
1195 	local_bh_disable();
1196 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1197 		local_irq_disable();
1198 	ret = action->thread_fn(action->irq, action->dev_id);
1199 	if (ret == IRQ_HANDLED)
1200 		atomic_inc(&desc->threads_handled);
1201 
1202 	irq_finalize_oneshot(desc, action);
1203 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1204 		local_irq_enable();
1205 	local_bh_enable();
1206 	return ret;
1207 }
1208 
1209 /*
1210  * Interrupts explicitly requested as threaded interrupts want to be
1211  * preemptible - many of them need to sleep and wait for slow busses to
1212  * complete.
1213  */
1214 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1215 		struct irqaction *action)
1216 {
1217 	irqreturn_t ret;
1218 
1219 	ret = action->thread_fn(action->irq, action->dev_id);
1220 	if (ret == IRQ_HANDLED)
1221 		atomic_inc(&desc->threads_handled);
1222 
1223 	irq_finalize_oneshot(desc, action);
1224 	return ret;
1225 }
1226 
1227 void wake_threads_waitq(struct irq_desc *desc)
1228 {
1229 	if (atomic_dec_and_test(&desc->threads_active))
1230 		wake_up(&desc->wait_for_threads);
1231 }
1232 
1233 static void irq_thread_dtor(struct callback_head *unused)
1234 {
1235 	struct task_struct *tsk = current;
1236 	struct irq_desc *desc;
1237 	struct irqaction *action;
1238 
1239 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1240 		return;
1241 
1242 	action = kthread_data(tsk);
1243 
1244 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1245 	       tsk->comm, tsk->pid, action->irq);
1246 
1247 
1248 	desc = irq_to_desc(action->irq);
1249 	/*
1250 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1251 	 * desc->threads_active and wake possible waiters.
1252 	 */
1253 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1254 		wake_threads_waitq(desc);
1255 
1256 	/* Prevent a stale desc->threads_oneshot */
1257 	irq_finalize_oneshot(desc, action);
1258 }
1259 
1260 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1261 {
1262 	struct irqaction *secondary = action->secondary;
1263 
1264 	if (WARN_ON_ONCE(!secondary))
1265 		return;
1266 
1267 	raw_spin_lock_irq(&desc->lock);
1268 	__irq_wake_thread(desc, secondary);
1269 	raw_spin_unlock_irq(&desc->lock);
1270 }
1271 
1272 /*
1273  * Internal function to notify that a interrupt thread is ready.
1274  */
1275 static void irq_thread_set_ready(struct irq_desc *desc,
1276 				 struct irqaction *action)
1277 {
1278 	set_bit(IRQTF_READY, &action->thread_flags);
1279 	wake_up(&desc->wait_for_threads);
1280 }
1281 
1282 /*
1283  * Internal function to wake up a interrupt thread and wait until it is
1284  * ready.
1285  */
1286 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1287 						  struct irqaction *action)
1288 {
1289 	if (!action || !action->thread)
1290 		return;
1291 
1292 	wake_up_process(action->thread);
1293 	wait_event(desc->wait_for_threads,
1294 		   test_bit(IRQTF_READY, &action->thread_flags));
1295 }
1296 
1297 /*
1298  * Interrupt handler thread
1299  */
1300 static int irq_thread(void *data)
1301 {
1302 	struct callback_head on_exit_work;
1303 	struct irqaction *action = data;
1304 	struct irq_desc *desc = irq_to_desc(action->irq);
1305 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1306 			struct irqaction *action);
1307 
1308 	irq_thread_set_ready(desc, action);
1309 
1310 	sched_set_fifo(current);
1311 
1312 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1313 					   &action->thread_flags))
1314 		handler_fn = irq_forced_thread_fn;
1315 	else
1316 		handler_fn = irq_thread_fn;
1317 
1318 	init_task_work(&on_exit_work, irq_thread_dtor);
1319 	task_work_add(current, &on_exit_work, TWA_NONE);
1320 
1321 	while (!irq_wait_for_interrupt(desc, action)) {
1322 		irqreturn_t action_ret;
1323 
1324 		action_ret = handler_fn(desc, action);
1325 		if (action_ret == IRQ_WAKE_THREAD)
1326 			irq_wake_secondary(desc, action);
1327 
1328 		wake_threads_waitq(desc);
1329 	}
1330 
1331 	/*
1332 	 * This is the regular exit path. __free_irq() is stopping the
1333 	 * thread via kthread_stop() after calling
1334 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1335 	 * oneshot mask bit can be set.
1336 	 */
1337 	task_work_cancel_func(current, irq_thread_dtor);
1338 	return 0;
1339 }
1340 
1341 /**
1342  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1343  *	@irq:		Interrupt line
1344  *	@dev_id:	Device identity for which the thread should be woken
1345  *
1346  */
1347 void irq_wake_thread(unsigned int irq, void *dev_id)
1348 {
1349 	struct irq_desc *desc = irq_to_desc(irq);
1350 	struct irqaction *action;
1351 	unsigned long flags;
1352 
1353 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1354 		return;
1355 
1356 	raw_spin_lock_irqsave(&desc->lock, flags);
1357 	for_each_action_of_desc(desc, action) {
1358 		if (action->dev_id == dev_id) {
1359 			if (action->thread)
1360 				__irq_wake_thread(desc, action);
1361 			break;
1362 		}
1363 	}
1364 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1365 }
1366 EXPORT_SYMBOL_GPL(irq_wake_thread);
1367 
1368 static int irq_setup_forced_threading(struct irqaction *new)
1369 {
1370 	if (!force_irqthreads())
1371 		return 0;
1372 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1373 		return 0;
1374 
1375 	/*
1376 	 * No further action required for interrupts which are requested as
1377 	 * threaded interrupts already
1378 	 */
1379 	if (new->handler == irq_default_primary_handler)
1380 		return 0;
1381 
1382 	new->flags |= IRQF_ONESHOT;
1383 
1384 	/*
1385 	 * Handle the case where we have a real primary handler and a
1386 	 * thread handler. We force thread them as well by creating a
1387 	 * secondary action.
1388 	 */
1389 	if (new->handler && new->thread_fn) {
1390 		/* Allocate the secondary action */
1391 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1392 		if (!new->secondary)
1393 			return -ENOMEM;
1394 		new->secondary->handler = irq_forced_secondary_handler;
1395 		new->secondary->thread_fn = new->thread_fn;
1396 		new->secondary->dev_id = new->dev_id;
1397 		new->secondary->irq = new->irq;
1398 		new->secondary->name = new->name;
1399 	}
1400 	/* Deal with the primary handler */
1401 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1402 	new->thread_fn = new->handler;
1403 	new->handler = irq_default_primary_handler;
1404 	return 0;
1405 }
1406 
1407 static int irq_request_resources(struct irq_desc *desc)
1408 {
1409 	struct irq_data *d = &desc->irq_data;
1410 	struct irq_chip *c = d->chip;
1411 
1412 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1413 }
1414 
1415 static void irq_release_resources(struct irq_desc *desc)
1416 {
1417 	struct irq_data *d = &desc->irq_data;
1418 	struct irq_chip *c = d->chip;
1419 
1420 	if (c->irq_release_resources)
1421 		c->irq_release_resources(d);
1422 }
1423 
1424 static bool irq_supports_nmi(struct irq_desc *desc)
1425 {
1426 	struct irq_data *d = irq_desc_get_irq_data(desc);
1427 
1428 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1429 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1430 	if (d->parent_data)
1431 		return false;
1432 #endif
1433 	/* Don't support NMIs for chips behind a slow bus */
1434 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1435 		return false;
1436 
1437 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1438 }
1439 
1440 static int irq_nmi_setup(struct irq_desc *desc)
1441 {
1442 	struct irq_data *d = irq_desc_get_irq_data(desc);
1443 	struct irq_chip *c = d->chip;
1444 
1445 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1446 }
1447 
1448 static void irq_nmi_teardown(struct irq_desc *desc)
1449 {
1450 	struct irq_data *d = irq_desc_get_irq_data(desc);
1451 	struct irq_chip *c = d->chip;
1452 
1453 	if (c->irq_nmi_teardown)
1454 		c->irq_nmi_teardown(d);
1455 }
1456 
1457 static int
1458 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1459 {
1460 	struct task_struct *t;
1461 
1462 	if (!secondary) {
1463 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1464 				   new->name);
1465 	} else {
1466 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1467 				   new->name);
1468 	}
1469 
1470 	if (IS_ERR(t))
1471 		return PTR_ERR(t);
1472 
1473 	/*
1474 	 * We keep the reference to the task struct even if
1475 	 * the thread dies to avoid that the interrupt code
1476 	 * references an already freed task_struct.
1477 	 */
1478 	new->thread = get_task_struct(t);
1479 	/*
1480 	 * Tell the thread to set its affinity. This is
1481 	 * important for shared interrupt handlers as we do
1482 	 * not invoke setup_affinity() for the secondary
1483 	 * handlers as everything is already set up. Even for
1484 	 * interrupts marked with IRQF_NO_BALANCE this is
1485 	 * correct as we want the thread to move to the cpu(s)
1486 	 * on which the requesting code placed the interrupt.
1487 	 */
1488 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Internal function to register an irqaction - typically used to
1494  * allocate special interrupts that are part of the architecture.
1495  *
1496  * Locking rules:
1497  *
1498  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1499  *   chip_bus_lock	Provides serialization for slow bus operations
1500  *     desc->lock	Provides serialization against hard interrupts
1501  *
1502  * chip_bus_lock and desc->lock are sufficient for all other management and
1503  * interrupt related functions. desc->request_mutex solely serializes
1504  * request/free_irq().
1505  */
1506 static int
1507 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1508 {
1509 	struct irqaction *old, **old_ptr;
1510 	unsigned long flags, thread_mask = 0;
1511 	int ret, nested, shared = 0;
1512 
1513 	if (!desc)
1514 		return -EINVAL;
1515 
1516 	if (desc->irq_data.chip == &no_irq_chip)
1517 		return -ENOSYS;
1518 	if (!try_module_get(desc->owner))
1519 		return -ENODEV;
1520 
1521 	new->irq = irq;
1522 
1523 	/*
1524 	 * If the trigger type is not specified by the caller,
1525 	 * then use the default for this interrupt.
1526 	 */
1527 	if (!(new->flags & IRQF_TRIGGER_MASK))
1528 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1529 
1530 	/*
1531 	 * Check whether the interrupt nests into another interrupt
1532 	 * thread.
1533 	 */
1534 	nested = irq_settings_is_nested_thread(desc);
1535 	if (nested) {
1536 		if (!new->thread_fn) {
1537 			ret = -EINVAL;
1538 			goto out_mput;
1539 		}
1540 		/*
1541 		 * Replace the primary handler which was provided from
1542 		 * the driver for non nested interrupt handling by the
1543 		 * dummy function which warns when called.
1544 		 */
1545 		new->handler = irq_nested_primary_handler;
1546 	} else {
1547 		if (irq_settings_can_thread(desc)) {
1548 			ret = irq_setup_forced_threading(new);
1549 			if (ret)
1550 				goto out_mput;
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * Create a handler thread when a thread function is supplied
1556 	 * and the interrupt does not nest into another interrupt
1557 	 * thread.
1558 	 */
1559 	if (new->thread_fn && !nested) {
1560 		ret = setup_irq_thread(new, irq, false);
1561 		if (ret)
1562 			goto out_mput;
1563 		if (new->secondary) {
1564 			ret = setup_irq_thread(new->secondary, irq, true);
1565 			if (ret)
1566 				goto out_thread;
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * Drivers are often written to work w/o knowledge about the
1572 	 * underlying irq chip implementation, so a request for a
1573 	 * threaded irq without a primary hard irq context handler
1574 	 * requires the ONESHOT flag to be set. Some irq chips like
1575 	 * MSI based interrupts are per se one shot safe. Check the
1576 	 * chip flags, so we can avoid the unmask dance at the end of
1577 	 * the threaded handler for those.
1578 	 */
1579 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1580 		new->flags &= ~IRQF_ONESHOT;
1581 
1582 	/*
1583 	 * Protects against a concurrent __free_irq() call which might wait
1584 	 * for synchronize_hardirq() to complete without holding the optional
1585 	 * chip bus lock and desc->lock. Also protects against handing out
1586 	 * a recycled oneshot thread_mask bit while it's still in use by
1587 	 * its previous owner.
1588 	 */
1589 	mutex_lock(&desc->request_mutex);
1590 
1591 	/*
1592 	 * Acquire bus lock as the irq_request_resources() callback below
1593 	 * might rely on the serialization or the magic power management
1594 	 * functions which are abusing the irq_bus_lock() callback,
1595 	 */
1596 	chip_bus_lock(desc);
1597 
1598 	/* First installed action requests resources. */
1599 	if (!desc->action) {
1600 		ret = irq_request_resources(desc);
1601 		if (ret) {
1602 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1603 			       new->name, irq, desc->irq_data.chip->name);
1604 			goto out_bus_unlock;
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * The following block of code has to be executed atomically
1610 	 * protected against a concurrent interrupt and any of the other
1611 	 * management calls which are not serialized via
1612 	 * desc->request_mutex or the optional bus lock.
1613 	 */
1614 	raw_spin_lock_irqsave(&desc->lock, flags);
1615 	old_ptr = &desc->action;
1616 	old = *old_ptr;
1617 	if (old) {
1618 		/*
1619 		 * Can't share interrupts unless both agree to and are
1620 		 * the same type (level, edge, polarity). So both flag
1621 		 * fields must have IRQF_SHARED set and the bits which
1622 		 * set the trigger type must match. Also all must
1623 		 * agree on ONESHOT.
1624 		 * Interrupt lines used for NMIs cannot be shared.
1625 		 */
1626 		unsigned int oldtype;
1627 
1628 		if (irq_is_nmi(desc)) {
1629 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1630 				new->name, irq, desc->irq_data.chip->name);
1631 			ret = -EINVAL;
1632 			goto out_unlock;
1633 		}
1634 
1635 		/*
1636 		 * If nobody did set the configuration before, inherit
1637 		 * the one provided by the requester.
1638 		 */
1639 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1640 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1641 		} else {
1642 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1643 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1644 		}
1645 
1646 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1647 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1648 			goto mismatch;
1649 
1650 		if ((old->flags & IRQF_ONESHOT) &&
1651 		    (new->flags & IRQF_COND_ONESHOT))
1652 			new->flags |= IRQF_ONESHOT;
1653 		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1654 			goto mismatch;
1655 
1656 		/* All handlers must agree on per-cpuness */
1657 		if ((old->flags & IRQF_PERCPU) !=
1658 		    (new->flags & IRQF_PERCPU))
1659 			goto mismatch;
1660 
1661 		/* add new interrupt at end of irq queue */
1662 		do {
1663 			/*
1664 			 * Or all existing action->thread_mask bits,
1665 			 * so we can find the next zero bit for this
1666 			 * new action.
1667 			 */
1668 			thread_mask |= old->thread_mask;
1669 			old_ptr = &old->next;
1670 			old = *old_ptr;
1671 		} while (old);
1672 		shared = 1;
1673 	}
1674 
1675 	/*
1676 	 * Setup the thread mask for this irqaction for ONESHOT. For
1677 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1678 	 * conditional in irq_wake_thread().
1679 	 */
1680 	if (new->flags & IRQF_ONESHOT) {
1681 		/*
1682 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1683 		 * but who knows.
1684 		 */
1685 		if (thread_mask == ~0UL) {
1686 			ret = -EBUSY;
1687 			goto out_unlock;
1688 		}
1689 		/*
1690 		 * The thread_mask for the action is or'ed to
1691 		 * desc->thread_active to indicate that the
1692 		 * IRQF_ONESHOT thread handler has been woken, but not
1693 		 * yet finished. The bit is cleared when a thread
1694 		 * completes. When all threads of a shared interrupt
1695 		 * line have completed desc->threads_active becomes
1696 		 * zero and the interrupt line is unmasked. See
1697 		 * handle.c:irq_wake_thread() for further information.
1698 		 *
1699 		 * If no thread is woken by primary (hard irq context)
1700 		 * interrupt handlers, then desc->threads_active is
1701 		 * also checked for zero to unmask the irq line in the
1702 		 * affected hard irq flow handlers
1703 		 * (handle_[fasteoi|level]_irq).
1704 		 *
1705 		 * The new action gets the first zero bit of
1706 		 * thread_mask assigned. See the loop above which or's
1707 		 * all existing action->thread_mask bits.
1708 		 */
1709 		new->thread_mask = 1UL << ffz(thread_mask);
1710 
1711 	} else if (new->handler == irq_default_primary_handler &&
1712 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1713 		/*
1714 		 * The interrupt was requested with handler = NULL, so
1715 		 * we use the default primary handler for it. But it
1716 		 * does not have the oneshot flag set. In combination
1717 		 * with level interrupts this is deadly, because the
1718 		 * default primary handler just wakes the thread, then
1719 		 * the irq lines is reenabled, but the device still
1720 		 * has the level irq asserted. Rinse and repeat....
1721 		 *
1722 		 * While this works for edge type interrupts, we play
1723 		 * it safe and reject unconditionally because we can't
1724 		 * say for sure which type this interrupt really
1725 		 * has. The type flags are unreliable as the
1726 		 * underlying chip implementation can override them.
1727 		 */
1728 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1729 		       new->name, irq);
1730 		ret = -EINVAL;
1731 		goto out_unlock;
1732 	}
1733 
1734 	if (!shared) {
1735 		/* Setup the type (level, edge polarity) if configured: */
1736 		if (new->flags & IRQF_TRIGGER_MASK) {
1737 			ret = __irq_set_trigger(desc,
1738 						new->flags & IRQF_TRIGGER_MASK);
1739 
1740 			if (ret)
1741 				goto out_unlock;
1742 		}
1743 
1744 		/*
1745 		 * Activate the interrupt. That activation must happen
1746 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1747 		 * and the callers are supposed to handle
1748 		 * that. enable_irq() of an interrupt requested with
1749 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1750 		 * keeps it in shutdown mode, it merily associates
1751 		 * resources if necessary and if that's not possible it
1752 		 * fails. Interrupts which are in managed shutdown mode
1753 		 * will simply ignore that activation request.
1754 		 */
1755 		ret = irq_activate(desc);
1756 		if (ret)
1757 			goto out_unlock;
1758 
1759 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1760 				  IRQS_ONESHOT | IRQS_WAITING);
1761 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1762 
1763 		if (new->flags & IRQF_PERCPU) {
1764 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1765 			irq_settings_set_per_cpu(desc);
1766 			if (new->flags & IRQF_NO_DEBUG)
1767 				irq_settings_set_no_debug(desc);
1768 		}
1769 
1770 		if (noirqdebug)
1771 			irq_settings_set_no_debug(desc);
1772 
1773 		if (new->flags & IRQF_ONESHOT)
1774 			desc->istate |= IRQS_ONESHOT;
1775 
1776 		/* Exclude IRQ from balancing if requested */
1777 		if (new->flags & IRQF_NOBALANCING) {
1778 			irq_settings_set_no_balancing(desc);
1779 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1780 		}
1781 
1782 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1783 		    irq_settings_can_autoenable(desc)) {
1784 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1785 		} else {
1786 			/*
1787 			 * Shared interrupts do not go well with disabling
1788 			 * auto enable. The sharing interrupt might request
1789 			 * it while it's still disabled and then wait for
1790 			 * interrupts forever.
1791 			 */
1792 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1793 			/* Undo nested disables: */
1794 			desc->depth = 1;
1795 		}
1796 
1797 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1798 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1799 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1800 
1801 		if (nmsk != omsk)
1802 			/* hope the handler works with current  trigger mode */
1803 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1804 				irq, omsk, nmsk);
1805 	}
1806 
1807 	*old_ptr = new;
1808 
1809 	irq_pm_install_action(desc, new);
1810 
1811 	/* Reset broken irq detection when installing new handler */
1812 	desc->irq_count = 0;
1813 	desc->irqs_unhandled = 0;
1814 
1815 	/*
1816 	 * Check whether we disabled the irq via the spurious handler
1817 	 * before. Reenable it and give it another chance.
1818 	 */
1819 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1820 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1821 		__enable_irq(desc);
1822 	}
1823 
1824 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1825 	chip_bus_sync_unlock(desc);
1826 	mutex_unlock(&desc->request_mutex);
1827 
1828 	irq_setup_timings(desc, new);
1829 
1830 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1831 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1832 
1833 	register_irq_proc(irq, desc);
1834 	new->dir = NULL;
1835 	register_handler_proc(irq, new);
1836 	return 0;
1837 
1838 mismatch:
1839 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1840 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1841 		       irq, new->flags, new->name, old->flags, old->name);
1842 #ifdef CONFIG_DEBUG_SHIRQ
1843 		dump_stack();
1844 #endif
1845 	}
1846 	ret = -EBUSY;
1847 
1848 out_unlock:
1849 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1850 
1851 	if (!desc->action)
1852 		irq_release_resources(desc);
1853 out_bus_unlock:
1854 	chip_bus_sync_unlock(desc);
1855 	mutex_unlock(&desc->request_mutex);
1856 
1857 out_thread:
1858 	if (new->thread) {
1859 		struct task_struct *t = new->thread;
1860 
1861 		new->thread = NULL;
1862 		kthread_stop_put(t);
1863 	}
1864 	if (new->secondary && new->secondary->thread) {
1865 		struct task_struct *t = new->secondary->thread;
1866 
1867 		new->secondary->thread = NULL;
1868 		kthread_stop_put(t);
1869 	}
1870 out_mput:
1871 	module_put(desc->owner);
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Internal function to unregister an irqaction - used to free
1877  * regular and special interrupts that are part of the architecture.
1878  */
1879 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1880 {
1881 	unsigned irq = desc->irq_data.irq;
1882 	struct irqaction *action, **action_ptr;
1883 	unsigned long flags;
1884 
1885 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1886 
1887 	mutex_lock(&desc->request_mutex);
1888 	chip_bus_lock(desc);
1889 	raw_spin_lock_irqsave(&desc->lock, flags);
1890 
1891 	/*
1892 	 * There can be multiple actions per IRQ descriptor, find the right
1893 	 * one based on the dev_id:
1894 	 */
1895 	action_ptr = &desc->action;
1896 	for (;;) {
1897 		action = *action_ptr;
1898 
1899 		if (!action) {
1900 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1901 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1902 			chip_bus_sync_unlock(desc);
1903 			mutex_unlock(&desc->request_mutex);
1904 			return NULL;
1905 		}
1906 
1907 		if (action->dev_id == dev_id)
1908 			break;
1909 		action_ptr = &action->next;
1910 	}
1911 
1912 	/* Found it - now remove it from the list of entries: */
1913 	*action_ptr = action->next;
1914 
1915 	irq_pm_remove_action(desc, action);
1916 
1917 	/* If this was the last handler, shut down the IRQ line: */
1918 	if (!desc->action) {
1919 		irq_settings_clr_disable_unlazy(desc);
1920 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1921 		irq_shutdown(desc);
1922 	}
1923 
1924 #ifdef CONFIG_SMP
1925 	/* make sure affinity_hint is cleaned up */
1926 	if (WARN_ON_ONCE(desc->affinity_hint))
1927 		desc->affinity_hint = NULL;
1928 #endif
1929 
1930 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1931 	/*
1932 	 * Drop bus_lock here so the changes which were done in the chip
1933 	 * callbacks above are synced out to the irq chips which hang
1934 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1935 	 *
1936 	 * Aside of that the bus_lock can also be taken from the threaded
1937 	 * handler in irq_finalize_oneshot() which results in a deadlock
1938 	 * because kthread_stop() would wait forever for the thread to
1939 	 * complete, which is blocked on the bus lock.
1940 	 *
1941 	 * The still held desc->request_mutex() protects against a
1942 	 * concurrent request_irq() of this irq so the release of resources
1943 	 * and timing data is properly serialized.
1944 	 */
1945 	chip_bus_sync_unlock(desc);
1946 
1947 	unregister_handler_proc(irq, action);
1948 
1949 	/*
1950 	 * Make sure it's not being used on another CPU and if the chip
1951 	 * supports it also make sure that there is no (not yet serviced)
1952 	 * interrupt in flight at the hardware level.
1953 	 */
1954 	__synchronize_irq(desc);
1955 
1956 #ifdef CONFIG_DEBUG_SHIRQ
1957 	/*
1958 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1959 	 * event to happen even now it's being freed, so let's make sure that
1960 	 * is so by doing an extra call to the handler ....
1961 	 *
1962 	 * ( We do this after actually deregistering it, to make sure that a
1963 	 *   'real' IRQ doesn't run in parallel with our fake. )
1964 	 */
1965 	if (action->flags & IRQF_SHARED) {
1966 		local_irq_save(flags);
1967 		action->handler(irq, dev_id);
1968 		local_irq_restore(flags);
1969 	}
1970 #endif
1971 
1972 	/*
1973 	 * The action has already been removed above, but the thread writes
1974 	 * its oneshot mask bit when it completes. Though request_mutex is
1975 	 * held across this which prevents __setup_irq() from handing out
1976 	 * the same bit to a newly requested action.
1977 	 */
1978 	if (action->thread) {
1979 		kthread_stop_put(action->thread);
1980 		if (action->secondary && action->secondary->thread)
1981 			kthread_stop_put(action->secondary->thread);
1982 	}
1983 
1984 	/* Last action releases resources */
1985 	if (!desc->action) {
1986 		/*
1987 		 * Reacquire bus lock as irq_release_resources() might
1988 		 * require it to deallocate resources over the slow bus.
1989 		 */
1990 		chip_bus_lock(desc);
1991 		/*
1992 		 * There is no interrupt on the fly anymore. Deactivate it
1993 		 * completely.
1994 		 */
1995 		raw_spin_lock_irqsave(&desc->lock, flags);
1996 		irq_domain_deactivate_irq(&desc->irq_data);
1997 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1998 
1999 		irq_release_resources(desc);
2000 		chip_bus_sync_unlock(desc);
2001 		irq_remove_timings(desc);
2002 	}
2003 
2004 	mutex_unlock(&desc->request_mutex);
2005 
2006 	irq_chip_pm_put(&desc->irq_data);
2007 	module_put(desc->owner);
2008 	kfree(action->secondary);
2009 	return action;
2010 }
2011 
2012 /**
2013  *	free_irq - free an interrupt allocated with request_irq
2014  *	@irq: Interrupt line to free
2015  *	@dev_id: Device identity to free
2016  *
2017  *	Remove an interrupt handler. The handler is removed and if the
2018  *	interrupt line is no longer in use by any driver it is disabled.
2019  *	On a shared IRQ the caller must ensure the interrupt is disabled
2020  *	on the card it drives before calling this function. The function
2021  *	does not return until any executing interrupts for this IRQ
2022  *	have completed.
2023  *
2024  *	This function must not be called from interrupt context.
2025  *
2026  *	Returns the devname argument passed to request_irq.
2027  */
2028 const void *free_irq(unsigned int irq, void *dev_id)
2029 {
2030 	struct irq_desc *desc = irq_to_desc(irq);
2031 	struct irqaction *action;
2032 	const char *devname;
2033 
2034 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2035 		return NULL;
2036 
2037 #ifdef CONFIG_SMP
2038 	if (WARN_ON(desc->affinity_notify))
2039 		desc->affinity_notify = NULL;
2040 #endif
2041 
2042 	action = __free_irq(desc, dev_id);
2043 
2044 	if (!action)
2045 		return NULL;
2046 
2047 	devname = action->name;
2048 	kfree(action);
2049 	return devname;
2050 }
2051 EXPORT_SYMBOL(free_irq);
2052 
2053 /* This function must be called with desc->lock held */
2054 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2055 {
2056 	const char *devname = NULL;
2057 
2058 	desc->istate &= ~IRQS_NMI;
2059 
2060 	if (!WARN_ON(desc->action == NULL)) {
2061 		irq_pm_remove_action(desc, desc->action);
2062 		devname = desc->action->name;
2063 		unregister_handler_proc(irq, desc->action);
2064 
2065 		kfree(desc->action);
2066 		desc->action = NULL;
2067 	}
2068 
2069 	irq_settings_clr_disable_unlazy(desc);
2070 	irq_shutdown_and_deactivate(desc);
2071 
2072 	irq_release_resources(desc);
2073 
2074 	irq_chip_pm_put(&desc->irq_data);
2075 	module_put(desc->owner);
2076 
2077 	return devname;
2078 }
2079 
2080 const void *free_nmi(unsigned int irq, void *dev_id)
2081 {
2082 	struct irq_desc *desc = irq_to_desc(irq);
2083 	unsigned long flags;
2084 	const void *devname;
2085 
2086 	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2087 		return NULL;
2088 
2089 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2090 		return NULL;
2091 
2092 	/* NMI still enabled */
2093 	if (WARN_ON(desc->depth == 0))
2094 		disable_nmi_nosync(irq);
2095 
2096 	raw_spin_lock_irqsave(&desc->lock, flags);
2097 
2098 	irq_nmi_teardown(desc);
2099 	devname = __cleanup_nmi(irq, desc);
2100 
2101 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2102 
2103 	return devname;
2104 }
2105 
2106 /**
2107  *	request_threaded_irq - allocate an interrupt line
2108  *	@irq: Interrupt line to allocate
2109  *	@handler: Function to be called when the IRQ occurs.
2110  *		  Primary handler for threaded interrupts.
2111  *		  If handler is NULL and thread_fn != NULL
2112  *		  the default primary handler is installed.
2113  *	@thread_fn: Function called from the irq handler thread
2114  *		    If NULL, no irq thread is created
2115  *	@irqflags: Interrupt type flags
2116  *	@devname: An ascii name for the claiming device
2117  *	@dev_id: A cookie passed back to the handler function
2118  *
2119  *	This call allocates interrupt resources and enables the
2120  *	interrupt line and IRQ handling. From the point this
2121  *	call is made your handler function may be invoked. Since
2122  *	your handler function must clear any interrupt the board
2123  *	raises, you must take care both to initialise your hardware
2124  *	and to set up the interrupt handler in the right order.
2125  *
2126  *	If you want to set up a threaded irq handler for your device
2127  *	then you need to supply @handler and @thread_fn. @handler is
2128  *	still called in hard interrupt context and has to check
2129  *	whether the interrupt originates from the device. If yes it
2130  *	needs to disable the interrupt on the device and return
2131  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2132  *	@thread_fn. This split handler design is necessary to support
2133  *	shared interrupts.
2134  *
2135  *	Dev_id must be globally unique. Normally the address of the
2136  *	device data structure is used as the cookie. Since the handler
2137  *	receives this value it makes sense to use it.
2138  *
2139  *	If your interrupt is shared you must pass a non NULL dev_id
2140  *	as this is required when freeing the interrupt.
2141  *
2142  *	Flags:
2143  *
2144  *	IRQF_SHARED		Interrupt is shared
2145  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2146  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2147  */
2148 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2149 			 irq_handler_t thread_fn, unsigned long irqflags,
2150 			 const char *devname, void *dev_id)
2151 {
2152 	struct irqaction *action;
2153 	struct irq_desc *desc;
2154 	int retval;
2155 
2156 	if (irq == IRQ_NOTCONNECTED)
2157 		return -ENOTCONN;
2158 
2159 	/*
2160 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2161 	 * otherwise we'll have trouble later trying to figure out
2162 	 * which interrupt is which (messes up the interrupt freeing
2163 	 * logic etc).
2164 	 *
2165 	 * Also shared interrupts do not go well with disabling auto enable.
2166 	 * The sharing interrupt might request it while it's still disabled
2167 	 * and then wait for interrupts forever.
2168 	 *
2169 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2170 	 * it cannot be set along with IRQF_NO_SUSPEND.
2171 	 */
2172 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2173 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2174 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2175 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2176 		return -EINVAL;
2177 
2178 	desc = irq_to_desc(irq);
2179 	if (!desc)
2180 		return -EINVAL;
2181 
2182 	if (!irq_settings_can_request(desc) ||
2183 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2184 		return -EINVAL;
2185 
2186 	if (!handler) {
2187 		if (!thread_fn)
2188 			return -EINVAL;
2189 		handler = irq_default_primary_handler;
2190 	}
2191 
2192 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2193 	if (!action)
2194 		return -ENOMEM;
2195 
2196 	action->handler = handler;
2197 	action->thread_fn = thread_fn;
2198 	action->flags = irqflags;
2199 	action->name = devname;
2200 	action->dev_id = dev_id;
2201 
2202 	retval = irq_chip_pm_get(&desc->irq_data);
2203 	if (retval < 0) {
2204 		kfree(action);
2205 		return retval;
2206 	}
2207 
2208 	retval = __setup_irq(irq, desc, action);
2209 
2210 	if (retval) {
2211 		irq_chip_pm_put(&desc->irq_data);
2212 		kfree(action->secondary);
2213 		kfree(action);
2214 	}
2215 
2216 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2217 	if (!retval && (irqflags & IRQF_SHARED)) {
2218 		/*
2219 		 * It's a shared IRQ -- the driver ought to be prepared for it
2220 		 * to happen immediately, so let's make sure....
2221 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2222 		 * run in parallel with our fake.
2223 		 */
2224 		unsigned long flags;
2225 
2226 		disable_irq(irq);
2227 		local_irq_save(flags);
2228 
2229 		handler(irq, dev_id);
2230 
2231 		local_irq_restore(flags);
2232 		enable_irq(irq);
2233 	}
2234 #endif
2235 	return retval;
2236 }
2237 EXPORT_SYMBOL(request_threaded_irq);
2238 
2239 /**
2240  *	request_any_context_irq - allocate an interrupt line
2241  *	@irq: Interrupt line to allocate
2242  *	@handler: Function to be called when the IRQ occurs.
2243  *		  Threaded handler for threaded interrupts.
2244  *	@flags: Interrupt type flags
2245  *	@name: An ascii name for the claiming device
2246  *	@dev_id: A cookie passed back to the handler function
2247  *
2248  *	This call allocates interrupt resources and enables the
2249  *	interrupt line and IRQ handling. It selects either a
2250  *	hardirq or threaded handling method depending on the
2251  *	context.
2252  *
2253  *	On failure, it returns a negative value. On success,
2254  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2255  */
2256 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2257 			    unsigned long flags, const char *name, void *dev_id)
2258 {
2259 	struct irq_desc *desc;
2260 	int ret;
2261 
2262 	if (irq == IRQ_NOTCONNECTED)
2263 		return -ENOTCONN;
2264 
2265 	desc = irq_to_desc(irq);
2266 	if (!desc)
2267 		return -EINVAL;
2268 
2269 	if (irq_settings_is_nested_thread(desc)) {
2270 		ret = request_threaded_irq(irq, NULL, handler,
2271 					   flags, name, dev_id);
2272 		return !ret ? IRQC_IS_NESTED : ret;
2273 	}
2274 
2275 	ret = request_irq(irq, handler, flags, name, dev_id);
2276 	return !ret ? IRQC_IS_HARDIRQ : ret;
2277 }
2278 EXPORT_SYMBOL_GPL(request_any_context_irq);
2279 
2280 /**
2281  *	request_nmi - allocate an interrupt line for NMI delivery
2282  *	@irq: Interrupt line to allocate
2283  *	@handler: Function to be called when the IRQ occurs.
2284  *		  Threaded handler for threaded interrupts.
2285  *	@irqflags: Interrupt type flags
2286  *	@name: An ascii name for the claiming device
2287  *	@dev_id: A cookie passed back to the handler function
2288  *
2289  *	This call allocates interrupt resources and enables the
2290  *	interrupt line and IRQ handling. It sets up the IRQ line
2291  *	to be handled as an NMI.
2292  *
2293  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2294  *	cannot be threaded.
2295  *
2296  *	Interrupt lines requested for NMI delivering must produce per cpu
2297  *	interrupts and have auto enabling setting disabled.
2298  *
2299  *	Dev_id must be globally unique. Normally the address of the
2300  *	device data structure is used as the cookie. Since the handler
2301  *	receives this value it makes sense to use it.
2302  *
2303  *	If the interrupt line cannot be used to deliver NMIs, function
2304  *	will fail and return a negative value.
2305  */
2306 int request_nmi(unsigned int irq, irq_handler_t handler,
2307 		unsigned long irqflags, const char *name, void *dev_id)
2308 {
2309 	struct irqaction *action;
2310 	struct irq_desc *desc;
2311 	unsigned long flags;
2312 	int retval;
2313 
2314 	if (irq == IRQ_NOTCONNECTED)
2315 		return -ENOTCONN;
2316 
2317 	/* NMI cannot be shared, used for Polling */
2318 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2319 		return -EINVAL;
2320 
2321 	if (!(irqflags & IRQF_PERCPU))
2322 		return -EINVAL;
2323 
2324 	if (!handler)
2325 		return -EINVAL;
2326 
2327 	desc = irq_to_desc(irq);
2328 
2329 	if (!desc || (irq_settings_can_autoenable(desc) &&
2330 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2331 	    !irq_settings_can_request(desc) ||
2332 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2333 	    !irq_supports_nmi(desc))
2334 		return -EINVAL;
2335 
2336 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2337 	if (!action)
2338 		return -ENOMEM;
2339 
2340 	action->handler = handler;
2341 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2342 	action->name = name;
2343 	action->dev_id = dev_id;
2344 
2345 	retval = irq_chip_pm_get(&desc->irq_data);
2346 	if (retval < 0)
2347 		goto err_out;
2348 
2349 	retval = __setup_irq(irq, desc, action);
2350 	if (retval)
2351 		goto err_irq_setup;
2352 
2353 	raw_spin_lock_irqsave(&desc->lock, flags);
2354 
2355 	/* Setup NMI state */
2356 	desc->istate |= IRQS_NMI;
2357 	retval = irq_nmi_setup(desc);
2358 	if (retval) {
2359 		__cleanup_nmi(irq, desc);
2360 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2361 		return -EINVAL;
2362 	}
2363 
2364 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2365 
2366 	return 0;
2367 
2368 err_irq_setup:
2369 	irq_chip_pm_put(&desc->irq_data);
2370 err_out:
2371 	kfree(action);
2372 
2373 	return retval;
2374 }
2375 
2376 void enable_percpu_irq(unsigned int irq, unsigned int type)
2377 {
2378 	unsigned int cpu = smp_processor_id();
2379 	unsigned long flags;
2380 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2381 
2382 	if (!desc)
2383 		return;
2384 
2385 	/*
2386 	 * If the trigger type is not specified by the caller, then
2387 	 * use the default for this interrupt.
2388 	 */
2389 	type &= IRQ_TYPE_SENSE_MASK;
2390 	if (type == IRQ_TYPE_NONE)
2391 		type = irqd_get_trigger_type(&desc->irq_data);
2392 
2393 	if (type != IRQ_TYPE_NONE) {
2394 		int ret;
2395 
2396 		ret = __irq_set_trigger(desc, type);
2397 
2398 		if (ret) {
2399 			WARN(1, "failed to set type for IRQ%d\n", irq);
2400 			goto out;
2401 		}
2402 	}
2403 
2404 	irq_percpu_enable(desc, cpu);
2405 out:
2406 	irq_put_desc_unlock(desc, flags);
2407 }
2408 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2409 
2410 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2411 {
2412 	enable_percpu_irq(irq, type);
2413 }
2414 
2415 /**
2416  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2417  * @irq:	Linux irq number to check for
2418  *
2419  * Must be called from a non migratable context. Returns the enable
2420  * state of a per cpu interrupt on the current cpu.
2421  */
2422 bool irq_percpu_is_enabled(unsigned int irq)
2423 {
2424 	unsigned int cpu = smp_processor_id();
2425 	struct irq_desc *desc;
2426 	unsigned long flags;
2427 	bool is_enabled;
2428 
2429 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2430 	if (!desc)
2431 		return false;
2432 
2433 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2434 	irq_put_desc_unlock(desc, flags);
2435 
2436 	return is_enabled;
2437 }
2438 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2439 
2440 void disable_percpu_irq(unsigned int irq)
2441 {
2442 	unsigned int cpu = smp_processor_id();
2443 	unsigned long flags;
2444 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2445 
2446 	if (!desc)
2447 		return;
2448 
2449 	irq_percpu_disable(desc, cpu);
2450 	irq_put_desc_unlock(desc, flags);
2451 }
2452 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2453 
2454 void disable_percpu_nmi(unsigned int irq)
2455 {
2456 	disable_percpu_irq(irq);
2457 }
2458 
2459 /*
2460  * Internal function to unregister a percpu irqaction.
2461  */
2462 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2463 {
2464 	struct irq_desc *desc = irq_to_desc(irq);
2465 	struct irqaction *action;
2466 	unsigned long flags;
2467 
2468 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2469 
2470 	if (!desc)
2471 		return NULL;
2472 
2473 	raw_spin_lock_irqsave(&desc->lock, flags);
2474 
2475 	action = desc->action;
2476 	if (!action || action->percpu_dev_id != dev_id) {
2477 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2478 		goto bad;
2479 	}
2480 
2481 	if (!cpumask_empty(desc->percpu_enabled)) {
2482 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2483 		     irq, cpumask_first(desc->percpu_enabled));
2484 		goto bad;
2485 	}
2486 
2487 	/* Found it - now remove it from the list of entries: */
2488 	desc->action = NULL;
2489 
2490 	desc->istate &= ~IRQS_NMI;
2491 
2492 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2493 
2494 	unregister_handler_proc(irq, action);
2495 
2496 	irq_chip_pm_put(&desc->irq_data);
2497 	module_put(desc->owner);
2498 	return action;
2499 
2500 bad:
2501 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2502 	return NULL;
2503 }
2504 
2505 /**
2506  *	remove_percpu_irq - free a per-cpu interrupt
2507  *	@irq: Interrupt line to free
2508  *	@act: irqaction for the interrupt
2509  *
2510  * Used to remove interrupts statically setup by the early boot process.
2511  */
2512 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2513 {
2514 	struct irq_desc *desc = irq_to_desc(irq);
2515 
2516 	if (desc && irq_settings_is_per_cpu_devid(desc))
2517 	    __free_percpu_irq(irq, act->percpu_dev_id);
2518 }
2519 
2520 /**
2521  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2522  *	@irq: Interrupt line to free
2523  *	@dev_id: Device identity to free
2524  *
2525  *	Remove a percpu interrupt handler. The handler is removed, but
2526  *	the interrupt line is not disabled. This must be done on each
2527  *	CPU before calling this function. The function does not return
2528  *	until any executing interrupts for this IRQ have completed.
2529  *
2530  *	This function must not be called from interrupt context.
2531  */
2532 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2533 {
2534 	struct irq_desc *desc = irq_to_desc(irq);
2535 
2536 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2537 		return;
2538 
2539 	chip_bus_lock(desc);
2540 	kfree(__free_percpu_irq(irq, dev_id));
2541 	chip_bus_sync_unlock(desc);
2542 }
2543 EXPORT_SYMBOL_GPL(free_percpu_irq);
2544 
2545 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2546 {
2547 	struct irq_desc *desc = irq_to_desc(irq);
2548 
2549 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2550 		return;
2551 
2552 	if (WARN_ON(!irq_is_nmi(desc)))
2553 		return;
2554 
2555 	kfree(__free_percpu_irq(irq, dev_id));
2556 }
2557 
2558 /**
2559  *	setup_percpu_irq - setup a per-cpu interrupt
2560  *	@irq: Interrupt line to setup
2561  *	@act: irqaction for the interrupt
2562  *
2563  * Used to statically setup per-cpu interrupts in the early boot process.
2564  */
2565 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2566 {
2567 	struct irq_desc *desc = irq_to_desc(irq);
2568 	int retval;
2569 
2570 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2571 		return -EINVAL;
2572 
2573 	retval = irq_chip_pm_get(&desc->irq_data);
2574 	if (retval < 0)
2575 		return retval;
2576 
2577 	retval = __setup_irq(irq, desc, act);
2578 
2579 	if (retval)
2580 		irq_chip_pm_put(&desc->irq_data);
2581 
2582 	return retval;
2583 }
2584 
2585 /**
2586  *	__request_percpu_irq - allocate a percpu interrupt line
2587  *	@irq: Interrupt line to allocate
2588  *	@handler: Function to be called when the IRQ occurs.
2589  *	@flags: Interrupt type flags (IRQF_TIMER only)
2590  *	@devname: An ascii name for the claiming device
2591  *	@dev_id: A percpu cookie passed back to the handler function
2592  *
2593  *	This call allocates interrupt resources and enables the
2594  *	interrupt on the local CPU. If the interrupt is supposed to be
2595  *	enabled on other CPUs, it has to be done on each CPU using
2596  *	enable_percpu_irq().
2597  *
2598  *	Dev_id must be globally unique. It is a per-cpu variable, and
2599  *	the handler gets called with the interrupted CPU's instance of
2600  *	that variable.
2601  */
2602 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2603 			 unsigned long flags, const char *devname,
2604 			 void __percpu *dev_id)
2605 {
2606 	struct irqaction *action;
2607 	struct irq_desc *desc;
2608 	int retval;
2609 
2610 	if (!dev_id)
2611 		return -EINVAL;
2612 
2613 	desc = irq_to_desc(irq);
2614 	if (!desc || !irq_settings_can_request(desc) ||
2615 	    !irq_settings_is_per_cpu_devid(desc))
2616 		return -EINVAL;
2617 
2618 	if (flags && flags != IRQF_TIMER)
2619 		return -EINVAL;
2620 
2621 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2622 	if (!action)
2623 		return -ENOMEM;
2624 
2625 	action->handler = handler;
2626 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2627 	action->name = devname;
2628 	action->percpu_dev_id = dev_id;
2629 
2630 	retval = irq_chip_pm_get(&desc->irq_data);
2631 	if (retval < 0) {
2632 		kfree(action);
2633 		return retval;
2634 	}
2635 
2636 	retval = __setup_irq(irq, desc, action);
2637 
2638 	if (retval) {
2639 		irq_chip_pm_put(&desc->irq_data);
2640 		kfree(action);
2641 	}
2642 
2643 	return retval;
2644 }
2645 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2646 
2647 /**
2648  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2649  *	@irq: Interrupt line to allocate
2650  *	@handler: Function to be called when the IRQ occurs.
2651  *	@name: An ascii name for the claiming device
2652  *	@dev_id: A percpu cookie passed back to the handler function
2653  *
2654  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2655  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2656  *	being enabled on the same CPU by using enable_percpu_nmi().
2657  *
2658  *	Dev_id must be globally unique. It is a per-cpu variable, and
2659  *	the handler gets called with the interrupted CPU's instance of
2660  *	that variable.
2661  *
2662  *	Interrupt lines requested for NMI delivering should have auto enabling
2663  *	setting disabled.
2664  *
2665  *	If the interrupt line cannot be used to deliver NMIs, function
2666  *	will fail returning a negative value.
2667  */
2668 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2669 		       const char *name, void __percpu *dev_id)
2670 {
2671 	struct irqaction *action;
2672 	struct irq_desc *desc;
2673 	unsigned long flags;
2674 	int retval;
2675 
2676 	if (!handler)
2677 		return -EINVAL;
2678 
2679 	desc = irq_to_desc(irq);
2680 
2681 	if (!desc || !irq_settings_can_request(desc) ||
2682 	    !irq_settings_is_per_cpu_devid(desc) ||
2683 	    irq_settings_can_autoenable(desc) ||
2684 	    !irq_supports_nmi(desc))
2685 		return -EINVAL;
2686 
2687 	/* The line cannot already be NMI */
2688 	if (irq_is_nmi(desc))
2689 		return -EINVAL;
2690 
2691 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2692 	if (!action)
2693 		return -ENOMEM;
2694 
2695 	action->handler = handler;
2696 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2697 		| IRQF_NOBALANCING;
2698 	action->name = name;
2699 	action->percpu_dev_id = dev_id;
2700 
2701 	retval = irq_chip_pm_get(&desc->irq_data);
2702 	if (retval < 0)
2703 		goto err_out;
2704 
2705 	retval = __setup_irq(irq, desc, action);
2706 	if (retval)
2707 		goto err_irq_setup;
2708 
2709 	raw_spin_lock_irqsave(&desc->lock, flags);
2710 	desc->istate |= IRQS_NMI;
2711 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2712 
2713 	return 0;
2714 
2715 err_irq_setup:
2716 	irq_chip_pm_put(&desc->irq_data);
2717 err_out:
2718 	kfree(action);
2719 
2720 	return retval;
2721 }
2722 
2723 /**
2724  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2725  *	@irq: Interrupt line to prepare for NMI delivery
2726  *
2727  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2728  *	before that interrupt line gets enabled with enable_percpu_nmi().
2729  *
2730  *	As a CPU local operation, this should be called from non-preemptible
2731  *	context.
2732  *
2733  *	If the interrupt line cannot be used to deliver NMIs, function
2734  *	will fail returning a negative value.
2735  */
2736 int prepare_percpu_nmi(unsigned int irq)
2737 {
2738 	unsigned long flags;
2739 	struct irq_desc *desc;
2740 	int ret = 0;
2741 
2742 	WARN_ON(preemptible());
2743 
2744 	desc = irq_get_desc_lock(irq, &flags,
2745 				 IRQ_GET_DESC_CHECK_PERCPU);
2746 	if (!desc)
2747 		return -EINVAL;
2748 
2749 	if (WARN(!irq_is_nmi(desc),
2750 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2751 		 irq)) {
2752 		ret = -EINVAL;
2753 		goto out;
2754 	}
2755 
2756 	ret = irq_nmi_setup(desc);
2757 	if (ret) {
2758 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2759 		goto out;
2760 	}
2761 
2762 out:
2763 	irq_put_desc_unlock(desc, flags);
2764 	return ret;
2765 }
2766 
2767 /**
2768  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2769  *	@irq: Interrupt line from which CPU local NMI configuration should be
2770  *	      removed
2771  *
2772  *	This call undoes the setup done by prepare_percpu_nmi().
2773  *
2774  *	IRQ line should not be enabled for the current CPU.
2775  *
2776  *	As a CPU local operation, this should be called from non-preemptible
2777  *	context.
2778  */
2779 void teardown_percpu_nmi(unsigned int irq)
2780 {
2781 	unsigned long flags;
2782 	struct irq_desc *desc;
2783 
2784 	WARN_ON(preemptible());
2785 
2786 	desc = irq_get_desc_lock(irq, &flags,
2787 				 IRQ_GET_DESC_CHECK_PERCPU);
2788 	if (!desc)
2789 		return;
2790 
2791 	if (WARN_ON(!irq_is_nmi(desc)))
2792 		goto out;
2793 
2794 	irq_nmi_teardown(desc);
2795 out:
2796 	irq_put_desc_unlock(desc, flags);
2797 }
2798 
2799 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2800 			    bool *state)
2801 {
2802 	struct irq_chip *chip;
2803 	int err = -EINVAL;
2804 
2805 	do {
2806 		chip = irq_data_get_irq_chip(data);
2807 		if (WARN_ON_ONCE(!chip))
2808 			return -ENODEV;
2809 		if (chip->irq_get_irqchip_state)
2810 			break;
2811 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2812 		data = data->parent_data;
2813 #else
2814 		data = NULL;
2815 #endif
2816 	} while (data);
2817 
2818 	if (data)
2819 		err = chip->irq_get_irqchip_state(data, which, state);
2820 	return err;
2821 }
2822 
2823 /**
2824  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2825  *	@irq: Interrupt line that is forwarded to a VM
2826  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2827  *	@state: a pointer to a boolean where the state is to be stored
2828  *
2829  *	This call snapshots the internal irqchip state of an
2830  *	interrupt, returning into @state the bit corresponding to
2831  *	stage @which
2832  *
2833  *	This function should be called with preemption disabled if the
2834  *	interrupt controller has per-cpu registers.
2835  */
2836 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2837 			  bool *state)
2838 {
2839 	struct irq_desc *desc;
2840 	struct irq_data *data;
2841 	unsigned long flags;
2842 	int err = -EINVAL;
2843 
2844 	desc = irq_get_desc_buslock(irq, &flags, 0);
2845 	if (!desc)
2846 		return err;
2847 
2848 	data = irq_desc_get_irq_data(desc);
2849 
2850 	err = __irq_get_irqchip_state(data, which, state);
2851 
2852 	irq_put_desc_busunlock(desc, flags);
2853 	return err;
2854 }
2855 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2856 
2857 /**
2858  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2859  *	@irq: Interrupt line that is forwarded to a VM
2860  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2861  *	@val: Value corresponding to @which
2862  *
2863  *	This call sets the internal irqchip state of an interrupt,
2864  *	depending on the value of @which.
2865  *
2866  *	This function should be called with migration disabled if the
2867  *	interrupt controller has per-cpu registers.
2868  */
2869 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2870 			  bool val)
2871 {
2872 	struct irq_desc *desc;
2873 	struct irq_data *data;
2874 	struct irq_chip *chip;
2875 	unsigned long flags;
2876 	int err = -EINVAL;
2877 
2878 	desc = irq_get_desc_buslock(irq, &flags, 0);
2879 	if (!desc)
2880 		return err;
2881 
2882 	data = irq_desc_get_irq_data(desc);
2883 
2884 	do {
2885 		chip = irq_data_get_irq_chip(data);
2886 		if (WARN_ON_ONCE(!chip)) {
2887 			err = -ENODEV;
2888 			goto out_unlock;
2889 		}
2890 		if (chip->irq_set_irqchip_state)
2891 			break;
2892 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2893 		data = data->parent_data;
2894 #else
2895 		data = NULL;
2896 #endif
2897 	} while (data);
2898 
2899 	if (data)
2900 		err = chip->irq_set_irqchip_state(data, which, val);
2901 
2902 out_unlock:
2903 	irq_put_desc_busunlock(desc, flags);
2904 	return err;
2905 }
2906 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2907 
2908 /**
2909  * irq_has_action - Check whether an interrupt is requested
2910  * @irq:	The linux irq number
2911  *
2912  * Returns: A snapshot of the current state
2913  */
2914 bool irq_has_action(unsigned int irq)
2915 {
2916 	bool res;
2917 
2918 	rcu_read_lock();
2919 	res = irq_desc_has_action(irq_to_desc(irq));
2920 	rcu_read_unlock();
2921 	return res;
2922 }
2923 EXPORT_SYMBOL_GPL(irq_has_action);
2924 
2925 /**
2926  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2927  * @irq:	The linux irq number
2928  * @bitmask:	The bitmask to evaluate
2929  *
2930  * Returns: True if one of the bits in @bitmask is set
2931  */
2932 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2933 {
2934 	struct irq_desc *desc;
2935 	bool res = false;
2936 
2937 	rcu_read_lock();
2938 	desc = irq_to_desc(irq);
2939 	if (desc)
2940 		res = !!(desc->status_use_accessors & bitmask);
2941 	rcu_read_unlock();
2942 	return res;
2943 }
2944 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2945