1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) { 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 wake_up_process(action->thread); 198 } 199 if (action->secondary && action->secondary->thread) { 200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 201 wake_up_process(action->secondary->thread); 202 } 203 } 204 } 205 206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 207 static void irq_validate_effective_affinity(struct irq_data *data) 208 { 209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 210 struct irq_chip *chip = irq_data_get_irq_chip(data); 211 212 if (!cpumask_empty(m)) 213 return; 214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 215 chip->name, data->irq); 216 } 217 #else 218 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 219 #endif 220 221 static DEFINE_PER_CPU(struct cpumask, __tmp_mask); 222 223 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 224 bool force) 225 { 226 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask); 227 struct irq_desc *desc = irq_data_to_desc(data); 228 struct irq_chip *chip = irq_data_get_irq_chip(data); 229 const struct cpumask *prog_mask; 230 int ret; 231 232 if (!chip || !chip->irq_set_affinity) 233 return -EINVAL; 234 235 /* 236 * If this is a managed interrupt and housekeeping is enabled on 237 * it check whether the requested affinity mask intersects with 238 * a housekeeping CPU. If so, then remove the isolated CPUs from 239 * the mask and just keep the housekeeping CPU(s). This prevents 240 * the affinity setter from routing the interrupt to an isolated 241 * CPU to avoid that I/O submitted from a housekeeping CPU causes 242 * interrupts on an isolated one. 243 * 244 * If the masks do not intersect or include online CPU(s) then 245 * keep the requested mask. The isolated target CPUs are only 246 * receiving interrupts when the I/O operation was submitted 247 * directly from them. 248 * 249 * If all housekeeping CPUs in the affinity mask are offline, the 250 * interrupt will be migrated by the CPU hotplug code once a 251 * housekeeping CPU which belongs to the affinity mask comes 252 * online. 253 */ 254 if (irqd_affinity_is_managed(data) && 255 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 256 const struct cpumask *hk_mask; 257 258 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 259 260 cpumask_and(tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = tmp_mask; 265 } else { 266 prog_mask = mask; 267 } 268 269 /* 270 * Make sure we only provide online CPUs to the irqchip, 271 * unless we are being asked to force the affinity (in which 272 * case we do as we are told). 273 */ 274 cpumask_and(tmp_mask, prog_mask, cpu_online_mask); 275 if (!force && !cpumask_empty(tmp_mask)) 276 ret = chip->irq_set_affinity(data, tmp_mask, force); 277 else if (force) 278 ret = chip->irq_set_affinity(data, mask, force); 279 else 280 ret = -EINVAL; 281 282 switch (ret) { 283 case IRQ_SET_MASK_OK: 284 case IRQ_SET_MASK_OK_DONE: 285 cpumask_copy(desc->irq_common_data.affinity, mask); 286 fallthrough; 287 case IRQ_SET_MASK_OK_NOCOPY: 288 irq_validate_effective_affinity(data); 289 irq_set_thread_affinity(desc); 290 ret = 0; 291 } 292 293 return ret; 294 } 295 296 #ifdef CONFIG_GENERIC_PENDING_IRQ 297 static inline int irq_set_affinity_pending(struct irq_data *data, 298 const struct cpumask *dest) 299 { 300 struct irq_desc *desc = irq_data_to_desc(data); 301 302 irqd_set_move_pending(data); 303 irq_copy_pending(desc, dest); 304 return 0; 305 } 306 #else 307 static inline int irq_set_affinity_pending(struct irq_data *data, 308 const struct cpumask *dest) 309 { 310 return -EBUSY; 311 } 312 #endif 313 314 static int irq_try_set_affinity(struct irq_data *data, 315 const struct cpumask *dest, bool force) 316 { 317 int ret = irq_do_set_affinity(data, dest, force); 318 319 /* 320 * In case that the underlying vector management is busy and the 321 * architecture supports the generic pending mechanism then utilize 322 * this to avoid returning an error to user space. 323 */ 324 if (ret == -EBUSY && !force) 325 ret = irq_set_affinity_pending(data, dest); 326 return ret; 327 } 328 329 static bool irq_set_affinity_deactivated(struct irq_data *data, 330 const struct cpumask *mask) 331 { 332 struct irq_desc *desc = irq_data_to_desc(data); 333 334 /* 335 * Handle irq chips which can handle affinity only in activated 336 * state correctly 337 * 338 * If the interrupt is not yet activated, just store the affinity 339 * mask and do not call the chip driver at all. On activation the 340 * driver has to make sure anyway that the interrupt is in a 341 * usable state so startup works. 342 */ 343 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 344 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 345 return false; 346 347 cpumask_copy(desc->irq_common_data.affinity, mask); 348 irq_data_update_effective_affinity(data, mask); 349 irqd_set(data, IRQD_AFFINITY_SET); 350 return true; 351 } 352 353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 354 bool force) 355 { 356 struct irq_chip *chip = irq_data_get_irq_chip(data); 357 struct irq_desc *desc = irq_data_to_desc(data); 358 int ret = 0; 359 360 if (!chip || !chip->irq_set_affinity) 361 return -EINVAL; 362 363 if (irq_set_affinity_deactivated(data, mask)) 364 return 0; 365 366 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 367 ret = irq_try_set_affinity(data, mask, force); 368 } else { 369 irqd_set_move_pending(data); 370 irq_copy_pending(desc, mask); 371 } 372 373 if (desc->affinity_notify) { 374 kref_get(&desc->affinity_notify->kref); 375 if (!schedule_work(&desc->affinity_notify->work)) { 376 /* Work was already scheduled, drop our extra ref */ 377 kref_put(&desc->affinity_notify->kref, 378 desc->affinity_notify->release); 379 } 380 } 381 irqd_set(data, IRQD_AFFINITY_SET); 382 383 return ret; 384 } 385 386 /** 387 * irq_update_affinity_desc - Update affinity management for an interrupt 388 * @irq: The interrupt number to update 389 * @affinity: Pointer to the affinity descriptor 390 * 391 * This interface can be used to configure the affinity management of 392 * interrupts which have been allocated already. 393 * 394 * There are certain limitations on when it may be used - attempts to use it 395 * for when the kernel is configured for generic IRQ reservation mode (in 396 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 397 * managed/non-managed interrupt accounting. In addition, attempts to use it on 398 * an interrupt which is already started or which has already been configured 399 * as managed will also fail, as these mean invalid init state or double init. 400 */ 401 int irq_update_affinity_desc(unsigned int irq, 402 struct irq_affinity_desc *affinity) 403 { 404 struct irq_desc *desc; 405 unsigned long flags; 406 bool activated; 407 int ret = 0; 408 409 /* 410 * Supporting this with the reservation scheme used by x86 needs 411 * some more thought. Fail it for now. 412 */ 413 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 414 return -EOPNOTSUPP; 415 416 desc = irq_get_desc_buslock(irq, &flags, 0); 417 if (!desc) 418 return -EINVAL; 419 420 /* Requires the interrupt to be shut down */ 421 if (irqd_is_started(&desc->irq_data)) { 422 ret = -EBUSY; 423 goto out_unlock; 424 } 425 426 /* Interrupts which are already managed cannot be modified */ 427 if (irqd_affinity_is_managed(&desc->irq_data)) { 428 ret = -EBUSY; 429 goto out_unlock; 430 } 431 432 /* 433 * Deactivate the interrupt. That's required to undo 434 * anything an earlier activation has established. 435 */ 436 activated = irqd_is_activated(&desc->irq_data); 437 if (activated) 438 irq_domain_deactivate_irq(&desc->irq_data); 439 440 if (affinity->is_managed) { 441 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 442 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 443 } 444 445 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 446 447 /* Restore the activation state */ 448 if (activated) 449 irq_domain_activate_irq(&desc->irq_data, false); 450 451 out_unlock: 452 irq_put_desc_busunlock(desc, flags); 453 return ret; 454 } 455 456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 457 bool force) 458 { 459 struct irq_desc *desc = irq_to_desc(irq); 460 unsigned long flags; 461 int ret; 462 463 if (!desc) 464 return -EINVAL; 465 466 raw_spin_lock_irqsave(&desc->lock, flags); 467 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 468 raw_spin_unlock_irqrestore(&desc->lock, flags); 469 return ret; 470 } 471 472 /** 473 * irq_set_affinity - Set the irq affinity of a given irq 474 * @irq: Interrupt to set affinity 475 * @cpumask: cpumask 476 * 477 * Fails if cpumask does not contain an online CPU 478 */ 479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 480 { 481 return __irq_set_affinity(irq, cpumask, false); 482 } 483 EXPORT_SYMBOL_GPL(irq_set_affinity); 484 485 /** 486 * irq_force_affinity - Force the irq affinity of a given irq 487 * @irq: Interrupt to set affinity 488 * @cpumask: cpumask 489 * 490 * Same as irq_set_affinity, but without checking the mask against 491 * online cpus. 492 * 493 * Solely for low level cpu hotplug code, where we need to make per 494 * cpu interrupts affine before the cpu becomes online. 495 */ 496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 497 { 498 return __irq_set_affinity(irq, cpumask, true); 499 } 500 EXPORT_SYMBOL_GPL(irq_force_affinity); 501 502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 503 bool setaffinity) 504 { 505 unsigned long flags; 506 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 507 508 if (!desc) 509 return -EINVAL; 510 desc->affinity_hint = m; 511 irq_put_desc_unlock(desc, flags); 512 if (m && setaffinity) 513 __irq_set_affinity(irq, m, false); 514 return 0; 515 } 516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 517 518 static void irq_affinity_notify(struct work_struct *work) 519 { 520 struct irq_affinity_notify *notify = 521 container_of(work, struct irq_affinity_notify, work); 522 struct irq_desc *desc = irq_to_desc(notify->irq); 523 cpumask_var_t cpumask; 524 unsigned long flags; 525 526 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 527 goto out; 528 529 raw_spin_lock_irqsave(&desc->lock, flags); 530 if (irq_move_pending(&desc->irq_data)) 531 irq_get_pending(cpumask, desc); 532 else 533 cpumask_copy(cpumask, desc->irq_common_data.affinity); 534 raw_spin_unlock_irqrestore(&desc->lock, flags); 535 536 notify->notify(notify, cpumask); 537 538 free_cpumask_var(cpumask); 539 out: 540 kref_put(¬ify->kref, notify->release); 541 } 542 543 /** 544 * irq_set_affinity_notifier - control notification of IRQ affinity changes 545 * @irq: Interrupt for which to enable/disable notification 546 * @notify: Context for notification, or %NULL to disable 547 * notification. Function pointers must be initialised; 548 * the other fields will be initialised by this function. 549 * 550 * Must be called in process context. Notification may only be enabled 551 * after the IRQ is allocated and must be disabled before the IRQ is 552 * freed using free_irq(). 553 */ 554 int 555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 556 { 557 struct irq_desc *desc = irq_to_desc(irq); 558 struct irq_affinity_notify *old_notify; 559 unsigned long flags; 560 561 /* The release function is promised process context */ 562 might_sleep(); 563 564 if (!desc || irq_is_nmi(desc)) 565 return -EINVAL; 566 567 /* Complete initialisation of *notify */ 568 if (notify) { 569 notify->irq = irq; 570 kref_init(¬ify->kref); 571 INIT_WORK(¬ify->work, irq_affinity_notify); 572 } 573 574 raw_spin_lock_irqsave(&desc->lock, flags); 575 old_notify = desc->affinity_notify; 576 desc->affinity_notify = notify; 577 raw_spin_unlock_irqrestore(&desc->lock, flags); 578 579 if (old_notify) { 580 if (cancel_work_sync(&old_notify->work)) { 581 /* Pending work had a ref, put that one too */ 582 kref_put(&old_notify->kref, old_notify->release); 583 } 584 kref_put(&old_notify->kref, old_notify->release); 585 } 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 590 591 #ifndef CONFIG_AUTO_IRQ_AFFINITY 592 /* 593 * Generic version of the affinity autoselector. 594 */ 595 int irq_setup_affinity(struct irq_desc *desc) 596 { 597 struct cpumask *set = irq_default_affinity; 598 int ret, node = irq_desc_get_node(desc); 599 static DEFINE_RAW_SPINLOCK(mask_lock); 600 static struct cpumask mask; 601 602 /* Excludes PER_CPU and NO_BALANCE interrupts */ 603 if (!__irq_can_set_affinity(desc)) 604 return 0; 605 606 raw_spin_lock(&mask_lock); 607 /* 608 * Preserve the managed affinity setting and a userspace affinity 609 * setup, but make sure that one of the targets is online. 610 */ 611 if (irqd_affinity_is_managed(&desc->irq_data) || 612 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 613 if (cpumask_intersects(desc->irq_common_data.affinity, 614 cpu_online_mask)) 615 set = desc->irq_common_data.affinity; 616 else 617 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 618 } 619 620 cpumask_and(&mask, cpu_online_mask, set); 621 if (cpumask_empty(&mask)) 622 cpumask_copy(&mask, cpu_online_mask); 623 624 if (node != NUMA_NO_NODE) { 625 const struct cpumask *nodemask = cpumask_of_node(node); 626 627 /* make sure at least one of the cpus in nodemask is online */ 628 if (cpumask_intersects(&mask, nodemask)) 629 cpumask_and(&mask, &mask, nodemask); 630 } 631 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 632 raw_spin_unlock(&mask_lock); 633 return ret; 634 } 635 #else 636 /* Wrapper for ALPHA specific affinity selector magic */ 637 int irq_setup_affinity(struct irq_desc *desc) 638 { 639 return irq_select_affinity(irq_desc_get_irq(desc)); 640 } 641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 642 #endif /* CONFIG_SMP */ 643 644 645 /** 646 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 647 * @irq: interrupt number to set affinity 648 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 649 * specific data for percpu_devid interrupts 650 * 651 * This function uses the vCPU specific data to set the vCPU 652 * affinity for an irq. The vCPU specific data is passed from 653 * outside, such as KVM. One example code path is as below: 654 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 655 */ 656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 657 { 658 unsigned long flags; 659 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 660 struct irq_data *data; 661 struct irq_chip *chip; 662 int ret = -ENOSYS; 663 664 if (!desc) 665 return -EINVAL; 666 667 data = irq_desc_get_irq_data(desc); 668 do { 669 chip = irq_data_get_irq_chip(data); 670 if (chip && chip->irq_set_vcpu_affinity) 671 break; 672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 673 data = data->parent_data; 674 #else 675 data = NULL; 676 #endif 677 } while (data); 678 679 if (data) 680 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 681 irq_put_desc_unlock(desc, flags); 682 683 return ret; 684 } 685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 686 687 void __disable_irq(struct irq_desc *desc) 688 { 689 if (!desc->depth++) 690 irq_disable(desc); 691 } 692 693 static int __disable_irq_nosync(unsigned int irq) 694 { 695 unsigned long flags; 696 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 697 698 if (!desc) 699 return -EINVAL; 700 __disable_irq(desc); 701 irq_put_desc_busunlock(desc, flags); 702 return 0; 703 } 704 705 /** 706 * disable_irq_nosync - disable an irq without waiting 707 * @irq: Interrupt to disable 708 * 709 * Disable the selected interrupt line. Disables and Enables are 710 * nested. 711 * Unlike disable_irq(), this function does not ensure existing 712 * instances of the IRQ handler have completed before returning. 713 * 714 * This function may be called from IRQ context. 715 */ 716 void disable_irq_nosync(unsigned int irq) 717 { 718 __disable_irq_nosync(irq); 719 } 720 EXPORT_SYMBOL(disable_irq_nosync); 721 722 /** 723 * disable_irq - disable an irq and wait for completion 724 * @irq: Interrupt to disable 725 * 726 * Disable the selected interrupt line. Enables and Disables are 727 * nested. 728 * This function waits for any pending IRQ handlers for this interrupt 729 * to complete before returning. If you use this function while 730 * holding a resource the IRQ handler may need you will deadlock. 731 * 732 * Can only be called from preemptible code as it might sleep when 733 * an interrupt thread is associated to @irq. 734 * 735 */ 736 void disable_irq(unsigned int irq) 737 { 738 might_sleep(); 739 if (!__disable_irq_nosync(irq)) 740 synchronize_irq(irq); 741 } 742 EXPORT_SYMBOL(disable_irq); 743 744 /** 745 * disable_hardirq - disables an irq and waits for hardirq completion 746 * @irq: Interrupt to disable 747 * 748 * Disable the selected interrupt line. Enables and Disables are 749 * nested. 750 * This function waits for any pending hard IRQ handlers for this 751 * interrupt to complete before returning. If you use this function while 752 * holding a resource the hard IRQ handler may need you will deadlock. 753 * 754 * When used to optimistically disable an interrupt from atomic context 755 * the return value must be checked. 756 * 757 * Returns: false if a threaded handler is active. 758 * 759 * This function may be called - with care - from IRQ context. 760 */ 761 bool disable_hardirq(unsigned int irq) 762 { 763 if (!__disable_irq_nosync(irq)) 764 return synchronize_hardirq(irq); 765 766 return false; 767 } 768 EXPORT_SYMBOL_GPL(disable_hardirq); 769 770 /** 771 * disable_nmi_nosync - disable an nmi without waiting 772 * @irq: Interrupt to disable 773 * 774 * Disable the selected interrupt line. Disables and enables are 775 * nested. 776 * The interrupt to disable must have been requested through request_nmi. 777 * Unlike disable_nmi(), this function does not ensure existing 778 * instances of the IRQ handler have completed before returning. 779 */ 780 void disable_nmi_nosync(unsigned int irq) 781 { 782 disable_irq_nosync(irq); 783 } 784 785 void __enable_irq(struct irq_desc *desc) 786 { 787 switch (desc->depth) { 788 case 0: 789 err_out: 790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 791 irq_desc_get_irq(desc)); 792 break; 793 case 1: { 794 if (desc->istate & IRQS_SUSPENDED) 795 goto err_out; 796 /* Prevent probing on this irq: */ 797 irq_settings_set_noprobe(desc); 798 /* 799 * Call irq_startup() not irq_enable() here because the 800 * interrupt might be marked NOAUTOEN so irq_startup() 801 * needs to be invoked when it gets enabled the first time. 802 * This is also required when __enable_irq() is invoked for 803 * a managed and shutdown interrupt from the S3 resume 804 * path. 805 * 806 * If it was already started up, then irq_startup() will 807 * invoke irq_enable() under the hood. 808 */ 809 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 810 break; 811 } 812 default: 813 desc->depth--; 814 } 815 } 816 817 /** 818 * enable_irq - enable handling of an irq 819 * @irq: Interrupt to enable 820 * 821 * Undoes the effect of one call to disable_irq(). If this 822 * matches the last disable, processing of interrupts on this 823 * IRQ line is re-enabled. 824 * 825 * This function may be called from IRQ context only when 826 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 827 */ 828 void enable_irq(unsigned int irq) 829 { 830 unsigned long flags; 831 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 832 833 if (!desc) 834 return; 835 if (WARN(!desc->irq_data.chip, 836 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 837 goto out; 838 839 __enable_irq(desc); 840 out: 841 irq_put_desc_busunlock(desc, flags); 842 } 843 EXPORT_SYMBOL(enable_irq); 844 845 /** 846 * enable_nmi - enable handling of an nmi 847 * @irq: Interrupt to enable 848 * 849 * The interrupt to enable must have been requested through request_nmi. 850 * Undoes the effect of one call to disable_nmi(). If this 851 * matches the last disable, processing of interrupts on this 852 * IRQ line is re-enabled. 853 */ 854 void enable_nmi(unsigned int irq) 855 { 856 enable_irq(irq); 857 } 858 859 static int set_irq_wake_real(unsigned int irq, unsigned int on) 860 { 861 struct irq_desc *desc = irq_to_desc(irq); 862 int ret = -ENXIO; 863 864 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 865 return 0; 866 867 if (desc->irq_data.chip->irq_set_wake) 868 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 869 870 return ret; 871 } 872 873 /** 874 * irq_set_irq_wake - control irq power management wakeup 875 * @irq: interrupt to control 876 * @on: enable/disable power management wakeup 877 * 878 * Enable/disable power management wakeup mode, which is 879 * disabled by default. Enables and disables must match, 880 * just as they match for non-wakeup mode support. 881 * 882 * Wakeup mode lets this IRQ wake the system from sleep 883 * states like "suspend to RAM". 884 * 885 * Note: irq enable/disable state is completely orthogonal 886 * to the enable/disable state of irq wake. An irq can be 887 * disabled with disable_irq() and still wake the system as 888 * long as the irq has wake enabled. If this does not hold, 889 * then the underlying irq chip and the related driver need 890 * to be investigated. 891 */ 892 int irq_set_irq_wake(unsigned int irq, unsigned int on) 893 { 894 unsigned long flags; 895 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 896 int ret = 0; 897 898 if (!desc) 899 return -EINVAL; 900 901 /* Don't use NMIs as wake up interrupts please */ 902 if (irq_is_nmi(desc)) { 903 ret = -EINVAL; 904 goto out_unlock; 905 } 906 907 /* wakeup-capable irqs can be shared between drivers that 908 * don't need to have the same sleep mode behaviors. 909 */ 910 if (on) { 911 if (desc->wake_depth++ == 0) { 912 ret = set_irq_wake_real(irq, on); 913 if (ret) 914 desc->wake_depth = 0; 915 else 916 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 917 } 918 } else { 919 if (desc->wake_depth == 0) { 920 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 921 } else if (--desc->wake_depth == 0) { 922 ret = set_irq_wake_real(irq, on); 923 if (ret) 924 desc->wake_depth = 1; 925 else 926 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 927 } 928 } 929 930 out_unlock: 931 irq_put_desc_busunlock(desc, flags); 932 return ret; 933 } 934 EXPORT_SYMBOL(irq_set_irq_wake); 935 936 /* 937 * Internal function that tells the architecture code whether a 938 * particular irq has been exclusively allocated or is available 939 * for driver use. 940 */ 941 int can_request_irq(unsigned int irq, unsigned long irqflags) 942 { 943 unsigned long flags; 944 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 945 int canrequest = 0; 946 947 if (!desc) 948 return 0; 949 950 if (irq_settings_can_request(desc)) { 951 if (!desc->action || 952 irqflags & desc->action->flags & IRQF_SHARED) 953 canrequest = 1; 954 } 955 irq_put_desc_unlock(desc, flags); 956 return canrequest; 957 } 958 959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 960 { 961 struct irq_chip *chip = desc->irq_data.chip; 962 int ret, unmask = 0; 963 964 if (!chip || !chip->irq_set_type) { 965 /* 966 * IRQF_TRIGGER_* but the PIC does not support multiple 967 * flow-types? 968 */ 969 pr_debug("No set_type function for IRQ %d (%s)\n", 970 irq_desc_get_irq(desc), 971 chip ? (chip->name ? : "unknown") : "unknown"); 972 return 0; 973 } 974 975 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 976 if (!irqd_irq_masked(&desc->irq_data)) 977 mask_irq(desc); 978 if (!irqd_irq_disabled(&desc->irq_data)) 979 unmask = 1; 980 } 981 982 /* Mask all flags except trigger mode */ 983 flags &= IRQ_TYPE_SENSE_MASK; 984 ret = chip->irq_set_type(&desc->irq_data, flags); 985 986 switch (ret) { 987 case IRQ_SET_MASK_OK: 988 case IRQ_SET_MASK_OK_DONE: 989 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 990 irqd_set(&desc->irq_data, flags); 991 fallthrough; 992 993 case IRQ_SET_MASK_OK_NOCOPY: 994 flags = irqd_get_trigger_type(&desc->irq_data); 995 irq_settings_set_trigger_mask(desc, flags); 996 irqd_clear(&desc->irq_data, IRQD_LEVEL); 997 irq_settings_clr_level(desc); 998 if (flags & IRQ_TYPE_LEVEL_MASK) { 999 irq_settings_set_level(desc); 1000 irqd_set(&desc->irq_data, IRQD_LEVEL); 1001 } 1002 1003 ret = 0; 1004 break; 1005 default: 1006 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1007 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1008 } 1009 if (unmask) 1010 unmask_irq(desc); 1011 return ret; 1012 } 1013 1014 #ifdef CONFIG_HARDIRQS_SW_RESEND 1015 int irq_set_parent(int irq, int parent_irq) 1016 { 1017 unsigned long flags; 1018 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1019 1020 if (!desc) 1021 return -EINVAL; 1022 1023 desc->parent_irq = parent_irq; 1024 1025 irq_put_desc_unlock(desc, flags); 1026 return 0; 1027 } 1028 EXPORT_SYMBOL_GPL(irq_set_parent); 1029 #endif 1030 1031 /* 1032 * Default primary interrupt handler for threaded interrupts. Is 1033 * assigned as primary handler when request_threaded_irq is called 1034 * with handler == NULL. Useful for oneshot interrupts. 1035 */ 1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1037 { 1038 return IRQ_WAKE_THREAD; 1039 } 1040 1041 /* 1042 * Primary handler for nested threaded interrupts. Should never be 1043 * called. 1044 */ 1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1046 { 1047 WARN(1, "Primary handler called for nested irq %d\n", irq); 1048 return IRQ_NONE; 1049 } 1050 1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1052 { 1053 WARN(1, "Secondary action handler called for irq %d\n", irq); 1054 return IRQ_NONE; 1055 } 1056 1057 #ifdef CONFIG_SMP 1058 /* 1059 * Check whether we need to change the affinity of the interrupt thread. 1060 */ 1061 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1062 { 1063 cpumask_var_t mask; 1064 bool valid = false; 1065 1066 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1067 return; 1068 1069 __set_current_state(TASK_RUNNING); 1070 1071 /* 1072 * In case we are out of memory we set IRQTF_AFFINITY again and 1073 * try again next time 1074 */ 1075 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1076 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1077 return; 1078 } 1079 1080 raw_spin_lock_irq(&desc->lock); 1081 /* 1082 * This code is triggered unconditionally. Check the affinity 1083 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1084 */ 1085 if (cpumask_available(desc->irq_common_data.affinity)) { 1086 const struct cpumask *m; 1087 1088 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1089 cpumask_copy(mask, m); 1090 valid = true; 1091 } 1092 raw_spin_unlock_irq(&desc->lock); 1093 1094 if (valid) 1095 set_cpus_allowed_ptr(current, mask); 1096 free_cpumask_var(mask); 1097 } 1098 #else 1099 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1100 #endif 1101 1102 static int irq_wait_for_interrupt(struct irq_desc *desc, 1103 struct irqaction *action) 1104 { 1105 for (;;) { 1106 set_current_state(TASK_INTERRUPTIBLE); 1107 irq_thread_check_affinity(desc, action); 1108 1109 if (kthread_should_stop()) { 1110 /* may need to run one last time */ 1111 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1112 &action->thread_flags)) { 1113 __set_current_state(TASK_RUNNING); 1114 return 0; 1115 } 1116 __set_current_state(TASK_RUNNING); 1117 return -1; 1118 } 1119 1120 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1121 &action->thread_flags)) { 1122 __set_current_state(TASK_RUNNING); 1123 return 0; 1124 } 1125 schedule(); 1126 } 1127 } 1128 1129 /* 1130 * Oneshot interrupts keep the irq line masked until the threaded 1131 * handler finished. unmask if the interrupt has not been disabled and 1132 * is marked MASKED. 1133 */ 1134 static void irq_finalize_oneshot(struct irq_desc *desc, 1135 struct irqaction *action) 1136 { 1137 if (!(desc->istate & IRQS_ONESHOT) || 1138 action->handler == irq_forced_secondary_handler) 1139 return; 1140 again: 1141 chip_bus_lock(desc); 1142 raw_spin_lock_irq(&desc->lock); 1143 1144 /* 1145 * Implausible though it may be we need to protect us against 1146 * the following scenario: 1147 * 1148 * The thread is faster done than the hard interrupt handler 1149 * on the other CPU. If we unmask the irq line then the 1150 * interrupt can come in again and masks the line, leaves due 1151 * to IRQS_INPROGRESS and the irq line is masked forever. 1152 * 1153 * This also serializes the state of shared oneshot handlers 1154 * versus "desc->threads_oneshot |= action->thread_mask;" in 1155 * irq_wake_thread(). See the comment there which explains the 1156 * serialization. 1157 */ 1158 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1159 raw_spin_unlock_irq(&desc->lock); 1160 chip_bus_sync_unlock(desc); 1161 cpu_relax(); 1162 goto again; 1163 } 1164 1165 /* 1166 * Now check again, whether the thread should run. Otherwise 1167 * we would clear the threads_oneshot bit of this thread which 1168 * was just set. 1169 */ 1170 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1171 goto out_unlock; 1172 1173 desc->threads_oneshot &= ~action->thread_mask; 1174 1175 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1176 irqd_irq_masked(&desc->irq_data)) 1177 unmask_threaded_irq(desc); 1178 1179 out_unlock: 1180 raw_spin_unlock_irq(&desc->lock); 1181 chip_bus_sync_unlock(desc); 1182 } 1183 1184 /* 1185 * Interrupts which are not explicitly requested as threaded 1186 * interrupts rely on the implicit bh/preempt disable of the hard irq 1187 * context. So we need to disable bh here to avoid deadlocks and other 1188 * side effects. 1189 */ 1190 static irqreturn_t 1191 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1192 { 1193 irqreturn_t ret; 1194 1195 local_bh_disable(); 1196 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1197 local_irq_disable(); 1198 ret = action->thread_fn(action->irq, action->dev_id); 1199 if (ret == IRQ_HANDLED) 1200 atomic_inc(&desc->threads_handled); 1201 1202 irq_finalize_oneshot(desc, action); 1203 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1204 local_irq_enable(); 1205 local_bh_enable(); 1206 return ret; 1207 } 1208 1209 /* 1210 * Interrupts explicitly requested as threaded interrupts want to be 1211 * preemptible - many of them need to sleep and wait for slow busses to 1212 * complete. 1213 */ 1214 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1215 struct irqaction *action) 1216 { 1217 irqreturn_t ret; 1218 1219 ret = action->thread_fn(action->irq, action->dev_id); 1220 if (ret == IRQ_HANDLED) 1221 atomic_inc(&desc->threads_handled); 1222 1223 irq_finalize_oneshot(desc, action); 1224 return ret; 1225 } 1226 1227 void wake_threads_waitq(struct irq_desc *desc) 1228 { 1229 if (atomic_dec_and_test(&desc->threads_active)) 1230 wake_up(&desc->wait_for_threads); 1231 } 1232 1233 static void irq_thread_dtor(struct callback_head *unused) 1234 { 1235 struct task_struct *tsk = current; 1236 struct irq_desc *desc; 1237 struct irqaction *action; 1238 1239 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1240 return; 1241 1242 action = kthread_data(tsk); 1243 1244 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1245 tsk->comm, tsk->pid, action->irq); 1246 1247 1248 desc = irq_to_desc(action->irq); 1249 /* 1250 * If IRQTF_RUNTHREAD is set, we need to decrement 1251 * desc->threads_active and wake possible waiters. 1252 */ 1253 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1254 wake_threads_waitq(desc); 1255 1256 /* Prevent a stale desc->threads_oneshot */ 1257 irq_finalize_oneshot(desc, action); 1258 } 1259 1260 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1261 { 1262 struct irqaction *secondary = action->secondary; 1263 1264 if (WARN_ON_ONCE(!secondary)) 1265 return; 1266 1267 raw_spin_lock_irq(&desc->lock); 1268 __irq_wake_thread(desc, secondary); 1269 raw_spin_unlock_irq(&desc->lock); 1270 } 1271 1272 /* 1273 * Internal function to notify that a interrupt thread is ready. 1274 */ 1275 static void irq_thread_set_ready(struct irq_desc *desc, 1276 struct irqaction *action) 1277 { 1278 set_bit(IRQTF_READY, &action->thread_flags); 1279 wake_up(&desc->wait_for_threads); 1280 } 1281 1282 /* 1283 * Internal function to wake up a interrupt thread and wait until it is 1284 * ready. 1285 */ 1286 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1287 struct irqaction *action) 1288 { 1289 if (!action || !action->thread) 1290 return; 1291 1292 wake_up_process(action->thread); 1293 wait_event(desc->wait_for_threads, 1294 test_bit(IRQTF_READY, &action->thread_flags)); 1295 } 1296 1297 /* 1298 * Interrupt handler thread 1299 */ 1300 static int irq_thread(void *data) 1301 { 1302 struct callback_head on_exit_work; 1303 struct irqaction *action = data; 1304 struct irq_desc *desc = irq_to_desc(action->irq); 1305 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1306 struct irqaction *action); 1307 1308 irq_thread_set_ready(desc, action); 1309 1310 sched_set_fifo(current); 1311 1312 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1313 &action->thread_flags)) 1314 handler_fn = irq_forced_thread_fn; 1315 else 1316 handler_fn = irq_thread_fn; 1317 1318 init_task_work(&on_exit_work, irq_thread_dtor); 1319 task_work_add(current, &on_exit_work, TWA_NONE); 1320 1321 while (!irq_wait_for_interrupt(desc, action)) { 1322 irqreturn_t action_ret; 1323 1324 action_ret = handler_fn(desc, action); 1325 if (action_ret == IRQ_WAKE_THREAD) 1326 irq_wake_secondary(desc, action); 1327 1328 wake_threads_waitq(desc); 1329 } 1330 1331 /* 1332 * This is the regular exit path. __free_irq() is stopping the 1333 * thread via kthread_stop() after calling 1334 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1335 * oneshot mask bit can be set. 1336 */ 1337 task_work_cancel_func(current, irq_thread_dtor); 1338 return 0; 1339 } 1340 1341 /** 1342 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1343 * @irq: Interrupt line 1344 * @dev_id: Device identity for which the thread should be woken 1345 * 1346 */ 1347 void irq_wake_thread(unsigned int irq, void *dev_id) 1348 { 1349 struct irq_desc *desc = irq_to_desc(irq); 1350 struct irqaction *action; 1351 unsigned long flags; 1352 1353 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1354 return; 1355 1356 raw_spin_lock_irqsave(&desc->lock, flags); 1357 for_each_action_of_desc(desc, action) { 1358 if (action->dev_id == dev_id) { 1359 if (action->thread) 1360 __irq_wake_thread(desc, action); 1361 break; 1362 } 1363 } 1364 raw_spin_unlock_irqrestore(&desc->lock, flags); 1365 } 1366 EXPORT_SYMBOL_GPL(irq_wake_thread); 1367 1368 static int irq_setup_forced_threading(struct irqaction *new) 1369 { 1370 if (!force_irqthreads()) 1371 return 0; 1372 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1373 return 0; 1374 1375 /* 1376 * No further action required for interrupts which are requested as 1377 * threaded interrupts already 1378 */ 1379 if (new->handler == irq_default_primary_handler) 1380 return 0; 1381 1382 new->flags |= IRQF_ONESHOT; 1383 1384 /* 1385 * Handle the case where we have a real primary handler and a 1386 * thread handler. We force thread them as well by creating a 1387 * secondary action. 1388 */ 1389 if (new->handler && new->thread_fn) { 1390 /* Allocate the secondary action */ 1391 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1392 if (!new->secondary) 1393 return -ENOMEM; 1394 new->secondary->handler = irq_forced_secondary_handler; 1395 new->secondary->thread_fn = new->thread_fn; 1396 new->secondary->dev_id = new->dev_id; 1397 new->secondary->irq = new->irq; 1398 new->secondary->name = new->name; 1399 } 1400 /* Deal with the primary handler */ 1401 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1402 new->thread_fn = new->handler; 1403 new->handler = irq_default_primary_handler; 1404 return 0; 1405 } 1406 1407 static int irq_request_resources(struct irq_desc *desc) 1408 { 1409 struct irq_data *d = &desc->irq_data; 1410 struct irq_chip *c = d->chip; 1411 1412 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1413 } 1414 1415 static void irq_release_resources(struct irq_desc *desc) 1416 { 1417 struct irq_data *d = &desc->irq_data; 1418 struct irq_chip *c = d->chip; 1419 1420 if (c->irq_release_resources) 1421 c->irq_release_resources(d); 1422 } 1423 1424 static bool irq_supports_nmi(struct irq_desc *desc) 1425 { 1426 struct irq_data *d = irq_desc_get_irq_data(desc); 1427 1428 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1429 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1430 if (d->parent_data) 1431 return false; 1432 #endif 1433 /* Don't support NMIs for chips behind a slow bus */ 1434 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1435 return false; 1436 1437 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1438 } 1439 1440 static int irq_nmi_setup(struct irq_desc *desc) 1441 { 1442 struct irq_data *d = irq_desc_get_irq_data(desc); 1443 struct irq_chip *c = d->chip; 1444 1445 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1446 } 1447 1448 static void irq_nmi_teardown(struct irq_desc *desc) 1449 { 1450 struct irq_data *d = irq_desc_get_irq_data(desc); 1451 struct irq_chip *c = d->chip; 1452 1453 if (c->irq_nmi_teardown) 1454 c->irq_nmi_teardown(d); 1455 } 1456 1457 static int 1458 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1459 { 1460 struct task_struct *t; 1461 1462 if (!secondary) { 1463 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1464 new->name); 1465 } else { 1466 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1467 new->name); 1468 } 1469 1470 if (IS_ERR(t)) 1471 return PTR_ERR(t); 1472 1473 /* 1474 * We keep the reference to the task struct even if 1475 * the thread dies to avoid that the interrupt code 1476 * references an already freed task_struct. 1477 */ 1478 new->thread = get_task_struct(t); 1479 /* 1480 * Tell the thread to set its affinity. This is 1481 * important for shared interrupt handlers as we do 1482 * not invoke setup_affinity() for the secondary 1483 * handlers as everything is already set up. Even for 1484 * interrupts marked with IRQF_NO_BALANCE this is 1485 * correct as we want the thread to move to the cpu(s) 1486 * on which the requesting code placed the interrupt. 1487 */ 1488 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1489 return 0; 1490 } 1491 1492 /* 1493 * Internal function to register an irqaction - typically used to 1494 * allocate special interrupts that are part of the architecture. 1495 * 1496 * Locking rules: 1497 * 1498 * desc->request_mutex Provides serialization against a concurrent free_irq() 1499 * chip_bus_lock Provides serialization for slow bus operations 1500 * desc->lock Provides serialization against hard interrupts 1501 * 1502 * chip_bus_lock and desc->lock are sufficient for all other management and 1503 * interrupt related functions. desc->request_mutex solely serializes 1504 * request/free_irq(). 1505 */ 1506 static int 1507 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1508 { 1509 struct irqaction *old, **old_ptr; 1510 unsigned long flags, thread_mask = 0; 1511 int ret, nested, shared = 0; 1512 1513 if (!desc) 1514 return -EINVAL; 1515 1516 if (desc->irq_data.chip == &no_irq_chip) 1517 return -ENOSYS; 1518 if (!try_module_get(desc->owner)) 1519 return -ENODEV; 1520 1521 new->irq = irq; 1522 1523 /* 1524 * If the trigger type is not specified by the caller, 1525 * then use the default for this interrupt. 1526 */ 1527 if (!(new->flags & IRQF_TRIGGER_MASK)) 1528 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1529 1530 /* 1531 * Check whether the interrupt nests into another interrupt 1532 * thread. 1533 */ 1534 nested = irq_settings_is_nested_thread(desc); 1535 if (nested) { 1536 if (!new->thread_fn) { 1537 ret = -EINVAL; 1538 goto out_mput; 1539 } 1540 /* 1541 * Replace the primary handler which was provided from 1542 * the driver for non nested interrupt handling by the 1543 * dummy function which warns when called. 1544 */ 1545 new->handler = irq_nested_primary_handler; 1546 } else { 1547 if (irq_settings_can_thread(desc)) { 1548 ret = irq_setup_forced_threading(new); 1549 if (ret) 1550 goto out_mput; 1551 } 1552 } 1553 1554 /* 1555 * Create a handler thread when a thread function is supplied 1556 * and the interrupt does not nest into another interrupt 1557 * thread. 1558 */ 1559 if (new->thread_fn && !nested) { 1560 ret = setup_irq_thread(new, irq, false); 1561 if (ret) 1562 goto out_mput; 1563 if (new->secondary) { 1564 ret = setup_irq_thread(new->secondary, irq, true); 1565 if (ret) 1566 goto out_thread; 1567 } 1568 } 1569 1570 /* 1571 * Drivers are often written to work w/o knowledge about the 1572 * underlying irq chip implementation, so a request for a 1573 * threaded irq without a primary hard irq context handler 1574 * requires the ONESHOT flag to be set. Some irq chips like 1575 * MSI based interrupts are per se one shot safe. Check the 1576 * chip flags, so we can avoid the unmask dance at the end of 1577 * the threaded handler for those. 1578 */ 1579 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1580 new->flags &= ~IRQF_ONESHOT; 1581 1582 /* 1583 * Protects against a concurrent __free_irq() call which might wait 1584 * for synchronize_hardirq() to complete without holding the optional 1585 * chip bus lock and desc->lock. Also protects against handing out 1586 * a recycled oneshot thread_mask bit while it's still in use by 1587 * its previous owner. 1588 */ 1589 mutex_lock(&desc->request_mutex); 1590 1591 /* 1592 * Acquire bus lock as the irq_request_resources() callback below 1593 * might rely on the serialization or the magic power management 1594 * functions which are abusing the irq_bus_lock() callback, 1595 */ 1596 chip_bus_lock(desc); 1597 1598 /* First installed action requests resources. */ 1599 if (!desc->action) { 1600 ret = irq_request_resources(desc); 1601 if (ret) { 1602 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1603 new->name, irq, desc->irq_data.chip->name); 1604 goto out_bus_unlock; 1605 } 1606 } 1607 1608 /* 1609 * The following block of code has to be executed atomically 1610 * protected against a concurrent interrupt and any of the other 1611 * management calls which are not serialized via 1612 * desc->request_mutex or the optional bus lock. 1613 */ 1614 raw_spin_lock_irqsave(&desc->lock, flags); 1615 old_ptr = &desc->action; 1616 old = *old_ptr; 1617 if (old) { 1618 /* 1619 * Can't share interrupts unless both agree to and are 1620 * the same type (level, edge, polarity). So both flag 1621 * fields must have IRQF_SHARED set and the bits which 1622 * set the trigger type must match. Also all must 1623 * agree on ONESHOT. 1624 * Interrupt lines used for NMIs cannot be shared. 1625 */ 1626 unsigned int oldtype; 1627 1628 if (irq_is_nmi(desc)) { 1629 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1630 new->name, irq, desc->irq_data.chip->name); 1631 ret = -EINVAL; 1632 goto out_unlock; 1633 } 1634 1635 /* 1636 * If nobody did set the configuration before, inherit 1637 * the one provided by the requester. 1638 */ 1639 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1640 oldtype = irqd_get_trigger_type(&desc->irq_data); 1641 } else { 1642 oldtype = new->flags & IRQF_TRIGGER_MASK; 1643 irqd_set_trigger_type(&desc->irq_data, oldtype); 1644 } 1645 1646 if (!((old->flags & new->flags) & IRQF_SHARED) || 1647 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1648 goto mismatch; 1649 1650 if ((old->flags & IRQF_ONESHOT) && 1651 (new->flags & IRQF_COND_ONESHOT)) 1652 new->flags |= IRQF_ONESHOT; 1653 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1654 goto mismatch; 1655 1656 /* All handlers must agree on per-cpuness */ 1657 if ((old->flags & IRQF_PERCPU) != 1658 (new->flags & IRQF_PERCPU)) 1659 goto mismatch; 1660 1661 /* add new interrupt at end of irq queue */ 1662 do { 1663 /* 1664 * Or all existing action->thread_mask bits, 1665 * so we can find the next zero bit for this 1666 * new action. 1667 */ 1668 thread_mask |= old->thread_mask; 1669 old_ptr = &old->next; 1670 old = *old_ptr; 1671 } while (old); 1672 shared = 1; 1673 } 1674 1675 /* 1676 * Setup the thread mask for this irqaction for ONESHOT. For 1677 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1678 * conditional in irq_wake_thread(). 1679 */ 1680 if (new->flags & IRQF_ONESHOT) { 1681 /* 1682 * Unlikely to have 32 resp 64 irqs sharing one line, 1683 * but who knows. 1684 */ 1685 if (thread_mask == ~0UL) { 1686 ret = -EBUSY; 1687 goto out_unlock; 1688 } 1689 /* 1690 * The thread_mask for the action is or'ed to 1691 * desc->thread_active to indicate that the 1692 * IRQF_ONESHOT thread handler has been woken, but not 1693 * yet finished. The bit is cleared when a thread 1694 * completes. When all threads of a shared interrupt 1695 * line have completed desc->threads_active becomes 1696 * zero and the interrupt line is unmasked. See 1697 * handle.c:irq_wake_thread() for further information. 1698 * 1699 * If no thread is woken by primary (hard irq context) 1700 * interrupt handlers, then desc->threads_active is 1701 * also checked for zero to unmask the irq line in the 1702 * affected hard irq flow handlers 1703 * (handle_[fasteoi|level]_irq). 1704 * 1705 * The new action gets the first zero bit of 1706 * thread_mask assigned. See the loop above which or's 1707 * all existing action->thread_mask bits. 1708 */ 1709 new->thread_mask = 1UL << ffz(thread_mask); 1710 1711 } else if (new->handler == irq_default_primary_handler && 1712 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1713 /* 1714 * The interrupt was requested with handler = NULL, so 1715 * we use the default primary handler for it. But it 1716 * does not have the oneshot flag set. In combination 1717 * with level interrupts this is deadly, because the 1718 * default primary handler just wakes the thread, then 1719 * the irq lines is reenabled, but the device still 1720 * has the level irq asserted. Rinse and repeat.... 1721 * 1722 * While this works for edge type interrupts, we play 1723 * it safe and reject unconditionally because we can't 1724 * say for sure which type this interrupt really 1725 * has. The type flags are unreliable as the 1726 * underlying chip implementation can override them. 1727 */ 1728 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1729 new->name, irq); 1730 ret = -EINVAL; 1731 goto out_unlock; 1732 } 1733 1734 if (!shared) { 1735 /* Setup the type (level, edge polarity) if configured: */ 1736 if (new->flags & IRQF_TRIGGER_MASK) { 1737 ret = __irq_set_trigger(desc, 1738 new->flags & IRQF_TRIGGER_MASK); 1739 1740 if (ret) 1741 goto out_unlock; 1742 } 1743 1744 /* 1745 * Activate the interrupt. That activation must happen 1746 * independently of IRQ_NOAUTOEN. request_irq() can fail 1747 * and the callers are supposed to handle 1748 * that. enable_irq() of an interrupt requested with 1749 * IRQ_NOAUTOEN is not supposed to fail. The activation 1750 * keeps it in shutdown mode, it merily associates 1751 * resources if necessary and if that's not possible it 1752 * fails. Interrupts which are in managed shutdown mode 1753 * will simply ignore that activation request. 1754 */ 1755 ret = irq_activate(desc); 1756 if (ret) 1757 goto out_unlock; 1758 1759 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1760 IRQS_ONESHOT | IRQS_WAITING); 1761 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1762 1763 if (new->flags & IRQF_PERCPU) { 1764 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1765 irq_settings_set_per_cpu(desc); 1766 if (new->flags & IRQF_NO_DEBUG) 1767 irq_settings_set_no_debug(desc); 1768 } 1769 1770 if (noirqdebug) 1771 irq_settings_set_no_debug(desc); 1772 1773 if (new->flags & IRQF_ONESHOT) 1774 desc->istate |= IRQS_ONESHOT; 1775 1776 /* Exclude IRQ from balancing if requested */ 1777 if (new->flags & IRQF_NOBALANCING) { 1778 irq_settings_set_no_balancing(desc); 1779 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1780 } 1781 1782 if (!(new->flags & IRQF_NO_AUTOEN) && 1783 irq_settings_can_autoenable(desc)) { 1784 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1785 } else { 1786 /* 1787 * Shared interrupts do not go well with disabling 1788 * auto enable. The sharing interrupt might request 1789 * it while it's still disabled and then wait for 1790 * interrupts forever. 1791 */ 1792 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1793 /* Undo nested disables: */ 1794 desc->depth = 1; 1795 } 1796 1797 } else if (new->flags & IRQF_TRIGGER_MASK) { 1798 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1799 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1800 1801 if (nmsk != omsk) 1802 /* hope the handler works with current trigger mode */ 1803 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1804 irq, omsk, nmsk); 1805 } 1806 1807 *old_ptr = new; 1808 1809 irq_pm_install_action(desc, new); 1810 1811 /* Reset broken irq detection when installing new handler */ 1812 desc->irq_count = 0; 1813 desc->irqs_unhandled = 0; 1814 1815 /* 1816 * Check whether we disabled the irq via the spurious handler 1817 * before. Reenable it and give it another chance. 1818 */ 1819 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1820 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1821 __enable_irq(desc); 1822 } 1823 1824 raw_spin_unlock_irqrestore(&desc->lock, flags); 1825 chip_bus_sync_unlock(desc); 1826 mutex_unlock(&desc->request_mutex); 1827 1828 irq_setup_timings(desc, new); 1829 1830 wake_up_and_wait_for_irq_thread_ready(desc, new); 1831 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1832 1833 register_irq_proc(irq, desc); 1834 new->dir = NULL; 1835 register_handler_proc(irq, new); 1836 return 0; 1837 1838 mismatch: 1839 if (!(new->flags & IRQF_PROBE_SHARED)) { 1840 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1841 irq, new->flags, new->name, old->flags, old->name); 1842 #ifdef CONFIG_DEBUG_SHIRQ 1843 dump_stack(); 1844 #endif 1845 } 1846 ret = -EBUSY; 1847 1848 out_unlock: 1849 raw_spin_unlock_irqrestore(&desc->lock, flags); 1850 1851 if (!desc->action) 1852 irq_release_resources(desc); 1853 out_bus_unlock: 1854 chip_bus_sync_unlock(desc); 1855 mutex_unlock(&desc->request_mutex); 1856 1857 out_thread: 1858 if (new->thread) { 1859 struct task_struct *t = new->thread; 1860 1861 new->thread = NULL; 1862 kthread_stop_put(t); 1863 } 1864 if (new->secondary && new->secondary->thread) { 1865 struct task_struct *t = new->secondary->thread; 1866 1867 new->secondary->thread = NULL; 1868 kthread_stop_put(t); 1869 } 1870 out_mput: 1871 module_put(desc->owner); 1872 return ret; 1873 } 1874 1875 /* 1876 * Internal function to unregister an irqaction - used to free 1877 * regular and special interrupts that are part of the architecture. 1878 */ 1879 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1880 { 1881 unsigned irq = desc->irq_data.irq; 1882 struct irqaction *action, **action_ptr; 1883 unsigned long flags; 1884 1885 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1886 1887 mutex_lock(&desc->request_mutex); 1888 chip_bus_lock(desc); 1889 raw_spin_lock_irqsave(&desc->lock, flags); 1890 1891 /* 1892 * There can be multiple actions per IRQ descriptor, find the right 1893 * one based on the dev_id: 1894 */ 1895 action_ptr = &desc->action; 1896 for (;;) { 1897 action = *action_ptr; 1898 1899 if (!action) { 1900 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1901 raw_spin_unlock_irqrestore(&desc->lock, flags); 1902 chip_bus_sync_unlock(desc); 1903 mutex_unlock(&desc->request_mutex); 1904 return NULL; 1905 } 1906 1907 if (action->dev_id == dev_id) 1908 break; 1909 action_ptr = &action->next; 1910 } 1911 1912 /* Found it - now remove it from the list of entries: */ 1913 *action_ptr = action->next; 1914 1915 irq_pm_remove_action(desc, action); 1916 1917 /* If this was the last handler, shut down the IRQ line: */ 1918 if (!desc->action) { 1919 irq_settings_clr_disable_unlazy(desc); 1920 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1921 irq_shutdown(desc); 1922 } 1923 1924 #ifdef CONFIG_SMP 1925 /* make sure affinity_hint is cleaned up */ 1926 if (WARN_ON_ONCE(desc->affinity_hint)) 1927 desc->affinity_hint = NULL; 1928 #endif 1929 1930 raw_spin_unlock_irqrestore(&desc->lock, flags); 1931 /* 1932 * Drop bus_lock here so the changes which were done in the chip 1933 * callbacks above are synced out to the irq chips which hang 1934 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1935 * 1936 * Aside of that the bus_lock can also be taken from the threaded 1937 * handler in irq_finalize_oneshot() which results in a deadlock 1938 * because kthread_stop() would wait forever for the thread to 1939 * complete, which is blocked on the bus lock. 1940 * 1941 * The still held desc->request_mutex() protects against a 1942 * concurrent request_irq() of this irq so the release of resources 1943 * and timing data is properly serialized. 1944 */ 1945 chip_bus_sync_unlock(desc); 1946 1947 unregister_handler_proc(irq, action); 1948 1949 /* 1950 * Make sure it's not being used on another CPU and if the chip 1951 * supports it also make sure that there is no (not yet serviced) 1952 * interrupt in flight at the hardware level. 1953 */ 1954 __synchronize_irq(desc); 1955 1956 #ifdef CONFIG_DEBUG_SHIRQ 1957 /* 1958 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1959 * event to happen even now it's being freed, so let's make sure that 1960 * is so by doing an extra call to the handler .... 1961 * 1962 * ( We do this after actually deregistering it, to make sure that a 1963 * 'real' IRQ doesn't run in parallel with our fake. ) 1964 */ 1965 if (action->flags & IRQF_SHARED) { 1966 local_irq_save(flags); 1967 action->handler(irq, dev_id); 1968 local_irq_restore(flags); 1969 } 1970 #endif 1971 1972 /* 1973 * The action has already been removed above, but the thread writes 1974 * its oneshot mask bit when it completes. Though request_mutex is 1975 * held across this which prevents __setup_irq() from handing out 1976 * the same bit to a newly requested action. 1977 */ 1978 if (action->thread) { 1979 kthread_stop_put(action->thread); 1980 if (action->secondary && action->secondary->thread) 1981 kthread_stop_put(action->secondary->thread); 1982 } 1983 1984 /* Last action releases resources */ 1985 if (!desc->action) { 1986 /* 1987 * Reacquire bus lock as irq_release_resources() might 1988 * require it to deallocate resources over the slow bus. 1989 */ 1990 chip_bus_lock(desc); 1991 /* 1992 * There is no interrupt on the fly anymore. Deactivate it 1993 * completely. 1994 */ 1995 raw_spin_lock_irqsave(&desc->lock, flags); 1996 irq_domain_deactivate_irq(&desc->irq_data); 1997 raw_spin_unlock_irqrestore(&desc->lock, flags); 1998 1999 irq_release_resources(desc); 2000 chip_bus_sync_unlock(desc); 2001 irq_remove_timings(desc); 2002 } 2003 2004 mutex_unlock(&desc->request_mutex); 2005 2006 irq_chip_pm_put(&desc->irq_data); 2007 module_put(desc->owner); 2008 kfree(action->secondary); 2009 return action; 2010 } 2011 2012 /** 2013 * free_irq - free an interrupt allocated with request_irq 2014 * @irq: Interrupt line to free 2015 * @dev_id: Device identity to free 2016 * 2017 * Remove an interrupt handler. The handler is removed and if the 2018 * interrupt line is no longer in use by any driver it is disabled. 2019 * On a shared IRQ the caller must ensure the interrupt is disabled 2020 * on the card it drives before calling this function. The function 2021 * does not return until any executing interrupts for this IRQ 2022 * have completed. 2023 * 2024 * This function must not be called from interrupt context. 2025 * 2026 * Returns the devname argument passed to request_irq. 2027 */ 2028 const void *free_irq(unsigned int irq, void *dev_id) 2029 { 2030 struct irq_desc *desc = irq_to_desc(irq); 2031 struct irqaction *action; 2032 const char *devname; 2033 2034 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2035 return NULL; 2036 2037 #ifdef CONFIG_SMP 2038 if (WARN_ON(desc->affinity_notify)) 2039 desc->affinity_notify = NULL; 2040 #endif 2041 2042 action = __free_irq(desc, dev_id); 2043 2044 if (!action) 2045 return NULL; 2046 2047 devname = action->name; 2048 kfree(action); 2049 return devname; 2050 } 2051 EXPORT_SYMBOL(free_irq); 2052 2053 /* This function must be called with desc->lock held */ 2054 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2055 { 2056 const char *devname = NULL; 2057 2058 desc->istate &= ~IRQS_NMI; 2059 2060 if (!WARN_ON(desc->action == NULL)) { 2061 irq_pm_remove_action(desc, desc->action); 2062 devname = desc->action->name; 2063 unregister_handler_proc(irq, desc->action); 2064 2065 kfree(desc->action); 2066 desc->action = NULL; 2067 } 2068 2069 irq_settings_clr_disable_unlazy(desc); 2070 irq_shutdown_and_deactivate(desc); 2071 2072 irq_release_resources(desc); 2073 2074 irq_chip_pm_put(&desc->irq_data); 2075 module_put(desc->owner); 2076 2077 return devname; 2078 } 2079 2080 const void *free_nmi(unsigned int irq, void *dev_id) 2081 { 2082 struct irq_desc *desc = irq_to_desc(irq); 2083 unsigned long flags; 2084 const void *devname; 2085 2086 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2087 return NULL; 2088 2089 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2090 return NULL; 2091 2092 /* NMI still enabled */ 2093 if (WARN_ON(desc->depth == 0)) 2094 disable_nmi_nosync(irq); 2095 2096 raw_spin_lock_irqsave(&desc->lock, flags); 2097 2098 irq_nmi_teardown(desc); 2099 devname = __cleanup_nmi(irq, desc); 2100 2101 raw_spin_unlock_irqrestore(&desc->lock, flags); 2102 2103 return devname; 2104 } 2105 2106 /** 2107 * request_threaded_irq - allocate an interrupt line 2108 * @irq: Interrupt line to allocate 2109 * @handler: Function to be called when the IRQ occurs. 2110 * Primary handler for threaded interrupts. 2111 * If handler is NULL and thread_fn != NULL 2112 * the default primary handler is installed. 2113 * @thread_fn: Function called from the irq handler thread 2114 * If NULL, no irq thread is created 2115 * @irqflags: Interrupt type flags 2116 * @devname: An ascii name for the claiming device 2117 * @dev_id: A cookie passed back to the handler function 2118 * 2119 * This call allocates interrupt resources and enables the 2120 * interrupt line and IRQ handling. From the point this 2121 * call is made your handler function may be invoked. Since 2122 * your handler function must clear any interrupt the board 2123 * raises, you must take care both to initialise your hardware 2124 * and to set up the interrupt handler in the right order. 2125 * 2126 * If you want to set up a threaded irq handler for your device 2127 * then you need to supply @handler and @thread_fn. @handler is 2128 * still called in hard interrupt context and has to check 2129 * whether the interrupt originates from the device. If yes it 2130 * needs to disable the interrupt on the device and return 2131 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2132 * @thread_fn. This split handler design is necessary to support 2133 * shared interrupts. 2134 * 2135 * Dev_id must be globally unique. Normally the address of the 2136 * device data structure is used as the cookie. Since the handler 2137 * receives this value it makes sense to use it. 2138 * 2139 * If your interrupt is shared you must pass a non NULL dev_id 2140 * as this is required when freeing the interrupt. 2141 * 2142 * Flags: 2143 * 2144 * IRQF_SHARED Interrupt is shared 2145 * IRQF_TRIGGER_* Specify active edge(s) or level 2146 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2147 */ 2148 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2149 irq_handler_t thread_fn, unsigned long irqflags, 2150 const char *devname, void *dev_id) 2151 { 2152 struct irqaction *action; 2153 struct irq_desc *desc; 2154 int retval; 2155 2156 if (irq == IRQ_NOTCONNECTED) 2157 return -ENOTCONN; 2158 2159 /* 2160 * Sanity-check: shared interrupts must pass in a real dev-ID, 2161 * otherwise we'll have trouble later trying to figure out 2162 * which interrupt is which (messes up the interrupt freeing 2163 * logic etc). 2164 * 2165 * Also shared interrupts do not go well with disabling auto enable. 2166 * The sharing interrupt might request it while it's still disabled 2167 * and then wait for interrupts forever. 2168 * 2169 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2170 * it cannot be set along with IRQF_NO_SUSPEND. 2171 */ 2172 if (((irqflags & IRQF_SHARED) && !dev_id) || 2173 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2174 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2175 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2176 return -EINVAL; 2177 2178 desc = irq_to_desc(irq); 2179 if (!desc) 2180 return -EINVAL; 2181 2182 if (!irq_settings_can_request(desc) || 2183 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2184 return -EINVAL; 2185 2186 if (!handler) { 2187 if (!thread_fn) 2188 return -EINVAL; 2189 handler = irq_default_primary_handler; 2190 } 2191 2192 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2193 if (!action) 2194 return -ENOMEM; 2195 2196 action->handler = handler; 2197 action->thread_fn = thread_fn; 2198 action->flags = irqflags; 2199 action->name = devname; 2200 action->dev_id = dev_id; 2201 2202 retval = irq_chip_pm_get(&desc->irq_data); 2203 if (retval < 0) { 2204 kfree(action); 2205 return retval; 2206 } 2207 2208 retval = __setup_irq(irq, desc, action); 2209 2210 if (retval) { 2211 irq_chip_pm_put(&desc->irq_data); 2212 kfree(action->secondary); 2213 kfree(action); 2214 } 2215 2216 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2217 if (!retval && (irqflags & IRQF_SHARED)) { 2218 /* 2219 * It's a shared IRQ -- the driver ought to be prepared for it 2220 * to happen immediately, so let's make sure.... 2221 * We disable the irq to make sure that a 'real' IRQ doesn't 2222 * run in parallel with our fake. 2223 */ 2224 unsigned long flags; 2225 2226 disable_irq(irq); 2227 local_irq_save(flags); 2228 2229 handler(irq, dev_id); 2230 2231 local_irq_restore(flags); 2232 enable_irq(irq); 2233 } 2234 #endif 2235 return retval; 2236 } 2237 EXPORT_SYMBOL(request_threaded_irq); 2238 2239 /** 2240 * request_any_context_irq - allocate an interrupt line 2241 * @irq: Interrupt line to allocate 2242 * @handler: Function to be called when the IRQ occurs. 2243 * Threaded handler for threaded interrupts. 2244 * @flags: Interrupt type flags 2245 * @name: An ascii name for the claiming device 2246 * @dev_id: A cookie passed back to the handler function 2247 * 2248 * This call allocates interrupt resources and enables the 2249 * interrupt line and IRQ handling. It selects either a 2250 * hardirq or threaded handling method depending on the 2251 * context. 2252 * 2253 * On failure, it returns a negative value. On success, 2254 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2255 */ 2256 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2257 unsigned long flags, const char *name, void *dev_id) 2258 { 2259 struct irq_desc *desc; 2260 int ret; 2261 2262 if (irq == IRQ_NOTCONNECTED) 2263 return -ENOTCONN; 2264 2265 desc = irq_to_desc(irq); 2266 if (!desc) 2267 return -EINVAL; 2268 2269 if (irq_settings_is_nested_thread(desc)) { 2270 ret = request_threaded_irq(irq, NULL, handler, 2271 flags, name, dev_id); 2272 return !ret ? IRQC_IS_NESTED : ret; 2273 } 2274 2275 ret = request_irq(irq, handler, flags, name, dev_id); 2276 return !ret ? IRQC_IS_HARDIRQ : ret; 2277 } 2278 EXPORT_SYMBOL_GPL(request_any_context_irq); 2279 2280 /** 2281 * request_nmi - allocate an interrupt line for NMI delivery 2282 * @irq: Interrupt line to allocate 2283 * @handler: Function to be called when the IRQ occurs. 2284 * Threaded handler for threaded interrupts. 2285 * @irqflags: Interrupt type flags 2286 * @name: An ascii name for the claiming device 2287 * @dev_id: A cookie passed back to the handler function 2288 * 2289 * This call allocates interrupt resources and enables the 2290 * interrupt line and IRQ handling. It sets up the IRQ line 2291 * to be handled as an NMI. 2292 * 2293 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2294 * cannot be threaded. 2295 * 2296 * Interrupt lines requested for NMI delivering must produce per cpu 2297 * interrupts and have auto enabling setting disabled. 2298 * 2299 * Dev_id must be globally unique. Normally the address of the 2300 * device data structure is used as the cookie. Since the handler 2301 * receives this value it makes sense to use it. 2302 * 2303 * If the interrupt line cannot be used to deliver NMIs, function 2304 * will fail and return a negative value. 2305 */ 2306 int request_nmi(unsigned int irq, irq_handler_t handler, 2307 unsigned long irqflags, const char *name, void *dev_id) 2308 { 2309 struct irqaction *action; 2310 struct irq_desc *desc; 2311 unsigned long flags; 2312 int retval; 2313 2314 if (irq == IRQ_NOTCONNECTED) 2315 return -ENOTCONN; 2316 2317 /* NMI cannot be shared, used for Polling */ 2318 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2319 return -EINVAL; 2320 2321 if (!(irqflags & IRQF_PERCPU)) 2322 return -EINVAL; 2323 2324 if (!handler) 2325 return -EINVAL; 2326 2327 desc = irq_to_desc(irq); 2328 2329 if (!desc || (irq_settings_can_autoenable(desc) && 2330 !(irqflags & IRQF_NO_AUTOEN)) || 2331 !irq_settings_can_request(desc) || 2332 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2333 !irq_supports_nmi(desc)) 2334 return -EINVAL; 2335 2336 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2337 if (!action) 2338 return -ENOMEM; 2339 2340 action->handler = handler; 2341 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2342 action->name = name; 2343 action->dev_id = dev_id; 2344 2345 retval = irq_chip_pm_get(&desc->irq_data); 2346 if (retval < 0) 2347 goto err_out; 2348 2349 retval = __setup_irq(irq, desc, action); 2350 if (retval) 2351 goto err_irq_setup; 2352 2353 raw_spin_lock_irqsave(&desc->lock, flags); 2354 2355 /* Setup NMI state */ 2356 desc->istate |= IRQS_NMI; 2357 retval = irq_nmi_setup(desc); 2358 if (retval) { 2359 __cleanup_nmi(irq, desc); 2360 raw_spin_unlock_irqrestore(&desc->lock, flags); 2361 return -EINVAL; 2362 } 2363 2364 raw_spin_unlock_irqrestore(&desc->lock, flags); 2365 2366 return 0; 2367 2368 err_irq_setup: 2369 irq_chip_pm_put(&desc->irq_data); 2370 err_out: 2371 kfree(action); 2372 2373 return retval; 2374 } 2375 2376 void enable_percpu_irq(unsigned int irq, unsigned int type) 2377 { 2378 unsigned int cpu = smp_processor_id(); 2379 unsigned long flags; 2380 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2381 2382 if (!desc) 2383 return; 2384 2385 /* 2386 * If the trigger type is not specified by the caller, then 2387 * use the default for this interrupt. 2388 */ 2389 type &= IRQ_TYPE_SENSE_MASK; 2390 if (type == IRQ_TYPE_NONE) 2391 type = irqd_get_trigger_type(&desc->irq_data); 2392 2393 if (type != IRQ_TYPE_NONE) { 2394 int ret; 2395 2396 ret = __irq_set_trigger(desc, type); 2397 2398 if (ret) { 2399 WARN(1, "failed to set type for IRQ%d\n", irq); 2400 goto out; 2401 } 2402 } 2403 2404 irq_percpu_enable(desc, cpu); 2405 out: 2406 irq_put_desc_unlock(desc, flags); 2407 } 2408 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2409 2410 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2411 { 2412 enable_percpu_irq(irq, type); 2413 } 2414 2415 /** 2416 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2417 * @irq: Linux irq number to check for 2418 * 2419 * Must be called from a non migratable context. Returns the enable 2420 * state of a per cpu interrupt on the current cpu. 2421 */ 2422 bool irq_percpu_is_enabled(unsigned int irq) 2423 { 2424 unsigned int cpu = smp_processor_id(); 2425 struct irq_desc *desc; 2426 unsigned long flags; 2427 bool is_enabled; 2428 2429 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2430 if (!desc) 2431 return false; 2432 2433 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2434 irq_put_desc_unlock(desc, flags); 2435 2436 return is_enabled; 2437 } 2438 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2439 2440 void disable_percpu_irq(unsigned int irq) 2441 { 2442 unsigned int cpu = smp_processor_id(); 2443 unsigned long flags; 2444 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2445 2446 if (!desc) 2447 return; 2448 2449 irq_percpu_disable(desc, cpu); 2450 irq_put_desc_unlock(desc, flags); 2451 } 2452 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2453 2454 void disable_percpu_nmi(unsigned int irq) 2455 { 2456 disable_percpu_irq(irq); 2457 } 2458 2459 /* 2460 * Internal function to unregister a percpu irqaction. 2461 */ 2462 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2463 { 2464 struct irq_desc *desc = irq_to_desc(irq); 2465 struct irqaction *action; 2466 unsigned long flags; 2467 2468 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2469 2470 if (!desc) 2471 return NULL; 2472 2473 raw_spin_lock_irqsave(&desc->lock, flags); 2474 2475 action = desc->action; 2476 if (!action || action->percpu_dev_id != dev_id) { 2477 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2478 goto bad; 2479 } 2480 2481 if (!cpumask_empty(desc->percpu_enabled)) { 2482 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2483 irq, cpumask_first(desc->percpu_enabled)); 2484 goto bad; 2485 } 2486 2487 /* Found it - now remove it from the list of entries: */ 2488 desc->action = NULL; 2489 2490 desc->istate &= ~IRQS_NMI; 2491 2492 raw_spin_unlock_irqrestore(&desc->lock, flags); 2493 2494 unregister_handler_proc(irq, action); 2495 2496 irq_chip_pm_put(&desc->irq_data); 2497 module_put(desc->owner); 2498 return action; 2499 2500 bad: 2501 raw_spin_unlock_irqrestore(&desc->lock, flags); 2502 return NULL; 2503 } 2504 2505 /** 2506 * remove_percpu_irq - free a per-cpu interrupt 2507 * @irq: Interrupt line to free 2508 * @act: irqaction for the interrupt 2509 * 2510 * Used to remove interrupts statically setup by the early boot process. 2511 */ 2512 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2513 { 2514 struct irq_desc *desc = irq_to_desc(irq); 2515 2516 if (desc && irq_settings_is_per_cpu_devid(desc)) 2517 __free_percpu_irq(irq, act->percpu_dev_id); 2518 } 2519 2520 /** 2521 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2522 * @irq: Interrupt line to free 2523 * @dev_id: Device identity to free 2524 * 2525 * Remove a percpu interrupt handler. The handler is removed, but 2526 * the interrupt line is not disabled. This must be done on each 2527 * CPU before calling this function. The function does not return 2528 * until any executing interrupts for this IRQ have completed. 2529 * 2530 * This function must not be called from interrupt context. 2531 */ 2532 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2533 { 2534 struct irq_desc *desc = irq_to_desc(irq); 2535 2536 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2537 return; 2538 2539 chip_bus_lock(desc); 2540 kfree(__free_percpu_irq(irq, dev_id)); 2541 chip_bus_sync_unlock(desc); 2542 } 2543 EXPORT_SYMBOL_GPL(free_percpu_irq); 2544 2545 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2546 { 2547 struct irq_desc *desc = irq_to_desc(irq); 2548 2549 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2550 return; 2551 2552 if (WARN_ON(!irq_is_nmi(desc))) 2553 return; 2554 2555 kfree(__free_percpu_irq(irq, dev_id)); 2556 } 2557 2558 /** 2559 * setup_percpu_irq - setup a per-cpu interrupt 2560 * @irq: Interrupt line to setup 2561 * @act: irqaction for the interrupt 2562 * 2563 * Used to statically setup per-cpu interrupts in the early boot process. 2564 */ 2565 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2566 { 2567 struct irq_desc *desc = irq_to_desc(irq); 2568 int retval; 2569 2570 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2571 return -EINVAL; 2572 2573 retval = irq_chip_pm_get(&desc->irq_data); 2574 if (retval < 0) 2575 return retval; 2576 2577 retval = __setup_irq(irq, desc, act); 2578 2579 if (retval) 2580 irq_chip_pm_put(&desc->irq_data); 2581 2582 return retval; 2583 } 2584 2585 /** 2586 * __request_percpu_irq - allocate a percpu interrupt line 2587 * @irq: Interrupt line to allocate 2588 * @handler: Function to be called when the IRQ occurs. 2589 * @flags: Interrupt type flags (IRQF_TIMER only) 2590 * @devname: An ascii name for the claiming device 2591 * @dev_id: A percpu cookie passed back to the handler function 2592 * 2593 * This call allocates interrupt resources and enables the 2594 * interrupt on the local CPU. If the interrupt is supposed to be 2595 * enabled on other CPUs, it has to be done on each CPU using 2596 * enable_percpu_irq(). 2597 * 2598 * Dev_id must be globally unique. It is a per-cpu variable, and 2599 * the handler gets called with the interrupted CPU's instance of 2600 * that variable. 2601 */ 2602 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2603 unsigned long flags, const char *devname, 2604 void __percpu *dev_id) 2605 { 2606 struct irqaction *action; 2607 struct irq_desc *desc; 2608 int retval; 2609 2610 if (!dev_id) 2611 return -EINVAL; 2612 2613 desc = irq_to_desc(irq); 2614 if (!desc || !irq_settings_can_request(desc) || 2615 !irq_settings_is_per_cpu_devid(desc)) 2616 return -EINVAL; 2617 2618 if (flags && flags != IRQF_TIMER) 2619 return -EINVAL; 2620 2621 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2622 if (!action) 2623 return -ENOMEM; 2624 2625 action->handler = handler; 2626 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2627 action->name = devname; 2628 action->percpu_dev_id = dev_id; 2629 2630 retval = irq_chip_pm_get(&desc->irq_data); 2631 if (retval < 0) { 2632 kfree(action); 2633 return retval; 2634 } 2635 2636 retval = __setup_irq(irq, desc, action); 2637 2638 if (retval) { 2639 irq_chip_pm_put(&desc->irq_data); 2640 kfree(action); 2641 } 2642 2643 return retval; 2644 } 2645 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2646 2647 /** 2648 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2649 * @irq: Interrupt line to allocate 2650 * @handler: Function to be called when the IRQ occurs. 2651 * @name: An ascii name for the claiming device 2652 * @dev_id: A percpu cookie passed back to the handler function 2653 * 2654 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2655 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2656 * being enabled on the same CPU by using enable_percpu_nmi(). 2657 * 2658 * Dev_id must be globally unique. It is a per-cpu variable, and 2659 * the handler gets called with the interrupted CPU's instance of 2660 * that variable. 2661 * 2662 * Interrupt lines requested for NMI delivering should have auto enabling 2663 * setting disabled. 2664 * 2665 * If the interrupt line cannot be used to deliver NMIs, function 2666 * will fail returning a negative value. 2667 */ 2668 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2669 const char *name, void __percpu *dev_id) 2670 { 2671 struct irqaction *action; 2672 struct irq_desc *desc; 2673 unsigned long flags; 2674 int retval; 2675 2676 if (!handler) 2677 return -EINVAL; 2678 2679 desc = irq_to_desc(irq); 2680 2681 if (!desc || !irq_settings_can_request(desc) || 2682 !irq_settings_is_per_cpu_devid(desc) || 2683 irq_settings_can_autoenable(desc) || 2684 !irq_supports_nmi(desc)) 2685 return -EINVAL; 2686 2687 /* The line cannot already be NMI */ 2688 if (irq_is_nmi(desc)) 2689 return -EINVAL; 2690 2691 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2692 if (!action) 2693 return -ENOMEM; 2694 2695 action->handler = handler; 2696 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2697 | IRQF_NOBALANCING; 2698 action->name = name; 2699 action->percpu_dev_id = dev_id; 2700 2701 retval = irq_chip_pm_get(&desc->irq_data); 2702 if (retval < 0) 2703 goto err_out; 2704 2705 retval = __setup_irq(irq, desc, action); 2706 if (retval) 2707 goto err_irq_setup; 2708 2709 raw_spin_lock_irqsave(&desc->lock, flags); 2710 desc->istate |= IRQS_NMI; 2711 raw_spin_unlock_irqrestore(&desc->lock, flags); 2712 2713 return 0; 2714 2715 err_irq_setup: 2716 irq_chip_pm_put(&desc->irq_data); 2717 err_out: 2718 kfree(action); 2719 2720 return retval; 2721 } 2722 2723 /** 2724 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2725 * @irq: Interrupt line to prepare for NMI delivery 2726 * 2727 * This call prepares an interrupt line to deliver NMI on the current CPU, 2728 * before that interrupt line gets enabled with enable_percpu_nmi(). 2729 * 2730 * As a CPU local operation, this should be called from non-preemptible 2731 * context. 2732 * 2733 * If the interrupt line cannot be used to deliver NMIs, function 2734 * will fail returning a negative value. 2735 */ 2736 int prepare_percpu_nmi(unsigned int irq) 2737 { 2738 unsigned long flags; 2739 struct irq_desc *desc; 2740 int ret = 0; 2741 2742 WARN_ON(preemptible()); 2743 2744 desc = irq_get_desc_lock(irq, &flags, 2745 IRQ_GET_DESC_CHECK_PERCPU); 2746 if (!desc) 2747 return -EINVAL; 2748 2749 if (WARN(!irq_is_nmi(desc), 2750 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2751 irq)) { 2752 ret = -EINVAL; 2753 goto out; 2754 } 2755 2756 ret = irq_nmi_setup(desc); 2757 if (ret) { 2758 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2759 goto out; 2760 } 2761 2762 out: 2763 irq_put_desc_unlock(desc, flags); 2764 return ret; 2765 } 2766 2767 /** 2768 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2769 * @irq: Interrupt line from which CPU local NMI configuration should be 2770 * removed 2771 * 2772 * This call undoes the setup done by prepare_percpu_nmi(). 2773 * 2774 * IRQ line should not be enabled for the current CPU. 2775 * 2776 * As a CPU local operation, this should be called from non-preemptible 2777 * context. 2778 */ 2779 void teardown_percpu_nmi(unsigned int irq) 2780 { 2781 unsigned long flags; 2782 struct irq_desc *desc; 2783 2784 WARN_ON(preemptible()); 2785 2786 desc = irq_get_desc_lock(irq, &flags, 2787 IRQ_GET_DESC_CHECK_PERCPU); 2788 if (!desc) 2789 return; 2790 2791 if (WARN_ON(!irq_is_nmi(desc))) 2792 goto out; 2793 2794 irq_nmi_teardown(desc); 2795 out: 2796 irq_put_desc_unlock(desc, flags); 2797 } 2798 2799 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2800 bool *state) 2801 { 2802 struct irq_chip *chip; 2803 int err = -EINVAL; 2804 2805 do { 2806 chip = irq_data_get_irq_chip(data); 2807 if (WARN_ON_ONCE(!chip)) 2808 return -ENODEV; 2809 if (chip->irq_get_irqchip_state) 2810 break; 2811 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2812 data = data->parent_data; 2813 #else 2814 data = NULL; 2815 #endif 2816 } while (data); 2817 2818 if (data) 2819 err = chip->irq_get_irqchip_state(data, which, state); 2820 return err; 2821 } 2822 2823 /** 2824 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2825 * @irq: Interrupt line that is forwarded to a VM 2826 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2827 * @state: a pointer to a boolean where the state is to be stored 2828 * 2829 * This call snapshots the internal irqchip state of an 2830 * interrupt, returning into @state the bit corresponding to 2831 * stage @which 2832 * 2833 * This function should be called with preemption disabled if the 2834 * interrupt controller has per-cpu registers. 2835 */ 2836 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2837 bool *state) 2838 { 2839 struct irq_desc *desc; 2840 struct irq_data *data; 2841 unsigned long flags; 2842 int err = -EINVAL; 2843 2844 desc = irq_get_desc_buslock(irq, &flags, 0); 2845 if (!desc) 2846 return err; 2847 2848 data = irq_desc_get_irq_data(desc); 2849 2850 err = __irq_get_irqchip_state(data, which, state); 2851 2852 irq_put_desc_busunlock(desc, flags); 2853 return err; 2854 } 2855 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2856 2857 /** 2858 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2859 * @irq: Interrupt line that is forwarded to a VM 2860 * @which: State to be restored (one of IRQCHIP_STATE_*) 2861 * @val: Value corresponding to @which 2862 * 2863 * This call sets the internal irqchip state of an interrupt, 2864 * depending on the value of @which. 2865 * 2866 * This function should be called with migration disabled if the 2867 * interrupt controller has per-cpu registers. 2868 */ 2869 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2870 bool val) 2871 { 2872 struct irq_desc *desc; 2873 struct irq_data *data; 2874 struct irq_chip *chip; 2875 unsigned long flags; 2876 int err = -EINVAL; 2877 2878 desc = irq_get_desc_buslock(irq, &flags, 0); 2879 if (!desc) 2880 return err; 2881 2882 data = irq_desc_get_irq_data(desc); 2883 2884 do { 2885 chip = irq_data_get_irq_chip(data); 2886 if (WARN_ON_ONCE(!chip)) { 2887 err = -ENODEV; 2888 goto out_unlock; 2889 } 2890 if (chip->irq_set_irqchip_state) 2891 break; 2892 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2893 data = data->parent_data; 2894 #else 2895 data = NULL; 2896 #endif 2897 } while (data); 2898 2899 if (data) 2900 err = chip->irq_set_irqchip_state(data, which, val); 2901 2902 out_unlock: 2903 irq_put_desc_busunlock(desc, flags); 2904 return err; 2905 } 2906 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2907 2908 /** 2909 * irq_has_action - Check whether an interrupt is requested 2910 * @irq: The linux irq number 2911 * 2912 * Returns: A snapshot of the current state 2913 */ 2914 bool irq_has_action(unsigned int irq) 2915 { 2916 bool res; 2917 2918 rcu_read_lock(); 2919 res = irq_desc_has_action(irq_to_desc(irq)); 2920 rcu_read_unlock(); 2921 return res; 2922 } 2923 EXPORT_SYMBOL_GPL(irq_has_action); 2924 2925 /** 2926 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2927 * @irq: The linux irq number 2928 * @bitmask: The bitmask to evaluate 2929 * 2930 * Returns: True if one of the bits in @bitmask is set 2931 */ 2932 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2933 { 2934 struct irq_desc *desc; 2935 bool res = false; 2936 2937 rcu_read_lock(); 2938 desc = irq_to_desc(irq); 2939 if (desc) 2940 res = !!(desc->status_use_accessors & bitmask); 2941 rcu_read_unlock(); 2942 return res; 2943 } 2944 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2945