1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) { 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 wake_up_process(action->thread); 198 } 199 if (action->secondary && action->secondary->thread) { 200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 201 wake_up_process(action->secondary->thread); 202 } 203 } 204 } 205 206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 207 static void irq_validate_effective_affinity(struct irq_data *data) 208 { 209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 210 struct irq_chip *chip = irq_data_get_irq_chip(data); 211 212 if (!cpumask_empty(m)) 213 return; 214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 215 chip->name, data->irq); 216 } 217 #else 218 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 219 #endif 220 221 static DEFINE_PER_CPU(struct cpumask, __tmp_mask); 222 223 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 224 bool force) 225 { 226 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask); 227 struct irq_desc *desc = irq_data_to_desc(data); 228 struct irq_chip *chip = irq_data_get_irq_chip(data); 229 const struct cpumask *prog_mask; 230 int ret; 231 232 if (!chip || !chip->irq_set_affinity) 233 return -EINVAL; 234 235 /* 236 * If this is a managed interrupt and housekeeping is enabled on 237 * it check whether the requested affinity mask intersects with 238 * a housekeeping CPU. If so, then remove the isolated CPUs from 239 * the mask and just keep the housekeeping CPU(s). This prevents 240 * the affinity setter from routing the interrupt to an isolated 241 * CPU to avoid that I/O submitted from a housekeeping CPU causes 242 * interrupts on an isolated one. 243 * 244 * If the masks do not intersect or include online CPU(s) then 245 * keep the requested mask. The isolated target CPUs are only 246 * receiving interrupts when the I/O operation was submitted 247 * directly from them. 248 * 249 * If all housekeeping CPUs in the affinity mask are offline, the 250 * interrupt will be migrated by the CPU hotplug code once a 251 * housekeeping CPU which belongs to the affinity mask comes 252 * online. 253 */ 254 if (irqd_affinity_is_managed(data) && 255 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 256 const struct cpumask *hk_mask; 257 258 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 259 260 cpumask_and(tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = tmp_mask; 265 } else { 266 prog_mask = mask; 267 } 268 269 /* 270 * Make sure we only provide online CPUs to the irqchip, 271 * unless we are being asked to force the affinity (in which 272 * case we do as we are told). 273 */ 274 cpumask_and(tmp_mask, prog_mask, cpu_online_mask); 275 if (!force && !cpumask_empty(tmp_mask)) 276 ret = chip->irq_set_affinity(data, tmp_mask, force); 277 else if (force) 278 ret = chip->irq_set_affinity(data, mask, force); 279 else 280 ret = -EINVAL; 281 282 switch (ret) { 283 case IRQ_SET_MASK_OK: 284 case IRQ_SET_MASK_OK_DONE: 285 cpumask_copy(desc->irq_common_data.affinity, mask); 286 fallthrough; 287 case IRQ_SET_MASK_OK_NOCOPY: 288 irq_validate_effective_affinity(data); 289 irq_set_thread_affinity(desc); 290 ret = 0; 291 } 292 293 return ret; 294 } 295 296 #ifdef CONFIG_GENERIC_PENDING_IRQ 297 static inline int irq_set_affinity_pending(struct irq_data *data, 298 const struct cpumask *dest) 299 { 300 struct irq_desc *desc = irq_data_to_desc(data); 301 302 irqd_set_move_pending(data); 303 irq_copy_pending(desc, dest); 304 return 0; 305 } 306 #else 307 static inline int irq_set_affinity_pending(struct irq_data *data, 308 const struct cpumask *dest) 309 { 310 return -EBUSY; 311 } 312 #endif 313 314 static int irq_try_set_affinity(struct irq_data *data, 315 const struct cpumask *dest, bool force) 316 { 317 int ret = irq_do_set_affinity(data, dest, force); 318 319 /* 320 * In case that the underlying vector management is busy and the 321 * architecture supports the generic pending mechanism then utilize 322 * this to avoid returning an error to user space. 323 */ 324 if (ret == -EBUSY && !force) 325 ret = irq_set_affinity_pending(data, dest); 326 return ret; 327 } 328 329 static bool irq_set_affinity_deactivated(struct irq_data *data, 330 const struct cpumask *mask) 331 { 332 struct irq_desc *desc = irq_data_to_desc(data); 333 334 /* 335 * Handle irq chips which can handle affinity only in activated 336 * state correctly 337 * 338 * If the interrupt is not yet activated, just store the affinity 339 * mask and do not call the chip driver at all. On activation the 340 * driver has to make sure anyway that the interrupt is in a 341 * usable state so startup works. 342 */ 343 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 344 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 345 return false; 346 347 cpumask_copy(desc->irq_common_data.affinity, mask); 348 irq_data_update_effective_affinity(data, mask); 349 irqd_set(data, IRQD_AFFINITY_SET); 350 return true; 351 } 352 353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 354 bool force) 355 { 356 struct irq_chip *chip = irq_data_get_irq_chip(data); 357 struct irq_desc *desc = irq_data_to_desc(data); 358 int ret = 0; 359 360 if (!chip || !chip->irq_set_affinity) 361 return -EINVAL; 362 363 if (irq_set_affinity_deactivated(data, mask)) 364 return 0; 365 366 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 367 ret = irq_try_set_affinity(data, mask, force); 368 } else { 369 irqd_set_move_pending(data); 370 irq_copy_pending(desc, mask); 371 } 372 373 if (desc->affinity_notify) { 374 kref_get(&desc->affinity_notify->kref); 375 if (!schedule_work(&desc->affinity_notify->work)) { 376 /* Work was already scheduled, drop our extra ref */ 377 kref_put(&desc->affinity_notify->kref, 378 desc->affinity_notify->release); 379 } 380 } 381 irqd_set(data, IRQD_AFFINITY_SET); 382 383 return ret; 384 } 385 386 /** 387 * irq_update_affinity_desc - Update affinity management for an interrupt 388 * @irq: The interrupt number to update 389 * @affinity: Pointer to the affinity descriptor 390 * 391 * This interface can be used to configure the affinity management of 392 * interrupts which have been allocated already. 393 * 394 * There are certain limitations on when it may be used - attempts to use it 395 * for when the kernel is configured for generic IRQ reservation mode (in 396 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 397 * managed/non-managed interrupt accounting. In addition, attempts to use it on 398 * an interrupt which is already started or which has already been configured 399 * as managed will also fail, as these mean invalid init state or double init. 400 */ 401 int irq_update_affinity_desc(unsigned int irq, 402 struct irq_affinity_desc *affinity) 403 { 404 struct irq_desc *desc; 405 unsigned long flags; 406 bool activated; 407 int ret = 0; 408 409 /* 410 * Supporting this with the reservation scheme used by x86 needs 411 * some more thought. Fail it for now. 412 */ 413 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 414 return -EOPNOTSUPP; 415 416 desc = irq_get_desc_buslock(irq, &flags, 0); 417 if (!desc) 418 return -EINVAL; 419 420 /* Requires the interrupt to be shut down */ 421 if (irqd_is_started(&desc->irq_data)) { 422 ret = -EBUSY; 423 goto out_unlock; 424 } 425 426 /* Interrupts which are already managed cannot be modified */ 427 if (irqd_affinity_is_managed(&desc->irq_data)) { 428 ret = -EBUSY; 429 goto out_unlock; 430 } 431 432 /* 433 * Deactivate the interrupt. That's required to undo 434 * anything an earlier activation has established. 435 */ 436 activated = irqd_is_activated(&desc->irq_data); 437 if (activated) 438 irq_domain_deactivate_irq(&desc->irq_data); 439 440 if (affinity->is_managed) { 441 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 442 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 443 } 444 445 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 446 447 /* Restore the activation state */ 448 if (activated) 449 irq_domain_activate_irq(&desc->irq_data, false); 450 451 out_unlock: 452 irq_put_desc_busunlock(desc, flags); 453 return ret; 454 } 455 456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 457 bool force) 458 { 459 struct irq_desc *desc = irq_to_desc(irq); 460 unsigned long flags; 461 int ret; 462 463 if (!desc) 464 return -EINVAL; 465 466 raw_spin_lock_irqsave(&desc->lock, flags); 467 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 468 raw_spin_unlock_irqrestore(&desc->lock, flags); 469 return ret; 470 } 471 472 /** 473 * irq_set_affinity - Set the irq affinity of a given irq 474 * @irq: Interrupt to set affinity 475 * @cpumask: cpumask 476 * 477 * Fails if cpumask does not contain an online CPU 478 */ 479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 480 { 481 return __irq_set_affinity(irq, cpumask, false); 482 } 483 EXPORT_SYMBOL_GPL(irq_set_affinity); 484 485 /** 486 * irq_force_affinity - Force the irq affinity of a given irq 487 * @irq: Interrupt to set affinity 488 * @cpumask: cpumask 489 * 490 * Same as irq_set_affinity, but without checking the mask against 491 * online cpus. 492 * 493 * Solely for low level cpu hotplug code, where we need to make per 494 * cpu interrupts affine before the cpu becomes online. 495 */ 496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 497 { 498 return __irq_set_affinity(irq, cpumask, true); 499 } 500 EXPORT_SYMBOL_GPL(irq_force_affinity); 501 502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 503 bool setaffinity) 504 { 505 unsigned long flags; 506 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 507 508 if (!desc) 509 return -EINVAL; 510 desc->affinity_hint = m; 511 irq_put_desc_unlock(desc, flags); 512 if (m && setaffinity) 513 __irq_set_affinity(irq, m, false); 514 return 0; 515 } 516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 517 518 static void irq_affinity_notify(struct work_struct *work) 519 { 520 struct irq_affinity_notify *notify = 521 container_of(work, struct irq_affinity_notify, work); 522 struct irq_desc *desc = irq_to_desc(notify->irq); 523 cpumask_var_t cpumask; 524 unsigned long flags; 525 526 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 527 goto out; 528 529 raw_spin_lock_irqsave(&desc->lock, flags); 530 if (irq_move_pending(&desc->irq_data)) 531 irq_get_pending(cpumask, desc); 532 else 533 cpumask_copy(cpumask, desc->irq_common_data.affinity); 534 raw_spin_unlock_irqrestore(&desc->lock, flags); 535 536 notify->notify(notify, cpumask); 537 538 free_cpumask_var(cpumask); 539 out: 540 kref_put(¬ify->kref, notify->release); 541 } 542 543 /** 544 * irq_set_affinity_notifier - control notification of IRQ affinity changes 545 * @irq: Interrupt for which to enable/disable notification 546 * @notify: Context for notification, or %NULL to disable 547 * notification. Function pointers must be initialised; 548 * the other fields will be initialised by this function. 549 * 550 * Must be called in process context. Notification may only be enabled 551 * after the IRQ is allocated and must be disabled before the IRQ is 552 * freed using free_irq(). 553 */ 554 int 555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 556 { 557 struct irq_desc *desc = irq_to_desc(irq); 558 struct irq_affinity_notify *old_notify; 559 unsigned long flags; 560 561 /* The release function is promised process context */ 562 might_sleep(); 563 564 if (!desc || irq_is_nmi(desc)) 565 return -EINVAL; 566 567 /* Complete initialisation of *notify */ 568 if (notify) { 569 notify->irq = irq; 570 kref_init(¬ify->kref); 571 INIT_WORK(¬ify->work, irq_affinity_notify); 572 } 573 574 raw_spin_lock_irqsave(&desc->lock, flags); 575 old_notify = desc->affinity_notify; 576 desc->affinity_notify = notify; 577 raw_spin_unlock_irqrestore(&desc->lock, flags); 578 579 if (old_notify) { 580 if (cancel_work_sync(&old_notify->work)) { 581 /* Pending work had a ref, put that one too */ 582 kref_put(&old_notify->kref, old_notify->release); 583 } 584 kref_put(&old_notify->kref, old_notify->release); 585 } 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 590 591 #ifndef CONFIG_AUTO_IRQ_AFFINITY 592 /* 593 * Generic version of the affinity autoselector. 594 */ 595 int irq_setup_affinity(struct irq_desc *desc) 596 { 597 struct cpumask *set = irq_default_affinity; 598 int ret, node = irq_desc_get_node(desc); 599 static DEFINE_RAW_SPINLOCK(mask_lock); 600 static struct cpumask mask; 601 602 /* Excludes PER_CPU and NO_BALANCE interrupts */ 603 if (!__irq_can_set_affinity(desc)) 604 return 0; 605 606 raw_spin_lock(&mask_lock); 607 /* 608 * Preserve the managed affinity setting and a userspace affinity 609 * setup, but make sure that one of the targets is online. 610 */ 611 if (irqd_affinity_is_managed(&desc->irq_data) || 612 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 613 if (cpumask_intersects(desc->irq_common_data.affinity, 614 cpu_online_mask)) 615 set = desc->irq_common_data.affinity; 616 else 617 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 618 } 619 620 cpumask_and(&mask, cpu_online_mask, set); 621 if (cpumask_empty(&mask)) 622 cpumask_copy(&mask, cpu_online_mask); 623 624 if (node != NUMA_NO_NODE) { 625 const struct cpumask *nodemask = cpumask_of_node(node); 626 627 /* make sure at least one of the cpus in nodemask is online */ 628 if (cpumask_intersects(&mask, nodemask)) 629 cpumask_and(&mask, &mask, nodemask); 630 } 631 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 632 raw_spin_unlock(&mask_lock); 633 return ret; 634 } 635 #else 636 /* Wrapper for ALPHA specific affinity selector magic */ 637 int irq_setup_affinity(struct irq_desc *desc) 638 { 639 return irq_select_affinity(irq_desc_get_irq(desc)); 640 } 641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 642 #endif /* CONFIG_SMP */ 643 644 645 /** 646 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 647 * @irq: interrupt number to set affinity 648 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 649 * specific data for percpu_devid interrupts 650 * 651 * This function uses the vCPU specific data to set the vCPU 652 * affinity for an irq. The vCPU specific data is passed from 653 * outside, such as KVM. One example code path is as below: 654 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 655 */ 656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 657 { 658 unsigned long flags; 659 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 660 struct irq_data *data; 661 struct irq_chip *chip; 662 int ret = -ENOSYS; 663 664 if (!desc) 665 return -EINVAL; 666 667 data = irq_desc_get_irq_data(desc); 668 do { 669 chip = irq_data_get_irq_chip(data); 670 if (chip && chip->irq_set_vcpu_affinity) 671 break; 672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 673 data = data->parent_data; 674 #else 675 data = NULL; 676 #endif 677 } while (data); 678 679 if (data) 680 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 681 irq_put_desc_unlock(desc, flags); 682 683 return ret; 684 } 685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 686 687 void __disable_irq(struct irq_desc *desc) 688 { 689 if (!desc->depth++) 690 irq_disable(desc); 691 } 692 693 static int __disable_irq_nosync(unsigned int irq) 694 { 695 unsigned long flags; 696 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 697 698 if (!desc) 699 return -EINVAL; 700 __disable_irq(desc); 701 irq_put_desc_busunlock(desc, flags); 702 return 0; 703 } 704 705 /** 706 * disable_irq_nosync - disable an irq without waiting 707 * @irq: Interrupt to disable 708 * 709 * Disable the selected interrupt line. Disables and Enables are 710 * nested. 711 * Unlike disable_irq(), this function does not ensure existing 712 * instances of the IRQ handler have completed before returning. 713 * 714 * This function may be called from IRQ context. 715 */ 716 void disable_irq_nosync(unsigned int irq) 717 { 718 __disable_irq_nosync(irq); 719 } 720 EXPORT_SYMBOL(disable_irq_nosync); 721 722 /** 723 * disable_irq - disable an irq and wait for completion 724 * @irq: Interrupt to disable 725 * 726 * Disable the selected interrupt line. Enables and Disables are 727 * nested. 728 * This function waits for any pending IRQ handlers for this interrupt 729 * to complete before returning. If you use this function while 730 * holding a resource the IRQ handler may need you will deadlock. 731 * 732 * Can only be called from preemptible code as it might sleep when 733 * an interrupt thread is associated to @irq. 734 * 735 */ 736 void disable_irq(unsigned int irq) 737 { 738 might_sleep(); 739 if (!__disable_irq_nosync(irq)) 740 synchronize_irq(irq); 741 } 742 EXPORT_SYMBOL(disable_irq); 743 744 /** 745 * disable_hardirq - disables an irq and waits for hardirq completion 746 * @irq: Interrupt to disable 747 * 748 * Disable the selected interrupt line. Enables and Disables are 749 * nested. 750 * This function waits for any pending hard IRQ handlers for this 751 * interrupt to complete before returning. If you use this function while 752 * holding a resource the hard IRQ handler may need you will deadlock. 753 * 754 * When used to optimistically disable an interrupt from atomic context 755 * the return value must be checked. 756 * 757 * Returns: false if a threaded handler is active. 758 * 759 * This function may be called - with care - from IRQ context. 760 */ 761 bool disable_hardirq(unsigned int irq) 762 { 763 if (!__disable_irq_nosync(irq)) 764 return synchronize_hardirq(irq); 765 766 return false; 767 } 768 EXPORT_SYMBOL_GPL(disable_hardirq); 769 770 /** 771 * disable_nmi_nosync - disable an nmi without waiting 772 * @irq: Interrupt to disable 773 * 774 * Disable the selected interrupt line. Disables and enables are 775 * nested. 776 * The interrupt to disable must have been requested through request_nmi. 777 * Unlike disable_nmi(), this function does not ensure existing 778 * instances of the IRQ handler have completed before returning. 779 */ 780 void disable_nmi_nosync(unsigned int irq) 781 { 782 disable_irq_nosync(irq); 783 } 784 785 void __enable_irq(struct irq_desc *desc) 786 { 787 switch (desc->depth) { 788 case 0: 789 err_out: 790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 791 irq_desc_get_irq(desc)); 792 break; 793 case 1: { 794 if (desc->istate & IRQS_SUSPENDED) 795 goto err_out; 796 /* Prevent probing on this irq: */ 797 irq_settings_set_noprobe(desc); 798 /* 799 * Call irq_startup() not irq_enable() here because the 800 * interrupt might be marked NOAUTOEN so irq_startup() 801 * needs to be invoked when it gets enabled the first time. 802 * This is also required when __enable_irq() is invoked for 803 * a managed and shutdown interrupt from the S3 resume 804 * path. 805 * 806 * If it was already started up, then irq_startup() will 807 * invoke irq_enable() under the hood. 808 */ 809 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 810 break; 811 } 812 default: 813 desc->depth--; 814 } 815 } 816 817 /** 818 * enable_irq - enable handling of an irq 819 * @irq: Interrupt to enable 820 * 821 * Undoes the effect of one call to disable_irq(). If this 822 * matches the last disable, processing of interrupts on this 823 * IRQ line is re-enabled. 824 * 825 * This function may be called from IRQ context only when 826 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 827 */ 828 void enable_irq(unsigned int irq) 829 { 830 unsigned long flags; 831 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 832 833 if (!desc) 834 return; 835 if (WARN(!desc->irq_data.chip, 836 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 837 goto out; 838 839 __enable_irq(desc); 840 out: 841 irq_put_desc_busunlock(desc, flags); 842 } 843 EXPORT_SYMBOL(enable_irq); 844 845 /** 846 * enable_nmi - enable handling of an nmi 847 * @irq: Interrupt to enable 848 * 849 * The interrupt to enable must have been requested through request_nmi. 850 * Undoes the effect of one call to disable_nmi(). If this 851 * matches the last disable, processing of interrupts on this 852 * IRQ line is re-enabled. 853 */ 854 void enable_nmi(unsigned int irq) 855 { 856 enable_irq(irq); 857 } 858 859 static int set_irq_wake_real(unsigned int irq, unsigned int on) 860 { 861 struct irq_desc *desc = irq_to_desc(irq); 862 int ret = -ENXIO; 863 864 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 865 return 0; 866 867 if (desc->irq_data.chip->irq_set_wake) 868 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 869 870 return ret; 871 } 872 873 /** 874 * irq_set_irq_wake - control irq power management wakeup 875 * @irq: interrupt to control 876 * @on: enable/disable power management wakeup 877 * 878 * Enable/disable power management wakeup mode, which is 879 * disabled by default. Enables and disables must match, 880 * just as they match for non-wakeup mode support. 881 * 882 * Wakeup mode lets this IRQ wake the system from sleep 883 * states like "suspend to RAM". 884 * 885 * Note: irq enable/disable state is completely orthogonal 886 * to the enable/disable state of irq wake. An irq can be 887 * disabled with disable_irq() and still wake the system as 888 * long as the irq has wake enabled. If this does not hold, 889 * then the underlying irq chip and the related driver need 890 * to be investigated. 891 */ 892 int irq_set_irq_wake(unsigned int irq, unsigned int on) 893 { 894 unsigned long flags; 895 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 896 int ret = 0; 897 898 if (!desc) 899 return -EINVAL; 900 901 /* Don't use NMIs as wake up interrupts please */ 902 if (irq_is_nmi(desc)) { 903 ret = -EINVAL; 904 goto out_unlock; 905 } 906 907 /* wakeup-capable irqs can be shared between drivers that 908 * don't need to have the same sleep mode behaviors. 909 */ 910 if (on) { 911 if (desc->wake_depth++ == 0) { 912 ret = set_irq_wake_real(irq, on); 913 if (ret) 914 desc->wake_depth = 0; 915 else 916 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 917 } 918 } else { 919 if (desc->wake_depth == 0) { 920 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 921 } else if (--desc->wake_depth == 0) { 922 ret = set_irq_wake_real(irq, on); 923 if (ret) 924 desc->wake_depth = 1; 925 else 926 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 927 } 928 } 929 930 out_unlock: 931 irq_put_desc_busunlock(desc, flags); 932 return ret; 933 } 934 EXPORT_SYMBOL(irq_set_irq_wake); 935 936 /* 937 * Internal function that tells the architecture code whether a 938 * particular irq has been exclusively allocated or is available 939 * for driver use. 940 */ 941 int can_request_irq(unsigned int irq, unsigned long irqflags) 942 { 943 unsigned long flags; 944 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 945 int canrequest = 0; 946 947 if (!desc) 948 return 0; 949 950 if (irq_settings_can_request(desc)) { 951 if (!desc->action || 952 irqflags & desc->action->flags & IRQF_SHARED) 953 canrequest = 1; 954 } 955 irq_put_desc_unlock(desc, flags); 956 return canrequest; 957 } 958 959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 960 { 961 struct irq_chip *chip = desc->irq_data.chip; 962 int ret, unmask = 0; 963 964 if (!chip || !chip->irq_set_type) { 965 /* 966 * IRQF_TRIGGER_* but the PIC does not support multiple 967 * flow-types? 968 */ 969 pr_debug("No set_type function for IRQ %d (%s)\n", 970 irq_desc_get_irq(desc), 971 chip ? (chip->name ? : "unknown") : "unknown"); 972 return 0; 973 } 974 975 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 976 if (!irqd_irq_masked(&desc->irq_data)) 977 mask_irq(desc); 978 if (!irqd_irq_disabled(&desc->irq_data)) 979 unmask = 1; 980 } 981 982 /* Mask all flags except trigger mode */ 983 flags &= IRQ_TYPE_SENSE_MASK; 984 ret = chip->irq_set_type(&desc->irq_data, flags); 985 986 switch (ret) { 987 case IRQ_SET_MASK_OK: 988 case IRQ_SET_MASK_OK_DONE: 989 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 990 irqd_set(&desc->irq_data, flags); 991 fallthrough; 992 993 case IRQ_SET_MASK_OK_NOCOPY: 994 flags = irqd_get_trigger_type(&desc->irq_data); 995 irq_settings_set_trigger_mask(desc, flags); 996 irqd_clear(&desc->irq_data, IRQD_LEVEL); 997 irq_settings_clr_level(desc); 998 if (flags & IRQ_TYPE_LEVEL_MASK) { 999 irq_settings_set_level(desc); 1000 irqd_set(&desc->irq_data, IRQD_LEVEL); 1001 } 1002 1003 ret = 0; 1004 break; 1005 default: 1006 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1007 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1008 } 1009 if (unmask) 1010 unmask_irq(desc); 1011 return ret; 1012 } 1013 1014 #ifdef CONFIG_HARDIRQS_SW_RESEND 1015 int irq_set_parent(int irq, int parent_irq) 1016 { 1017 unsigned long flags; 1018 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1019 1020 if (!desc) 1021 return -EINVAL; 1022 1023 desc->parent_irq = parent_irq; 1024 1025 irq_put_desc_unlock(desc, flags); 1026 return 0; 1027 } 1028 EXPORT_SYMBOL_GPL(irq_set_parent); 1029 #endif 1030 1031 /* 1032 * Default primary interrupt handler for threaded interrupts. Is 1033 * assigned as primary handler when request_threaded_irq is called 1034 * with handler == NULL. Useful for oneshot interrupts. 1035 */ 1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1037 { 1038 return IRQ_WAKE_THREAD; 1039 } 1040 1041 /* 1042 * Primary handler for nested threaded interrupts. Should never be 1043 * called. 1044 */ 1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1046 { 1047 WARN(1, "Primary handler called for nested irq %d\n", irq); 1048 return IRQ_NONE; 1049 } 1050 1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1052 { 1053 WARN(1, "Secondary action handler called for irq %d\n", irq); 1054 return IRQ_NONE; 1055 } 1056 1057 #ifdef CONFIG_SMP 1058 /* 1059 * Check whether we need to change the affinity of the interrupt thread. 1060 */ 1061 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1062 { 1063 cpumask_var_t mask; 1064 bool valid = false; 1065 1066 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1067 return; 1068 1069 __set_current_state(TASK_RUNNING); 1070 1071 /* 1072 * In case we are out of memory we set IRQTF_AFFINITY again and 1073 * try again next time 1074 */ 1075 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1076 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1077 return; 1078 } 1079 1080 raw_spin_lock_irq(&desc->lock); 1081 /* 1082 * This code is triggered unconditionally. Check the affinity 1083 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1084 */ 1085 if (cpumask_available(desc->irq_common_data.affinity)) { 1086 const struct cpumask *m; 1087 1088 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1089 cpumask_copy(mask, m); 1090 valid = true; 1091 } 1092 raw_spin_unlock_irq(&desc->lock); 1093 1094 if (valid) 1095 set_cpus_allowed_ptr(current, mask); 1096 free_cpumask_var(mask); 1097 } 1098 #else 1099 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1100 #endif 1101 1102 static int irq_wait_for_interrupt(struct irq_desc *desc, 1103 struct irqaction *action) 1104 { 1105 for (;;) { 1106 set_current_state(TASK_INTERRUPTIBLE); 1107 irq_thread_check_affinity(desc, action); 1108 1109 if (kthread_should_stop()) { 1110 /* may need to run one last time */ 1111 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1112 &action->thread_flags)) { 1113 __set_current_state(TASK_RUNNING); 1114 return 0; 1115 } 1116 __set_current_state(TASK_RUNNING); 1117 return -1; 1118 } 1119 1120 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1121 &action->thread_flags)) { 1122 __set_current_state(TASK_RUNNING); 1123 return 0; 1124 } 1125 schedule(); 1126 } 1127 } 1128 1129 /* 1130 * Oneshot interrupts keep the irq line masked until the threaded 1131 * handler finished. unmask if the interrupt has not been disabled and 1132 * is marked MASKED. 1133 */ 1134 static void irq_finalize_oneshot(struct irq_desc *desc, 1135 struct irqaction *action) 1136 { 1137 if (!(desc->istate & IRQS_ONESHOT) || 1138 action->handler == irq_forced_secondary_handler) 1139 return; 1140 again: 1141 chip_bus_lock(desc); 1142 raw_spin_lock_irq(&desc->lock); 1143 1144 /* 1145 * Implausible though it may be we need to protect us against 1146 * the following scenario: 1147 * 1148 * The thread is faster done than the hard interrupt handler 1149 * on the other CPU. If we unmask the irq line then the 1150 * interrupt can come in again and masks the line, leaves due 1151 * to IRQS_INPROGRESS and the irq line is masked forever. 1152 * 1153 * This also serializes the state of shared oneshot handlers 1154 * versus "desc->threads_oneshot |= action->thread_mask;" in 1155 * irq_wake_thread(). See the comment there which explains the 1156 * serialization. 1157 */ 1158 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1159 raw_spin_unlock_irq(&desc->lock); 1160 chip_bus_sync_unlock(desc); 1161 cpu_relax(); 1162 goto again; 1163 } 1164 1165 /* 1166 * Now check again, whether the thread should run. Otherwise 1167 * we would clear the threads_oneshot bit of this thread which 1168 * was just set. 1169 */ 1170 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1171 goto out_unlock; 1172 1173 desc->threads_oneshot &= ~action->thread_mask; 1174 1175 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1176 irqd_irq_masked(&desc->irq_data)) 1177 unmask_threaded_irq(desc); 1178 1179 out_unlock: 1180 raw_spin_unlock_irq(&desc->lock); 1181 chip_bus_sync_unlock(desc); 1182 } 1183 1184 /* 1185 * Interrupts explicitly requested as threaded interrupts want to be 1186 * preemptible - many of them need to sleep and wait for slow busses to 1187 * complete. 1188 */ 1189 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action) 1190 { 1191 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id); 1192 1193 if (ret == IRQ_HANDLED) 1194 atomic_inc(&desc->threads_handled); 1195 1196 irq_finalize_oneshot(desc, action); 1197 return ret; 1198 } 1199 1200 /* 1201 * Interrupts which are not explicitly requested as threaded 1202 * interrupts rely on the implicit bh/preempt disable of the hard irq 1203 * context. So we need to disable bh here to avoid deadlocks and other 1204 * side effects. 1205 */ 1206 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1207 { 1208 irqreturn_t ret; 1209 1210 local_bh_disable(); 1211 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1212 local_irq_disable(); 1213 ret = irq_thread_fn(desc, action); 1214 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1215 local_irq_enable(); 1216 local_bh_enable(); 1217 return ret; 1218 } 1219 1220 void wake_threads_waitq(struct irq_desc *desc) 1221 { 1222 if (atomic_dec_and_test(&desc->threads_active)) 1223 wake_up(&desc->wait_for_threads); 1224 } 1225 1226 static void irq_thread_dtor(struct callback_head *unused) 1227 { 1228 struct task_struct *tsk = current; 1229 struct irq_desc *desc; 1230 struct irqaction *action; 1231 1232 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1233 return; 1234 1235 action = kthread_data(tsk); 1236 1237 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1238 tsk->comm, tsk->pid, action->irq); 1239 1240 1241 desc = irq_to_desc(action->irq); 1242 /* 1243 * If IRQTF_RUNTHREAD is set, we need to decrement 1244 * desc->threads_active and wake possible waiters. 1245 */ 1246 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1247 wake_threads_waitq(desc); 1248 1249 /* Prevent a stale desc->threads_oneshot */ 1250 irq_finalize_oneshot(desc, action); 1251 } 1252 1253 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1254 { 1255 struct irqaction *secondary = action->secondary; 1256 1257 if (WARN_ON_ONCE(!secondary)) 1258 return; 1259 1260 raw_spin_lock_irq(&desc->lock); 1261 __irq_wake_thread(desc, secondary); 1262 raw_spin_unlock_irq(&desc->lock); 1263 } 1264 1265 /* 1266 * Internal function to notify that a interrupt thread is ready. 1267 */ 1268 static void irq_thread_set_ready(struct irq_desc *desc, 1269 struct irqaction *action) 1270 { 1271 set_bit(IRQTF_READY, &action->thread_flags); 1272 wake_up(&desc->wait_for_threads); 1273 } 1274 1275 /* 1276 * Internal function to wake up a interrupt thread and wait until it is 1277 * ready. 1278 */ 1279 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1280 struct irqaction *action) 1281 { 1282 if (!action || !action->thread) 1283 return; 1284 1285 wake_up_process(action->thread); 1286 wait_event(desc->wait_for_threads, 1287 test_bit(IRQTF_READY, &action->thread_flags)); 1288 } 1289 1290 /* 1291 * Interrupt handler thread 1292 */ 1293 static int irq_thread(void *data) 1294 { 1295 struct callback_head on_exit_work; 1296 struct irqaction *action = data; 1297 struct irq_desc *desc = irq_to_desc(action->irq); 1298 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1299 struct irqaction *action); 1300 1301 irq_thread_set_ready(desc, action); 1302 1303 sched_set_fifo(current); 1304 1305 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1306 &action->thread_flags)) 1307 handler_fn = irq_forced_thread_fn; 1308 else 1309 handler_fn = irq_thread_fn; 1310 1311 init_task_work(&on_exit_work, irq_thread_dtor); 1312 task_work_add(current, &on_exit_work, TWA_NONE); 1313 1314 while (!irq_wait_for_interrupt(desc, action)) { 1315 irqreturn_t action_ret; 1316 1317 action_ret = handler_fn(desc, action); 1318 if (action_ret == IRQ_WAKE_THREAD) 1319 irq_wake_secondary(desc, action); 1320 1321 wake_threads_waitq(desc); 1322 } 1323 1324 /* 1325 * This is the regular exit path. __free_irq() is stopping the 1326 * thread via kthread_stop() after calling 1327 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1328 * oneshot mask bit can be set. 1329 */ 1330 task_work_cancel_func(current, irq_thread_dtor); 1331 return 0; 1332 } 1333 1334 /** 1335 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1336 * @irq: Interrupt line 1337 * @dev_id: Device identity for which the thread should be woken 1338 * 1339 */ 1340 void irq_wake_thread(unsigned int irq, void *dev_id) 1341 { 1342 struct irq_desc *desc = irq_to_desc(irq); 1343 struct irqaction *action; 1344 unsigned long flags; 1345 1346 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1347 return; 1348 1349 raw_spin_lock_irqsave(&desc->lock, flags); 1350 for_each_action_of_desc(desc, action) { 1351 if (action->dev_id == dev_id) { 1352 if (action->thread) 1353 __irq_wake_thread(desc, action); 1354 break; 1355 } 1356 } 1357 raw_spin_unlock_irqrestore(&desc->lock, flags); 1358 } 1359 EXPORT_SYMBOL_GPL(irq_wake_thread); 1360 1361 static int irq_setup_forced_threading(struct irqaction *new) 1362 { 1363 if (!force_irqthreads()) 1364 return 0; 1365 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1366 return 0; 1367 1368 /* 1369 * No further action required for interrupts which are requested as 1370 * threaded interrupts already 1371 */ 1372 if (new->handler == irq_default_primary_handler) 1373 return 0; 1374 1375 new->flags |= IRQF_ONESHOT; 1376 1377 /* 1378 * Handle the case where we have a real primary handler and a 1379 * thread handler. We force thread them as well by creating a 1380 * secondary action. 1381 */ 1382 if (new->handler && new->thread_fn) { 1383 /* Allocate the secondary action */ 1384 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1385 if (!new->secondary) 1386 return -ENOMEM; 1387 new->secondary->handler = irq_forced_secondary_handler; 1388 new->secondary->thread_fn = new->thread_fn; 1389 new->secondary->dev_id = new->dev_id; 1390 new->secondary->irq = new->irq; 1391 new->secondary->name = new->name; 1392 } 1393 /* Deal with the primary handler */ 1394 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1395 new->thread_fn = new->handler; 1396 new->handler = irq_default_primary_handler; 1397 return 0; 1398 } 1399 1400 static int irq_request_resources(struct irq_desc *desc) 1401 { 1402 struct irq_data *d = &desc->irq_data; 1403 struct irq_chip *c = d->chip; 1404 1405 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1406 } 1407 1408 static void irq_release_resources(struct irq_desc *desc) 1409 { 1410 struct irq_data *d = &desc->irq_data; 1411 struct irq_chip *c = d->chip; 1412 1413 if (c->irq_release_resources) 1414 c->irq_release_resources(d); 1415 } 1416 1417 static bool irq_supports_nmi(struct irq_desc *desc) 1418 { 1419 struct irq_data *d = irq_desc_get_irq_data(desc); 1420 1421 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1422 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1423 if (d->parent_data) 1424 return false; 1425 #endif 1426 /* Don't support NMIs for chips behind a slow bus */ 1427 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1428 return false; 1429 1430 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1431 } 1432 1433 static int irq_nmi_setup(struct irq_desc *desc) 1434 { 1435 struct irq_data *d = irq_desc_get_irq_data(desc); 1436 struct irq_chip *c = d->chip; 1437 1438 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1439 } 1440 1441 static void irq_nmi_teardown(struct irq_desc *desc) 1442 { 1443 struct irq_data *d = irq_desc_get_irq_data(desc); 1444 struct irq_chip *c = d->chip; 1445 1446 if (c->irq_nmi_teardown) 1447 c->irq_nmi_teardown(d); 1448 } 1449 1450 static int 1451 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1452 { 1453 struct task_struct *t; 1454 1455 if (!secondary) { 1456 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1457 new->name); 1458 } else { 1459 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1460 new->name); 1461 } 1462 1463 if (IS_ERR(t)) 1464 return PTR_ERR(t); 1465 1466 /* 1467 * We keep the reference to the task struct even if 1468 * the thread dies to avoid that the interrupt code 1469 * references an already freed task_struct. 1470 */ 1471 new->thread = get_task_struct(t); 1472 /* 1473 * Tell the thread to set its affinity. This is 1474 * important for shared interrupt handlers as we do 1475 * not invoke setup_affinity() for the secondary 1476 * handlers as everything is already set up. Even for 1477 * interrupts marked with IRQF_NO_BALANCE this is 1478 * correct as we want the thread to move to the cpu(s) 1479 * on which the requesting code placed the interrupt. 1480 */ 1481 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1482 return 0; 1483 } 1484 1485 /* 1486 * Internal function to register an irqaction - typically used to 1487 * allocate special interrupts that are part of the architecture. 1488 * 1489 * Locking rules: 1490 * 1491 * desc->request_mutex Provides serialization against a concurrent free_irq() 1492 * chip_bus_lock Provides serialization for slow bus operations 1493 * desc->lock Provides serialization against hard interrupts 1494 * 1495 * chip_bus_lock and desc->lock are sufficient for all other management and 1496 * interrupt related functions. desc->request_mutex solely serializes 1497 * request/free_irq(). 1498 */ 1499 static int 1500 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1501 { 1502 struct irqaction *old, **old_ptr; 1503 unsigned long flags, thread_mask = 0; 1504 int ret, nested, shared = 0; 1505 1506 if (!desc) 1507 return -EINVAL; 1508 1509 if (desc->irq_data.chip == &no_irq_chip) 1510 return -ENOSYS; 1511 if (!try_module_get(desc->owner)) 1512 return -ENODEV; 1513 1514 new->irq = irq; 1515 1516 /* 1517 * If the trigger type is not specified by the caller, 1518 * then use the default for this interrupt. 1519 */ 1520 if (!(new->flags & IRQF_TRIGGER_MASK)) 1521 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1522 1523 /* 1524 * Check whether the interrupt nests into another interrupt 1525 * thread. 1526 */ 1527 nested = irq_settings_is_nested_thread(desc); 1528 if (nested) { 1529 if (!new->thread_fn) { 1530 ret = -EINVAL; 1531 goto out_mput; 1532 } 1533 /* 1534 * Replace the primary handler which was provided from 1535 * the driver for non nested interrupt handling by the 1536 * dummy function which warns when called. 1537 */ 1538 new->handler = irq_nested_primary_handler; 1539 } else { 1540 if (irq_settings_can_thread(desc)) { 1541 ret = irq_setup_forced_threading(new); 1542 if (ret) 1543 goto out_mput; 1544 } 1545 } 1546 1547 /* 1548 * Create a handler thread when a thread function is supplied 1549 * and the interrupt does not nest into another interrupt 1550 * thread. 1551 */ 1552 if (new->thread_fn && !nested) { 1553 ret = setup_irq_thread(new, irq, false); 1554 if (ret) 1555 goto out_mput; 1556 if (new->secondary) { 1557 ret = setup_irq_thread(new->secondary, irq, true); 1558 if (ret) 1559 goto out_thread; 1560 } 1561 } 1562 1563 /* 1564 * Drivers are often written to work w/o knowledge about the 1565 * underlying irq chip implementation, so a request for a 1566 * threaded irq without a primary hard irq context handler 1567 * requires the ONESHOT flag to be set. Some irq chips like 1568 * MSI based interrupts are per se one shot safe. Check the 1569 * chip flags, so we can avoid the unmask dance at the end of 1570 * the threaded handler for those. 1571 */ 1572 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1573 new->flags &= ~IRQF_ONESHOT; 1574 1575 /* 1576 * Protects against a concurrent __free_irq() call which might wait 1577 * for synchronize_hardirq() to complete without holding the optional 1578 * chip bus lock and desc->lock. Also protects against handing out 1579 * a recycled oneshot thread_mask bit while it's still in use by 1580 * its previous owner. 1581 */ 1582 mutex_lock(&desc->request_mutex); 1583 1584 /* 1585 * Acquire bus lock as the irq_request_resources() callback below 1586 * might rely on the serialization or the magic power management 1587 * functions which are abusing the irq_bus_lock() callback, 1588 */ 1589 chip_bus_lock(desc); 1590 1591 /* First installed action requests resources. */ 1592 if (!desc->action) { 1593 ret = irq_request_resources(desc); 1594 if (ret) { 1595 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1596 new->name, irq, desc->irq_data.chip->name); 1597 goto out_bus_unlock; 1598 } 1599 } 1600 1601 /* 1602 * The following block of code has to be executed atomically 1603 * protected against a concurrent interrupt and any of the other 1604 * management calls which are not serialized via 1605 * desc->request_mutex or the optional bus lock. 1606 */ 1607 raw_spin_lock_irqsave(&desc->lock, flags); 1608 old_ptr = &desc->action; 1609 old = *old_ptr; 1610 if (old) { 1611 /* 1612 * Can't share interrupts unless both agree to and are 1613 * the same type (level, edge, polarity). So both flag 1614 * fields must have IRQF_SHARED set and the bits which 1615 * set the trigger type must match. Also all must 1616 * agree on ONESHOT. 1617 * Interrupt lines used for NMIs cannot be shared. 1618 */ 1619 unsigned int oldtype; 1620 1621 if (irq_is_nmi(desc)) { 1622 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1623 new->name, irq, desc->irq_data.chip->name); 1624 ret = -EINVAL; 1625 goto out_unlock; 1626 } 1627 1628 /* 1629 * If nobody did set the configuration before, inherit 1630 * the one provided by the requester. 1631 */ 1632 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1633 oldtype = irqd_get_trigger_type(&desc->irq_data); 1634 } else { 1635 oldtype = new->flags & IRQF_TRIGGER_MASK; 1636 irqd_set_trigger_type(&desc->irq_data, oldtype); 1637 } 1638 1639 if (!((old->flags & new->flags) & IRQF_SHARED) || 1640 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1641 goto mismatch; 1642 1643 if ((old->flags & IRQF_ONESHOT) && 1644 (new->flags & IRQF_COND_ONESHOT)) 1645 new->flags |= IRQF_ONESHOT; 1646 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1647 goto mismatch; 1648 1649 /* All handlers must agree on per-cpuness */ 1650 if ((old->flags & IRQF_PERCPU) != 1651 (new->flags & IRQF_PERCPU)) 1652 goto mismatch; 1653 1654 /* add new interrupt at end of irq queue */ 1655 do { 1656 /* 1657 * Or all existing action->thread_mask bits, 1658 * so we can find the next zero bit for this 1659 * new action. 1660 */ 1661 thread_mask |= old->thread_mask; 1662 old_ptr = &old->next; 1663 old = *old_ptr; 1664 } while (old); 1665 shared = 1; 1666 } 1667 1668 /* 1669 * Setup the thread mask for this irqaction for ONESHOT. For 1670 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1671 * conditional in irq_wake_thread(). 1672 */ 1673 if (new->flags & IRQF_ONESHOT) { 1674 /* 1675 * Unlikely to have 32 resp 64 irqs sharing one line, 1676 * but who knows. 1677 */ 1678 if (thread_mask == ~0UL) { 1679 ret = -EBUSY; 1680 goto out_unlock; 1681 } 1682 /* 1683 * The thread_mask for the action is or'ed to 1684 * desc->thread_active to indicate that the 1685 * IRQF_ONESHOT thread handler has been woken, but not 1686 * yet finished. The bit is cleared when a thread 1687 * completes. When all threads of a shared interrupt 1688 * line have completed desc->threads_active becomes 1689 * zero and the interrupt line is unmasked. See 1690 * handle.c:irq_wake_thread() for further information. 1691 * 1692 * If no thread is woken by primary (hard irq context) 1693 * interrupt handlers, then desc->threads_active is 1694 * also checked for zero to unmask the irq line in the 1695 * affected hard irq flow handlers 1696 * (handle_[fasteoi|level]_irq). 1697 * 1698 * The new action gets the first zero bit of 1699 * thread_mask assigned. See the loop above which or's 1700 * all existing action->thread_mask bits. 1701 */ 1702 new->thread_mask = 1UL << ffz(thread_mask); 1703 1704 } else if (new->handler == irq_default_primary_handler && 1705 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1706 /* 1707 * The interrupt was requested with handler = NULL, so 1708 * we use the default primary handler for it. But it 1709 * does not have the oneshot flag set. In combination 1710 * with level interrupts this is deadly, because the 1711 * default primary handler just wakes the thread, then 1712 * the irq lines is reenabled, but the device still 1713 * has the level irq asserted. Rinse and repeat.... 1714 * 1715 * While this works for edge type interrupts, we play 1716 * it safe and reject unconditionally because we can't 1717 * say for sure which type this interrupt really 1718 * has. The type flags are unreliable as the 1719 * underlying chip implementation can override them. 1720 */ 1721 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1722 new->name, irq); 1723 ret = -EINVAL; 1724 goto out_unlock; 1725 } 1726 1727 if (!shared) { 1728 /* Setup the type (level, edge polarity) if configured: */ 1729 if (new->flags & IRQF_TRIGGER_MASK) { 1730 ret = __irq_set_trigger(desc, 1731 new->flags & IRQF_TRIGGER_MASK); 1732 1733 if (ret) 1734 goto out_unlock; 1735 } 1736 1737 /* 1738 * Activate the interrupt. That activation must happen 1739 * independently of IRQ_NOAUTOEN. request_irq() can fail 1740 * and the callers are supposed to handle 1741 * that. enable_irq() of an interrupt requested with 1742 * IRQ_NOAUTOEN is not supposed to fail. The activation 1743 * keeps it in shutdown mode, it merily associates 1744 * resources if necessary and if that's not possible it 1745 * fails. Interrupts which are in managed shutdown mode 1746 * will simply ignore that activation request. 1747 */ 1748 ret = irq_activate(desc); 1749 if (ret) 1750 goto out_unlock; 1751 1752 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1753 IRQS_ONESHOT | IRQS_WAITING); 1754 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1755 1756 if (new->flags & IRQF_PERCPU) { 1757 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1758 irq_settings_set_per_cpu(desc); 1759 if (new->flags & IRQF_NO_DEBUG) 1760 irq_settings_set_no_debug(desc); 1761 } 1762 1763 if (noirqdebug) 1764 irq_settings_set_no_debug(desc); 1765 1766 if (new->flags & IRQF_ONESHOT) 1767 desc->istate |= IRQS_ONESHOT; 1768 1769 /* Exclude IRQ from balancing if requested */ 1770 if (new->flags & IRQF_NOBALANCING) { 1771 irq_settings_set_no_balancing(desc); 1772 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1773 } 1774 1775 if (!(new->flags & IRQF_NO_AUTOEN) && 1776 irq_settings_can_autoenable(desc)) { 1777 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1778 } else { 1779 /* 1780 * Shared interrupts do not go well with disabling 1781 * auto enable. The sharing interrupt might request 1782 * it while it's still disabled and then wait for 1783 * interrupts forever. 1784 */ 1785 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1786 /* Undo nested disables: */ 1787 desc->depth = 1; 1788 } 1789 1790 } else if (new->flags & IRQF_TRIGGER_MASK) { 1791 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1792 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1793 1794 if (nmsk != omsk) 1795 /* hope the handler works with current trigger mode */ 1796 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1797 irq, omsk, nmsk); 1798 } 1799 1800 *old_ptr = new; 1801 1802 irq_pm_install_action(desc, new); 1803 1804 /* Reset broken irq detection when installing new handler */ 1805 desc->irq_count = 0; 1806 desc->irqs_unhandled = 0; 1807 1808 /* 1809 * Check whether we disabled the irq via the spurious handler 1810 * before. Reenable it and give it another chance. 1811 */ 1812 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1813 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1814 __enable_irq(desc); 1815 } 1816 1817 raw_spin_unlock_irqrestore(&desc->lock, flags); 1818 chip_bus_sync_unlock(desc); 1819 mutex_unlock(&desc->request_mutex); 1820 1821 irq_setup_timings(desc, new); 1822 1823 wake_up_and_wait_for_irq_thread_ready(desc, new); 1824 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1825 1826 register_irq_proc(irq, desc); 1827 new->dir = NULL; 1828 register_handler_proc(irq, new); 1829 return 0; 1830 1831 mismatch: 1832 if (!(new->flags & IRQF_PROBE_SHARED)) { 1833 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1834 irq, new->flags, new->name, old->flags, old->name); 1835 #ifdef CONFIG_DEBUG_SHIRQ 1836 dump_stack(); 1837 #endif 1838 } 1839 ret = -EBUSY; 1840 1841 out_unlock: 1842 raw_spin_unlock_irqrestore(&desc->lock, flags); 1843 1844 if (!desc->action) 1845 irq_release_resources(desc); 1846 out_bus_unlock: 1847 chip_bus_sync_unlock(desc); 1848 mutex_unlock(&desc->request_mutex); 1849 1850 out_thread: 1851 if (new->thread) { 1852 struct task_struct *t = new->thread; 1853 1854 new->thread = NULL; 1855 kthread_stop_put(t); 1856 } 1857 if (new->secondary && new->secondary->thread) { 1858 struct task_struct *t = new->secondary->thread; 1859 1860 new->secondary->thread = NULL; 1861 kthread_stop_put(t); 1862 } 1863 out_mput: 1864 module_put(desc->owner); 1865 return ret; 1866 } 1867 1868 /* 1869 * Internal function to unregister an irqaction - used to free 1870 * regular and special interrupts that are part of the architecture. 1871 */ 1872 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1873 { 1874 unsigned irq = desc->irq_data.irq; 1875 struct irqaction *action, **action_ptr; 1876 unsigned long flags; 1877 1878 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1879 1880 mutex_lock(&desc->request_mutex); 1881 chip_bus_lock(desc); 1882 raw_spin_lock_irqsave(&desc->lock, flags); 1883 1884 /* 1885 * There can be multiple actions per IRQ descriptor, find the right 1886 * one based on the dev_id: 1887 */ 1888 action_ptr = &desc->action; 1889 for (;;) { 1890 action = *action_ptr; 1891 1892 if (!action) { 1893 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1894 raw_spin_unlock_irqrestore(&desc->lock, flags); 1895 chip_bus_sync_unlock(desc); 1896 mutex_unlock(&desc->request_mutex); 1897 return NULL; 1898 } 1899 1900 if (action->dev_id == dev_id) 1901 break; 1902 action_ptr = &action->next; 1903 } 1904 1905 /* Found it - now remove it from the list of entries: */ 1906 *action_ptr = action->next; 1907 1908 irq_pm_remove_action(desc, action); 1909 1910 /* If this was the last handler, shut down the IRQ line: */ 1911 if (!desc->action) { 1912 irq_settings_clr_disable_unlazy(desc); 1913 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1914 irq_shutdown(desc); 1915 } 1916 1917 #ifdef CONFIG_SMP 1918 /* make sure affinity_hint is cleaned up */ 1919 if (WARN_ON_ONCE(desc->affinity_hint)) 1920 desc->affinity_hint = NULL; 1921 #endif 1922 1923 raw_spin_unlock_irqrestore(&desc->lock, flags); 1924 /* 1925 * Drop bus_lock here so the changes which were done in the chip 1926 * callbacks above are synced out to the irq chips which hang 1927 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1928 * 1929 * Aside of that the bus_lock can also be taken from the threaded 1930 * handler in irq_finalize_oneshot() which results in a deadlock 1931 * because kthread_stop() would wait forever for the thread to 1932 * complete, which is blocked on the bus lock. 1933 * 1934 * The still held desc->request_mutex() protects against a 1935 * concurrent request_irq() of this irq so the release of resources 1936 * and timing data is properly serialized. 1937 */ 1938 chip_bus_sync_unlock(desc); 1939 1940 unregister_handler_proc(irq, action); 1941 1942 /* 1943 * Make sure it's not being used on another CPU and if the chip 1944 * supports it also make sure that there is no (not yet serviced) 1945 * interrupt in flight at the hardware level. 1946 */ 1947 __synchronize_irq(desc); 1948 1949 #ifdef CONFIG_DEBUG_SHIRQ 1950 /* 1951 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1952 * event to happen even now it's being freed, so let's make sure that 1953 * is so by doing an extra call to the handler .... 1954 * 1955 * ( We do this after actually deregistering it, to make sure that a 1956 * 'real' IRQ doesn't run in parallel with our fake. ) 1957 */ 1958 if (action->flags & IRQF_SHARED) { 1959 local_irq_save(flags); 1960 action->handler(irq, dev_id); 1961 local_irq_restore(flags); 1962 } 1963 #endif 1964 1965 /* 1966 * The action has already been removed above, but the thread writes 1967 * its oneshot mask bit when it completes. Though request_mutex is 1968 * held across this which prevents __setup_irq() from handing out 1969 * the same bit to a newly requested action. 1970 */ 1971 if (action->thread) { 1972 kthread_stop_put(action->thread); 1973 if (action->secondary && action->secondary->thread) 1974 kthread_stop_put(action->secondary->thread); 1975 } 1976 1977 /* Last action releases resources */ 1978 if (!desc->action) { 1979 /* 1980 * Reacquire bus lock as irq_release_resources() might 1981 * require it to deallocate resources over the slow bus. 1982 */ 1983 chip_bus_lock(desc); 1984 /* 1985 * There is no interrupt on the fly anymore. Deactivate it 1986 * completely. 1987 */ 1988 raw_spin_lock_irqsave(&desc->lock, flags); 1989 irq_domain_deactivate_irq(&desc->irq_data); 1990 raw_spin_unlock_irqrestore(&desc->lock, flags); 1991 1992 irq_release_resources(desc); 1993 chip_bus_sync_unlock(desc); 1994 irq_remove_timings(desc); 1995 } 1996 1997 mutex_unlock(&desc->request_mutex); 1998 1999 irq_chip_pm_put(&desc->irq_data); 2000 module_put(desc->owner); 2001 kfree(action->secondary); 2002 return action; 2003 } 2004 2005 /** 2006 * free_irq - free an interrupt allocated with request_irq 2007 * @irq: Interrupt line to free 2008 * @dev_id: Device identity to free 2009 * 2010 * Remove an interrupt handler. The handler is removed and if the 2011 * interrupt line is no longer in use by any driver it is disabled. 2012 * On a shared IRQ the caller must ensure the interrupt is disabled 2013 * on the card it drives before calling this function. The function 2014 * does not return until any executing interrupts for this IRQ 2015 * have completed. 2016 * 2017 * This function must not be called from interrupt context. 2018 * 2019 * Returns the devname argument passed to request_irq. 2020 */ 2021 const void *free_irq(unsigned int irq, void *dev_id) 2022 { 2023 struct irq_desc *desc = irq_to_desc(irq); 2024 struct irqaction *action; 2025 const char *devname; 2026 2027 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2028 return NULL; 2029 2030 #ifdef CONFIG_SMP 2031 if (WARN_ON(desc->affinity_notify)) 2032 desc->affinity_notify = NULL; 2033 #endif 2034 2035 action = __free_irq(desc, dev_id); 2036 2037 if (!action) 2038 return NULL; 2039 2040 devname = action->name; 2041 kfree(action); 2042 return devname; 2043 } 2044 EXPORT_SYMBOL(free_irq); 2045 2046 /* This function must be called with desc->lock held */ 2047 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2048 { 2049 const char *devname = NULL; 2050 2051 desc->istate &= ~IRQS_NMI; 2052 2053 if (!WARN_ON(desc->action == NULL)) { 2054 irq_pm_remove_action(desc, desc->action); 2055 devname = desc->action->name; 2056 unregister_handler_proc(irq, desc->action); 2057 2058 kfree(desc->action); 2059 desc->action = NULL; 2060 } 2061 2062 irq_settings_clr_disable_unlazy(desc); 2063 irq_shutdown_and_deactivate(desc); 2064 2065 irq_release_resources(desc); 2066 2067 irq_chip_pm_put(&desc->irq_data); 2068 module_put(desc->owner); 2069 2070 return devname; 2071 } 2072 2073 const void *free_nmi(unsigned int irq, void *dev_id) 2074 { 2075 struct irq_desc *desc = irq_to_desc(irq); 2076 unsigned long flags; 2077 const void *devname; 2078 2079 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2080 return NULL; 2081 2082 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2083 return NULL; 2084 2085 /* NMI still enabled */ 2086 if (WARN_ON(desc->depth == 0)) 2087 disable_nmi_nosync(irq); 2088 2089 raw_spin_lock_irqsave(&desc->lock, flags); 2090 2091 irq_nmi_teardown(desc); 2092 devname = __cleanup_nmi(irq, desc); 2093 2094 raw_spin_unlock_irqrestore(&desc->lock, flags); 2095 2096 return devname; 2097 } 2098 2099 /** 2100 * request_threaded_irq - allocate an interrupt line 2101 * @irq: Interrupt line to allocate 2102 * @handler: Function to be called when the IRQ occurs. 2103 * Primary handler for threaded interrupts. 2104 * If handler is NULL and thread_fn != NULL 2105 * the default primary handler is installed. 2106 * @thread_fn: Function called from the irq handler thread 2107 * If NULL, no irq thread is created 2108 * @irqflags: Interrupt type flags 2109 * @devname: An ascii name for the claiming device 2110 * @dev_id: A cookie passed back to the handler function 2111 * 2112 * This call allocates interrupt resources and enables the 2113 * interrupt line and IRQ handling. From the point this 2114 * call is made your handler function may be invoked. Since 2115 * your handler function must clear any interrupt the board 2116 * raises, you must take care both to initialise your hardware 2117 * and to set up the interrupt handler in the right order. 2118 * 2119 * If you want to set up a threaded irq handler for your device 2120 * then you need to supply @handler and @thread_fn. @handler is 2121 * still called in hard interrupt context and has to check 2122 * whether the interrupt originates from the device. If yes it 2123 * needs to disable the interrupt on the device and return 2124 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2125 * @thread_fn. This split handler design is necessary to support 2126 * shared interrupts. 2127 * 2128 * Dev_id must be globally unique. Normally the address of the 2129 * device data structure is used as the cookie. Since the handler 2130 * receives this value it makes sense to use it. 2131 * 2132 * If your interrupt is shared you must pass a non NULL dev_id 2133 * as this is required when freeing the interrupt. 2134 * 2135 * Flags: 2136 * 2137 * IRQF_SHARED Interrupt is shared 2138 * IRQF_TRIGGER_* Specify active edge(s) or level 2139 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2140 */ 2141 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2142 irq_handler_t thread_fn, unsigned long irqflags, 2143 const char *devname, void *dev_id) 2144 { 2145 struct irqaction *action; 2146 struct irq_desc *desc; 2147 int retval; 2148 2149 if (irq == IRQ_NOTCONNECTED) 2150 return -ENOTCONN; 2151 2152 /* 2153 * Sanity-check: shared interrupts must pass in a real dev-ID, 2154 * otherwise we'll have trouble later trying to figure out 2155 * which interrupt is which (messes up the interrupt freeing 2156 * logic etc). 2157 * 2158 * Also shared interrupts do not go well with disabling auto enable. 2159 * The sharing interrupt might request it while it's still disabled 2160 * and then wait for interrupts forever. 2161 * 2162 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2163 * it cannot be set along with IRQF_NO_SUSPEND. 2164 */ 2165 if (((irqflags & IRQF_SHARED) && !dev_id) || 2166 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2167 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2168 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2169 return -EINVAL; 2170 2171 desc = irq_to_desc(irq); 2172 if (!desc) 2173 return -EINVAL; 2174 2175 if (!irq_settings_can_request(desc) || 2176 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2177 return -EINVAL; 2178 2179 if (!handler) { 2180 if (!thread_fn) 2181 return -EINVAL; 2182 handler = irq_default_primary_handler; 2183 } 2184 2185 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2186 if (!action) 2187 return -ENOMEM; 2188 2189 action->handler = handler; 2190 action->thread_fn = thread_fn; 2191 action->flags = irqflags; 2192 action->name = devname; 2193 action->dev_id = dev_id; 2194 2195 retval = irq_chip_pm_get(&desc->irq_data); 2196 if (retval < 0) { 2197 kfree(action); 2198 return retval; 2199 } 2200 2201 retval = __setup_irq(irq, desc, action); 2202 2203 if (retval) { 2204 irq_chip_pm_put(&desc->irq_data); 2205 kfree(action->secondary); 2206 kfree(action); 2207 } 2208 2209 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2210 if (!retval && (irqflags & IRQF_SHARED)) { 2211 /* 2212 * It's a shared IRQ -- the driver ought to be prepared for it 2213 * to happen immediately, so let's make sure.... 2214 * We disable the irq to make sure that a 'real' IRQ doesn't 2215 * run in parallel with our fake. 2216 */ 2217 unsigned long flags; 2218 2219 disable_irq(irq); 2220 local_irq_save(flags); 2221 2222 handler(irq, dev_id); 2223 2224 local_irq_restore(flags); 2225 enable_irq(irq); 2226 } 2227 #endif 2228 return retval; 2229 } 2230 EXPORT_SYMBOL(request_threaded_irq); 2231 2232 /** 2233 * request_any_context_irq - allocate an interrupt line 2234 * @irq: Interrupt line to allocate 2235 * @handler: Function to be called when the IRQ occurs. 2236 * Threaded handler for threaded interrupts. 2237 * @flags: Interrupt type flags 2238 * @name: An ascii name for the claiming device 2239 * @dev_id: A cookie passed back to the handler function 2240 * 2241 * This call allocates interrupt resources and enables the 2242 * interrupt line and IRQ handling. It selects either a 2243 * hardirq or threaded handling method depending on the 2244 * context. 2245 * 2246 * On failure, it returns a negative value. On success, 2247 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2248 */ 2249 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2250 unsigned long flags, const char *name, void *dev_id) 2251 { 2252 struct irq_desc *desc; 2253 int ret; 2254 2255 if (irq == IRQ_NOTCONNECTED) 2256 return -ENOTCONN; 2257 2258 desc = irq_to_desc(irq); 2259 if (!desc) 2260 return -EINVAL; 2261 2262 if (irq_settings_is_nested_thread(desc)) { 2263 ret = request_threaded_irq(irq, NULL, handler, 2264 flags, name, dev_id); 2265 return !ret ? IRQC_IS_NESTED : ret; 2266 } 2267 2268 ret = request_irq(irq, handler, flags, name, dev_id); 2269 return !ret ? IRQC_IS_HARDIRQ : ret; 2270 } 2271 EXPORT_SYMBOL_GPL(request_any_context_irq); 2272 2273 /** 2274 * request_nmi - allocate an interrupt line for NMI delivery 2275 * @irq: Interrupt line to allocate 2276 * @handler: Function to be called when the IRQ occurs. 2277 * Threaded handler for threaded interrupts. 2278 * @irqflags: Interrupt type flags 2279 * @name: An ascii name for the claiming device 2280 * @dev_id: A cookie passed back to the handler function 2281 * 2282 * This call allocates interrupt resources and enables the 2283 * interrupt line and IRQ handling. It sets up the IRQ line 2284 * to be handled as an NMI. 2285 * 2286 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2287 * cannot be threaded. 2288 * 2289 * Interrupt lines requested for NMI delivering must produce per cpu 2290 * interrupts and have auto enabling setting disabled. 2291 * 2292 * Dev_id must be globally unique. Normally the address of the 2293 * device data structure is used as the cookie. Since the handler 2294 * receives this value it makes sense to use it. 2295 * 2296 * If the interrupt line cannot be used to deliver NMIs, function 2297 * will fail and return a negative value. 2298 */ 2299 int request_nmi(unsigned int irq, irq_handler_t handler, 2300 unsigned long irqflags, const char *name, void *dev_id) 2301 { 2302 struct irqaction *action; 2303 struct irq_desc *desc; 2304 unsigned long flags; 2305 int retval; 2306 2307 if (irq == IRQ_NOTCONNECTED) 2308 return -ENOTCONN; 2309 2310 /* NMI cannot be shared, used for Polling */ 2311 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2312 return -EINVAL; 2313 2314 if (!(irqflags & IRQF_PERCPU)) 2315 return -EINVAL; 2316 2317 if (!handler) 2318 return -EINVAL; 2319 2320 desc = irq_to_desc(irq); 2321 2322 if (!desc || (irq_settings_can_autoenable(desc) && 2323 !(irqflags & IRQF_NO_AUTOEN)) || 2324 !irq_settings_can_request(desc) || 2325 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2326 !irq_supports_nmi(desc)) 2327 return -EINVAL; 2328 2329 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2330 if (!action) 2331 return -ENOMEM; 2332 2333 action->handler = handler; 2334 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2335 action->name = name; 2336 action->dev_id = dev_id; 2337 2338 retval = irq_chip_pm_get(&desc->irq_data); 2339 if (retval < 0) 2340 goto err_out; 2341 2342 retval = __setup_irq(irq, desc, action); 2343 if (retval) 2344 goto err_irq_setup; 2345 2346 raw_spin_lock_irqsave(&desc->lock, flags); 2347 2348 /* Setup NMI state */ 2349 desc->istate |= IRQS_NMI; 2350 retval = irq_nmi_setup(desc); 2351 if (retval) { 2352 __cleanup_nmi(irq, desc); 2353 raw_spin_unlock_irqrestore(&desc->lock, flags); 2354 return -EINVAL; 2355 } 2356 2357 raw_spin_unlock_irqrestore(&desc->lock, flags); 2358 2359 return 0; 2360 2361 err_irq_setup: 2362 irq_chip_pm_put(&desc->irq_data); 2363 err_out: 2364 kfree(action); 2365 2366 return retval; 2367 } 2368 2369 void enable_percpu_irq(unsigned int irq, unsigned int type) 2370 { 2371 unsigned int cpu = smp_processor_id(); 2372 unsigned long flags; 2373 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2374 2375 if (!desc) 2376 return; 2377 2378 /* 2379 * If the trigger type is not specified by the caller, then 2380 * use the default for this interrupt. 2381 */ 2382 type &= IRQ_TYPE_SENSE_MASK; 2383 if (type == IRQ_TYPE_NONE) 2384 type = irqd_get_trigger_type(&desc->irq_data); 2385 2386 if (type != IRQ_TYPE_NONE) { 2387 int ret; 2388 2389 ret = __irq_set_trigger(desc, type); 2390 2391 if (ret) { 2392 WARN(1, "failed to set type for IRQ%d\n", irq); 2393 goto out; 2394 } 2395 } 2396 2397 irq_percpu_enable(desc, cpu); 2398 out: 2399 irq_put_desc_unlock(desc, flags); 2400 } 2401 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2402 2403 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2404 { 2405 enable_percpu_irq(irq, type); 2406 } 2407 2408 /** 2409 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2410 * @irq: Linux irq number to check for 2411 * 2412 * Must be called from a non migratable context. Returns the enable 2413 * state of a per cpu interrupt on the current cpu. 2414 */ 2415 bool irq_percpu_is_enabled(unsigned int irq) 2416 { 2417 unsigned int cpu = smp_processor_id(); 2418 struct irq_desc *desc; 2419 unsigned long flags; 2420 bool is_enabled; 2421 2422 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2423 if (!desc) 2424 return false; 2425 2426 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2427 irq_put_desc_unlock(desc, flags); 2428 2429 return is_enabled; 2430 } 2431 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2432 2433 void disable_percpu_irq(unsigned int irq) 2434 { 2435 unsigned int cpu = smp_processor_id(); 2436 unsigned long flags; 2437 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2438 2439 if (!desc) 2440 return; 2441 2442 irq_percpu_disable(desc, cpu); 2443 irq_put_desc_unlock(desc, flags); 2444 } 2445 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2446 2447 void disable_percpu_nmi(unsigned int irq) 2448 { 2449 disable_percpu_irq(irq); 2450 } 2451 2452 /* 2453 * Internal function to unregister a percpu irqaction. 2454 */ 2455 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2456 { 2457 struct irq_desc *desc = irq_to_desc(irq); 2458 struct irqaction *action; 2459 unsigned long flags; 2460 2461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2462 2463 if (!desc) 2464 return NULL; 2465 2466 raw_spin_lock_irqsave(&desc->lock, flags); 2467 2468 action = desc->action; 2469 if (!action || action->percpu_dev_id != dev_id) { 2470 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2471 goto bad; 2472 } 2473 2474 if (!cpumask_empty(desc->percpu_enabled)) { 2475 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2476 irq, cpumask_first(desc->percpu_enabled)); 2477 goto bad; 2478 } 2479 2480 /* Found it - now remove it from the list of entries: */ 2481 desc->action = NULL; 2482 2483 desc->istate &= ~IRQS_NMI; 2484 2485 raw_spin_unlock_irqrestore(&desc->lock, flags); 2486 2487 unregister_handler_proc(irq, action); 2488 2489 irq_chip_pm_put(&desc->irq_data); 2490 module_put(desc->owner); 2491 return action; 2492 2493 bad: 2494 raw_spin_unlock_irqrestore(&desc->lock, flags); 2495 return NULL; 2496 } 2497 2498 /** 2499 * remove_percpu_irq - free a per-cpu interrupt 2500 * @irq: Interrupt line to free 2501 * @act: irqaction for the interrupt 2502 * 2503 * Used to remove interrupts statically setup by the early boot process. 2504 */ 2505 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2506 { 2507 struct irq_desc *desc = irq_to_desc(irq); 2508 2509 if (desc && irq_settings_is_per_cpu_devid(desc)) 2510 __free_percpu_irq(irq, act->percpu_dev_id); 2511 } 2512 2513 /** 2514 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2515 * @irq: Interrupt line to free 2516 * @dev_id: Device identity to free 2517 * 2518 * Remove a percpu interrupt handler. The handler is removed, but 2519 * the interrupt line is not disabled. This must be done on each 2520 * CPU before calling this function. The function does not return 2521 * until any executing interrupts for this IRQ have completed. 2522 * 2523 * This function must not be called from interrupt context. 2524 */ 2525 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2526 { 2527 struct irq_desc *desc = irq_to_desc(irq); 2528 2529 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2530 return; 2531 2532 chip_bus_lock(desc); 2533 kfree(__free_percpu_irq(irq, dev_id)); 2534 chip_bus_sync_unlock(desc); 2535 } 2536 EXPORT_SYMBOL_GPL(free_percpu_irq); 2537 2538 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2539 { 2540 struct irq_desc *desc = irq_to_desc(irq); 2541 2542 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2543 return; 2544 2545 if (WARN_ON(!irq_is_nmi(desc))) 2546 return; 2547 2548 kfree(__free_percpu_irq(irq, dev_id)); 2549 } 2550 2551 /** 2552 * setup_percpu_irq - setup a per-cpu interrupt 2553 * @irq: Interrupt line to setup 2554 * @act: irqaction for the interrupt 2555 * 2556 * Used to statically setup per-cpu interrupts in the early boot process. 2557 */ 2558 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2559 { 2560 struct irq_desc *desc = irq_to_desc(irq); 2561 int retval; 2562 2563 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2564 return -EINVAL; 2565 2566 retval = irq_chip_pm_get(&desc->irq_data); 2567 if (retval < 0) 2568 return retval; 2569 2570 retval = __setup_irq(irq, desc, act); 2571 2572 if (retval) 2573 irq_chip_pm_put(&desc->irq_data); 2574 2575 return retval; 2576 } 2577 2578 /** 2579 * __request_percpu_irq - allocate a percpu interrupt line 2580 * @irq: Interrupt line to allocate 2581 * @handler: Function to be called when the IRQ occurs. 2582 * @flags: Interrupt type flags (IRQF_TIMER only) 2583 * @devname: An ascii name for the claiming device 2584 * @dev_id: A percpu cookie passed back to the handler function 2585 * 2586 * This call allocates interrupt resources and enables the 2587 * interrupt on the local CPU. If the interrupt is supposed to be 2588 * enabled on other CPUs, it has to be done on each CPU using 2589 * enable_percpu_irq(). 2590 * 2591 * Dev_id must be globally unique. It is a per-cpu variable, and 2592 * the handler gets called with the interrupted CPU's instance of 2593 * that variable. 2594 */ 2595 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2596 unsigned long flags, const char *devname, 2597 void __percpu *dev_id) 2598 { 2599 struct irqaction *action; 2600 struct irq_desc *desc; 2601 int retval; 2602 2603 if (!dev_id) 2604 return -EINVAL; 2605 2606 desc = irq_to_desc(irq); 2607 if (!desc || !irq_settings_can_request(desc) || 2608 !irq_settings_is_per_cpu_devid(desc)) 2609 return -EINVAL; 2610 2611 if (flags && flags != IRQF_TIMER) 2612 return -EINVAL; 2613 2614 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2615 if (!action) 2616 return -ENOMEM; 2617 2618 action->handler = handler; 2619 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2620 action->name = devname; 2621 action->percpu_dev_id = dev_id; 2622 2623 retval = irq_chip_pm_get(&desc->irq_data); 2624 if (retval < 0) { 2625 kfree(action); 2626 return retval; 2627 } 2628 2629 retval = __setup_irq(irq, desc, action); 2630 2631 if (retval) { 2632 irq_chip_pm_put(&desc->irq_data); 2633 kfree(action); 2634 } 2635 2636 return retval; 2637 } 2638 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2639 2640 /** 2641 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2642 * @irq: Interrupt line to allocate 2643 * @handler: Function to be called when the IRQ occurs. 2644 * @name: An ascii name for the claiming device 2645 * @dev_id: A percpu cookie passed back to the handler function 2646 * 2647 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2648 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2649 * being enabled on the same CPU by using enable_percpu_nmi(). 2650 * 2651 * Dev_id must be globally unique. It is a per-cpu variable, and 2652 * the handler gets called with the interrupted CPU's instance of 2653 * that variable. 2654 * 2655 * Interrupt lines requested for NMI delivering should have auto enabling 2656 * setting disabled. 2657 * 2658 * If the interrupt line cannot be used to deliver NMIs, function 2659 * will fail returning a negative value. 2660 */ 2661 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2662 const char *name, void __percpu *dev_id) 2663 { 2664 struct irqaction *action; 2665 struct irq_desc *desc; 2666 unsigned long flags; 2667 int retval; 2668 2669 if (!handler) 2670 return -EINVAL; 2671 2672 desc = irq_to_desc(irq); 2673 2674 if (!desc || !irq_settings_can_request(desc) || 2675 !irq_settings_is_per_cpu_devid(desc) || 2676 irq_settings_can_autoenable(desc) || 2677 !irq_supports_nmi(desc)) 2678 return -EINVAL; 2679 2680 /* The line cannot already be NMI */ 2681 if (irq_is_nmi(desc)) 2682 return -EINVAL; 2683 2684 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2685 if (!action) 2686 return -ENOMEM; 2687 2688 action->handler = handler; 2689 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2690 | IRQF_NOBALANCING; 2691 action->name = name; 2692 action->percpu_dev_id = dev_id; 2693 2694 retval = irq_chip_pm_get(&desc->irq_data); 2695 if (retval < 0) 2696 goto err_out; 2697 2698 retval = __setup_irq(irq, desc, action); 2699 if (retval) 2700 goto err_irq_setup; 2701 2702 raw_spin_lock_irqsave(&desc->lock, flags); 2703 desc->istate |= IRQS_NMI; 2704 raw_spin_unlock_irqrestore(&desc->lock, flags); 2705 2706 return 0; 2707 2708 err_irq_setup: 2709 irq_chip_pm_put(&desc->irq_data); 2710 err_out: 2711 kfree(action); 2712 2713 return retval; 2714 } 2715 2716 /** 2717 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2718 * @irq: Interrupt line to prepare for NMI delivery 2719 * 2720 * This call prepares an interrupt line to deliver NMI on the current CPU, 2721 * before that interrupt line gets enabled with enable_percpu_nmi(). 2722 * 2723 * As a CPU local operation, this should be called from non-preemptible 2724 * context. 2725 * 2726 * If the interrupt line cannot be used to deliver NMIs, function 2727 * will fail returning a negative value. 2728 */ 2729 int prepare_percpu_nmi(unsigned int irq) 2730 { 2731 unsigned long flags; 2732 struct irq_desc *desc; 2733 int ret = 0; 2734 2735 WARN_ON(preemptible()); 2736 2737 desc = irq_get_desc_lock(irq, &flags, 2738 IRQ_GET_DESC_CHECK_PERCPU); 2739 if (!desc) 2740 return -EINVAL; 2741 2742 if (WARN(!irq_is_nmi(desc), 2743 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2744 irq)) { 2745 ret = -EINVAL; 2746 goto out; 2747 } 2748 2749 ret = irq_nmi_setup(desc); 2750 if (ret) { 2751 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2752 goto out; 2753 } 2754 2755 out: 2756 irq_put_desc_unlock(desc, flags); 2757 return ret; 2758 } 2759 2760 /** 2761 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2762 * @irq: Interrupt line from which CPU local NMI configuration should be 2763 * removed 2764 * 2765 * This call undoes the setup done by prepare_percpu_nmi(). 2766 * 2767 * IRQ line should not be enabled for the current CPU. 2768 * 2769 * As a CPU local operation, this should be called from non-preemptible 2770 * context. 2771 */ 2772 void teardown_percpu_nmi(unsigned int irq) 2773 { 2774 unsigned long flags; 2775 struct irq_desc *desc; 2776 2777 WARN_ON(preemptible()); 2778 2779 desc = irq_get_desc_lock(irq, &flags, 2780 IRQ_GET_DESC_CHECK_PERCPU); 2781 if (!desc) 2782 return; 2783 2784 if (WARN_ON(!irq_is_nmi(desc))) 2785 goto out; 2786 2787 irq_nmi_teardown(desc); 2788 out: 2789 irq_put_desc_unlock(desc, flags); 2790 } 2791 2792 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2793 bool *state) 2794 { 2795 struct irq_chip *chip; 2796 int err = -EINVAL; 2797 2798 do { 2799 chip = irq_data_get_irq_chip(data); 2800 if (WARN_ON_ONCE(!chip)) 2801 return -ENODEV; 2802 if (chip->irq_get_irqchip_state) 2803 break; 2804 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2805 data = data->parent_data; 2806 #else 2807 data = NULL; 2808 #endif 2809 } while (data); 2810 2811 if (data) 2812 err = chip->irq_get_irqchip_state(data, which, state); 2813 return err; 2814 } 2815 2816 /** 2817 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2818 * @irq: Interrupt line that is forwarded to a VM 2819 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2820 * @state: a pointer to a boolean where the state is to be stored 2821 * 2822 * This call snapshots the internal irqchip state of an 2823 * interrupt, returning into @state the bit corresponding to 2824 * stage @which 2825 * 2826 * This function should be called with preemption disabled if the 2827 * interrupt controller has per-cpu registers. 2828 */ 2829 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2830 bool *state) 2831 { 2832 struct irq_desc *desc; 2833 struct irq_data *data; 2834 unsigned long flags; 2835 int err = -EINVAL; 2836 2837 desc = irq_get_desc_buslock(irq, &flags, 0); 2838 if (!desc) 2839 return err; 2840 2841 data = irq_desc_get_irq_data(desc); 2842 2843 err = __irq_get_irqchip_state(data, which, state); 2844 2845 irq_put_desc_busunlock(desc, flags); 2846 return err; 2847 } 2848 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2849 2850 /** 2851 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2852 * @irq: Interrupt line that is forwarded to a VM 2853 * @which: State to be restored (one of IRQCHIP_STATE_*) 2854 * @val: Value corresponding to @which 2855 * 2856 * This call sets the internal irqchip state of an interrupt, 2857 * depending on the value of @which. 2858 * 2859 * This function should be called with migration disabled if the 2860 * interrupt controller has per-cpu registers. 2861 */ 2862 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2863 bool val) 2864 { 2865 struct irq_desc *desc; 2866 struct irq_data *data; 2867 struct irq_chip *chip; 2868 unsigned long flags; 2869 int err = -EINVAL; 2870 2871 desc = irq_get_desc_buslock(irq, &flags, 0); 2872 if (!desc) 2873 return err; 2874 2875 data = irq_desc_get_irq_data(desc); 2876 2877 do { 2878 chip = irq_data_get_irq_chip(data); 2879 if (WARN_ON_ONCE(!chip)) { 2880 err = -ENODEV; 2881 goto out_unlock; 2882 } 2883 if (chip->irq_set_irqchip_state) 2884 break; 2885 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2886 data = data->parent_data; 2887 #else 2888 data = NULL; 2889 #endif 2890 } while (data); 2891 2892 if (data) 2893 err = chip->irq_set_irqchip_state(data, which, val); 2894 2895 out_unlock: 2896 irq_put_desc_busunlock(desc, flags); 2897 return err; 2898 } 2899 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2900 2901 /** 2902 * irq_has_action - Check whether an interrupt is requested 2903 * @irq: The linux irq number 2904 * 2905 * Returns: A snapshot of the current state 2906 */ 2907 bool irq_has_action(unsigned int irq) 2908 { 2909 bool res; 2910 2911 rcu_read_lock(); 2912 res = irq_desc_has_action(irq_to_desc(irq)); 2913 rcu_read_unlock(); 2914 return res; 2915 } 2916 EXPORT_SYMBOL_GPL(irq_has_action); 2917 2918 /** 2919 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2920 * @irq: The linux irq number 2921 * @bitmask: The bitmask to evaluate 2922 * 2923 * Returns: True if one of the bits in @bitmask is set 2924 */ 2925 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2926 { 2927 struct irq_desc *desc; 2928 bool res = false; 2929 2930 rcu_read_lock(); 2931 desc = irq_to_desc(irq); 2932 if (desc) 2933 res = !!(desc->status_use_accessors & bitmask); 2934 rcu_read_unlock(); 2935 return res; 2936 } 2937 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2938