xref: /linux/kernel/irq/manage.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9 
10 #define pr_fmt(fmt) "genirq: " fmt
11 
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/task_work.h>
21 
22 #include "internals.h"
23 
24 #ifdef CONFIG_IRQ_FORCED_THREADING
25 __read_mostly bool force_irqthreads;
26 
27 static int __init setup_forced_irqthreads(char *arg)
28 {
29 	force_irqthreads = true;
30 	return 0;
31 }
32 early_param("threadirqs", setup_forced_irqthreads);
33 #endif
34 
35 static void __synchronize_hardirq(struct irq_desc *desc)
36 {
37 	bool inprogress;
38 
39 	do {
40 		unsigned long flags;
41 
42 		/*
43 		 * Wait until we're out of the critical section.  This might
44 		 * give the wrong answer due to the lack of memory barriers.
45 		 */
46 		while (irqd_irq_inprogress(&desc->irq_data))
47 			cpu_relax();
48 
49 		/* Ok, that indicated we're done: double-check carefully. */
50 		raw_spin_lock_irqsave(&desc->lock, flags);
51 		inprogress = irqd_irq_inprogress(&desc->irq_data);
52 		raw_spin_unlock_irqrestore(&desc->lock, flags);
53 
54 		/* Oops, that failed? */
55 	} while (inprogress);
56 }
57 
58 /**
59  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60  *	@irq: interrupt number to wait for
61  *
62  *	This function waits for any pending hard IRQ handlers for this
63  *	interrupt to complete before returning. If you use this
64  *	function while holding a resource the IRQ handler may need you
65  *	will deadlock. It does not take associated threaded handlers
66  *	into account.
67  *
68  *	Do not use this for shutdown scenarios where you must be sure
69  *	that all parts (hardirq and threaded handler) have completed.
70  *
71  *	Returns: false if a threaded handler is active.
72  *
73  *	This function may be called - with care - from IRQ context.
74  */
75 bool synchronize_hardirq(unsigned int irq)
76 {
77 	struct irq_desc *desc = irq_to_desc(irq);
78 
79 	if (desc) {
80 		__synchronize_hardirq(desc);
81 		return !atomic_read(&desc->threads_active);
82 	}
83 
84 	return true;
85 }
86 EXPORT_SYMBOL(synchronize_hardirq);
87 
88 /**
89  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90  *	@irq: interrupt number to wait for
91  *
92  *	This function waits for any pending IRQ handlers for this interrupt
93  *	to complete before returning. If you use this function while
94  *	holding a resource the IRQ handler may need you will deadlock.
95  *
96  *	This function may be called - with care - from IRQ context.
97  */
98 void synchronize_irq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc);
104 		/*
105 		 * We made sure that no hardirq handler is
106 		 * running. Now verify that no threaded handlers are
107 		 * active.
108 		 */
109 		wait_event(desc->wait_for_threads,
110 			   !atomic_read(&desc->threads_active));
111 	}
112 }
113 EXPORT_SYMBOL(synchronize_irq);
114 
115 #ifdef CONFIG_SMP
116 cpumask_var_t irq_default_affinity;
117 
118 static int __irq_can_set_affinity(struct irq_desc *desc)
119 {
120 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
121 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122 		return 0;
123 	return 1;
124 }
125 
126 /**
127  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
128  *	@irq:		Interrupt to check
129  *
130  */
131 int irq_can_set_affinity(unsigned int irq)
132 {
133 	return __irq_can_set_affinity(irq_to_desc(irq));
134 }
135 
136 /**
137  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
138  *	@desc:		irq descriptor which has affitnity changed
139  *
140  *	We just set IRQTF_AFFINITY and delegate the affinity setting
141  *	to the interrupt thread itself. We can not call
142  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
143  *	code can be called from hard interrupt context.
144  */
145 void irq_set_thread_affinity(struct irq_desc *desc)
146 {
147 	struct irqaction *action = desc->action;
148 
149 	while (action) {
150 		if (action->thread)
151 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
152 		action = action->next;
153 	}
154 }
155 
156 #ifdef CONFIG_GENERIC_PENDING_IRQ
157 static inline bool irq_can_move_pcntxt(struct irq_data *data)
158 {
159 	return irqd_can_move_in_process_context(data);
160 }
161 static inline bool irq_move_pending(struct irq_data *data)
162 {
163 	return irqd_is_setaffinity_pending(data);
164 }
165 static inline void
166 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
167 {
168 	cpumask_copy(desc->pending_mask, mask);
169 }
170 static inline void
171 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
172 {
173 	cpumask_copy(mask, desc->pending_mask);
174 }
175 #else
176 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
177 static inline bool irq_move_pending(struct irq_data *data) { return false; }
178 static inline void
179 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
180 static inline void
181 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
182 #endif
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	ret = chip->irq_set_affinity(data, mask, force);
192 	switch (ret) {
193 	case IRQ_SET_MASK_OK:
194 	case IRQ_SET_MASK_OK_DONE:
195 		cpumask_copy(desc->irq_common_data.affinity, mask);
196 	case IRQ_SET_MASK_OK_NOCOPY:
197 		irq_set_thread_affinity(desc);
198 		ret = 0;
199 	}
200 
201 	return ret;
202 }
203 
204 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
205 			    bool force)
206 {
207 	struct irq_chip *chip = irq_data_get_irq_chip(data);
208 	struct irq_desc *desc = irq_data_to_desc(data);
209 	int ret = 0;
210 
211 	if (!chip || !chip->irq_set_affinity)
212 		return -EINVAL;
213 
214 	if (irq_can_move_pcntxt(data)) {
215 		ret = irq_do_set_affinity(data, mask, force);
216 	} else {
217 		irqd_set_move_pending(data);
218 		irq_copy_pending(desc, mask);
219 	}
220 
221 	if (desc->affinity_notify) {
222 		kref_get(&desc->affinity_notify->kref);
223 		schedule_work(&desc->affinity_notify->work);
224 	}
225 	irqd_set(data, IRQD_AFFINITY_SET);
226 
227 	return ret;
228 }
229 
230 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
231 {
232 	struct irq_desc *desc = irq_to_desc(irq);
233 	unsigned long flags;
234 	int ret;
235 
236 	if (!desc)
237 		return -EINVAL;
238 
239 	raw_spin_lock_irqsave(&desc->lock, flags);
240 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
241 	raw_spin_unlock_irqrestore(&desc->lock, flags);
242 	return ret;
243 }
244 
245 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
246 {
247 	unsigned long flags;
248 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
249 
250 	if (!desc)
251 		return -EINVAL;
252 	desc->affinity_hint = m;
253 	irq_put_desc_unlock(desc, flags);
254 	/* set the initial affinity to prevent every interrupt being on CPU0 */
255 	if (m)
256 		__irq_set_affinity(irq, m, false);
257 	return 0;
258 }
259 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
260 
261 static void irq_affinity_notify(struct work_struct *work)
262 {
263 	struct irq_affinity_notify *notify =
264 		container_of(work, struct irq_affinity_notify, work);
265 	struct irq_desc *desc = irq_to_desc(notify->irq);
266 	cpumask_var_t cpumask;
267 	unsigned long flags;
268 
269 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
270 		goto out;
271 
272 	raw_spin_lock_irqsave(&desc->lock, flags);
273 	if (irq_move_pending(&desc->irq_data))
274 		irq_get_pending(cpumask, desc);
275 	else
276 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
277 	raw_spin_unlock_irqrestore(&desc->lock, flags);
278 
279 	notify->notify(notify, cpumask);
280 
281 	free_cpumask_var(cpumask);
282 out:
283 	kref_put(&notify->kref, notify->release);
284 }
285 
286 /**
287  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
288  *	@irq:		Interrupt for which to enable/disable notification
289  *	@notify:	Context for notification, or %NULL to disable
290  *			notification.  Function pointers must be initialised;
291  *			the other fields will be initialised by this function.
292  *
293  *	Must be called in process context.  Notification may only be enabled
294  *	after the IRQ is allocated and must be disabled before the IRQ is
295  *	freed using free_irq().
296  */
297 int
298 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
299 {
300 	struct irq_desc *desc = irq_to_desc(irq);
301 	struct irq_affinity_notify *old_notify;
302 	unsigned long flags;
303 
304 	/* The release function is promised process context */
305 	might_sleep();
306 
307 	if (!desc)
308 		return -EINVAL;
309 
310 	/* Complete initialisation of *notify */
311 	if (notify) {
312 		notify->irq = irq;
313 		kref_init(&notify->kref);
314 		INIT_WORK(&notify->work, irq_affinity_notify);
315 	}
316 
317 	raw_spin_lock_irqsave(&desc->lock, flags);
318 	old_notify = desc->affinity_notify;
319 	desc->affinity_notify = notify;
320 	raw_spin_unlock_irqrestore(&desc->lock, flags);
321 
322 	if (old_notify)
323 		kref_put(&old_notify->kref, old_notify->release);
324 
325 	return 0;
326 }
327 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
328 
329 #ifndef CONFIG_AUTO_IRQ_AFFINITY
330 /*
331  * Generic version of the affinity autoselector.
332  */
333 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
334 {
335 	struct cpumask *set = irq_default_affinity;
336 	int node = irq_desc_get_node(desc);
337 
338 	/* Excludes PER_CPU and NO_BALANCE interrupts */
339 	if (!__irq_can_set_affinity(desc))
340 		return 0;
341 
342 	/*
343 	 * Preserve an userspace affinity setup, but make sure that
344 	 * one of the targets is online.
345 	 */
346 	if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
347 		if (cpumask_intersects(desc->irq_common_data.affinity,
348 				       cpu_online_mask))
349 			set = desc->irq_common_data.affinity;
350 		else
351 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
352 	}
353 
354 	cpumask_and(mask, cpu_online_mask, set);
355 	if (node != NUMA_NO_NODE) {
356 		const struct cpumask *nodemask = cpumask_of_node(node);
357 
358 		/* make sure at least one of the cpus in nodemask is online */
359 		if (cpumask_intersects(mask, nodemask))
360 			cpumask_and(mask, mask, nodemask);
361 	}
362 	irq_do_set_affinity(&desc->irq_data, mask, false);
363 	return 0;
364 }
365 #else
366 /* Wrapper for ALPHA specific affinity selector magic */
367 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
368 {
369 	return irq_select_affinity(irq_desc_get_irq(d));
370 }
371 #endif
372 
373 /*
374  * Called when affinity is set via /proc/irq
375  */
376 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
377 {
378 	struct irq_desc *desc = irq_to_desc(irq);
379 	unsigned long flags;
380 	int ret;
381 
382 	raw_spin_lock_irqsave(&desc->lock, flags);
383 	ret = setup_affinity(desc, mask);
384 	raw_spin_unlock_irqrestore(&desc->lock, flags);
385 	return ret;
386 }
387 
388 #else
389 static inline int
390 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
391 {
392 	return 0;
393 }
394 #endif
395 
396 /**
397  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
398  *	@irq: interrupt number to set affinity
399  *	@vcpu_info: vCPU specific data
400  *
401  *	This function uses the vCPU specific data to set the vCPU
402  *	affinity for an irq. The vCPU specific data is passed from
403  *	outside, such as KVM. One example code path is as below:
404  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
405  */
406 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
407 {
408 	unsigned long flags;
409 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
410 	struct irq_data *data;
411 	struct irq_chip *chip;
412 	int ret = -ENOSYS;
413 
414 	if (!desc)
415 		return -EINVAL;
416 
417 	data = irq_desc_get_irq_data(desc);
418 	chip = irq_data_get_irq_chip(data);
419 	if (chip && chip->irq_set_vcpu_affinity)
420 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
421 	irq_put_desc_unlock(desc, flags);
422 
423 	return ret;
424 }
425 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
426 
427 void __disable_irq(struct irq_desc *desc)
428 {
429 	if (!desc->depth++)
430 		irq_disable(desc);
431 }
432 
433 static int __disable_irq_nosync(unsigned int irq)
434 {
435 	unsigned long flags;
436 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
437 
438 	if (!desc)
439 		return -EINVAL;
440 	__disable_irq(desc);
441 	irq_put_desc_busunlock(desc, flags);
442 	return 0;
443 }
444 
445 /**
446  *	disable_irq_nosync - disable an irq without waiting
447  *	@irq: Interrupt to disable
448  *
449  *	Disable the selected interrupt line.  Disables and Enables are
450  *	nested.
451  *	Unlike disable_irq(), this function does not ensure existing
452  *	instances of the IRQ handler have completed before returning.
453  *
454  *	This function may be called from IRQ context.
455  */
456 void disable_irq_nosync(unsigned int irq)
457 {
458 	__disable_irq_nosync(irq);
459 }
460 EXPORT_SYMBOL(disable_irq_nosync);
461 
462 /**
463  *	disable_irq - disable an irq and wait for completion
464  *	@irq: Interrupt to disable
465  *
466  *	Disable the selected interrupt line.  Enables and Disables are
467  *	nested.
468  *	This function waits for any pending IRQ handlers for this interrupt
469  *	to complete before returning. If you use this function while
470  *	holding a resource the IRQ handler may need you will deadlock.
471  *
472  *	This function may be called - with care - from IRQ context.
473  */
474 void disable_irq(unsigned int irq)
475 {
476 	if (!__disable_irq_nosync(irq))
477 		synchronize_irq(irq);
478 }
479 EXPORT_SYMBOL(disable_irq);
480 
481 /**
482  *	disable_hardirq - disables an irq and waits for hardirq completion
483  *	@irq: Interrupt to disable
484  *
485  *	Disable the selected interrupt line.  Enables and Disables are
486  *	nested.
487  *	This function waits for any pending hard IRQ handlers for this
488  *	interrupt to complete before returning. If you use this function while
489  *	holding a resource the hard IRQ handler may need you will deadlock.
490  *
491  *	When used to optimistically disable an interrupt from atomic context
492  *	the return value must be checked.
493  *
494  *	Returns: false if a threaded handler is active.
495  *
496  *	This function may be called - with care - from IRQ context.
497  */
498 bool disable_hardirq(unsigned int irq)
499 {
500 	if (!__disable_irq_nosync(irq))
501 		return synchronize_hardirq(irq);
502 
503 	return false;
504 }
505 EXPORT_SYMBOL_GPL(disable_hardirq);
506 
507 void __enable_irq(struct irq_desc *desc)
508 {
509 	switch (desc->depth) {
510 	case 0:
511  err_out:
512 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
513 		     irq_desc_get_irq(desc));
514 		break;
515 	case 1: {
516 		if (desc->istate & IRQS_SUSPENDED)
517 			goto err_out;
518 		/* Prevent probing on this irq: */
519 		irq_settings_set_noprobe(desc);
520 		irq_enable(desc);
521 		check_irq_resend(desc);
522 		/* fall-through */
523 	}
524 	default:
525 		desc->depth--;
526 	}
527 }
528 
529 /**
530  *	enable_irq - enable handling of an irq
531  *	@irq: Interrupt to enable
532  *
533  *	Undoes the effect of one call to disable_irq().  If this
534  *	matches the last disable, processing of interrupts on this
535  *	IRQ line is re-enabled.
536  *
537  *	This function may be called from IRQ context only when
538  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
539  */
540 void enable_irq(unsigned int irq)
541 {
542 	unsigned long flags;
543 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
544 
545 	if (!desc)
546 		return;
547 	if (WARN(!desc->irq_data.chip,
548 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
549 		goto out;
550 
551 	__enable_irq(desc);
552 out:
553 	irq_put_desc_busunlock(desc, flags);
554 }
555 EXPORT_SYMBOL(enable_irq);
556 
557 static int set_irq_wake_real(unsigned int irq, unsigned int on)
558 {
559 	struct irq_desc *desc = irq_to_desc(irq);
560 	int ret = -ENXIO;
561 
562 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
563 		return 0;
564 
565 	if (desc->irq_data.chip->irq_set_wake)
566 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
567 
568 	return ret;
569 }
570 
571 /**
572  *	irq_set_irq_wake - control irq power management wakeup
573  *	@irq:	interrupt to control
574  *	@on:	enable/disable power management wakeup
575  *
576  *	Enable/disable power management wakeup mode, which is
577  *	disabled by default.  Enables and disables must match,
578  *	just as they match for non-wakeup mode support.
579  *
580  *	Wakeup mode lets this IRQ wake the system from sleep
581  *	states like "suspend to RAM".
582  */
583 int irq_set_irq_wake(unsigned int irq, unsigned int on)
584 {
585 	unsigned long flags;
586 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
587 	int ret = 0;
588 
589 	if (!desc)
590 		return -EINVAL;
591 
592 	/* wakeup-capable irqs can be shared between drivers that
593 	 * don't need to have the same sleep mode behaviors.
594 	 */
595 	if (on) {
596 		if (desc->wake_depth++ == 0) {
597 			ret = set_irq_wake_real(irq, on);
598 			if (ret)
599 				desc->wake_depth = 0;
600 			else
601 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
602 		}
603 	} else {
604 		if (desc->wake_depth == 0) {
605 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
606 		} else if (--desc->wake_depth == 0) {
607 			ret = set_irq_wake_real(irq, on);
608 			if (ret)
609 				desc->wake_depth = 1;
610 			else
611 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
612 		}
613 	}
614 	irq_put_desc_busunlock(desc, flags);
615 	return ret;
616 }
617 EXPORT_SYMBOL(irq_set_irq_wake);
618 
619 /*
620  * Internal function that tells the architecture code whether a
621  * particular irq has been exclusively allocated or is available
622  * for driver use.
623  */
624 int can_request_irq(unsigned int irq, unsigned long irqflags)
625 {
626 	unsigned long flags;
627 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
628 	int canrequest = 0;
629 
630 	if (!desc)
631 		return 0;
632 
633 	if (irq_settings_can_request(desc)) {
634 		if (!desc->action ||
635 		    irqflags & desc->action->flags & IRQF_SHARED)
636 			canrequest = 1;
637 	}
638 	irq_put_desc_unlock(desc, flags);
639 	return canrequest;
640 }
641 
642 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
643 {
644 	struct irq_chip *chip = desc->irq_data.chip;
645 	int ret, unmask = 0;
646 
647 	if (!chip || !chip->irq_set_type) {
648 		/*
649 		 * IRQF_TRIGGER_* but the PIC does not support multiple
650 		 * flow-types?
651 		 */
652 		pr_debug("No set_type function for IRQ %d (%s)\n",
653 			 irq_desc_get_irq(desc),
654 			 chip ? (chip->name ? : "unknown") : "unknown");
655 		return 0;
656 	}
657 
658 	flags &= IRQ_TYPE_SENSE_MASK;
659 
660 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
661 		if (!irqd_irq_masked(&desc->irq_data))
662 			mask_irq(desc);
663 		if (!irqd_irq_disabled(&desc->irq_data))
664 			unmask = 1;
665 	}
666 
667 	/* caller masked out all except trigger mode flags */
668 	ret = chip->irq_set_type(&desc->irq_data, flags);
669 
670 	switch (ret) {
671 	case IRQ_SET_MASK_OK:
672 	case IRQ_SET_MASK_OK_DONE:
673 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
674 		irqd_set(&desc->irq_data, flags);
675 
676 	case IRQ_SET_MASK_OK_NOCOPY:
677 		flags = irqd_get_trigger_type(&desc->irq_data);
678 		irq_settings_set_trigger_mask(desc, flags);
679 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
680 		irq_settings_clr_level(desc);
681 		if (flags & IRQ_TYPE_LEVEL_MASK) {
682 			irq_settings_set_level(desc);
683 			irqd_set(&desc->irq_data, IRQD_LEVEL);
684 		}
685 
686 		ret = 0;
687 		break;
688 	default:
689 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
690 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
691 	}
692 	if (unmask)
693 		unmask_irq(desc);
694 	return ret;
695 }
696 
697 #ifdef CONFIG_HARDIRQS_SW_RESEND
698 int irq_set_parent(int irq, int parent_irq)
699 {
700 	unsigned long flags;
701 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
702 
703 	if (!desc)
704 		return -EINVAL;
705 
706 	desc->parent_irq = parent_irq;
707 
708 	irq_put_desc_unlock(desc, flags);
709 	return 0;
710 }
711 #endif
712 
713 /*
714  * Default primary interrupt handler for threaded interrupts. Is
715  * assigned as primary handler when request_threaded_irq is called
716  * with handler == NULL. Useful for oneshot interrupts.
717  */
718 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
719 {
720 	return IRQ_WAKE_THREAD;
721 }
722 
723 /*
724  * Primary handler for nested threaded interrupts. Should never be
725  * called.
726  */
727 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
728 {
729 	WARN(1, "Primary handler called for nested irq %d\n", irq);
730 	return IRQ_NONE;
731 }
732 
733 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
734 {
735 	WARN(1, "Secondary action handler called for irq %d\n", irq);
736 	return IRQ_NONE;
737 }
738 
739 static int irq_wait_for_interrupt(struct irqaction *action)
740 {
741 	set_current_state(TASK_INTERRUPTIBLE);
742 
743 	while (!kthread_should_stop()) {
744 
745 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
746 				       &action->thread_flags)) {
747 			__set_current_state(TASK_RUNNING);
748 			return 0;
749 		}
750 		schedule();
751 		set_current_state(TASK_INTERRUPTIBLE);
752 	}
753 	__set_current_state(TASK_RUNNING);
754 	return -1;
755 }
756 
757 /*
758  * Oneshot interrupts keep the irq line masked until the threaded
759  * handler finished. unmask if the interrupt has not been disabled and
760  * is marked MASKED.
761  */
762 static void irq_finalize_oneshot(struct irq_desc *desc,
763 				 struct irqaction *action)
764 {
765 	if (!(desc->istate & IRQS_ONESHOT) ||
766 	    action->handler == irq_forced_secondary_handler)
767 		return;
768 again:
769 	chip_bus_lock(desc);
770 	raw_spin_lock_irq(&desc->lock);
771 
772 	/*
773 	 * Implausible though it may be we need to protect us against
774 	 * the following scenario:
775 	 *
776 	 * The thread is faster done than the hard interrupt handler
777 	 * on the other CPU. If we unmask the irq line then the
778 	 * interrupt can come in again and masks the line, leaves due
779 	 * to IRQS_INPROGRESS and the irq line is masked forever.
780 	 *
781 	 * This also serializes the state of shared oneshot handlers
782 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
783 	 * irq_wake_thread(). See the comment there which explains the
784 	 * serialization.
785 	 */
786 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
787 		raw_spin_unlock_irq(&desc->lock);
788 		chip_bus_sync_unlock(desc);
789 		cpu_relax();
790 		goto again;
791 	}
792 
793 	/*
794 	 * Now check again, whether the thread should run. Otherwise
795 	 * we would clear the threads_oneshot bit of this thread which
796 	 * was just set.
797 	 */
798 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
799 		goto out_unlock;
800 
801 	desc->threads_oneshot &= ~action->thread_mask;
802 
803 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
804 	    irqd_irq_masked(&desc->irq_data))
805 		unmask_threaded_irq(desc);
806 
807 out_unlock:
808 	raw_spin_unlock_irq(&desc->lock);
809 	chip_bus_sync_unlock(desc);
810 }
811 
812 #ifdef CONFIG_SMP
813 /*
814  * Check whether we need to change the affinity of the interrupt thread.
815  */
816 static void
817 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
818 {
819 	cpumask_var_t mask;
820 	bool valid = true;
821 
822 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
823 		return;
824 
825 	/*
826 	 * In case we are out of memory we set IRQTF_AFFINITY again and
827 	 * try again next time
828 	 */
829 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
830 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
831 		return;
832 	}
833 
834 	raw_spin_lock_irq(&desc->lock);
835 	/*
836 	 * This code is triggered unconditionally. Check the affinity
837 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
838 	 */
839 	if (desc->irq_common_data.affinity)
840 		cpumask_copy(mask, desc->irq_common_data.affinity);
841 	else
842 		valid = false;
843 	raw_spin_unlock_irq(&desc->lock);
844 
845 	if (valid)
846 		set_cpus_allowed_ptr(current, mask);
847 	free_cpumask_var(mask);
848 }
849 #else
850 static inline void
851 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
852 #endif
853 
854 /*
855  * Interrupts which are not explicitely requested as threaded
856  * interrupts rely on the implicit bh/preempt disable of the hard irq
857  * context. So we need to disable bh here to avoid deadlocks and other
858  * side effects.
859  */
860 static irqreturn_t
861 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
862 {
863 	irqreturn_t ret;
864 
865 	local_bh_disable();
866 	ret = action->thread_fn(action->irq, action->dev_id);
867 	irq_finalize_oneshot(desc, action);
868 	local_bh_enable();
869 	return ret;
870 }
871 
872 /*
873  * Interrupts explicitly requested as threaded interrupts want to be
874  * preemtible - many of them need to sleep and wait for slow busses to
875  * complete.
876  */
877 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
878 		struct irqaction *action)
879 {
880 	irqreturn_t ret;
881 
882 	ret = action->thread_fn(action->irq, action->dev_id);
883 	irq_finalize_oneshot(desc, action);
884 	return ret;
885 }
886 
887 static void wake_threads_waitq(struct irq_desc *desc)
888 {
889 	if (atomic_dec_and_test(&desc->threads_active))
890 		wake_up(&desc->wait_for_threads);
891 }
892 
893 static void irq_thread_dtor(struct callback_head *unused)
894 {
895 	struct task_struct *tsk = current;
896 	struct irq_desc *desc;
897 	struct irqaction *action;
898 
899 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
900 		return;
901 
902 	action = kthread_data(tsk);
903 
904 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
905 	       tsk->comm, tsk->pid, action->irq);
906 
907 
908 	desc = irq_to_desc(action->irq);
909 	/*
910 	 * If IRQTF_RUNTHREAD is set, we need to decrement
911 	 * desc->threads_active and wake possible waiters.
912 	 */
913 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
914 		wake_threads_waitq(desc);
915 
916 	/* Prevent a stale desc->threads_oneshot */
917 	irq_finalize_oneshot(desc, action);
918 }
919 
920 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
921 {
922 	struct irqaction *secondary = action->secondary;
923 
924 	if (WARN_ON_ONCE(!secondary))
925 		return;
926 
927 	raw_spin_lock_irq(&desc->lock);
928 	__irq_wake_thread(desc, secondary);
929 	raw_spin_unlock_irq(&desc->lock);
930 }
931 
932 /*
933  * Interrupt handler thread
934  */
935 static int irq_thread(void *data)
936 {
937 	struct callback_head on_exit_work;
938 	struct irqaction *action = data;
939 	struct irq_desc *desc = irq_to_desc(action->irq);
940 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
941 			struct irqaction *action);
942 
943 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
944 					&action->thread_flags))
945 		handler_fn = irq_forced_thread_fn;
946 	else
947 		handler_fn = irq_thread_fn;
948 
949 	init_task_work(&on_exit_work, irq_thread_dtor);
950 	task_work_add(current, &on_exit_work, false);
951 
952 	irq_thread_check_affinity(desc, action);
953 
954 	while (!irq_wait_for_interrupt(action)) {
955 		irqreturn_t action_ret;
956 
957 		irq_thread_check_affinity(desc, action);
958 
959 		action_ret = handler_fn(desc, action);
960 		if (action_ret == IRQ_HANDLED)
961 			atomic_inc(&desc->threads_handled);
962 		if (action_ret == IRQ_WAKE_THREAD)
963 			irq_wake_secondary(desc, action);
964 
965 		wake_threads_waitq(desc);
966 	}
967 
968 	/*
969 	 * This is the regular exit path. __free_irq() is stopping the
970 	 * thread via kthread_stop() after calling
971 	 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
972 	 * oneshot mask bit can be set. We cannot verify that as we
973 	 * cannot touch the oneshot mask at this point anymore as
974 	 * __setup_irq() might have given out currents thread_mask
975 	 * again.
976 	 */
977 	task_work_cancel(current, irq_thread_dtor);
978 	return 0;
979 }
980 
981 /**
982  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
983  *	@irq:		Interrupt line
984  *	@dev_id:	Device identity for which the thread should be woken
985  *
986  */
987 void irq_wake_thread(unsigned int irq, void *dev_id)
988 {
989 	struct irq_desc *desc = irq_to_desc(irq);
990 	struct irqaction *action;
991 	unsigned long flags;
992 
993 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
994 		return;
995 
996 	raw_spin_lock_irqsave(&desc->lock, flags);
997 	for (action = desc->action; action; action = action->next) {
998 		if (action->dev_id == dev_id) {
999 			if (action->thread)
1000 				__irq_wake_thread(desc, action);
1001 			break;
1002 		}
1003 	}
1004 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1005 }
1006 EXPORT_SYMBOL_GPL(irq_wake_thread);
1007 
1008 static int irq_setup_forced_threading(struct irqaction *new)
1009 {
1010 	if (!force_irqthreads)
1011 		return 0;
1012 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1013 		return 0;
1014 
1015 	new->flags |= IRQF_ONESHOT;
1016 
1017 	/*
1018 	 * Handle the case where we have a real primary handler and a
1019 	 * thread handler. We force thread them as well by creating a
1020 	 * secondary action.
1021 	 */
1022 	if (new->handler != irq_default_primary_handler && new->thread_fn) {
1023 		/* Allocate the secondary action */
1024 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1025 		if (!new->secondary)
1026 			return -ENOMEM;
1027 		new->secondary->handler = irq_forced_secondary_handler;
1028 		new->secondary->thread_fn = new->thread_fn;
1029 		new->secondary->dev_id = new->dev_id;
1030 		new->secondary->irq = new->irq;
1031 		new->secondary->name = new->name;
1032 	}
1033 	/* Deal with the primary handler */
1034 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1035 	new->thread_fn = new->handler;
1036 	new->handler = irq_default_primary_handler;
1037 	return 0;
1038 }
1039 
1040 static int irq_request_resources(struct irq_desc *desc)
1041 {
1042 	struct irq_data *d = &desc->irq_data;
1043 	struct irq_chip *c = d->chip;
1044 
1045 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1046 }
1047 
1048 static void irq_release_resources(struct irq_desc *desc)
1049 {
1050 	struct irq_data *d = &desc->irq_data;
1051 	struct irq_chip *c = d->chip;
1052 
1053 	if (c->irq_release_resources)
1054 		c->irq_release_resources(d);
1055 }
1056 
1057 static int
1058 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1059 {
1060 	struct task_struct *t;
1061 	struct sched_param param = {
1062 		.sched_priority = MAX_USER_RT_PRIO/2,
1063 	};
1064 
1065 	if (!secondary) {
1066 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1067 				   new->name);
1068 	} else {
1069 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1070 				   new->name);
1071 		param.sched_priority -= 1;
1072 	}
1073 
1074 	if (IS_ERR(t))
1075 		return PTR_ERR(t);
1076 
1077 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1078 
1079 	/*
1080 	 * We keep the reference to the task struct even if
1081 	 * the thread dies to avoid that the interrupt code
1082 	 * references an already freed task_struct.
1083 	 */
1084 	get_task_struct(t);
1085 	new->thread = t;
1086 	/*
1087 	 * Tell the thread to set its affinity. This is
1088 	 * important for shared interrupt handlers as we do
1089 	 * not invoke setup_affinity() for the secondary
1090 	 * handlers as everything is already set up. Even for
1091 	 * interrupts marked with IRQF_NO_BALANCE this is
1092 	 * correct as we want the thread to move to the cpu(s)
1093 	 * on which the requesting code placed the interrupt.
1094 	 */
1095 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1096 	return 0;
1097 }
1098 
1099 /*
1100  * Internal function to register an irqaction - typically used to
1101  * allocate special interrupts that are part of the architecture.
1102  */
1103 static int
1104 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1105 {
1106 	struct irqaction *old, **old_ptr;
1107 	unsigned long flags, thread_mask = 0;
1108 	int ret, nested, shared = 0;
1109 	cpumask_var_t mask;
1110 
1111 	if (!desc)
1112 		return -EINVAL;
1113 
1114 	if (desc->irq_data.chip == &no_irq_chip)
1115 		return -ENOSYS;
1116 	if (!try_module_get(desc->owner))
1117 		return -ENODEV;
1118 
1119 	new->irq = irq;
1120 
1121 	/*
1122 	 * Check whether the interrupt nests into another interrupt
1123 	 * thread.
1124 	 */
1125 	nested = irq_settings_is_nested_thread(desc);
1126 	if (nested) {
1127 		if (!new->thread_fn) {
1128 			ret = -EINVAL;
1129 			goto out_mput;
1130 		}
1131 		/*
1132 		 * Replace the primary handler which was provided from
1133 		 * the driver for non nested interrupt handling by the
1134 		 * dummy function which warns when called.
1135 		 */
1136 		new->handler = irq_nested_primary_handler;
1137 	} else {
1138 		if (irq_settings_can_thread(desc)) {
1139 			ret = irq_setup_forced_threading(new);
1140 			if (ret)
1141 				goto out_mput;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Create a handler thread when a thread function is supplied
1147 	 * and the interrupt does not nest into another interrupt
1148 	 * thread.
1149 	 */
1150 	if (new->thread_fn && !nested) {
1151 		ret = setup_irq_thread(new, irq, false);
1152 		if (ret)
1153 			goto out_mput;
1154 		if (new->secondary) {
1155 			ret = setup_irq_thread(new->secondary, irq, true);
1156 			if (ret)
1157 				goto out_thread;
1158 		}
1159 	}
1160 
1161 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1162 		ret = -ENOMEM;
1163 		goto out_thread;
1164 	}
1165 
1166 	/*
1167 	 * Drivers are often written to work w/o knowledge about the
1168 	 * underlying irq chip implementation, so a request for a
1169 	 * threaded irq without a primary hard irq context handler
1170 	 * requires the ONESHOT flag to be set. Some irq chips like
1171 	 * MSI based interrupts are per se one shot safe. Check the
1172 	 * chip flags, so we can avoid the unmask dance at the end of
1173 	 * the threaded handler for those.
1174 	 */
1175 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1176 		new->flags &= ~IRQF_ONESHOT;
1177 
1178 	/*
1179 	 * The following block of code has to be executed atomically
1180 	 */
1181 	raw_spin_lock_irqsave(&desc->lock, flags);
1182 	old_ptr = &desc->action;
1183 	old = *old_ptr;
1184 	if (old) {
1185 		/*
1186 		 * Can't share interrupts unless both agree to and are
1187 		 * the same type (level, edge, polarity). So both flag
1188 		 * fields must have IRQF_SHARED set and the bits which
1189 		 * set the trigger type must match. Also all must
1190 		 * agree on ONESHOT.
1191 		 */
1192 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1193 		    ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1194 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1195 			goto mismatch;
1196 
1197 		/* All handlers must agree on per-cpuness */
1198 		if ((old->flags & IRQF_PERCPU) !=
1199 		    (new->flags & IRQF_PERCPU))
1200 			goto mismatch;
1201 
1202 		/* add new interrupt at end of irq queue */
1203 		do {
1204 			/*
1205 			 * Or all existing action->thread_mask bits,
1206 			 * so we can find the next zero bit for this
1207 			 * new action.
1208 			 */
1209 			thread_mask |= old->thread_mask;
1210 			old_ptr = &old->next;
1211 			old = *old_ptr;
1212 		} while (old);
1213 		shared = 1;
1214 	}
1215 
1216 	/*
1217 	 * Setup the thread mask for this irqaction for ONESHOT. For
1218 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1219 	 * conditional in irq_wake_thread().
1220 	 */
1221 	if (new->flags & IRQF_ONESHOT) {
1222 		/*
1223 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1224 		 * but who knows.
1225 		 */
1226 		if (thread_mask == ~0UL) {
1227 			ret = -EBUSY;
1228 			goto out_mask;
1229 		}
1230 		/*
1231 		 * The thread_mask for the action is or'ed to
1232 		 * desc->thread_active to indicate that the
1233 		 * IRQF_ONESHOT thread handler has been woken, but not
1234 		 * yet finished. The bit is cleared when a thread
1235 		 * completes. When all threads of a shared interrupt
1236 		 * line have completed desc->threads_active becomes
1237 		 * zero and the interrupt line is unmasked. See
1238 		 * handle.c:irq_wake_thread() for further information.
1239 		 *
1240 		 * If no thread is woken by primary (hard irq context)
1241 		 * interrupt handlers, then desc->threads_active is
1242 		 * also checked for zero to unmask the irq line in the
1243 		 * affected hard irq flow handlers
1244 		 * (handle_[fasteoi|level]_irq).
1245 		 *
1246 		 * The new action gets the first zero bit of
1247 		 * thread_mask assigned. See the loop above which or's
1248 		 * all existing action->thread_mask bits.
1249 		 */
1250 		new->thread_mask = 1 << ffz(thread_mask);
1251 
1252 	} else if (new->handler == irq_default_primary_handler &&
1253 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1254 		/*
1255 		 * The interrupt was requested with handler = NULL, so
1256 		 * we use the default primary handler for it. But it
1257 		 * does not have the oneshot flag set. In combination
1258 		 * with level interrupts this is deadly, because the
1259 		 * default primary handler just wakes the thread, then
1260 		 * the irq lines is reenabled, but the device still
1261 		 * has the level irq asserted. Rinse and repeat....
1262 		 *
1263 		 * While this works for edge type interrupts, we play
1264 		 * it safe and reject unconditionally because we can't
1265 		 * say for sure which type this interrupt really
1266 		 * has. The type flags are unreliable as the
1267 		 * underlying chip implementation can override them.
1268 		 */
1269 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1270 		       irq);
1271 		ret = -EINVAL;
1272 		goto out_mask;
1273 	}
1274 
1275 	if (!shared) {
1276 		ret = irq_request_resources(desc);
1277 		if (ret) {
1278 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1279 			       new->name, irq, desc->irq_data.chip->name);
1280 			goto out_mask;
1281 		}
1282 
1283 		init_waitqueue_head(&desc->wait_for_threads);
1284 
1285 		/* Setup the type (level, edge polarity) if configured: */
1286 		if (new->flags & IRQF_TRIGGER_MASK) {
1287 			ret = __irq_set_trigger(desc,
1288 						new->flags & IRQF_TRIGGER_MASK);
1289 
1290 			if (ret)
1291 				goto out_mask;
1292 		}
1293 
1294 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1295 				  IRQS_ONESHOT | IRQS_WAITING);
1296 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1297 
1298 		if (new->flags & IRQF_PERCPU) {
1299 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1300 			irq_settings_set_per_cpu(desc);
1301 		}
1302 
1303 		if (new->flags & IRQF_ONESHOT)
1304 			desc->istate |= IRQS_ONESHOT;
1305 
1306 		if (irq_settings_can_autoenable(desc))
1307 			irq_startup(desc, true);
1308 		else
1309 			/* Undo nested disables: */
1310 			desc->depth = 1;
1311 
1312 		/* Exclude IRQ from balancing if requested */
1313 		if (new->flags & IRQF_NOBALANCING) {
1314 			irq_settings_set_no_balancing(desc);
1315 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1316 		}
1317 
1318 		/* Set default affinity mask once everything is setup */
1319 		setup_affinity(desc, mask);
1320 
1321 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1322 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1323 		unsigned int omsk = irq_settings_get_trigger_mask(desc);
1324 
1325 		if (nmsk != omsk)
1326 			/* hope the handler works with current  trigger mode */
1327 			pr_warning("irq %d uses trigger mode %u; requested %u\n",
1328 				   irq, nmsk, omsk);
1329 	}
1330 
1331 	*old_ptr = new;
1332 
1333 	irq_pm_install_action(desc, new);
1334 
1335 	/* Reset broken irq detection when installing new handler */
1336 	desc->irq_count = 0;
1337 	desc->irqs_unhandled = 0;
1338 
1339 	/*
1340 	 * Check whether we disabled the irq via the spurious handler
1341 	 * before. Reenable it and give it another chance.
1342 	 */
1343 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1344 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1345 		__enable_irq(desc);
1346 	}
1347 
1348 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1349 
1350 	/*
1351 	 * Strictly no need to wake it up, but hung_task complains
1352 	 * when no hard interrupt wakes the thread up.
1353 	 */
1354 	if (new->thread)
1355 		wake_up_process(new->thread);
1356 	if (new->secondary)
1357 		wake_up_process(new->secondary->thread);
1358 
1359 	register_irq_proc(irq, desc);
1360 	new->dir = NULL;
1361 	register_handler_proc(irq, new);
1362 	free_cpumask_var(mask);
1363 
1364 	return 0;
1365 
1366 mismatch:
1367 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1368 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1369 		       irq, new->flags, new->name, old->flags, old->name);
1370 #ifdef CONFIG_DEBUG_SHIRQ
1371 		dump_stack();
1372 #endif
1373 	}
1374 	ret = -EBUSY;
1375 
1376 out_mask:
1377 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1378 	free_cpumask_var(mask);
1379 
1380 out_thread:
1381 	if (new->thread) {
1382 		struct task_struct *t = new->thread;
1383 
1384 		new->thread = NULL;
1385 		kthread_stop(t);
1386 		put_task_struct(t);
1387 	}
1388 	if (new->secondary && new->secondary->thread) {
1389 		struct task_struct *t = new->secondary->thread;
1390 
1391 		new->secondary->thread = NULL;
1392 		kthread_stop(t);
1393 		put_task_struct(t);
1394 	}
1395 out_mput:
1396 	module_put(desc->owner);
1397 	return ret;
1398 }
1399 
1400 /**
1401  *	setup_irq - setup an interrupt
1402  *	@irq: Interrupt line to setup
1403  *	@act: irqaction for the interrupt
1404  *
1405  * Used to statically setup interrupts in the early boot process.
1406  */
1407 int setup_irq(unsigned int irq, struct irqaction *act)
1408 {
1409 	int retval;
1410 	struct irq_desc *desc = irq_to_desc(irq);
1411 
1412 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1413 		return -EINVAL;
1414 	chip_bus_lock(desc);
1415 	retval = __setup_irq(irq, desc, act);
1416 	chip_bus_sync_unlock(desc);
1417 
1418 	return retval;
1419 }
1420 EXPORT_SYMBOL_GPL(setup_irq);
1421 
1422 /*
1423  * Internal function to unregister an irqaction - used to free
1424  * regular and special interrupts that are part of the architecture.
1425  */
1426 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1427 {
1428 	struct irq_desc *desc = irq_to_desc(irq);
1429 	struct irqaction *action, **action_ptr;
1430 	unsigned long flags;
1431 
1432 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1433 
1434 	if (!desc)
1435 		return NULL;
1436 
1437 	chip_bus_lock(desc);
1438 	raw_spin_lock_irqsave(&desc->lock, flags);
1439 
1440 	/*
1441 	 * There can be multiple actions per IRQ descriptor, find the right
1442 	 * one based on the dev_id:
1443 	 */
1444 	action_ptr = &desc->action;
1445 	for (;;) {
1446 		action = *action_ptr;
1447 
1448 		if (!action) {
1449 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1450 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1451 			chip_bus_sync_unlock(desc);
1452 			return NULL;
1453 		}
1454 
1455 		if (action->dev_id == dev_id)
1456 			break;
1457 		action_ptr = &action->next;
1458 	}
1459 
1460 	/* Found it - now remove it from the list of entries: */
1461 	*action_ptr = action->next;
1462 
1463 	irq_pm_remove_action(desc, action);
1464 
1465 	/* If this was the last handler, shut down the IRQ line: */
1466 	if (!desc->action) {
1467 		irq_settings_clr_disable_unlazy(desc);
1468 		irq_shutdown(desc);
1469 		irq_release_resources(desc);
1470 	}
1471 
1472 #ifdef CONFIG_SMP
1473 	/* make sure affinity_hint is cleaned up */
1474 	if (WARN_ON_ONCE(desc->affinity_hint))
1475 		desc->affinity_hint = NULL;
1476 #endif
1477 
1478 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1479 	chip_bus_sync_unlock(desc);
1480 
1481 	unregister_handler_proc(irq, action);
1482 
1483 	/* Make sure it's not being used on another CPU: */
1484 	synchronize_irq(irq);
1485 
1486 #ifdef CONFIG_DEBUG_SHIRQ
1487 	/*
1488 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1489 	 * event to happen even now it's being freed, so let's make sure that
1490 	 * is so by doing an extra call to the handler ....
1491 	 *
1492 	 * ( We do this after actually deregistering it, to make sure that a
1493 	 *   'real' IRQ doesn't run in * parallel with our fake. )
1494 	 */
1495 	if (action->flags & IRQF_SHARED) {
1496 		local_irq_save(flags);
1497 		action->handler(irq, dev_id);
1498 		local_irq_restore(flags);
1499 	}
1500 #endif
1501 
1502 	if (action->thread) {
1503 		kthread_stop(action->thread);
1504 		put_task_struct(action->thread);
1505 		if (action->secondary && action->secondary->thread) {
1506 			kthread_stop(action->secondary->thread);
1507 			put_task_struct(action->secondary->thread);
1508 		}
1509 	}
1510 
1511 	module_put(desc->owner);
1512 	kfree(action->secondary);
1513 	return action;
1514 }
1515 
1516 /**
1517  *	remove_irq - free an interrupt
1518  *	@irq: Interrupt line to free
1519  *	@act: irqaction for the interrupt
1520  *
1521  * Used to remove interrupts statically setup by the early boot process.
1522  */
1523 void remove_irq(unsigned int irq, struct irqaction *act)
1524 {
1525 	struct irq_desc *desc = irq_to_desc(irq);
1526 
1527 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1528 	    __free_irq(irq, act->dev_id);
1529 }
1530 EXPORT_SYMBOL_GPL(remove_irq);
1531 
1532 /**
1533  *	free_irq - free an interrupt allocated with request_irq
1534  *	@irq: Interrupt line to free
1535  *	@dev_id: Device identity to free
1536  *
1537  *	Remove an interrupt handler. The handler is removed and if the
1538  *	interrupt line is no longer in use by any driver it is disabled.
1539  *	On a shared IRQ the caller must ensure the interrupt is disabled
1540  *	on the card it drives before calling this function. The function
1541  *	does not return until any executing interrupts for this IRQ
1542  *	have completed.
1543  *
1544  *	This function must not be called from interrupt context.
1545  */
1546 void free_irq(unsigned int irq, void *dev_id)
1547 {
1548 	struct irq_desc *desc = irq_to_desc(irq);
1549 
1550 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1551 		return;
1552 
1553 #ifdef CONFIG_SMP
1554 	if (WARN_ON(desc->affinity_notify))
1555 		desc->affinity_notify = NULL;
1556 #endif
1557 
1558 	kfree(__free_irq(irq, dev_id));
1559 }
1560 EXPORT_SYMBOL(free_irq);
1561 
1562 /**
1563  *	request_threaded_irq - allocate an interrupt line
1564  *	@irq: Interrupt line to allocate
1565  *	@handler: Function to be called when the IRQ occurs.
1566  *		  Primary handler for threaded interrupts
1567  *		  If NULL and thread_fn != NULL the default
1568  *		  primary handler is installed
1569  *	@thread_fn: Function called from the irq handler thread
1570  *		    If NULL, no irq thread is created
1571  *	@irqflags: Interrupt type flags
1572  *	@devname: An ascii name for the claiming device
1573  *	@dev_id: A cookie passed back to the handler function
1574  *
1575  *	This call allocates interrupt resources and enables the
1576  *	interrupt line and IRQ handling. From the point this
1577  *	call is made your handler function may be invoked. Since
1578  *	your handler function must clear any interrupt the board
1579  *	raises, you must take care both to initialise your hardware
1580  *	and to set up the interrupt handler in the right order.
1581  *
1582  *	If you want to set up a threaded irq handler for your device
1583  *	then you need to supply @handler and @thread_fn. @handler is
1584  *	still called in hard interrupt context and has to check
1585  *	whether the interrupt originates from the device. If yes it
1586  *	needs to disable the interrupt on the device and return
1587  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1588  *	@thread_fn. This split handler design is necessary to support
1589  *	shared interrupts.
1590  *
1591  *	Dev_id must be globally unique. Normally the address of the
1592  *	device data structure is used as the cookie. Since the handler
1593  *	receives this value it makes sense to use it.
1594  *
1595  *	If your interrupt is shared you must pass a non NULL dev_id
1596  *	as this is required when freeing the interrupt.
1597  *
1598  *	Flags:
1599  *
1600  *	IRQF_SHARED		Interrupt is shared
1601  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1602  *
1603  */
1604 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1605 			 irq_handler_t thread_fn, unsigned long irqflags,
1606 			 const char *devname, void *dev_id)
1607 {
1608 	struct irqaction *action;
1609 	struct irq_desc *desc;
1610 	int retval;
1611 
1612 	/*
1613 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1614 	 * otherwise we'll have trouble later trying to figure out
1615 	 * which interrupt is which (messes up the interrupt freeing
1616 	 * logic etc).
1617 	 *
1618 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1619 	 * it cannot be set along with IRQF_NO_SUSPEND.
1620 	 */
1621 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1622 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1623 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1624 		return -EINVAL;
1625 
1626 	desc = irq_to_desc(irq);
1627 	if (!desc)
1628 		return -EINVAL;
1629 
1630 	if (!irq_settings_can_request(desc) ||
1631 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1632 		return -EINVAL;
1633 
1634 	if (!handler) {
1635 		if (!thread_fn)
1636 			return -EINVAL;
1637 		handler = irq_default_primary_handler;
1638 	}
1639 
1640 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1641 	if (!action)
1642 		return -ENOMEM;
1643 
1644 	action->handler = handler;
1645 	action->thread_fn = thread_fn;
1646 	action->flags = irqflags;
1647 	action->name = devname;
1648 	action->dev_id = dev_id;
1649 
1650 	chip_bus_lock(desc);
1651 	retval = __setup_irq(irq, desc, action);
1652 	chip_bus_sync_unlock(desc);
1653 
1654 	if (retval) {
1655 		kfree(action->secondary);
1656 		kfree(action);
1657 	}
1658 
1659 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1660 	if (!retval && (irqflags & IRQF_SHARED)) {
1661 		/*
1662 		 * It's a shared IRQ -- the driver ought to be prepared for it
1663 		 * to happen immediately, so let's make sure....
1664 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1665 		 * run in parallel with our fake.
1666 		 */
1667 		unsigned long flags;
1668 
1669 		disable_irq(irq);
1670 		local_irq_save(flags);
1671 
1672 		handler(irq, dev_id);
1673 
1674 		local_irq_restore(flags);
1675 		enable_irq(irq);
1676 	}
1677 #endif
1678 	return retval;
1679 }
1680 EXPORT_SYMBOL(request_threaded_irq);
1681 
1682 /**
1683  *	request_any_context_irq - allocate an interrupt line
1684  *	@irq: Interrupt line to allocate
1685  *	@handler: Function to be called when the IRQ occurs.
1686  *		  Threaded handler for threaded interrupts.
1687  *	@flags: Interrupt type flags
1688  *	@name: An ascii name for the claiming device
1689  *	@dev_id: A cookie passed back to the handler function
1690  *
1691  *	This call allocates interrupt resources and enables the
1692  *	interrupt line and IRQ handling. It selects either a
1693  *	hardirq or threaded handling method depending on the
1694  *	context.
1695  *
1696  *	On failure, it returns a negative value. On success,
1697  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1698  */
1699 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1700 			    unsigned long flags, const char *name, void *dev_id)
1701 {
1702 	struct irq_desc *desc = irq_to_desc(irq);
1703 	int ret;
1704 
1705 	if (!desc)
1706 		return -EINVAL;
1707 
1708 	if (irq_settings_is_nested_thread(desc)) {
1709 		ret = request_threaded_irq(irq, NULL, handler,
1710 					   flags, name, dev_id);
1711 		return !ret ? IRQC_IS_NESTED : ret;
1712 	}
1713 
1714 	ret = request_irq(irq, handler, flags, name, dev_id);
1715 	return !ret ? IRQC_IS_HARDIRQ : ret;
1716 }
1717 EXPORT_SYMBOL_GPL(request_any_context_irq);
1718 
1719 void enable_percpu_irq(unsigned int irq, unsigned int type)
1720 {
1721 	unsigned int cpu = smp_processor_id();
1722 	unsigned long flags;
1723 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1724 
1725 	if (!desc)
1726 		return;
1727 
1728 	type &= IRQ_TYPE_SENSE_MASK;
1729 	if (type != IRQ_TYPE_NONE) {
1730 		int ret;
1731 
1732 		ret = __irq_set_trigger(desc, type);
1733 
1734 		if (ret) {
1735 			WARN(1, "failed to set type for IRQ%d\n", irq);
1736 			goto out;
1737 		}
1738 	}
1739 
1740 	irq_percpu_enable(desc, cpu);
1741 out:
1742 	irq_put_desc_unlock(desc, flags);
1743 }
1744 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1745 
1746 /**
1747  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1748  * @irq:	Linux irq number to check for
1749  *
1750  * Must be called from a non migratable context. Returns the enable
1751  * state of a per cpu interrupt on the current cpu.
1752  */
1753 bool irq_percpu_is_enabled(unsigned int irq)
1754 {
1755 	unsigned int cpu = smp_processor_id();
1756 	struct irq_desc *desc;
1757 	unsigned long flags;
1758 	bool is_enabled;
1759 
1760 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1761 	if (!desc)
1762 		return false;
1763 
1764 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1765 	irq_put_desc_unlock(desc, flags);
1766 
1767 	return is_enabled;
1768 }
1769 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1770 
1771 void disable_percpu_irq(unsigned int irq)
1772 {
1773 	unsigned int cpu = smp_processor_id();
1774 	unsigned long flags;
1775 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1776 
1777 	if (!desc)
1778 		return;
1779 
1780 	irq_percpu_disable(desc, cpu);
1781 	irq_put_desc_unlock(desc, flags);
1782 }
1783 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1784 
1785 /*
1786  * Internal function to unregister a percpu irqaction.
1787  */
1788 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1789 {
1790 	struct irq_desc *desc = irq_to_desc(irq);
1791 	struct irqaction *action;
1792 	unsigned long flags;
1793 
1794 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1795 
1796 	if (!desc)
1797 		return NULL;
1798 
1799 	raw_spin_lock_irqsave(&desc->lock, flags);
1800 
1801 	action = desc->action;
1802 	if (!action || action->percpu_dev_id != dev_id) {
1803 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
1804 		goto bad;
1805 	}
1806 
1807 	if (!cpumask_empty(desc->percpu_enabled)) {
1808 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1809 		     irq, cpumask_first(desc->percpu_enabled));
1810 		goto bad;
1811 	}
1812 
1813 	/* Found it - now remove it from the list of entries: */
1814 	desc->action = NULL;
1815 
1816 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1817 
1818 	unregister_handler_proc(irq, action);
1819 
1820 	module_put(desc->owner);
1821 	return action;
1822 
1823 bad:
1824 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1825 	return NULL;
1826 }
1827 
1828 /**
1829  *	remove_percpu_irq - free a per-cpu interrupt
1830  *	@irq: Interrupt line to free
1831  *	@act: irqaction for the interrupt
1832  *
1833  * Used to remove interrupts statically setup by the early boot process.
1834  */
1835 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1836 {
1837 	struct irq_desc *desc = irq_to_desc(irq);
1838 
1839 	if (desc && irq_settings_is_per_cpu_devid(desc))
1840 	    __free_percpu_irq(irq, act->percpu_dev_id);
1841 }
1842 
1843 /**
1844  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
1845  *	@irq: Interrupt line to free
1846  *	@dev_id: Device identity to free
1847  *
1848  *	Remove a percpu interrupt handler. The handler is removed, but
1849  *	the interrupt line is not disabled. This must be done on each
1850  *	CPU before calling this function. The function does not return
1851  *	until any executing interrupts for this IRQ have completed.
1852  *
1853  *	This function must not be called from interrupt context.
1854  */
1855 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1856 {
1857 	struct irq_desc *desc = irq_to_desc(irq);
1858 
1859 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1860 		return;
1861 
1862 	chip_bus_lock(desc);
1863 	kfree(__free_percpu_irq(irq, dev_id));
1864 	chip_bus_sync_unlock(desc);
1865 }
1866 EXPORT_SYMBOL_GPL(free_percpu_irq);
1867 
1868 /**
1869  *	setup_percpu_irq - setup a per-cpu interrupt
1870  *	@irq: Interrupt line to setup
1871  *	@act: irqaction for the interrupt
1872  *
1873  * Used to statically setup per-cpu interrupts in the early boot process.
1874  */
1875 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1876 {
1877 	struct irq_desc *desc = irq_to_desc(irq);
1878 	int retval;
1879 
1880 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
1881 		return -EINVAL;
1882 	chip_bus_lock(desc);
1883 	retval = __setup_irq(irq, desc, act);
1884 	chip_bus_sync_unlock(desc);
1885 
1886 	return retval;
1887 }
1888 
1889 /**
1890  *	request_percpu_irq - allocate a percpu interrupt line
1891  *	@irq: Interrupt line to allocate
1892  *	@handler: Function to be called when the IRQ occurs.
1893  *	@devname: An ascii name for the claiming device
1894  *	@dev_id: A percpu cookie passed back to the handler function
1895  *
1896  *	This call allocates interrupt resources and enables the
1897  *	interrupt on the local CPU. If the interrupt is supposed to be
1898  *	enabled on other CPUs, it has to be done on each CPU using
1899  *	enable_percpu_irq().
1900  *
1901  *	Dev_id must be globally unique. It is a per-cpu variable, and
1902  *	the handler gets called with the interrupted CPU's instance of
1903  *	that variable.
1904  */
1905 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1906 		       const char *devname, void __percpu *dev_id)
1907 {
1908 	struct irqaction *action;
1909 	struct irq_desc *desc;
1910 	int retval;
1911 
1912 	if (!dev_id)
1913 		return -EINVAL;
1914 
1915 	desc = irq_to_desc(irq);
1916 	if (!desc || !irq_settings_can_request(desc) ||
1917 	    !irq_settings_is_per_cpu_devid(desc))
1918 		return -EINVAL;
1919 
1920 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1921 	if (!action)
1922 		return -ENOMEM;
1923 
1924 	action->handler = handler;
1925 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1926 	action->name = devname;
1927 	action->percpu_dev_id = dev_id;
1928 
1929 	chip_bus_lock(desc);
1930 	retval = __setup_irq(irq, desc, action);
1931 	chip_bus_sync_unlock(desc);
1932 
1933 	if (retval)
1934 		kfree(action);
1935 
1936 	return retval;
1937 }
1938 EXPORT_SYMBOL_GPL(request_percpu_irq);
1939 
1940 /**
1941  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
1942  *	@irq: Interrupt line that is forwarded to a VM
1943  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
1944  *	@state: a pointer to a boolean where the state is to be storeed
1945  *
1946  *	This call snapshots the internal irqchip state of an
1947  *	interrupt, returning into @state the bit corresponding to
1948  *	stage @which
1949  *
1950  *	This function should be called with preemption disabled if the
1951  *	interrupt controller has per-cpu registers.
1952  */
1953 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
1954 			  bool *state)
1955 {
1956 	struct irq_desc *desc;
1957 	struct irq_data *data;
1958 	struct irq_chip *chip;
1959 	unsigned long flags;
1960 	int err = -EINVAL;
1961 
1962 	desc = irq_get_desc_buslock(irq, &flags, 0);
1963 	if (!desc)
1964 		return err;
1965 
1966 	data = irq_desc_get_irq_data(desc);
1967 
1968 	do {
1969 		chip = irq_data_get_irq_chip(data);
1970 		if (chip->irq_get_irqchip_state)
1971 			break;
1972 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1973 		data = data->parent_data;
1974 #else
1975 		data = NULL;
1976 #endif
1977 	} while (data);
1978 
1979 	if (data)
1980 		err = chip->irq_get_irqchip_state(data, which, state);
1981 
1982 	irq_put_desc_busunlock(desc, flags);
1983 	return err;
1984 }
1985 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
1986 
1987 /**
1988  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
1989  *	@irq: Interrupt line that is forwarded to a VM
1990  *	@which: State to be restored (one of IRQCHIP_STATE_*)
1991  *	@val: Value corresponding to @which
1992  *
1993  *	This call sets the internal irqchip state of an interrupt,
1994  *	depending on the value of @which.
1995  *
1996  *	This function should be called with preemption disabled if the
1997  *	interrupt controller has per-cpu registers.
1998  */
1999 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2000 			  bool val)
2001 {
2002 	struct irq_desc *desc;
2003 	struct irq_data *data;
2004 	struct irq_chip *chip;
2005 	unsigned long flags;
2006 	int err = -EINVAL;
2007 
2008 	desc = irq_get_desc_buslock(irq, &flags, 0);
2009 	if (!desc)
2010 		return err;
2011 
2012 	data = irq_desc_get_irq_data(desc);
2013 
2014 	do {
2015 		chip = irq_data_get_irq_chip(data);
2016 		if (chip->irq_set_irqchip_state)
2017 			break;
2018 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2019 		data = data->parent_data;
2020 #else
2021 		data = NULL;
2022 #endif
2023 	} while (data);
2024 
2025 	if (data)
2026 		err = chip->irq_set_irqchip_state(data, which, val);
2027 
2028 	irq_put_desc_busunlock(desc, flags);
2029 	return err;
2030 }
2031 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2032