1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state); 39 40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 41 { 42 struct irq_data *irqd = irq_desc_get_irq_data(desc); 43 bool inprogress; 44 45 do { 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 guard(raw_spinlock_irqsave)(&desc->lock); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 /* Oops, that failed? */ 71 } while (inprogress); 72 } 73 74 /** 75 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 76 * @irq: interrupt number to wait for 77 * 78 * This function waits for any pending hard IRQ handlers for this interrupt 79 * to complete before returning. If you use this function while holding a 80 * resource the IRQ handler may need you will deadlock. It does not take 81 * associated threaded handlers into account. 82 * 83 * Do not use this for shutdown scenarios where you must be sure that all 84 * parts (hardirq and threaded handler) have completed. 85 * 86 * Returns: false if a threaded handler is active. 87 * 88 * This function may be called - with care - from IRQ context. 89 * 90 * It does not check whether there is an interrupt in flight at the 91 * hardware level, but not serviced yet, as this might deadlock when called 92 * with interrupts disabled and the target CPU of the interrupt is the 93 * current CPU. 94 */ 95 bool synchronize_hardirq(unsigned int irq) 96 { 97 struct irq_desc *desc = irq_to_desc(irq); 98 99 if (desc) { 100 __synchronize_hardirq(desc, false); 101 return !atomic_read(&desc->threads_active); 102 } 103 104 return true; 105 } 106 EXPORT_SYMBOL(synchronize_hardirq); 107 108 static void __synchronize_irq(struct irq_desc *desc) 109 { 110 __synchronize_hardirq(desc, true); 111 /* 112 * We made sure that no hardirq handler is running. Now verify that no 113 * threaded handlers are active. 114 */ 115 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 116 } 117 118 /** 119 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 120 * @irq: interrupt number to wait for 121 * 122 * This function waits for any pending IRQ handlers for this interrupt to 123 * complete before returning. If you use this function while holding a 124 * resource the IRQ handler may need you will deadlock. 125 * 126 * Can only be called from preemptible code as it might sleep when 127 * an interrupt thread is associated to @irq. 128 * 129 * It optionally makes sure (when the irq chip supports that method) 130 * that the interrupt is not pending in any CPU and waiting for 131 * service. 132 */ 133 void synchronize_irq(unsigned int irq) 134 { 135 struct irq_desc *desc = irq_to_desc(irq); 136 137 if (desc) 138 __synchronize_irq(desc); 139 } 140 EXPORT_SYMBOL(synchronize_irq); 141 142 #ifdef CONFIG_SMP 143 cpumask_var_t irq_default_affinity; 144 145 static bool __irq_can_set_affinity(struct irq_desc *desc) 146 { 147 if (!desc || !irqd_can_balance(&desc->irq_data) || 148 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 149 return false; 150 return true; 151 } 152 153 /** 154 * irq_can_set_affinity - Check if the affinity of a given irq can be set 155 * @irq: Interrupt to check 156 * 157 */ 158 int irq_can_set_affinity(unsigned int irq) 159 { 160 return __irq_can_set_affinity(irq_to_desc(irq)); 161 } 162 163 /** 164 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 165 * @irq: Interrupt to check 166 * 167 * Like irq_can_set_affinity() above, but additionally checks for the 168 * AFFINITY_MANAGED flag. 169 */ 170 bool irq_can_set_affinity_usr(unsigned int irq) 171 { 172 struct irq_desc *desc = irq_to_desc(irq); 173 174 return __irq_can_set_affinity(desc) && 175 !irqd_affinity_is_managed(&desc->irq_data); 176 } 177 178 /** 179 * irq_set_thread_affinity - Notify irq threads to adjust affinity 180 * @desc: irq descriptor which has affinity changed 181 * 182 * Just set IRQTF_AFFINITY and delegate the affinity setting to the 183 * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as 184 * we hold desc->lock and this code can be called from hard interrupt 185 * context. 186 */ 187 static void irq_set_thread_affinity(struct irq_desc *desc) 188 { 189 struct irqaction *action; 190 191 for_each_action_of_desc(desc, action) { 192 if (action->thread) { 193 set_bit(IRQTF_AFFINITY, &action->thread_flags); 194 wake_up_process(action->thread); 195 } 196 if (action->secondary && action->secondary->thread) { 197 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 198 wake_up_process(action->secondary->thread); 199 } 200 } 201 } 202 203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 204 static void irq_validate_effective_affinity(struct irq_data *data) 205 { 206 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 207 struct irq_chip *chip = irq_data_get_irq_chip(data); 208 209 if (!cpumask_empty(m)) 210 return; 211 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 212 chip->name, data->irq); 213 } 214 #else 215 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 216 #endif 217 218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask); 219 220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 221 bool force) 222 { 223 struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask); 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 const struct cpumask *prog_mask; 227 int ret; 228 229 if (!chip || !chip->irq_set_affinity) 230 return -EINVAL; 231 232 /* 233 * If this is a managed interrupt and housekeeping is enabled on 234 * it check whether the requested affinity mask intersects with 235 * a housekeeping CPU. If so, then remove the isolated CPUs from 236 * the mask and just keep the housekeeping CPU(s). This prevents 237 * the affinity setter from routing the interrupt to an isolated 238 * CPU to avoid that I/O submitted from a housekeeping CPU causes 239 * interrupts on an isolated one. 240 * 241 * If the masks do not intersect or include online CPU(s) then 242 * keep the requested mask. The isolated target CPUs are only 243 * receiving interrupts when the I/O operation was submitted 244 * directly from them. 245 * 246 * If all housekeeping CPUs in the affinity mask are offline, the 247 * interrupt will be migrated by the CPU hotplug code once a 248 * housekeeping CPU which belongs to the affinity mask comes 249 * online. 250 */ 251 if (irqd_affinity_is_managed(data) && 252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 253 const struct cpumask *hk_mask; 254 255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 256 257 cpumask_and(tmp_mask, mask, hk_mask); 258 if (!cpumask_intersects(tmp_mask, cpu_online_mask)) 259 prog_mask = mask; 260 else 261 prog_mask = tmp_mask; 262 } else { 263 prog_mask = mask; 264 } 265 266 /* 267 * Make sure we only provide online CPUs to the irqchip, 268 * unless we are being asked to force the affinity (in which 269 * case we do as we are told). 270 */ 271 cpumask_and(tmp_mask, prog_mask, cpu_online_mask); 272 if (!force && !cpumask_empty(tmp_mask)) 273 ret = chip->irq_set_affinity(data, tmp_mask, force); 274 else if (force) 275 ret = chip->irq_set_affinity(data, mask, force); 276 else 277 ret = -EINVAL; 278 279 switch (ret) { 280 case IRQ_SET_MASK_OK: 281 case IRQ_SET_MASK_OK_DONE: 282 cpumask_copy(desc->irq_common_data.affinity, mask); 283 fallthrough; 284 case IRQ_SET_MASK_OK_NOCOPY: 285 irq_validate_effective_affinity(data); 286 irq_set_thread_affinity(desc); 287 ret = 0; 288 } 289 290 return ret; 291 } 292 293 #ifdef CONFIG_GENERIC_PENDING_IRQ 294 static inline int irq_set_affinity_pending(struct irq_data *data, 295 const struct cpumask *dest) 296 { 297 struct irq_desc *desc = irq_data_to_desc(data); 298 299 irqd_set_move_pending(data); 300 irq_copy_pending(desc, dest); 301 return 0; 302 } 303 #else 304 static inline int irq_set_affinity_pending(struct irq_data *data, 305 const struct cpumask *dest) 306 { 307 return -EBUSY; 308 } 309 #endif 310 311 static int irq_try_set_affinity(struct irq_data *data, 312 const struct cpumask *dest, bool force) 313 { 314 int ret = irq_do_set_affinity(data, dest, force); 315 316 /* 317 * In case that the underlying vector management is busy and the 318 * architecture supports the generic pending mechanism then utilize 319 * this to avoid returning an error to user space. 320 */ 321 if (ret == -EBUSY && !force) 322 ret = irq_set_affinity_pending(data, dest); 323 return ret; 324 } 325 326 static bool irq_set_affinity_deactivated(struct irq_data *data, 327 const struct cpumask *mask) 328 { 329 struct irq_desc *desc = irq_data_to_desc(data); 330 331 /* 332 * Handle irq chips which can handle affinity only in activated 333 * state correctly 334 * 335 * If the interrupt is not yet activated, just store the affinity 336 * mask and do not call the chip driver at all. On activation the 337 * driver has to make sure anyway that the interrupt is in a 338 * usable state so startup works. 339 */ 340 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 341 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 342 return false; 343 344 cpumask_copy(desc->irq_common_data.affinity, mask); 345 irq_data_update_effective_affinity(data, mask); 346 irqd_set(data, IRQD_AFFINITY_SET); 347 return true; 348 } 349 350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 351 bool force) 352 { 353 struct irq_chip *chip = irq_data_get_irq_chip(data); 354 struct irq_desc *desc = irq_data_to_desc(data); 355 int ret = 0; 356 357 if (!chip || !chip->irq_set_affinity) 358 return -EINVAL; 359 360 if (irq_set_affinity_deactivated(data, mask)) 361 return 0; 362 363 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 364 ret = irq_try_set_affinity(data, mask, force); 365 } else { 366 irqd_set_move_pending(data); 367 irq_copy_pending(desc, mask); 368 } 369 370 if (desc->affinity_notify) { 371 kref_get(&desc->affinity_notify->kref); 372 if (!schedule_work(&desc->affinity_notify->work)) { 373 /* Work was already scheduled, drop our extra ref */ 374 kref_put(&desc->affinity_notify->kref, 375 desc->affinity_notify->release); 376 } 377 } 378 irqd_set(data, IRQD_AFFINITY_SET); 379 380 return ret; 381 } 382 383 /** 384 * irq_update_affinity_desc - Update affinity management for an interrupt 385 * @irq: The interrupt number to update 386 * @affinity: Pointer to the affinity descriptor 387 * 388 * This interface can be used to configure the affinity management of 389 * interrupts which have been allocated already. 390 * 391 * There are certain limitations on when it may be used - attempts to use it 392 * for when the kernel is configured for generic IRQ reservation mode (in 393 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 394 * managed/non-managed interrupt accounting. In addition, attempts to use it on 395 * an interrupt which is already started or which has already been configured 396 * as managed will also fail, as these mean invalid init state or double init. 397 */ 398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity) 399 { 400 /* 401 * Supporting this with the reservation scheme used by x86 needs 402 * some more thought. Fail it for now. 403 */ 404 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 405 return -EOPNOTSUPP; 406 407 scoped_irqdesc_get_and_buslock(irq, 0) { 408 struct irq_desc *desc = scoped_irqdesc; 409 bool activated; 410 411 /* Requires the interrupt to be shut down */ 412 if (irqd_is_started(&desc->irq_data)) 413 return -EBUSY; 414 415 /* Interrupts which are already managed cannot be modified */ 416 if (irqd_affinity_is_managed(&desc->irq_data)) 417 return -EBUSY; 418 /* 419 * Deactivate the interrupt. That's required to undo 420 * anything an earlier activation has established. 421 */ 422 activated = irqd_is_activated(&desc->irq_data); 423 if (activated) 424 irq_domain_deactivate_irq(&desc->irq_data); 425 426 if (affinity->is_managed) { 427 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 428 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 429 } 430 431 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 432 433 /* Restore the activation state */ 434 if (activated) 435 irq_domain_activate_irq(&desc->irq_data, false); 436 return 0; 437 } 438 return -EINVAL; 439 } 440 441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 442 bool force) 443 { 444 struct irq_desc *desc = irq_to_desc(irq); 445 446 if (!desc) 447 return -EINVAL; 448 449 guard(raw_spinlock_irqsave)(&desc->lock); 450 return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 451 } 452 453 /** 454 * irq_set_affinity - Set the irq affinity of a given irq 455 * @irq: Interrupt to set affinity 456 * @cpumask: cpumask 457 * 458 * Fails if cpumask does not contain an online CPU 459 */ 460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 461 { 462 return __irq_set_affinity(irq, cpumask, false); 463 } 464 EXPORT_SYMBOL_GPL(irq_set_affinity); 465 466 /** 467 * irq_force_affinity - Force the irq affinity of a given irq 468 * @irq: Interrupt to set affinity 469 * @cpumask: cpumask 470 * 471 * Same as irq_set_affinity, but without checking the mask against 472 * online cpus. 473 * 474 * Solely for low level cpu hotplug code, where we need to make per 475 * cpu interrupts affine before the cpu becomes online. 476 */ 477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 478 { 479 return __irq_set_affinity(irq, cpumask, true); 480 } 481 EXPORT_SYMBOL_GPL(irq_force_affinity); 482 483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity) 484 { 485 int ret = -EINVAL; 486 487 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 488 scoped_irqdesc->affinity_hint = m; 489 ret = 0; 490 } 491 492 if (!ret && m && setaffinity) 493 __irq_set_affinity(irq, m, false); 494 return ret; 495 } 496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 497 498 static void irq_affinity_notify(struct work_struct *work) 499 { 500 struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work); 501 struct irq_desc *desc = irq_to_desc(notify->irq); 502 cpumask_var_t cpumask; 503 504 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 505 goto out; 506 507 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 508 if (irq_move_pending(&desc->irq_data)) 509 irq_get_pending(cpumask, desc); 510 else 511 cpumask_copy(cpumask, desc->irq_common_data.affinity); 512 } 513 514 notify->notify(notify, cpumask); 515 516 free_cpumask_var(cpumask); 517 out: 518 kref_put(¬ify->kref, notify->release); 519 } 520 521 /** 522 * irq_set_affinity_notifier - control notification of IRQ affinity changes 523 * @irq: Interrupt for which to enable/disable notification 524 * @notify: Context for notification, or %NULL to disable 525 * notification. Function pointers must be initialised; 526 * the other fields will be initialised by this function. 527 * 528 * Must be called in process context. Notification may only be enabled 529 * after the IRQ is allocated and must be disabled before the IRQ is freed 530 * using free_irq(). 531 */ 532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 533 { 534 struct irq_desc *desc = irq_to_desc(irq); 535 struct irq_affinity_notify *old_notify; 536 537 /* The release function is promised process context */ 538 might_sleep(); 539 540 if (!desc || irq_is_nmi(desc)) 541 return -EINVAL; 542 543 /* Complete initialisation of *notify */ 544 if (notify) { 545 notify->irq = irq; 546 kref_init(¬ify->kref); 547 INIT_WORK(¬ify->work, irq_affinity_notify); 548 } 549 550 scoped_guard(raw_spinlock_irq, &desc->lock) { 551 old_notify = desc->affinity_notify; 552 desc->affinity_notify = notify; 553 } 554 555 if (old_notify) { 556 if (cancel_work_sync(&old_notify->work)) { 557 /* Pending work had a ref, put that one too */ 558 kref_put(&old_notify->kref, old_notify->release); 559 } 560 kref_put(&old_notify->kref, old_notify->release); 561 } 562 563 return 0; 564 } 565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 566 567 #ifndef CONFIG_AUTO_IRQ_AFFINITY 568 /* 569 * Generic version of the affinity autoselector. 570 */ 571 int irq_setup_affinity(struct irq_desc *desc) 572 { 573 struct cpumask *set = irq_default_affinity; 574 int node = irq_desc_get_node(desc); 575 576 static DEFINE_RAW_SPINLOCK(mask_lock); 577 static struct cpumask mask; 578 579 /* Excludes PER_CPU and NO_BALANCE interrupts */ 580 if (!__irq_can_set_affinity(desc)) 581 return 0; 582 583 guard(raw_spinlock)(&mask_lock); 584 /* 585 * Preserve the managed affinity setting and a userspace affinity 586 * setup, but make sure that one of the targets is online. 587 */ 588 if (irqd_affinity_is_managed(&desc->irq_data) || 589 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 590 if (cpumask_intersects(desc->irq_common_data.affinity, 591 cpu_online_mask)) 592 set = desc->irq_common_data.affinity; 593 else 594 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 595 } 596 597 cpumask_and(&mask, cpu_online_mask, set); 598 if (cpumask_empty(&mask)) 599 cpumask_copy(&mask, cpu_online_mask); 600 601 if (node != NUMA_NO_NODE) { 602 const struct cpumask *nodemask = cpumask_of_node(node); 603 604 /* make sure at least one of the cpus in nodemask is online */ 605 if (cpumask_intersects(&mask, nodemask)) 606 cpumask_and(&mask, &mask, nodemask); 607 } 608 return irq_do_set_affinity(&desc->irq_data, &mask, false); 609 } 610 #else 611 /* Wrapper for ALPHA specific affinity selector magic */ 612 int irq_setup_affinity(struct irq_desc *desc) 613 { 614 return irq_select_affinity(irq_desc_get_irq(desc)); 615 } 616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 617 #endif /* CONFIG_SMP */ 618 619 620 /** 621 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 622 * @irq: interrupt number to set affinity 623 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 624 * specific data for percpu_devid interrupts 625 * 626 * This function uses the vCPU specific data to set the vCPU affinity for 627 * an irq. The vCPU specific data is passed from outside, such as KVM. One 628 * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity(). 629 */ 630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 631 { 632 scoped_irqdesc_get_and_lock(irq, 0) { 633 struct irq_desc *desc = scoped_irqdesc; 634 struct irq_data *data; 635 struct irq_chip *chip; 636 637 data = irq_desc_get_irq_data(desc); 638 do { 639 chip = irq_data_get_irq_chip(data); 640 if (chip && chip->irq_set_vcpu_affinity) 641 break; 642 643 data = irqd_get_parent_data(data); 644 } while (data); 645 646 if (!data) 647 return -ENOSYS; 648 return chip->irq_set_vcpu_affinity(data, vcpu_info); 649 } 650 return -EINVAL; 651 } 652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 653 654 void __disable_irq(struct irq_desc *desc) 655 { 656 if (!desc->depth++) 657 irq_disable(desc); 658 } 659 660 static int __disable_irq_nosync(unsigned int irq) 661 { 662 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 663 __disable_irq(scoped_irqdesc); 664 return 0; 665 } 666 return -EINVAL; 667 } 668 669 /** 670 * disable_irq_nosync - disable an irq without waiting 671 * @irq: Interrupt to disable 672 * 673 * Disable the selected interrupt line. Disables and Enables are 674 * nested. 675 * Unlike disable_irq(), this function does not ensure existing 676 * instances of the IRQ handler have completed before returning. 677 * 678 * This function may be called from IRQ context. 679 */ 680 void disable_irq_nosync(unsigned int irq) 681 { 682 __disable_irq_nosync(irq); 683 } 684 EXPORT_SYMBOL(disable_irq_nosync); 685 686 /** 687 * disable_irq - disable an irq and wait for completion 688 * @irq: Interrupt to disable 689 * 690 * Disable the selected interrupt line. Enables and Disables are nested. 691 * 692 * This function waits for any pending IRQ handlers for this interrupt to 693 * complete before returning. If you use this function while holding a 694 * resource the IRQ handler may need you will deadlock. 695 * 696 * Can only be called from preemptible code as it might sleep when an 697 * interrupt thread is associated to @irq. 698 * 699 */ 700 void disable_irq(unsigned int irq) 701 { 702 might_sleep(); 703 if (!__disable_irq_nosync(irq)) 704 synchronize_irq(irq); 705 } 706 EXPORT_SYMBOL(disable_irq); 707 708 /** 709 * disable_hardirq - disables an irq and waits for hardirq completion 710 * @irq: Interrupt to disable 711 * 712 * Disable the selected interrupt line. Enables and Disables are nested. 713 * 714 * This function waits for any pending hard IRQ handlers for this interrupt 715 * to complete before returning. If you use this function while holding a 716 * resource the hard IRQ handler may need you will deadlock. 717 * 718 * When used to optimistically disable an interrupt from atomic context the 719 * return value must be checked. 720 * 721 * Returns: false if a threaded handler is active. 722 * 723 * This function may be called - with care - from IRQ context. 724 */ 725 bool disable_hardirq(unsigned int irq) 726 { 727 if (!__disable_irq_nosync(irq)) 728 return synchronize_hardirq(irq); 729 return false; 730 } 731 EXPORT_SYMBOL_GPL(disable_hardirq); 732 733 /** 734 * disable_nmi_nosync - disable an nmi without waiting 735 * @irq: Interrupt to disable 736 * 737 * Disable the selected interrupt line. Disables and enables are nested. 738 * 739 * The interrupt to disable must have been requested through request_nmi. 740 * Unlike disable_nmi(), this function does not ensure existing 741 * instances of the IRQ handler have completed before returning. 742 */ 743 void disable_nmi_nosync(unsigned int irq) 744 { 745 disable_irq_nosync(irq); 746 } 747 748 void __enable_irq(struct irq_desc *desc) 749 { 750 switch (desc->depth) { 751 case 0: 752 err_out: 753 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 754 irq_desc_get_irq(desc)); 755 break; 756 case 1: { 757 if (desc->istate & IRQS_SUSPENDED) 758 goto err_out; 759 /* Prevent probing on this irq: */ 760 irq_settings_set_noprobe(desc); 761 /* 762 * Call irq_startup() not irq_enable() here because the 763 * interrupt might be marked NOAUTOEN so irq_startup() 764 * needs to be invoked when it gets enabled the first time. 765 * This is also required when __enable_irq() is invoked for 766 * a managed and shutdown interrupt from the S3 resume 767 * path. 768 * 769 * If it was already started up, then irq_startup() will 770 * invoke irq_enable() under the hood. 771 */ 772 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 773 break; 774 } 775 default: 776 desc->depth--; 777 } 778 } 779 780 /** 781 * enable_irq - enable handling of an irq 782 * @irq: Interrupt to enable 783 * 784 * Undoes the effect of one call to disable_irq(). If this matches the 785 * last disable, processing of interrupts on this IRQ line is re-enabled. 786 * 787 * This function may be called from IRQ context only when 788 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 789 */ 790 void enable_irq(unsigned int irq) 791 { 792 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 793 struct irq_desc *desc = scoped_irqdesc; 794 795 if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq)) 796 return; 797 __enable_irq(desc); 798 } 799 } 800 EXPORT_SYMBOL(enable_irq); 801 802 /** 803 * enable_nmi - enable handling of an nmi 804 * @irq: Interrupt to enable 805 * 806 * The interrupt to enable must have been requested through request_nmi. 807 * Undoes the effect of one call to disable_nmi(). If this matches the last 808 * disable, processing of interrupts on this IRQ line is re-enabled. 809 */ 810 void enable_nmi(unsigned int irq) 811 { 812 enable_irq(irq); 813 } 814 815 static int set_irq_wake_real(unsigned int irq, unsigned int on) 816 { 817 struct irq_desc *desc = irq_to_desc(irq); 818 int ret = -ENXIO; 819 820 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 821 return 0; 822 823 if (desc->irq_data.chip->irq_set_wake) 824 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 825 826 return ret; 827 } 828 829 /** 830 * irq_set_irq_wake - control irq power management wakeup 831 * @irq: interrupt to control 832 * @on: enable/disable power management wakeup 833 * 834 * Enable/disable power management wakeup mode, which is disabled by 835 * default. Enables and disables must match, just as they match for 836 * non-wakeup mode support. 837 * 838 * Wakeup mode lets this IRQ wake the system from sleep states like 839 * "suspend to RAM". 840 * 841 * Note: irq enable/disable state is completely orthogonal to the 842 * enable/disable state of irq wake. An irq can be disabled with 843 * disable_irq() and still wake the system as long as the irq has wake 844 * enabled. If this does not hold, then the underlying irq chip and the 845 * related driver need to be investigated. 846 */ 847 int irq_set_irq_wake(unsigned int irq, unsigned int on) 848 { 849 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 850 struct irq_desc *desc = scoped_irqdesc; 851 int ret = 0; 852 853 /* Don't use NMIs as wake up interrupts please */ 854 if (irq_is_nmi(desc)) 855 return -EINVAL; 856 857 /* 858 * wakeup-capable irqs can be shared between drivers that 859 * don't need to have the same sleep mode behaviors. 860 */ 861 if (on) { 862 if (desc->wake_depth++ == 0) { 863 ret = set_irq_wake_real(irq, on); 864 if (ret) 865 desc->wake_depth = 0; 866 else 867 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 868 } 869 } else { 870 if (desc->wake_depth == 0) { 871 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 872 } else if (--desc->wake_depth == 0) { 873 ret = set_irq_wake_real(irq, on); 874 if (ret) 875 desc->wake_depth = 1; 876 else 877 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 878 } 879 } 880 return ret; 881 } 882 return -EINVAL; 883 } 884 EXPORT_SYMBOL(irq_set_irq_wake); 885 886 /* 887 * Internal function that tells the architecture code whether a 888 * particular irq has been exclusively allocated or is available 889 * for driver use. 890 */ 891 bool can_request_irq(unsigned int irq, unsigned long irqflags) 892 { 893 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) { 894 struct irq_desc *desc = scoped_irqdesc; 895 896 if (irq_settings_can_request(desc)) { 897 if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED) 898 return true; 899 } 900 } 901 return false; 902 } 903 904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 905 { 906 struct irq_chip *chip = desc->irq_data.chip; 907 int ret, unmask = 0; 908 909 if (!chip || !chip->irq_set_type) { 910 /* 911 * IRQF_TRIGGER_* but the PIC does not support multiple 912 * flow-types? 913 */ 914 pr_debug("No set_type function for IRQ %d (%s)\n", 915 irq_desc_get_irq(desc), 916 chip ? (chip->name ? : "unknown") : "unknown"); 917 return 0; 918 } 919 920 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 921 if (!irqd_irq_masked(&desc->irq_data)) 922 mask_irq(desc); 923 if (!irqd_irq_disabled(&desc->irq_data)) 924 unmask = 1; 925 } 926 927 /* Mask all flags except trigger mode */ 928 flags &= IRQ_TYPE_SENSE_MASK; 929 ret = chip->irq_set_type(&desc->irq_data, flags); 930 931 switch (ret) { 932 case IRQ_SET_MASK_OK: 933 case IRQ_SET_MASK_OK_DONE: 934 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 935 irqd_set(&desc->irq_data, flags); 936 fallthrough; 937 938 case IRQ_SET_MASK_OK_NOCOPY: 939 flags = irqd_get_trigger_type(&desc->irq_data); 940 irq_settings_set_trigger_mask(desc, flags); 941 irqd_clear(&desc->irq_data, IRQD_LEVEL); 942 irq_settings_clr_level(desc); 943 if (flags & IRQ_TYPE_LEVEL_MASK) { 944 irq_settings_set_level(desc); 945 irqd_set(&desc->irq_data, IRQD_LEVEL); 946 } 947 948 ret = 0; 949 break; 950 default: 951 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 952 flags, irq_desc_get_irq(desc), chip->irq_set_type); 953 } 954 if (unmask) 955 unmask_irq(desc); 956 return ret; 957 } 958 959 #ifdef CONFIG_HARDIRQS_SW_RESEND 960 int irq_set_parent(int irq, int parent_irq) 961 { 962 scoped_irqdesc_get_and_lock(irq, 0) { 963 scoped_irqdesc->parent_irq = parent_irq; 964 return 0; 965 } 966 return -EINVAL; 967 } 968 EXPORT_SYMBOL_GPL(irq_set_parent); 969 #endif 970 971 /* 972 * Default primary interrupt handler for threaded interrupts. Is 973 * assigned as primary handler when request_threaded_irq is called 974 * with handler == NULL. Useful for oneshot interrupts. 975 */ 976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 977 { 978 return IRQ_WAKE_THREAD; 979 } 980 981 /* 982 * Primary handler for nested threaded interrupts. Should never be 983 * called. 984 */ 985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 986 { 987 WARN(1, "Primary handler called for nested irq %d\n", irq); 988 return IRQ_NONE; 989 } 990 991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 992 { 993 WARN(1, "Secondary action handler called for irq %d\n", irq); 994 return IRQ_NONE; 995 } 996 997 #ifdef CONFIG_SMP 998 /* 999 * Check whether we need to change the affinity of the interrupt thread. 1000 */ 1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1002 { 1003 cpumask_var_t mask; 1004 1005 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1006 return; 1007 1008 __set_current_state(TASK_RUNNING); 1009 1010 /* 1011 * In case we are out of memory we set IRQTF_AFFINITY again and 1012 * try again next time 1013 */ 1014 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1015 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1016 return; 1017 } 1018 1019 scoped_guard(raw_spinlock_irq, &desc->lock) { 1020 const struct cpumask *m; 1021 1022 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1023 cpumask_copy(mask, m); 1024 } 1025 1026 set_cpus_allowed_ptr(current, mask); 1027 free_cpumask_var(mask); 1028 } 1029 #else 1030 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1031 #endif 1032 1033 static int irq_wait_for_interrupt(struct irq_desc *desc, 1034 struct irqaction *action) 1035 { 1036 for (;;) { 1037 set_current_state(TASK_INTERRUPTIBLE); 1038 irq_thread_check_affinity(desc, action); 1039 1040 if (kthread_should_stop()) { 1041 /* may need to run one last time */ 1042 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1043 &action->thread_flags)) { 1044 __set_current_state(TASK_RUNNING); 1045 return 0; 1046 } 1047 __set_current_state(TASK_RUNNING); 1048 return -1; 1049 } 1050 1051 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1052 &action->thread_flags)) { 1053 __set_current_state(TASK_RUNNING); 1054 return 0; 1055 } 1056 schedule(); 1057 } 1058 } 1059 1060 /* 1061 * Oneshot interrupts keep the irq line masked until the threaded 1062 * handler finished. unmask if the interrupt has not been disabled and 1063 * is marked MASKED. 1064 */ 1065 static void irq_finalize_oneshot(struct irq_desc *desc, 1066 struct irqaction *action) 1067 { 1068 if (!(desc->istate & IRQS_ONESHOT) || 1069 action->handler == irq_forced_secondary_handler) 1070 return; 1071 again: 1072 chip_bus_lock(desc); 1073 raw_spin_lock_irq(&desc->lock); 1074 1075 /* 1076 * Implausible though it may be we need to protect us against 1077 * the following scenario: 1078 * 1079 * The thread is faster done than the hard interrupt handler 1080 * on the other CPU. If we unmask the irq line then the 1081 * interrupt can come in again and masks the line, leaves due 1082 * to IRQS_INPROGRESS and the irq line is masked forever. 1083 * 1084 * This also serializes the state of shared oneshot handlers 1085 * versus "desc->threads_oneshot |= action->thread_mask;" in 1086 * irq_wake_thread(). See the comment there which explains the 1087 * serialization. 1088 */ 1089 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1090 raw_spin_unlock_irq(&desc->lock); 1091 chip_bus_sync_unlock(desc); 1092 cpu_relax(); 1093 goto again; 1094 } 1095 1096 /* 1097 * Now check again, whether the thread should run. Otherwise 1098 * we would clear the threads_oneshot bit of this thread which 1099 * was just set. 1100 */ 1101 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1102 goto out_unlock; 1103 1104 desc->threads_oneshot &= ~action->thread_mask; 1105 1106 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1107 irqd_irq_masked(&desc->irq_data)) 1108 unmask_threaded_irq(desc); 1109 1110 out_unlock: 1111 raw_spin_unlock_irq(&desc->lock); 1112 chip_bus_sync_unlock(desc); 1113 } 1114 1115 /* 1116 * Interrupts explicitly requested as threaded interrupts want to be 1117 * preemptible - many of them need to sleep and wait for slow busses to 1118 * complete. 1119 */ 1120 static irqreturn_t irq_thread_fn(struct irq_desc *desc, struct irqaction *action) 1121 { 1122 irqreturn_t ret = action->thread_fn(action->irq, action->dev_id); 1123 1124 if (ret == IRQ_HANDLED) 1125 atomic_inc(&desc->threads_handled); 1126 1127 irq_finalize_oneshot(desc, action); 1128 return ret; 1129 } 1130 1131 /* 1132 * Interrupts which are not explicitly requested as threaded 1133 * interrupts rely on the implicit bh/preempt disable of the hard irq 1134 * context. So we need to disable bh here to avoid deadlocks and other 1135 * side effects. 1136 */ 1137 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1138 { 1139 irqreturn_t ret; 1140 1141 local_bh_disable(); 1142 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1143 local_irq_disable(); 1144 ret = irq_thread_fn(desc, action); 1145 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1146 local_irq_enable(); 1147 local_bh_enable(); 1148 return ret; 1149 } 1150 1151 void wake_threads_waitq(struct irq_desc *desc) 1152 { 1153 if (atomic_dec_and_test(&desc->threads_active)) 1154 wake_up(&desc->wait_for_threads); 1155 } 1156 1157 static void irq_thread_dtor(struct callback_head *unused) 1158 { 1159 struct task_struct *tsk = current; 1160 struct irq_desc *desc; 1161 struct irqaction *action; 1162 1163 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1164 return; 1165 1166 action = kthread_data(tsk); 1167 1168 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1169 tsk->comm, tsk->pid, action->irq); 1170 1171 1172 desc = irq_to_desc(action->irq); 1173 /* 1174 * If IRQTF_RUNTHREAD is set, we need to decrement 1175 * desc->threads_active and wake possible waiters. 1176 */ 1177 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1178 wake_threads_waitq(desc); 1179 1180 /* Prevent a stale desc->threads_oneshot */ 1181 irq_finalize_oneshot(desc, action); 1182 } 1183 1184 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1185 { 1186 struct irqaction *secondary = action->secondary; 1187 1188 if (WARN_ON_ONCE(!secondary)) 1189 return; 1190 1191 guard(raw_spinlock_irq)(&desc->lock); 1192 __irq_wake_thread(desc, secondary); 1193 } 1194 1195 /* 1196 * Internal function to notify that a interrupt thread is ready. 1197 */ 1198 static void irq_thread_set_ready(struct irq_desc *desc, 1199 struct irqaction *action) 1200 { 1201 set_bit(IRQTF_READY, &action->thread_flags); 1202 wake_up(&desc->wait_for_threads); 1203 } 1204 1205 /* 1206 * Internal function to wake up a interrupt thread and wait until it is 1207 * ready. 1208 */ 1209 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1210 struct irqaction *action) 1211 { 1212 if (!action || !action->thread) 1213 return; 1214 1215 wake_up_process(action->thread); 1216 wait_event(desc->wait_for_threads, 1217 test_bit(IRQTF_READY, &action->thread_flags)); 1218 } 1219 1220 /* 1221 * Interrupt handler thread 1222 */ 1223 static int irq_thread(void *data) 1224 { 1225 struct callback_head on_exit_work; 1226 struct irqaction *action = data; 1227 struct irq_desc *desc = irq_to_desc(action->irq); 1228 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1229 struct irqaction *action); 1230 1231 irq_thread_set_ready(desc, action); 1232 1233 if (action->handler == irq_forced_secondary_handler) 1234 sched_set_fifo_secondary(current); 1235 else 1236 sched_set_fifo(current); 1237 1238 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1239 &action->thread_flags)) 1240 handler_fn = irq_forced_thread_fn; 1241 else 1242 handler_fn = irq_thread_fn; 1243 1244 init_task_work(&on_exit_work, irq_thread_dtor); 1245 task_work_add(current, &on_exit_work, TWA_NONE); 1246 1247 while (!irq_wait_for_interrupt(desc, action)) { 1248 irqreturn_t action_ret; 1249 1250 action_ret = handler_fn(desc, action); 1251 if (action_ret == IRQ_WAKE_THREAD) 1252 irq_wake_secondary(desc, action); 1253 1254 wake_threads_waitq(desc); 1255 } 1256 1257 /* 1258 * This is the regular exit path. __free_irq() is stopping the 1259 * thread via kthread_stop() after calling 1260 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1261 * oneshot mask bit can be set. 1262 */ 1263 task_work_cancel_func(current, irq_thread_dtor); 1264 return 0; 1265 } 1266 1267 /** 1268 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1269 * @irq: Interrupt line 1270 * @dev_id: Device identity for which the thread should be woken 1271 */ 1272 void irq_wake_thread(unsigned int irq, void *dev_id) 1273 { 1274 struct irq_desc *desc = irq_to_desc(irq); 1275 struct irqaction *action; 1276 1277 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1278 return; 1279 1280 guard(raw_spinlock_irqsave)(&desc->lock); 1281 for_each_action_of_desc(desc, action) { 1282 if (action->dev_id == dev_id) { 1283 if (action->thread) 1284 __irq_wake_thread(desc, action); 1285 break; 1286 } 1287 } 1288 } 1289 EXPORT_SYMBOL_GPL(irq_wake_thread); 1290 1291 static int irq_setup_forced_threading(struct irqaction *new) 1292 { 1293 if (!force_irqthreads()) 1294 return 0; 1295 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1296 return 0; 1297 1298 /* 1299 * No further action required for interrupts which are requested as 1300 * threaded interrupts already 1301 */ 1302 if (new->handler == irq_default_primary_handler) 1303 return 0; 1304 1305 new->flags |= IRQF_ONESHOT; 1306 1307 /* 1308 * Handle the case where we have a real primary handler and a 1309 * thread handler. We force thread them as well by creating a 1310 * secondary action. 1311 */ 1312 if (new->handler && new->thread_fn) { 1313 /* Allocate the secondary action */ 1314 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1315 if (!new->secondary) 1316 return -ENOMEM; 1317 new->secondary->handler = irq_forced_secondary_handler; 1318 new->secondary->thread_fn = new->thread_fn; 1319 new->secondary->dev_id = new->dev_id; 1320 new->secondary->irq = new->irq; 1321 new->secondary->name = new->name; 1322 } 1323 /* Deal with the primary handler */ 1324 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1325 new->thread_fn = new->handler; 1326 new->handler = irq_default_primary_handler; 1327 return 0; 1328 } 1329 1330 static int irq_request_resources(struct irq_desc *desc) 1331 { 1332 struct irq_data *d = &desc->irq_data; 1333 struct irq_chip *c = d->chip; 1334 1335 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1336 } 1337 1338 static void irq_release_resources(struct irq_desc *desc) 1339 { 1340 struct irq_data *d = &desc->irq_data; 1341 struct irq_chip *c = d->chip; 1342 1343 if (c->irq_release_resources) 1344 c->irq_release_resources(d); 1345 } 1346 1347 static bool irq_supports_nmi(struct irq_desc *desc) 1348 { 1349 struct irq_data *d = irq_desc_get_irq_data(desc); 1350 1351 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1352 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1353 if (d->parent_data) 1354 return false; 1355 #endif 1356 /* Don't support NMIs for chips behind a slow bus */ 1357 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1358 return false; 1359 1360 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1361 } 1362 1363 static int irq_nmi_setup(struct irq_desc *desc) 1364 { 1365 struct irq_data *d = irq_desc_get_irq_data(desc); 1366 struct irq_chip *c = d->chip; 1367 1368 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1369 } 1370 1371 static void irq_nmi_teardown(struct irq_desc *desc) 1372 { 1373 struct irq_data *d = irq_desc_get_irq_data(desc); 1374 struct irq_chip *c = d->chip; 1375 1376 if (c->irq_nmi_teardown) 1377 c->irq_nmi_teardown(d); 1378 } 1379 1380 static int 1381 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1382 { 1383 struct task_struct *t; 1384 1385 if (!secondary) { 1386 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1387 new->name); 1388 } else { 1389 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1390 new->name); 1391 } 1392 1393 if (IS_ERR(t)) 1394 return PTR_ERR(t); 1395 1396 /* 1397 * We keep the reference to the task struct even if 1398 * the thread dies to avoid that the interrupt code 1399 * references an already freed task_struct. 1400 */ 1401 new->thread = get_task_struct(t); 1402 1403 /* 1404 * The affinity can not be established yet, but it will be once the 1405 * interrupt is enabled. Delay and defer the actual setting to the 1406 * thread itself once it is ready to run. In the meantime, prevent 1407 * it from ever being re-affined directly by cpuset or 1408 * housekeeping. The proper way to do it is to re-affine the whole 1409 * vector. 1410 */ 1411 kthread_bind_mask(t, cpu_possible_mask); 1412 1413 /* 1414 * Ensure the thread adjusts the affinity once it reaches the 1415 * thread function. 1416 */ 1417 new->thread_flags = BIT(IRQTF_AFFINITY); 1418 1419 return 0; 1420 } 1421 1422 static bool valid_percpu_irqaction(struct irqaction *old, struct irqaction *new) 1423 { 1424 do { 1425 if (cpumask_intersects(old->affinity, new->affinity) || 1426 old->percpu_dev_id == new->percpu_dev_id) 1427 return false; 1428 1429 old = old->next; 1430 } while (old); 1431 1432 return true; 1433 } 1434 1435 /* 1436 * Internal function to register an irqaction - typically used to 1437 * allocate special interrupts that are part of the architecture. 1438 * 1439 * Locking rules: 1440 * 1441 * desc->request_mutex Provides serialization against a concurrent free_irq() 1442 * chip_bus_lock Provides serialization for slow bus operations 1443 * desc->lock Provides serialization against hard interrupts 1444 * 1445 * chip_bus_lock and desc->lock are sufficient for all other management and 1446 * interrupt related functions. desc->request_mutex solely serializes 1447 * request/free_irq(). 1448 */ 1449 static int 1450 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1451 { 1452 struct irqaction *old, **old_ptr; 1453 unsigned long flags, thread_mask = 0; 1454 int ret, nested, shared = 0; 1455 bool per_cpu_devid; 1456 1457 if (!desc) 1458 return -EINVAL; 1459 1460 if (desc->irq_data.chip == &no_irq_chip) 1461 return -ENOSYS; 1462 if (!try_module_get(desc->owner)) 1463 return -ENODEV; 1464 1465 per_cpu_devid = irq_settings_is_per_cpu_devid(desc); 1466 1467 new->irq = irq; 1468 1469 /* 1470 * If the trigger type is not specified by the caller, 1471 * then use the default for this interrupt. 1472 */ 1473 if (!(new->flags & IRQF_TRIGGER_MASK)) 1474 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1475 1476 /* 1477 * Check whether the interrupt nests into another interrupt 1478 * thread. 1479 */ 1480 nested = irq_settings_is_nested_thread(desc); 1481 if (nested) { 1482 if (!new->thread_fn) { 1483 ret = -EINVAL; 1484 goto out_mput; 1485 } 1486 /* 1487 * Replace the primary handler which was provided from 1488 * the driver for non nested interrupt handling by the 1489 * dummy function which warns when called. 1490 */ 1491 new->handler = irq_nested_primary_handler; 1492 } else { 1493 if (irq_settings_can_thread(desc)) { 1494 ret = irq_setup_forced_threading(new); 1495 if (ret) 1496 goto out_mput; 1497 } 1498 } 1499 1500 /* 1501 * Create a handler thread when a thread function is supplied 1502 * and the interrupt does not nest into another interrupt 1503 * thread. 1504 */ 1505 if (new->thread_fn && !nested) { 1506 ret = setup_irq_thread(new, irq, false); 1507 if (ret) 1508 goto out_mput; 1509 if (new->secondary) { 1510 ret = setup_irq_thread(new->secondary, irq, true); 1511 if (ret) 1512 goto out_thread; 1513 } 1514 } 1515 1516 /* 1517 * Drivers are often written to work w/o knowledge about the 1518 * underlying irq chip implementation, so a request for a 1519 * threaded irq without a primary hard irq context handler 1520 * requires the ONESHOT flag to be set. Some irq chips like 1521 * MSI based interrupts are per se one shot safe. Check the 1522 * chip flags, so we can avoid the unmask dance at the end of 1523 * the threaded handler for those. 1524 */ 1525 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1526 new->flags &= ~IRQF_ONESHOT; 1527 1528 /* 1529 * Protects against a concurrent __free_irq() call which might wait 1530 * for synchronize_hardirq() to complete without holding the optional 1531 * chip bus lock and desc->lock. Also protects against handing out 1532 * a recycled oneshot thread_mask bit while it's still in use by 1533 * its previous owner. 1534 */ 1535 mutex_lock(&desc->request_mutex); 1536 1537 /* 1538 * Acquire bus lock as the irq_request_resources() callback below 1539 * might rely on the serialization or the magic power management 1540 * functions which are abusing the irq_bus_lock() callback, 1541 */ 1542 chip_bus_lock(desc); 1543 1544 /* First installed action requests resources. */ 1545 if (!desc->action) { 1546 ret = irq_request_resources(desc); 1547 if (ret) { 1548 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1549 new->name, irq, desc->irq_data.chip->name); 1550 goto out_bus_unlock; 1551 } 1552 } 1553 1554 /* 1555 * The following block of code has to be executed atomically 1556 * protected against a concurrent interrupt and any of the other 1557 * management calls which are not serialized via 1558 * desc->request_mutex or the optional bus lock. 1559 */ 1560 raw_spin_lock_irqsave(&desc->lock, flags); 1561 old_ptr = &desc->action; 1562 old = *old_ptr; 1563 if (old) { 1564 /* 1565 * Can't share interrupts unless both agree to and are 1566 * the same type (level, edge, polarity). So both flag 1567 * fields must have IRQF_SHARED set and the bits which 1568 * set the trigger type must match. Also all must 1569 * agree on ONESHOT. 1570 * Interrupt lines used for NMIs cannot be shared. 1571 */ 1572 unsigned int oldtype; 1573 1574 if (irq_is_nmi(desc) && !per_cpu_devid) { 1575 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1576 new->name, irq, desc->irq_data.chip->name); 1577 ret = -EINVAL; 1578 goto out_unlock; 1579 } 1580 1581 if (per_cpu_devid && !valid_percpu_irqaction(old, new)) { 1582 pr_err("Overlapping affinities for %s (irq %d) on irqchip %s.\n", 1583 new->name, irq, desc->irq_data.chip->name); 1584 ret = -EINVAL; 1585 goto out_unlock; 1586 } 1587 1588 /* 1589 * If nobody did set the configuration before, inherit 1590 * the one provided by the requester. 1591 */ 1592 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1593 oldtype = irqd_get_trigger_type(&desc->irq_data); 1594 } else { 1595 oldtype = new->flags & IRQF_TRIGGER_MASK; 1596 irqd_set_trigger_type(&desc->irq_data, oldtype); 1597 } 1598 1599 if (!((old->flags & new->flags) & IRQF_SHARED) || 1600 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1601 goto mismatch; 1602 1603 if ((old->flags & IRQF_ONESHOT) && 1604 (new->flags & IRQF_COND_ONESHOT)) 1605 new->flags |= IRQF_ONESHOT; 1606 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1607 goto mismatch; 1608 1609 /* All handlers must agree on per-cpuness */ 1610 if ((old->flags & IRQF_PERCPU) != 1611 (new->flags & IRQF_PERCPU)) 1612 goto mismatch; 1613 1614 /* add new interrupt at end of irq queue */ 1615 do { 1616 /* 1617 * Or all existing action->thread_mask bits, 1618 * so we can find the next zero bit for this 1619 * new action. 1620 */ 1621 thread_mask |= old->thread_mask; 1622 old_ptr = &old->next; 1623 old = *old_ptr; 1624 } while (old); 1625 shared = 1; 1626 } 1627 1628 /* 1629 * Setup the thread mask for this irqaction for ONESHOT. For 1630 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1631 * conditional in irq_wake_thread(). 1632 */ 1633 if (new->flags & IRQF_ONESHOT) { 1634 /* 1635 * Unlikely to have 32 resp 64 irqs sharing one line, 1636 * but who knows. 1637 */ 1638 if (thread_mask == ~0UL) { 1639 ret = -EBUSY; 1640 goto out_unlock; 1641 } 1642 /* 1643 * The thread_mask for the action is or'ed to 1644 * desc->thread_active to indicate that the 1645 * IRQF_ONESHOT thread handler has been woken, but not 1646 * yet finished. The bit is cleared when a thread 1647 * completes. When all threads of a shared interrupt 1648 * line have completed desc->threads_active becomes 1649 * zero and the interrupt line is unmasked. See 1650 * handle.c:irq_wake_thread() for further information. 1651 * 1652 * If no thread is woken by primary (hard irq context) 1653 * interrupt handlers, then desc->threads_active is 1654 * also checked for zero to unmask the irq line in the 1655 * affected hard irq flow handlers 1656 * (handle_[fasteoi|level]_irq). 1657 * 1658 * The new action gets the first zero bit of 1659 * thread_mask assigned. See the loop above which or's 1660 * all existing action->thread_mask bits. 1661 */ 1662 new->thread_mask = 1UL << ffz(thread_mask); 1663 1664 } else if (new->handler == irq_default_primary_handler && 1665 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1666 /* 1667 * The interrupt was requested with handler = NULL, so 1668 * we use the default primary handler for it. But it 1669 * does not have the oneshot flag set. In combination 1670 * with level interrupts this is deadly, because the 1671 * default primary handler just wakes the thread, then 1672 * the irq lines is reenabled, but the device still 1673 * has the level irq asserted. Rinse and repeat.... 1674 * 1675 * While this works for edge type interrupts, we play 1676 * it safe and reject unconditionally because we can't 1677 * say for sure which type this interrupt really 1678 * has. The type flags are unreliable as the 1679 * underlying chip implementation can override them. 1680 */ 1681 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1682 new->name, irq); 1683 ret = -EINVAL; 1684 goto out_unlock; 1685 } 1686 1687 if (!shared) { 1688 /* Setup the type (level, edge polarity) if configured: */ 1689 if (new->flags & IRQF_TRIGGER_MASK) { 1690 ret = __irq_set_trigger(desc, 1691 new->flags & IRQF_TRIGGER_MASK); 1692 1693 if (ret) 1694 goto out_unlock; 1695 } 1696 1697 /* 1698 * Activate the interrupt. That activation must happen 1699 * independently of IRQ_NOAUTOEN. request_irq() can fail 1700 * and the callers are supposed to handle 1701 * that. enable_irq() of an interrupt requested with 1702 * IRQ_NOAUTOEN is not supposed to fail. The activation 1703 * keeps it in shutdown mode, it merily associates 1704 * resources if necessary and if that's not possible it 1705 * fails. Interrupts which are in managed shutdown mode 1706 * will simply ignore that activation request. 1707 */ 1708 ret = irq_activate(desc); 1709 if (ret) 1710 goto out_unlock; 1711 1712 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1713 IRQS_ONESHOT | IRQS_WAITING); 1714 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1715 1716 if (new->flags & IRQF_PERCPU) { 1717 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1718 irq_settings_set_per_cpu(desc); 1719 if (new->flags & IRQF_NO_DEBUG) 1720 irq_settings_set_no_debug(desc); 1721 } 1722 1723 if (noirqdebug) 1724 irq_settings_set_no_debug(desc); 1725 1726 if (new->flags & IRQF_ONESHOT) 1727 desc->istate |= IRQS_ONESHOT; 1728 1729 /* Exclude IRQ from balancing if requested */ 1730 if (new->flags & IRQF_NOBALANCING) { 1731 irq_settings_set_no_balancing(desc); 1732 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1733 } 1734 1735 if (!(new->flags & IRQF_NO_AUTOEN) && 1736 irq_settings_can_autoenable(desc)) { 1737 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1738 } else if (!per_cpu_devid) { 1739 /* 1740 * Shared interrupts do not go well with disabling 1741 * auto enable. The sharing interrupt might request 1742 * it while it's still disabled and then wait for 1743 * interrupts forever. 1744 */ 1745 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1746 /* Undo nested disables: */ 1747 desc->depth = 1; 1748 } 1749 1750 } else if (new->flags & IRQF_TRIGGER_MASK) { 1751 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1752 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1753 1754 if (nmsk != omsk) 1755 /* hope the handler works with current trigger mode */ 1756 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1757 irq, omsk, nmsk); 1758 } 1759 1760 *old_ptr = new; 1761 1762 irq_pm_install_action(desc, new); 1763 1764 /* Reset broken irq detection when installing new handler */ 1765 desc->irq_count = 0; 1766 desc->irqs_unhandled = 0; 1767 1768 /* 1769 * Check whether we disabled the irq via the spurious handler 1770 * before. Reenable it and give it another chance. 1771 */ 1772 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1773 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1774 __enable_irq(desc); 1775 } 1776 1777 raw_spin_unlock_irqrestore(&desc->lock, flags); 1778 chip_bus_sync_unlock(desc); 1779 mutex_unlock(&desc->request_mutex); 1780 1781 irq_setup_timings(desc, new); 1782 1783 wake_up_and_wait_for_irq_thread_ready(desc, new); 1784 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1785 1786 register_irq_proc(irq, desc); 1787 new->dir = NULL; 1788 register_handler_proc(irq, new); 1789 return 0; 1790 1791 mismatch: 1792 if (!(new->flags & IRQF_PROBE_SHARED)) { 1793 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1794 irq, new->flags, new->name, old->flags, old->name); 1795 #ifdef CONFIG_DEBUG_SHIRQ 1796 dump_stack(); 1797 #endif 1798 } 1799 ret = -EBUSY; 1800 1801 out_unlock: 1802 raw_spin_unlock_irqrestore(&desc->lock, flags); 1803 1804 if (!desc->action) 1805 irq_release_resources(desc); 1806 out_bus_unlock: 1807 chip_bus_sync_unlock(desc); 1808 mutex_unlock(&desc->request_mutex); 1809 1810 out_thread: 1811 if (new->thread) { 1812 struct task_struct *t = new->thread; 1813 1814 new->thread = NULL; 1815 kthread_stop_put(t); 1816 } 1817 if (new->secondary && new->secondary->thread) { 1818 struct task_struct *t = new->secondary->thread; 1819 1820 new->secondary->thread = NULL; 1821 kthread_stop_put(t); 1822 } 1823 out_mput: 1824 module_put(desc->owner); 1825 return ret; 1826 } 1827 1828 /* 1829 * Internal function to unregister an irqaction - used to free 1830 * regular and special interrupts that are part of the architecture. 1831 */ 1832 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1833 { 1834 unsigned irq = desc->irq_data.irq; 1835 struct irqaction *action, **action_ptr; 1836 unsigned long flags; 1837 1838 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1839 1840 mutex_lock(&desc->request_mutex); 1841 chip_bus_lock(desc); 1842 raw_spin_lock_irqsave(&desc->lock, flags); 1843 1844 /* 1845 * There can be multiple actions per IRQ descriptor, find the right 1846 * one based on the dev_id: 1847 */ 1848 action_ptr = &desc->action; 1849 for (;;) { 1850 action = *action_ptr; 1851 1852 if (!action) { 1853 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1854 raw_spin_unlock_irqrestore(&desc->lock, flags); 1855 chip_bus_sync_unlock(desc); 1856 mutex_unlock(&desc->request_mutex); 1857 return NULL; 1858 } 1859 1860 if (action->dev_id == dev_id) 1861 break; 1862 action_ptr = &action->next; 1863 } 1864 1865 /* Found it - now remove it from the list of entries: */ 1866 *action_ptr = action->next; 1867 1868 irq_pm_remove_action(desc, action); 1869 1870 /* If this was the last handler, shut down the IRQ line: */ 1871 if (!desc->action) { 1872 irq_settings_clr_disable_unlazy(desc); 1873 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1874 irq_shutdown(desc); 1875 } 1876 1877 #ifdef CONFIG_SMP 1878 /* make sure affinity_hint is cleaned up */ 1879 if (WARN_ON_ONCE(desc->affinity_hint)) 1880 desc->affinity_hint = NULL; 1881 #endif 1882 1883 raw_spin_unlock_irqrestore(&desc->lock, flags); 1884 /* 1885 * Drop bus_lock here so the changes which were done in the chip 1886 * callbacks above are synced out to the irq chips which hang 1887 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1888 * 1889 * Aside of that the bus_lock can also be taken from the threaded 1890 * handler in irq_finalize_oneshot() which results in a deadlock 1891 * because kthread_stop() would wait forever for the thread to 1892 * complete, which is blocked on the bus lock. 1893 * 1894 * The still held desc->request_mutex() protects against a 1895 * concurrent request_irq() of this irq so the release of resources 1896 * and timing data is properly serialized. 1897 */ 1898 chip_bus_sync_unlock(desc); 1899 1900 unregister_handler_proc(irq, action); 1901 1902 /* 1903 * Make sure it's not being used on another CPU and if the chip 1904 * supports it also make sure that there is no (not yet serviced) 1905 * interrupt in flight at the hardware level. 1906 */ 1907 __synchronize_irq(desc); 1908 1909 #ifdef CONFIG_DEBUG_SHIRQ 1910 /* 1911 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1912 * event to happen even now it's being freed, so let's make sure that 1913 * is so by doing an extra call to the handler .... 1914 * 1915 * ( We do this after actually deregistering it, to make sure that a 1916 * 'real' IRQ doesn't run in parallel with our fake. ) 1917 */ 1918 if (action->flags & IRQF_SHARED) { 1919 local_irq_save(flags); 1920 action->handler(irq, dev_id); 1921 local_irq_restore(flags); 1922 } 1923 #endif 1924 1925 /* 1926 * The action has already been removed above, but the thread writes 1927 * its oneshot mask bit when it completes. Though request_mutex is 1928 * held across this which prevents __setup_irq() from handing out 1929 * the same bit to a newly requested action. 1930 */ 1931 if (action->thread) { 1932 kthread_stop_put(action->thread); 1933 if (action->secondary && action->secondary->thread) 1934 kthread_stop_put(action->secondary->thread); 1935 } 1936 1937 /* Last action releases resources */ 1938 if (!desc->action) { 1939 /* 1940 * Reacquire bus lock as irq_release_resources() might 1941 * require it to deallocate resources over the slow bus. 1942 */ 1943 chip_bus_lock(desc); 1944 /* 1945 * There is no interrupt on the fly anymore. Deactivate it 1946 * completely. 1947 */ 1948 scoped_guard(raw_spinlock_irqsave, &desc->lock) 1949 irq_domain_deactivate_irq(&desc->irq_data); 1950 1951 irq_release_resources(desc); 1952 chip_bus_sync_unlock(desc); 1953 irq_remove_timings(desc); 1954 } 1955 1956 mutex_unlock(&desc->request_mutex); 1957 1958 irq_chip_pm_put(&desc->irq_data); 1959 module_put(desc->owner); 1960 kfree(action->secondary); 1961 return action; 1962 } 1963 1964 /** 1965 * free_irq - free an interrupt allocated with request_irq 1966 * @irq: Interrupt line to free 1967 * @dev_id: Device identity to free 1968 * 1969 * Remove an interrupt handler. The handler is removed and if the interrupt 1970 * line is no longer in use by any driver it is disabled. On a shared IRQ 1971 * the caller must ensure the interrupt is disabled on the card it drives 1972 * before calling this function. The function does not return until any 1973 * executing interrupts for this IRQ have completed. 1974 * 1975 * This function must not be called from interrupt context. 1976 * 1977 * Returns the devname argument passed to request_irq. 1978 */ 1979 const void *free_irq(unsigned int irq, void *dev_id) 1980 { 1981 struct irq_desc *desc = irq_to_desc(irq); 1982 struct irqaction *action; 1983 const char *devname; 1984 1985 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1986 return NULL; 1987 1988 #ifdef CONFIG_SMP 1989 if (WARN_ON(desc->affinity_notify)) 1990 desc->affinity_notify = NULL; 1991 #endif 1992 1993 action = __free_irq(desc, dev_id); 1994 1995 if (!action) 1996 return NULL; 1997 1998 devname = action->name; 1999 kfree(action); 2000 return devname; 2001 } 2002 EXPORT_SYMBOL(free_irq); 2003 2004 /* This function must be called with desc->lock held */ 2005 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2006 { 2007 const char *devname = NULL; 2008 2009 desc->istate &= ~IRQS_NMI; 2010 2011 if (!WARN_ON(desc->action == NULL)) { 2012 irq_pm_remove_action(desc, desc->action); 2013 devname = desc->action->name; 2014 unregister_handler_proc(irq, desc->action); 2015 2016 kfree(desc->action); 2017 desc->action = NULL; 2018 } 2019 2020 irq_settings_clr_disable_unlazy(desc); 2021 irq_shutdown_and_deactivate(desc); 2022 2023 irq_release_resources(desc); 2024 2025 irq_chip_pm_put(&desc->irq_data); 2026 module_put(desc->owner); 2027 2028 return devname; 2029 } 2030 2031 const void *free_nmi(unsigned int irq, void *dev_id) 2032 { 2033 struct irq_desc *desc = irq_to_desc(irq); 2034 2035 if (!desc || WARN_ON(!irq_is_nmi(desc))) 2036 return NULL; 2037 2038 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2039 return NULL; 2040 2041 /* NMI still enabled */ 2042 if (WARN_ON(desc->depth == 0)) 2043 disable_nmi_nosync(irq); 2044 2045 guard(raw_spinlock_irqsave)(&desc->lock); 2046 irq_nmi_teardown(desc); 2047 return __cleanup_nmi(irq, desc); 2048 } 2049 2050 /** 2051 * request_threaded_irq - allocate an interrupt line 2052 * @irq: Interrupt line to allocate 2053 * @handler: Function to be called when the IRQ occurs. 2054 * Primary handler for threaded interrupts. 2055 * If handler is NULL and thread_fn != NULL 2056 * the default primary handler is installed. 2057 * @thread_fn: Function called from the irq handler thread 2058 * If NULL, no irq thread is created 2059 * @irqflags: Interrupt type flags 2060 * @devname: An ascii name for the claiming device 2061 * @dev_id: A cookie passed back to the handler function 2062 * 2063 * This call allocates interrupt resources and enables the interrupt line 2064 * and IRQ handling. From the point this call is made your handler function 2065 * may be invoked. Since your handler function must clear any interrupt the 2066 * board raises, you must take care both to initialise your hardware and to 2067 * set up the interrupt handler in the right order. 2068 * 2069 * If you want to set up a threaded irq handler for your device then you 2070 * need to supply @handler and @thread_fn. @handler is still called in hard 2071 * interrupt context and has to check whether the interrupt originates from 2072 * the device. If yes it needs to disable the interrupt on the device and 2073 * return IRQ_WAKE_THREAD which will wake up the handler thread and run 2074 * @thread_fn. This split handler design is necessary to support shared 2075 * interrupts. 2076 * 2077 * @dev_id must be globally unique. Normally the address of the device data 2078 * structure is used as the cookie. Since the handler receives this value 2079 * it makes sense to use it. 2080 * 2081 * If your interrupt is shared you must pass a non NULL dev_id as this is 2082 * required when freeing the interrupt. 2083 * 2084 * Flags: 2085 * 2086 * IRQF_SHARED Interrupt is shared 2087 * IRQF_TRIGGER_* Specify active edge(s) or level 2088 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2089 */ 2090 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2091 irq_handler_t thread_fn, unsigned long irqflags, 2092 const char *devname, void *dev_id) 2093 { 2094 struct irqaction *action; 2095 struct irq_desc *desc; 2096 int retval; 2097 2098 if (irq == IRQ_NOTCONNECTED) 2099 return -ENOTCONN; 2100 2101 /* 2102 * Sanity-check: shared interrupts must pass in a real dev-ID, 2103 * otherwise we'll have trouble later trying to figure out 2104 * which interrupt is which (messes up the interrupt freeing 2105 * logic etc). 2106 * 2107 * Also shared interrupts do not go well with disabling auto enable. 2108 * The sharing interrupt might request it while it's still disabled 2109 * and then wait for interrupts forever. 2110 * 2111 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2112 * it cannot be set along with IRQF_NO_SUSPEND. 2113 */ 2114 if (((irqflags & IRQF_SHARED) && !dev_id) || 2115 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2116 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2117 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2118 return -EINVAL; 2119 2120 desc = irq_to_desc(irq); 2121 if (!desc) 2122 return -EINVAL; 2123 2124 if (!irq_settings_can_request(desc) || 2125 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2126 return -EINVAL; 2127 2128 if (!handler) { 2129 if (!thread_fn) 2130 return -EINVAL; 2131 handler = irq_default_primary_handler; 2132 } 2133 2134 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2135 if (!action) 2136 return -ENOMEM; 2137 2138 action->handler = handler; 2139 action->thread_fn = thread_fn; 2140 action->flags = irqflags; 2141 action->name = devname; 2142 action->dev_id = dev_id; 2143 2144 retval = irq_chip_pm_get(&desc->irq_data); 2145 if (retval < 0) { 2146 kfree(action); 2147 return retval; 2148 } 2149 2150 retval = __setup_irq(irq, desc, action); 2151 2152 if (retval) { 2153 irq_chip_pm_put(&desc->irq_data); 2154 kfree(action->secondary); 2155 kfree(action); 2156 } 2157 2158 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2159 if (!retval && (irqflags & IRQF_SHARED)) { 2160 /* 2161 * It's a shared IRQ -- the driver ought to be prepared for it 2162 * to happen immediately, so let's make sure.... 2163 * We disable the irq to make sure that a 'real' IRQ doesn't 2164 * run in parallel with our fake. 2165 */ 2166 unsigned long flags; 2167 2168 disable_irq(irq); 2169 local_irq_save(flags); 2170 2171 handler(irq, dev_id); 2172 2173 local_irq_restore(flags); 2174 enable_irq(irq); 2175 } 2176 #endif 2177 return retval; 2178 } 2179 EXPORT_SYMBOL(request_threaded_irq); 2180 2181 /** 2182 * request_any_context_irq - allocate an interrupt line 2183 * @irq: Interrupt line to allocate 2184 * @handler: Function to be called when the IRQ occurs. 2185 * Threaded handler for threaded interrupts. 2186 * @flags: Interrupt type flags 2187 * @name: An ascii name for the claiming device 2188 * @dev_id: A cookie passed back to the handler function 2189 * 2190 * This call allocates interrupt resources and enables the interrupt line 2191 * and IRQ handling. It selects either a hardirq or threaded handling 2192 * method depending on the context. 2193 * 2194 * Returns: On failure, it returns a negative value. On success, it returns either 2195 * IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2196 */ 2197 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2198 unsigned long flags, const char *name, void *dev_id) 2199 { 2200 struct irq_desc *desc; 2201 int ret; 2202 2203 if (irq == IRQ_NOTCONNECTED) 2204 return -ENOTCONN; 2205 2206 desc = irq_to_desc(irq); 2207 if (!desc) 2208 return -EINVAL; 2209 2210 if (irq_settings_is_nested_thread(desc)) { 2211 ret = request_threaded_irq(irq, NULL, handler, 2212 flags, name, dev_id); 2213 return !ret ? IRQC_IS_NESTED : ret; 2214 } 2215 2216 ret = request_irq(irq, handler, flags, name, dev_id); 2217 return !ret ? IRQC_IS_HARDIRQ : ret; 2218 } 2219 EXPORT_SYMBOL_GPL(request_any_context_irq); 2220 2221 /** 2222 * request_nmi - allocate an interrupt line for NMI delivery 2223 * @irq: Interrupt line to allocate 2224 * @handler: Function to be called when the IRQ occurs. 2225 * Threaded handler for threaded interrupts. 2226 * @irqflags: Interrupt type flags 2227 * @name: An ascii name for the claiming device 2228 * @dev_id: A cookie passed back to the handler function 2229 * 2230 * This call allocates interrupt resources and enables the interrupt line 2231 * and IRQ handling. It sets up the IRQ line to be handled as an NMI. 2232 * 2233 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2234 * cannot be threaded. 2235 * 2236 * Interrupt lines requested for NMI delivering must produce per cpu 2237 * interrupts and have auto enabling setting disabled. 2238 * 2239 * @dev_id must be globally unique. Normally the address of the device data 2240 * structure is used as the cookie. Since the handler receives this value 2241 * it makes sense to use it. 2242 * 2243 * If the interrupt line cannot be used to deliver NMIs, function will fail 2244 * and return a negative value. 2245 */ 2246 int request_nmi(unsigned int irq, irq_handler_t handler, 2247 unsigned long irqflags, const char *name, void *dev_id) 2248 { 2249 struct irqaction *action; 2250 struct irq_desc *desc; 2251 int retval; 2252 2253 if (irq == IRQ_NOTCONNECTED) 2254 return -ENOTCONN; 2255 2256 /* NMI cannot be shared, used for Polling */ 2257 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2258 return -EINVAL; 2259 2260 if (!(irqflags & IRQF_PERCPU)) 2261 return -EINVAL; 2262 2263 if (!handler) 2264 return -EINVAL; 2265 2266 desc = irq_to_desc(irq); 2267 2268 if (!desc || (irq_settings_can_autoenable(desc) && 2269 !(irqflags & IRQF_NO_AUTOEN)) || 2270 !irq_settings_can_request(desc) || 2271 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2272 !irq_supports_nmi(desc)) 2273 return -EINVAL; 2274 2275 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2276 if (!action) 2277 return -ENOMEM; 2278 2279 action->handler = handler; 2280 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2281 action->name = name; 2282 action->dev_id = dev_id; 2283 2284 retval = irq_chip_pm_get(&desc->irq_data); 2285 if (retval < 0) 2286 goto err_out; 2287 2288 retval = __setup_irq(irq, desc, action); 2289 if (retval) 2290 goto err_irq_setup; 2291 2292 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 2293 /* Setup NMI state */ 2294 desc->istate |= IRQS_NMI; 2295 retval = irq_nmi_setup(desc); 2296 if (retval) { 2297 __cleanup_nmi(irq, desc); 2298 return -EINVAL; 2299 } 2300 return 0; 2301 } 2302 2303 err_irq_setup: 2304 irq_chip_pm_put(&desc->irq_data); 2305 err_out: 2306 kfree(action); 2307 2308 return retval; 2309 } 2310 2311 void enable_percpu_irq(unsigned int irq, unsigned int type) 2312 { 2313 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2314 struct irq_desc *desc = scoped_irqdesc; 2315 2316 /* 2317 * If the trigger type is not specified by the caller, then 2318 * use the default for this interrupt. 2319 */ 2320 type &= IRQ_TYPE_SENSE_MASK; 2321 if (type == IRQ_TYPE_NONE) 2322 type = irqd_get_trigger_type(&desc->irq_data); 2323 2324 if (type != IRQ_TYPE_NONE) { 2325 if (__irq_set_trigger(desc, type)) { 2326 WARN(1, "failed to set type for IRQ%d\n", irq); 2327 return; 2328 } 2329 } 2330 irq_percpu_enable(desc, smp_processor_id()); 2331 } 2332 } 2333 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2334 2335 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2336 { 2337 enable_percpu_irq(irq, type); 2338 } 2339 2340 /** 2341 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2342 * @irq: Linux irq number to check for 2343 * 2344 * Must be called from a non migratable context. Returns the enable 2345 * state of a per cpu interrupt on the current cpu. 2346 */ 2347 bool irq_percpu_is_enabled(unsigned int irq) 2348 { 2349 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) 2350 return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled); 2351 return false; 2352 } 2353 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2354 2355 void disable_percpu_irq(unsigned int irq) 2356 { 2357 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) 2358 irq_percpu_disable(scoped_irqdesc, smp_processor_id()); 2359 } 2360 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2361 2362 void disable_percpu_nmi(unsigned int irq) 2363 { 2364 disable_percpu_irq(irq); 2365 } 2366 2367 /* 2368 * Internal function to unregister a percpu irqaction. 2369 */ 2370 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2371 { 2372 struct irq_desc *desc = irq_to_desc(irq); 2373 struct irqaction *action, **action_ptr; 2374 2375 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2376 2377 if (!desc) 2378 return NULL; 2379 2380 scoped_guard(raw_spinlock_irqsave, &desc->lock) { 2381 action_ptr = &desc->action; 2382 for (;;) { 2383 action = *action_ptr; 2384 2385 if (!action) { 2386 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2387 return NULL; 2388 } 2389 2390 if (action->percpu_dev_id == dev_id) 2391 break; 2392 2393 action_ptr = &action->next; 2394 } 2395 2396 if (cpumask_intersects(desc->percpu_enabled, action->affinity)) { 2397 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", irq, 2398 cpumask_first_and(desc->percpu_enabled, action->affinity)); 2399 return NULL; 2400 } 2401 2402 /* Found it - now remove it from the list of entries: */ 2403 *action_ptr = action->next; 2404 2405 /* Demote from NMI if we killed the last action */ 2406 if (!desc->action) 2407 desc->istate &= ~IRQS_NMI; 2408 } 2409 2410 unregister_handler_proc(irq, action); 2411 irq_chip_pm_put(&desc->irq_data); 2412 module_put(desc->owner); 2413 return action; 2414 } 2415 2416 /** 2417 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2418 * @irq: Interrupt line to free 2419 * @dev_id: Device identity to free 2420 * 2421 * Remove a percpu interrupt handler. The handler is removed, but the 2422 * interrupt line is not disabled. This must be done on each CPU before 2423 * calling this function. The function does not return until any executing 2424 * interrupts for this IRQ have completed. 2425 * 2426 * This function must not be called from interrupt context. 2427 */ 2428 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2429 { 2430 struct irq_desc *desc = irq_to_desc(irq); 2431 2432 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2433 return; 2434 2435 chip_bus_lock(desc); 2436 kfree(__free_percpu_irq(irq, dev_id)); 2437 chip_bus_sync_unlock(desc); 2438 } 2439 EXPORT_SYMBOL_GPL(free_percpu_irq); 2440 2441 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2442 { 2443 struct irq_desc *desc = irq_to_desc(irq); 2444 2445 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2446 return; 2447 2448 if (WARN_ON(!irq_is_nmi(desc))) 2449 return; 2450 2451 kfree(__free_percpu_irq(irq, dev_id)); 2452 } 2453 2454 /** 2455 * setup_percpu_irq - setup a per-cpu interrupt 2456 * @irq: Interrupt line to setup 2457 * @act: irqaction for the interrupt 2458 * 2459 * Used to statically setup per-cpu interrupts in the early boot process. 2460 */ 2461 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2462 { 2463 struct irq_desc *desc = irq_to_desc(irq); 2464 int retval; 2465 2466 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2467 return -EINVAL; 2468 2469 retval = irq_chip_pm_get(&desc->irq_data); 2470 if (retval < 0) 2471 return retval; 2472 2473 retval = __setup_irq(irq, desc, act); 2474 2475 if (retval) 2476 irq_chip_pm_put(&desc->irq_data); 2477 2478 return retval; 2479 } 2480 2481 static 2482 struct irqaction *create_percpu_irqaction(irq_handler_t handler, unsigned long flags, 2483 const char *devname, const cpumask_t *affinity, 2484 void __percpu *dev_id) 2485 { 2486 struct irqaction *action; 2487 2488 if (!affinity) 2489 affinity = cpu_possible_mask; 2490 2491 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2492 if (!action) 2493 return NULL; 2494 2495 action->handler = handler; 2496 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2497 action->name = devname; 2498 action->percpu_dev_id = dev_id; 2499 action->affinity = affinity; 2500 2501 /* 2502 * We allow some form of sharing for non-overlapping affinity 2503 * masks. Obviously, covering all CPUs prevents any sharing in 2504 * the first place. 2505 */ 2506 if (!cpumask_equal(affinity, cpu_possible_mask)) 2507 action->flags |= IRQF_SHARED; 2508 2509 return action; 2510 } 2511 2512 /** 2513 * __request_percpu_irq - allocate a percpu interrupt line 2514 * @irq: Interrupt line to allocate 2515 * @handler: Function to be called when the IRQ occurs. 2516 * @flags: Interrupt type flags (IRQF_TIMER only) 2517 * @devname: An ascii name for the claiming device 2518 * @affinity: A cpumask describing the target CPUs for this interrupt 2519 * @dev_id: A percpu cookie passed back to the handler function 2520 * 2521 * This call allocates interrupt resources, but doesn't enable the interrupt 2522 * on any CPU, as all percpu-devid interrupts are flagged with IRQ_NOAUTOEN. 2523 * It has to be done on each CPU using enable_percpu_irq(). 2524 * 2525 * @dev_id must be globally unique. It is a per-cpu variable, and 2526 * the handler gets called with the interrupted CPU's instance of 2527 * that variable. 2528 */ 2529 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2530 unsigned long flags, const char *devname, 2531 const cpumask_t *affinity, void __percpu *dev_id) 2532 { 2533 struct irqaction *action; 2534 struct irq_desc *desc; 2535 int retval; 2536 2537 if (!dev_id) 2538 return -EINVAL; 2539 2540 desc = irq_to_desc(irq); 2541 if (!desc || !irq_settings_can_request(desc) || 2542 !irq_settings_is_per_cpu_devid(desc)) 2543 return -EINVAL; 2544 2545 if (flags && flags != IRQF_TIMER) 2546 return -EINVAL; 2547 2548 action = create_percpu_irqaction(handler, flags, devname, affinity, dev_id); 2549 if (!action) 2550 return -ENOMEM; 2551 2552 retval = irq_chip_pm_get(&desc->irq_data); 2553 if (retval < 0) { 2554 kfree(action); 2555 return retval; 2556 } 2557 2558 retval = __setup_irq(irq, desc, action); 2559 2560 if (retval) { 2561 irq_chip_pm_put(&desc->irq_data); 2562 kfree(action); 2563 } 2564 2565 return retval; 2566 } 2567 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2568 2569 /** 2570 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2571 * @irq: Interrupt line to allocate 2572 * @handler: Function to be called when the IRQ occurs. 2573 * @name: An ascii name for the claiming device 2574 * @affinity: A cpumask describing the target CPUs for this interrupt 2575 * @dev_id: A percpu cookie passed back to the handler function 2576 * 2577 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2578 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2579 * being enabled on the same CPU by using enable_percpu_nmi(). 2580 * 2581 * @dev_id must be globally unique. It is a per-cpu variable, and the 2582 * handler gets called with the interrupted CPU's instance of that 2583 * variable. 2584 * 2585 * Interrupt lines requested for NMI delivering should have auto enabling 2586 * setting disabled. 2587 * 2588 * If the interrupt line cannot be used to deliver NMIs, function 2589 * will fail returning a negative value. 2590 */ 2591 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *name, 2592 const struct cpumask *affinity, void __percpu *dev_id) 2593 { 2594 struct irqaction *action; 2595 struct irq_desc *desc; 2596 int retval; 2597 2598 if (!handler) 2599 return -EINVAL; 2600 2601 desc = irq_to_desc(irq); 2602 2603 if (!desc || !irq_settings_can_request(desc) || 2604 !irq_settings_is_per_cpu_devid(desc) || 2605 irq_settings_can_autoenable(desc) || 2606 !irq_supports_nmi(desc)) 2607 return -EINVAL; 2608 2609 /* The line cannot be NMI already if the new request covers all CPUs */ 2610 if (irq_is_nmi(desc) && 2611 (!affinity || cpumask_equal(affinity, cpu_possible_mask))) 2612 return -EINVAL; 2613 2614 action = create_percpu_irqaction(handler, IRQF_NO_THREAD | IRQF_NOBALANCING, 2615 name, affinity, dev_id); 2616 if (!action) 2617 return -ENOMEM; 2618 2619 retval = irq_chip_pm_get(&desc->irq_data); 2620 if (retval < 0) 2621 goto err_out; 2622 2623 retval = __setup_irq(irq, desc, action); 2624 if (retval) 2625 goto err_irq_setup; 2626 2627 scoped_guard(raw_spinlock_irqsave, &desc->lock) 2628 desc->istate |= IRQS_NMI; 2629 return 0; 2630 2631 err_irq_setup: 2632 irq_chip_pm_put(&desc->irq_data); 2633 err_out: 2634 kfree(action); 2635 2636 return retval; 2637 } 2638 2639 /** 2640 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2641 * @irq: Interrupt line to prepare for NMI delivery 2642 * 2643 * This call prepares an interrupt line to deliver NMI on the current CPU, 2644 * before that interrupt line gets enabled with enable_percpu_nmi(). 2645 * 2646 * As a CPU local operation, this should be called from non-preemptible 2647 * context. 2648 * 2649 * If the interrupt line cannot be used to deliver NMIs, function will fail 2650 * returning a negative value. 2651 */ 2652 int prepare_percpu_nmi(unsigned int irq) 2653 { 2654 int ret = -EINVAL; 2655 2656 WARN_ON(preemptible()); 2657 2658 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2659 if (WARN(!irq_is_nmi(scoped_irqdesc), 2660 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq)) 2661 return -EINVAL; 2662 2663 ret = irq_nmi_setup(scoped_irqdesc); 2664 if (ret) 2665 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2666 } 2667 return ret; 2668 } 2669 2670 /** 2671 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2672 * @irq: Interrupt line from which CPU local NMI configuration should be removed 2673 * 2674 * This call undoes the setup done by prepare_percpu_nmi(). 2675 * 2676 * IRQ line should not be enabled for the current CPU. 2677 * As a CPU local operation, this should be called from non-preemptible 2678 * context. 2679 */ 2680 void teardown_percpu_nmi(unsigned int irq) 2681 { 2682 WARN_ON(preemptible()); 2683 2684 scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) { 2685 if (WARN_ON(!irq_is_nmi(scoped_irqdesc))) 2686 return; 2687 irq_nmi_teardown(scoped_irqdesc); 2688 } 2689 } 2690 2691 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state) 2692 { 2693 struct irq_chip *chip; 2694 int err = -EINVAL; 2695 2696 do { 2697 chip = irq_data_get_irq_chip(data); 2698 if (WARN_ON_ONCE(!chip)) 2699 return -ENODEV; 2700 if (chip->irq_get_irqchip_state) 2701 break; 2702 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2703 data = data->parent_data; 2704 #else 2705 data = NULL; 2706 #endif 2707 } while (data); 2708 2709 if (data) 2710 err = chip->irq_get_irqchip_state(data, which, state); 2711 return err; 2712 } 2713 2714 /** 2715 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2716 * @irq: Interrupt line that is forwarded to a VM 2717 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2718 * @state: a pointer to a boolean where the state is to be stored 2719 * 2720 * This call snapshots the internal irqchip state of an interrupt, 2721 * returning into @state the bit corresponding to stage @which 2722 * 2723 * This function should be called with preemption disabled if the interrupt 2724 * controller has per-cpu registers. 2725 */ 2726 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state) 2727 { 2728 scoped_irqdesc_get_and_buslock(irq, 0) { 2729 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc); 2730 2731 return __irq_get_irqchip_state(data, which, state); 2732 } 2733 return -EINVAL; 2734 } 2735 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2736 2737 /** 2738 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2739 * @irq: Interrupt line that is forwarded to a VM 2740 * @which: State to be restored (one of IRQCHIP_STATE_*) 2741 * @val: Value corresponding to @which 2742 * 2743 * This call sets the internal irqchip state of an interrupt, depending on 2744 * the value of @which. 2745 * 2746 * This function should be called with migration disabled if the interrupt 2747 * controller has per-cpu registers. 2748 */ 2749 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val) 2750 { 2751 scoped_irqdesc_get_and_buslock(irq, 0) { 2752 struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc); 2753 struct irq_chip *chip; 2754 2755 do { 2756 chip = irq_data_get_irq_chip(data); 2757 2758 if (WARN_ON_ONCE(!chip)) 2759 return -ENODEV; 2760 2761 if (chip->irq_set_irqchip_state) 2762 break; 2763 2764 data = irqd_get_parent_data(data); 2765 } while (data); 2766 2767 if (data) 2768 return chip->irq_set_irqchip_state(data, which, val); 2769 } 2770 return -EINVAL; 2771 } 2772 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2773 2774 /** 2775 * irq_has_action - Check whether an interrupt is requested 2776 * @irq: The linux irq number 2777 * 2778 * Returns: A snapshot of the current state 2779 */ 2780 bool irq_has_action(unsigned int irq) 2781 { 2782 bool res; 2783 2784 rcu_read_lock(); 2785 res = irq_desc_has_action(irq_to_desc(irq)); 2786 rcu_read_unlock(); 2787 return res; 2788 } 2789 EXPORT_SYMBOL_GPL(irq_has_action); 2790 2791 /** 2792 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2793 * @irq: The linux irq number 2794 * @bitmask: The bitmask to evaluate 2795 * 2796 * Returns: True if one of the bits in @bitmask is set 2797 */ 2798 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2799 { 2800 struct irq_desc *desc; 2801 bool res = false; 2802 2803 rcu_read_lock(); 2804 desc = irq_to_desc(irq); 2805 if (desc) 2806 res = !!(desc->status_use_accessors & bitmask); 2807 rcu_read_unlock(); 2808 return res; 2809 } 2810 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2811