xref: /linux/kernel/irq/manage.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
39 
40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
43 	bool inprogress;
44 
45 	do {
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		guard(raw_spinlock_irqsave)(&desc->lock);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		/* Oops, that failed? */
71 	} while (inprogress);
72 }
73 
74 /**
75  * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
76  * @irq: interrupt number to wait for
77  *
78  * This function waits for any pending hard IRQ handlers for this interrupt
79  * to complete before returning. If you use this function while holding a
80  * resource the IRQ handler may need you will deadlock. It does not take
81  * associated threaded handlers into account.
82  *
83  * Do not use this for shutdown scenarios where you must be sure that all
84  * parts (hardirq and threaded handler) have completed.
85  *
86  * Returns: false if a threaded handler is active.
87  *
88  * This function may be called - with care - from IRQ context.
89  *
90  * It does not check whether there is an interrupt in flight at the
91  * hardware level, but not serviced yet, as this might deadlock when called
92  * with interrupts disabled and the target CPU of the interrupt is the
93  * current CPU.
94  */
95 bool synchronize_hardirq(unsigned int irq)
96 {
97 	struct irq_desc *desc = irq_to_desc(irq);
98 
99 	if (desc) {
100 		__synchronize_hardirq(desc, false);
101 		return !atomic_read(&desc->threads_active);
102 	}
103 
104 	return true;
105 }
106 EXPORT_SYMBOL(synchronize_hardirq);
107 
108 static void __synchronize_irq(struct irq_desc *desc)
109 {
110 	__synchronize_hardirq(desc, true);
111 	/*
112 	 * We made sure that no hardirq handler is running. Now verify that no
113 	 * threaded handlers are active.
114 	 */
115 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
116 }
117 
118 /**
119  * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
120  * @irq: interrupt number to wait for
121  *
122  * This function waits for any pending IRQ handlers for this interrupt to
123  * complete before returning. If you use this function while holding a
124  * resource the IRQ handler may need you will deadlock.
125  *
126  * Can only be called from preemptible code as it might sleep when
127  * an interrupt thread is associated to @irq.
128  *
129  * It optionally makes sure (when the irq chip supports that method)
130  * that the interrupt is not pending in any CPU and waiting for
131  * service.
132  */
133 void synchronize_irq(unsigned int irq)
134 {
135 	struct irq_desc *desc = irq_to_desc(irq);
136 
137 	if (desc)
138 		__synchronize_irq(desc);
139 }
140 EXPORT_SYMBOL(synchronize_irq);
141 
142 #ifdef CONFIG_SMP
143 cpumask_var_t irq_default_affinity;
144 
145 static bool __irq_can_set_affinity(struct irq_desc *desc)
146 {
147 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
148 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
149 		return false;
150 	return true;
151 }
152 
153 /**
154  * irq_can_set_affinity - Check if the affinity of a given irq can be set
155  * @irq:	Interrupt to check
156  *
157  */
158 int irq_can_set_affinity(unsigned int irq)
159 {
160 	return __irq_can_set_affinity(irq_to_desc(irq));
161 }
162 
163 /**
164  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
165  * @irq:	Interrupt to check
166  *
167  * Like irq_can_set_affinity() above, but additionally checks for the
168  * AFFINITY_MANAGED flag.
169  */
170 bool irq_can_set_affinity_usr(unsigned int irq)
171 {
172 	struct irq_desc *desc = irq_to_desc(irq);
173 
174 	return __irq_can_set_affinity(desc) &&
175 		!irqd_affinity_is_managed(&desc->irq_data);
176 }
177 
178 /**
179  * irq_set_thread_affinity - Notify irq threads to adjust affinity
180  * @desc:	irq descriptor which has affinity changed
181  *
182  * Just set IRQTF_AFFINITY and delegate the affinity setting to the
183  * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as
184  * we hold desc->lock and this code can be called from hard interrupt
185  * context.
186  */
187 static void irq_set_thread_affinity(struct irq_desc *desc)
188 {
189 	struct irqaction *action;
190 
191 	for_each_action_of_desc(desc, action) {
192 		if (action->thread) {
193 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
194 			wake_up_process(action->thread);
195 		}
196 		if (action->secondary && action->secondary->thread) {
197 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
198 			wake_up_process(action->secondary->thread);
199 		}
200 	}
201 }
202 
203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
204 static void irq_validate_effective_affinity(struct irq_data *data)
205 {
206 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
207 	struct irq_chip *chip = irq_data_get_irq_chip(data);
208 
209 	if (!cpumask_empty(m))
210 		return;
211 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
212 		     chip->name, data->irq);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 #endif
217 
218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
219 
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 			bool force)
222 {
223 	struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	if (!chip || !chip->irq_set_affinity)
230 		return -EINVAL;
231 
232 	/*
233 	 * If this is a managed interrupt and housekeeping is enabled on
234 	 * it check whether the requested affinity mask intersects with
235 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 	 * the mask and just keep the housekeeping CPU(s). This prevents
237 	 * the affinity setter from routing the interrupt to an isolated
238 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 	 * interrupts on an isolated one.
240 	 *
241 	 * If the masks do not intersect or include online CPU(s) then
242 	 * keep the requested mask. The isolated target CPUs are only
243 	 * receiving interrupts when the I/O operation was submitted
244 	 * directly from them.
245 	 *
246 	 * If all housekeeping CPUs in the affinity mask are offline, the
247 	 * interrupt will be migrated by the CPU hotplug code once a
248 	 * housekeeping CPU which belongs to the affinity mask comes
249 	 * online.
250 	 */
251 	if (irqd_affinity_is_managed(data) &&
252 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 		const struct cpumask *hk_mask;
254 
255 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256 
257 		cpumask_and(tmp_mask, mask, hk_mask);
258 		if (!cpumask_intersects(tmp_mask, cpu_online_mask))
259 			prog_mask = mask;
260 		else
261 			prog_mask = tmp_mask;
262 	} else {
263 		prog_mask = mask;
264 	}
265 
266 	/*
267 	 * Make sure we only provide online CPUs to the irqchip,
268 	 * unless we are being asked to force the affinity (in which
269 	 * case we do as we are told).
270 	 */
271 	cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
272 	if (!force && !cpumask_empty(tmp_mask))
273 		ret = chip->irq_set_affinity(data, tmp_mask, force);
274 	else if (force)
275 		ret = chip->irq_set_affinity(data, mask, force);
276 	else
277 		ret = -EINVAL;
278 
279 	switch (ret) {
280 	case IRQ_SET_MASK_OK:
281 	case IRQ_SET_MASK_OK_DONE:
282 		cpumask_copy(desc->irq_common_data.affinity, mask);
283 		fallthrough;
284 	case IRQ_SET_MASK_OK_NOCOPY:
285 		irq_validate_effective_affinity(data);
286 		irq_set_thread_affinity(desc);
287 		ret = 0;
288 	}
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 					   const struct cpumask *dest)
296 {
297 	struct irq_desc *desc = irq_data_to_desc(data);
298 
299 	irqd_set_move_pending(data);
300 	irq_copy_pending(desc, dest);
301 	return 0;
302 }
303 #else
304 static inline int irq_set_affinity_pending(struct irq_data *data,
305 					   const struct cpumask *dest)
306 {
307 	return -EBUSY;
308 }
309 #endif
310 
311 static int irq_try_set_affinity(struct irq_data *data,
312 				const struct cpumask *dest, bool force)
313 {
314 	int ret = irq_do_set_affinity(data, dest, force);
315 
316 	/*
317 	 * In case that the underlying vector management is busy and the
318 	 * architecture supports the generic pending mechanism then utilize
319 	 * this to avoid returning an error to user space.
320 	 */
321 	if (ret == -EBUSY && !force)
322 		ret = irq_set_affinity_pending(data, dest);
323 	return ret;
324 }
325 
326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327 					 const struct cpumask *mask)
328 {
329 	struct irq_desc *desc = irq_data_to_desc(data);
330 
331 	/*
332 	 * Handle irq chips which can handle affinity only in activated
333 	 * state correctly
334 	 *
335 	 * If the interrupt is not yet activated, just store the affinity
336 	 * mask and do not call the chip driver at all. On activation the
337 	 * driver has to make sure anyway that the interrupt is in a
338 	 * usable state so startup works.
339 	 */
340 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342 		return false;
343 
344 	cpumask_copy(desc->irq_common_data.affinity, mask);
345 	irq_data_update_effective_affinity(data, mask);
346 	irqd_set(data, IRQD_AFFINITY_SET);
347 	return true;
348 }
349 
350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351 			    bool force)
352 {
353 	struct irq_chip *chip = irq_data_get_irq_chip(data);
354 	struct irq_desc *desc = irq_data_to_desc(data);
355 	int ret = 0;
356 
357 	if (!chip || !chip->irq_set_affinity)
358 		return -EINVAL;
359 
360 	if (irq_set_affinity_deactivated(data, mask))
361 		return 0;
362 
363 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364 		ret = irq_try_set_affinity(data, mask, force);
365 	} else {
366 		irqd_set_move_pending(data);
367 		irq_copy_pending(desc, mask);
368 	}
369 
370 	if (desc->affinity_notify) {
371 		kref_get(&desc->affinity_notify->kref);
372 		if (!schedule_work(&desc->affinity_notify->work)) {
373 			/* Work was already scheduled, drop our extra ref */
374 			kref_put(&desc->affinity_notify->kref,
375 				 desc->affinity_notify->release);
376 		}
377 	}
378 	irqd_set(data, IRQD_AFFINITY_SET);
379 
380 	return ret;
381 }
382 
383 /**
384  * irq_update_affinity_desc - Update affinity management for an interrupt
385  * @irq:	The interrupt number to update
386  * @affinity:	Pointer to the affinity descriptor
387  *
388  * This interface can be used to configure the affinity management of
389  * interrupts which have been allocated already.
390  *
391  * There are certain limitations on when it may be used - attempts to use it
392  * for when the kernel is configured for generic IRQ reservation mode (in
393  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394  * managed/non-managed interrupt accounting. In addition, attempts to use it on
395  * an interrupt which is already started or which has already been configured
396  * as managed will also fail, as these mean invalid init state or double init.
397  */
398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity)
399 {
400 	/*
401 	 * Supporting this with the reservation scheme used by x86 needs
402 	 * some more thought. Fail it for now.
403 	 */
404 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
405 		return -EOPNOTSUPP;
406 
407 	scoped_irqdesc_get_and_buslock(irq, 0) {
408 		struct irq_desc *desc = scoped_irqdesc;
409 		bool activated;
410 
411 		/* Requires the interrupt to be shut down */
412 		if (irqd_is_started(&desc->irq_data))
413 			return -EBUSY;
414 
415 		/* Interrupts which are already managed cannot be modified */
416 		if (irqd_affinity_is_managed(&desc->irq_data))
417 			return -EBUSY;
418 		/*
419 		 * Deactivate the interrupt. That's required to undo
420 		 * anything an earlier activation has established.
421 		 */
422 		activated = irqd_is_activated(&desc->irq_data);
423 		if (activated)
424 			irq_domain_deactivate_irq(&desc->irq_data);
425 
426 		if (affinity->is_managed) {
427 			irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
428 			irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
429 		}
430 
431 		cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
432 
433 		/* Restore the activation state */
434 		if (activated)
435 			irq_domain_activate_irq(&desc->irq_data, false);
436 		return 0;
437 	}
438 	return -EINVAL;
439 }
440 
441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
442 			      bool force)
443 {
444 	struct irq_desc *desc = irq_to_desc(irq);
445 
446 	if (!desc)
447 		return -EINVAL;
448 
449 	guard(raw_spinlock_irqsave)(&desc->lock);
450 	return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
451 }
452 
453 /**
454  * irq_set_affinity - Set the irq affinity of a given irq
455  * @irq:	Interrupt to set affinity
456  * @cpumask:	cpumask
457  *
458  * Fails if cpumask does not contain an online CPU
459  */
460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
461 {
462 	return __irq_set_affinity(irq, cpumask, false);
463 }
464 EXPORT_SYMBOL_GPL(irq_set_affinity);
465 
466 /**
467  * irq_force_affinity - Force the irq affinity of a given irq
468  * @irq:	Interrupt to set affinity
469  * @cpumask:	cpumask
470  *
471  * Same as irq_set_affinity, but without checking the mask against
472  * online cpus.
473  *
474  * Solely for low level cpu hotplug code, where we need to make per
475  * cpu interrupts affine before the cpu becomes online.
476  */
477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
478 {
479 	return __irq_set_affinity(irq, cpumask, true);
480 }
481 EXPORT_SYMBOL_GPL(irq_force_affinity);
482 
483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity)
484 {
485 	int ret = -EINVAL;
486 
487 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
488 		scoped_irqdesc->affinity_hint = m;
489 		ret = 0;
490 	}
491 
492 	if (!ret && m && setaffinity)
493 		__irq_set_affinity(irq, m, false);
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
497 
498 static void irq_affinity_notify(struct work_struct *work)
499 {
500 	struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work);
501 	struct irq_desc *desc = irq_to_desc(notify->irq);
502 	cpumask_var_t cpumask;
503 
504 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
505 		goto out;
506 
507 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
508 		if (irq_move_pending(&desc->irq_data))
509 			irq_get_pending(cpumask, desc);
510 		else
511 			cpumask_copy(cpumask, desc->irq_common_data.affinity);
512 	}
513 
514 	notify->notify(notify, cpumask);
515 
516 	free_cpumask_var(cpumask);
517 out:
518 	kref_put(&notify->kref, notify->release);
519 }
520 
521 /**
522  * irq_set_affinity_notifier - control notification of IRQ affinity changes
523  * @irq:	Interrupt for which to enable/disable notification
524  * @notify:	Context for notification, or %NULL to disable
525  *		notification.  Function pointers must be initialised;
526  *		the other fields will be initialised by this function.
527  *
528  * Must be called in process context.  Notification may only be enabled
529  * after the IRQ is allocated and must be disabled before the IRQ is freed
530  * using free_irq().
531  */
532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
533 {
534 	struct irq_desc *desc = irq_to_desc(irq);
535 	struct irq_affinity_notify *old_notify;
536 
537 	/* The release function is promised process context */
538 	might_sleep();
539 
540 	if (!desc || irq_is_nmi(desc))
541 		return -EINVAL;
542 
543 	/* Complete initialisation of *notify */
544 	if (notify) {
545 		notify->irq = irq;
546 		kref_init(&notify->kref);
547 		INIT_WORK(&notify->work, irq_affinity_notify);
548 	}
549 
550 	scoped_guard(raw_spinlock_irq, &desc->lock) {
551 		old_notify = desc->affinity_notify;
552 		desc->affinity_notify = notify;
553 	}
554 
555 	if (old_notify) {
556 		if (cancel_work_sync(&old_notify->work)) {
557 			/* Pending work had a ref, put that one too */
558 			kref_put(&old_notify->kref, old_notify->release);
559 		}
560 		kref_put(&old_notify->kref, old_notify->release);
561 	}
562 
563 	return 0;
564 }
565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
566 
567 #ifndef CONFIG_AUTO_IRQ_AFFINITY
568 /*
569  * Generic version of the affinity autoselector.
570  */
571 int irq_setup_affinity(struct irq_desc *desc)
572 {
573 	struct cpumask *set = irq_default_affinity;
574 	int node = irq_desc_get_node(desc);
575 
576 	static DEFINE_RAW_SPINLOCK(mask_lock);
577 	static struct cpumask mask;
578 
579 	/* Excludes PER_CPU and NO_BALANCE interrupts */
580 	if (!__irq_can_set_affinity(desc))
581 		return 0;
582 
583 	guard(raw_spinlock)(&mask_lock);
584 	/*
585 	 * Preserve the managed affinity setting and a userspace affinity
586 	 * setup, but make sure that one of the targets is online.
587 	 */
588 	if (irqd_affinity_is_managed(&desc->irq_data) ||
589 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
590 		if (cpumask_intersects(desc->irq_common_data.affinity,
591 				       cpu_online_mask))
592 			set = desc->irq_common_data.affinity;
593 		else
594 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
595 	}
596 
597 	cpumask_and(&mask, cpu_online_mask, set);
598 	if (cpumask_empty(&mask))
599 		cpumask_copy(&mask, cpu_online_mask);
600 
601 	if (node != NUMA_NO_NODE) {
602 		const struct cpumask *nodemask = cpumask_of_node(node);
603 
604 		/* make sure at least one of the cpus in nodemask is online */
605 		if (cpumask_intersects(&mask, nodemask))
606 			cpumask_and(&mask, &mask, nodemask);
607 	}
608 	return irq_do_set_affinity(&desc->irq_data, &mask, false);
609 }
610 #else
611 /* Wrapper for ALPHA specific affinity selector magic */
612 int irq_setup_affinity(struct irq_desc *desc)
613 {
614 	return irq_select_affinity(irq_desc_get_irq(desc));
615 }
616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
617 #endif /* CONFIG_SMP */
618 
619 
620 /**
621  * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
622  * @irq:	interrupt number to set affinity
623  * @vcpu_info:	vCPU specific data or pointer to a percpu array of vCPU
624  *		specific data for percpu_devid interrupts
625  *
626  * This function uses the vCPU specific data to set the vCPU affinity for
627  * an irq. The vCPU specific data is passed from outside, such as KVM. One
628  * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity().
629  */
630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
631 {
632 	scoped_irqdesc_get_and_lock(irq, 0) {
633 		struct irq_desc *desc = scoped_irqdesc;
634 		struct irq_data *data;
635 		struct irq_chip *chip;
636 
637 		data = irq_desc_get_irq_data(desc);
638 		do {
639 			chip = irq_data_get_irq_chip(data);
640 			if (chip && chip->irq_set_vcpu_affinity)
641 				break;
642 
643 			data = irqd_get_parent_data(data);
644 		} while (data);
645 
646 		if (!data)
647 			return -ENOSYS;
648 		return chip->irq_set_vcpu_affinity(data, vcpu_info);
649 	}
650 	return -EINVAL;
651 }
652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
653 
654 void __disable_irq(struct irq_desc *desc)
655 {
656 	if (!desc->depth++)
657 		irq_disable(desc);
658 }
659 
660 static int __disable_irq_nosync(unsigned int irq)
661 {
662 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
663 		__disable_irq(scoped_irqdesc);
664 		return 0;
665 	}
666 	return -EINVAL;
667 }
668 
669 /**
670  * disable_irq_nosync - disable an irq without waiting
671  * @irq: Interrupt to disable
672  *
673  * Disable the selected interrupt line.  Disables and Enables are
674  * nested.
675  * Unlike disable_irq(), this function does not ensure existing
676  * instances of the IRQ handler have completed before returning.
677  *
678  * This function may be called from IRQ context.
679  */
680 void disable_irq_nosync(unsigned int irq)
681 {
682 	__disable_irq_nosync(irq);
683 }
684 EXPORT_SYMBOL(disable_irq_nosync);
685 
686 /**
687  * disable_irq - disable an irq and wait for completion
688  * @irq: Interrupt to disable
689  *
690  * Disable the selected interrupt line.  Enables and Disables are nested.
691  *
692  * This function waits for any pending IRQ handlers for this interrupt to
693  * complete before returning. If you use this function while holding a
694  * resource the IRQ handler may need you will deadlock.
695  *
696  * Can only be called from preemptible code as it might sleep when an
697  * interrupt thread is associated to @irq.
698  *
699  */
700 void disable_irq(unsigned int irq)
701 {
702 	might_sleep();
703 	if (!__disable_irq_nosync(irq))
704 		synchronize_irq(irq);
705 }
706 EXPORT_SYMBOL(disable_irq);
707 
708 /**
709  * disable_hardirq - disables an irq and waits for hardirq completion
710  * @irq: Interrupt to disable
711  *
712  * Disable the selected interrupt line.  Enables and Disables are nested.
713  *
714  * This function waits for any pending hard IRQ handlers for this interrupt
715  * to complete before returning. If you use this function while holding a
716  * resource the hard IRQ handler may need you will deadlock.
717  *
718  * When used to optimistically disable an interrupt from atomic context the
719  * return value must be checked.
720  *
721  * Returns: false if a threaded handler is active.
722  *
723  * This function may be called - with care - from IRQ context.
724  */
725 bool disable_hardirq(unsigned int irq)
726 {
727 	if (!__disable_irq_nosync(irq))
728 		return synchronize_hardirq(irq);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(disable_hardirq);
732 
733 /**
734  * disable_nmi_nosync - disable an nmi without waiting
735  * @irq: Interrupt to disable
736  *
737  * Disable the selected interrupt line. Disables and enables are nested.
738  *
739  * The interrupt to disable must have been requested through request_nmi.
740  * Unlike disable_nmi(), this function does not ensure existing
741  * instances of the IRQ handler have completed before returning.
742  */
743 void disable_nmi_nosync(unsigned int irq)
744 {
745 	disable_irq_nosync(irq);
746 }
747 
748 void __enable_irq(struct irq_desc *desc)
749 {
750 	switch (desc->depth) {
751 	case 0:
752  err_out:
753 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
754 		     irq_desc_get_irq(desc));
755 		break;
756 	case 1: {
757 		if (desc->istate & IRQS_SUSPENDED)
758 			goto err_out;
759 		/* Prevent probing on this irq: */
760 		irq_settings_set_noprobe(desc);
761 		/*
762 		 * Call irq_startup() not irq_enable() here because the
763 		 * interrupt might be marked NOAUTOEN so irq_startup()
764 		 * needs to be invoked when it gets enabled the first time.
765 		 * This is also required when __enable_irq() is invoked for
766 		 * a managed and shutdown interrupt from the S3 resume
767 		 * path.
768 		 *
769 		 * If it was already started up, then irq_startup() will
770 		 * invoke irq_enable() under the hood.
771 		 */
772 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
773 		break;
774 	}
775 	default:
776 		desc->depth--;
777 	}
778 }
779 
780 /**
781  * enable_irq - enable handling of an irq
782  * @irq: Interrupt to enable
783  *
784  * Undoes the effect of one call to disable_irq().  If this matches the
785  * last disable, processing of interrupts on this IRQ line is re-enabled.
786  *
787  * This function may be called from IRQ context only when
788  * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
789  */
790 void enable_irq(unsigned int irq)
791 {
792 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
793 		struct irq_desc *desc = scoped_irqdesc;
794 
795 		if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq))
796 			return;
797 		__enable_irq(desc);
798 	}
799 }
800 EXPORT_SYMBOL(enable_irq);
801 
802 /**
803  * enable_nmi - enable handling of an nmi
804  * @irq: Interrupt to enable
805  *
806  * The interrupt to enable must have been requested through request_nmi.
807  * Undoes the effect of one call to disable_nmi(). If this matches the last
808  * disable, processing of interrupts on this IRQ line is re-enabled.
809  */
810 void enable_nmi(unsigned int irq)
811 {
812 	enable_irq(irq);
813 }
814 
815 static int set_irq_wake_real(unsigned int irq, unsigned int on)
816 {
817 	struct irq_desc *desc = irq_to_desc(irq);
818 	int ret = -ENXIO;
819 
820 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
821 		return 0;
822 
823 	if (desc->irq_data.chip->irq_set_wake)
824 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
825 
826 	return ret;
827 }
828 
829 /**
830  * irq_set_irq_wake - control irq power management wakeup
831  * @irq:	interrupt to control
832  * @on:	enable/disable power management wakeup
833  *
834  * Enable/disable power management wakeup mode, which is disabled by
835  * default.  Enables and disables must match, just as they match for
836  * non-wakeup mode support.
837  *
838  * Wakeup mode lets this IRQ wake the system from sleep states like
839  * "suspend to RAM".
840  *
841  * Note: irq enable/disable state is completely orthogonal to the
842  * enable/disable state of irq wake. An irq can be disabled with
843  * disable_irq() and still wake the system as long as the irq has wake
844  * enabled. If this does not hold, then the underlying irq chip and the
845  * related driver need to be investigated.
846  */
847 int irq_set_irq_wake(unsigned int irq, unsigned int on)
848 {
849 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
850 		struct irq_desc *desc = scoped_irqdesc;
851 		int ret = 0;
852 
853 		/* Don't use NMIs as wake up interrupts please */
854 		if (irq_is_nmi(desc))
855 			return -EINVAL;
856 
857 		/*
858 		 * wakeup-capable irqs can be shared between drivers that
859 		 * don't need to have the same sleep mode behaviors.
860 		 */
861 		if (on) {
862 			if (desc->wake_depth++ == 0) {
863 				ret = set_irq_wake_real(irq, on);
864 				if (ret)
865 					desc->wake_depth = 0;
866 				else
867 					irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
868 			}
869 		} else {
870 			if (desc->wake_depth == 0) {
871 				WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
872 			} else if (--desc->wake_depth == 0) {
873 				ret = set_irq_wake_real(irq, on);
874 				if (ret)
875 					desc->wake_depth = 1;
876 				else
877 					irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
878 			}
879 		}
880 		return ret;
881 	}
882 	return -EINVAL;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885 
886 /*
887  * Internal function that tells the architecture code whether a
888  * particular irq has been exclusively allocated or is available
889  * for driver use.
890  */
891 bool can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
894 		struct irq_desc *desc = scoped_irqdesc;
895 
896 		if (irq_settings_can_request(desc)) {
897 			if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED)
898 				return true;
899 		}
900 	}
901 	return false;
902 }
903 
904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
905 {
906 	struct irq_chip *chip = desc->irq_data.chip;
907 	int ret, unmask = 0;
908 
909 	if (!chip || !chip->irq_set_type) {
910 		/*
911 		 * IRQF_TRIGGER_* but the PIC does not support multiple
912 		 * flow-types?
913 		 */
914 		pr_debug("No set_type function for IRQ %d (%s)\n",
915 			 irq_desc_get_irq(desc),
916 			 chip ? (chip->name ? : "unknown") : "unknown");
917 		return 0;
918 	}
919 
920 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
921 		if (!irqd_irq_masked(&desc->irq_data))
922 			mask_irq(desc);
923 		if (!irqd_irq_disabled(&desc->irq_data))
924 			unmask = 1;
925 	}
926 
927 	/* Mask all flags except trigger mode */
928 	flags &= IRQ_TYPE_SENSE_MASK;
929 	ret = chip->irq_set_type(&desc->irq_data, flags);
930 
931 	switch (ret) {
932 	case IRQ_SET_MASK_OK:
933 	case IRQ_SET_MASK_OK_DONE:
934 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
935 		irqd_set(&desc->irq_data, flags);
936 		fallthrough;
937 
938 	case IRQ_SET_MASK_OK_NOCOPY:
939 		flags = irqd_get_trigger_type(&desc->irq_data);
940 		irq_settings_set_trigger_mask(desc, flags);
941 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
942 		irq_settings_clr_level(desc);
943 		if (flags & IRQ_TYPE_LEVEL_MASK) {
944 			irq_settings_set_level(desc);
945 			irqd_set(&desc->irq_data, IRQD_LEVEL);
946 		}
947 
948 		ret = 0;
949 		break;
950 	default:
951 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
952 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
953 	}
954 	if (unmask)
955 		unmask_irq(desc);
956 	return ret;
957 }
958 
959 #ifdef CONFIG_HARDIRQS_SW_RESEND
960 int irq_set_parent(int irq, int parent_irq)
961 {
962 	scoped_irqdesc_get_and_lock(irq, 0) {
963 		scoped_irqdesc->parent_irq = parent_irq;
964 		return 0;
965 	}
966 	return -EINVAL;
967 }
968 EXPORT_SYMBOL_GPL(irq_set_parent);
969 #endif
970 
971 /*
972  * Default primary interrupt handler for threaded interrupts. Is
973  * assigned as primary handler when request_threaded_irq is called
974  * with handler == NULL. Useful for oneshot interrupts.
975  */
976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
977 {
978 	return IRQ_WAKE_THREAD;
979 }
980 
981 /*
982  * Primary handler for nested threaded interrupts. Should never be
983  * called.
984  */
985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
986 {
987 	WARN(1, "Primary handler called for nested irq %d\n", irq);
988 	return IRQ_NONE;
989 }
990 
991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
992 {
993 	WARN(1, "Secondary action handler called for irq %d\n", irq);
994 	return IRQ_NONE;
995 }
996 
997 #ifdef CONFIG_SMP
998 /*
999  * Check whether we need to change the affinity of the interrupt thread.
1000  */
1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1002 {
1003 	cpumask_var_t mask;
1004 
1005 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1006 		return;
1007 
1008 	__set_current_state(TASK_RUNNING);
1009 
1010 	/*
1011 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1012 	 * try again next time
1013 	 */
1014 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1015 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1016 		return;
1017 	}
1018 
1019 	scoped_guard(raw_spinlock_irq, &desc->lock) {
1020 		const struct cpumask *m;
1021 
1022 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1023 		cpumask_copy(mask, m);
1024 	}
1025 
1026 	set_cpus_allowed_ptr(current, mask);
1027 	free_cpumask_var(mask);
1028 }
1029 #else
1030 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1031 #endif
1032 
1033 static int irq_wait_for_interrupt(struct irq_desc *desc,
1034 				  struct irqaction *action)
1035 {
1036 	for (;;) {
1037 		set_current_state(TASK_INTERRUPTIBLE);
1038 		irq_thread_check_affinity(desc, action);
1039 
1040 		if (kthread_should_stop()) {
1041 			/* may need to run one last time */
1042 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1043 					       &action->thread_flags)) {
1044 				__set_current_state(TASK_RUNNING);
1045 				return 0;
1046 			}
1047 			__set_current_state(TASK_RUNNING);
1048 			return -1;
1049 		}
1050 
1051 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052 				       &action->thread_flags)) {
1053 			__set_current_state(TASK_RUNNING);
1054 			return 0;
1055 		}
1056 		schedule();
1057 	}
1058 }
1059 
1060 /*
1061  * Oneshot interrupts keep the irq line masked until the threaded
1062  * handler finished. unmask if the interrupt has not been disabled and
1063  * is marked MASKED.
1064  */
1065 static void irq_finalize_oneshot(struct irq_desc *desc,
1066 				 struct irqaction *action)
1067 {
1068 	if (!(desc->istate & IRQS_ONESHOT) ||
1069 	    action->handler == irq_forced_secondary_handler)
1070 		return;
1071 again:
1072 	chip_bus_lock(desc);
1073 	raw_spin_lock_irq(&desc->lock);
1074 
1075 	/*
1076 	 * Implausible though it may be we need to protect us against
1077 	 * the following scenario:
1078 	 *
1079 	 * The thread is faster done than the hard interrupt handler
1080 	 * on the other CPU. If we unmask the irq line then the
1081 	 * interrupt can come in again and masks the line, leaves due
1082 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1083 	 *
1084 	 * This also serializes the state of shared oneshot handlers
1085 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1086 	 * irq_wake_thread(). See the comment there which explains the
1087 	 * serialization.
1088 	 */
1089 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1090 		raw_spin_unlock_irq(&desc->lock);
1091 		chip_bus_sync_unlock(desc);
1092 		cpu_relax();
1093 		goto again;
1094 	}
1095 
1096 	/*
1097 	 * Now check again, whether the thread should run. Otherwise
1098 	 * we would clear the threads_oneshot bit of this thread which
1099 	 * was just set.
1100 	 */
1101 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1102 		goto out_unlock;
1103 
1104 	desc->threads_oneshot &= ~action->thread_mask;
1105 
1106 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1107 	    irqd_irq_masked(&desc->irq_data))
1108 		unmask_threaded_irq(desc);
1109 
1110 out_unlock:
1111 	raw_spin_unlock_irq(&desc->lock);
1112 	chip_bus_sync_unlock(desc);
1113 }
1114 
1115 /*
1116  * Interrupts explicitly requested as threaded interrupts want to be
1117  * preemptible - many of them need to sleep and wait for slow busses to
1118  * complete.
1119  */
1120 static irqreturn_t irq_thread_fn(struct irq_desc *desc,	struct irqaction *action)
1121 {
1122 	irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1123 
1124 	if (ret == IRQ_HANDLED)
1125 		atomic_inc(&desc->threads_handled);
1126 
1127 	irq_finalize_oneshot(desc, action);
1128 	return ret;
1129 }
1130 
1131 /*
1132  * Interrupts which are not explicitly requested as threaded
1133  * interrupts rely on the implicit bh/preempt disable of the hard irq
1134  * context. So we need to disable bh here to avoid deadlocks and other
1135  * side effects.
1136  */
1137 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1138 {
1139 	irqreturn_t ret;
1140 
1141 	local_bh_disable();
1142 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1143 		local_irq_disable();
1144 	ret = irq_thread_fn(desc, action);
1145 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1146 		local_irq_enable();
1147 	local_bh_enable();
1148 	return ret;
1149 }
1150 
1151 void wake_threads_waitq(struct irq_desc *desc)
1152 {
1153 	if (atomic_dec_and_test(&desc->threads_active))
1154 		wake_up(&desc->wait_for_threads);
1155 }
1156 
1157 static void irq_thread_dtor(struct callback_head *unused)
1158 {
1159 	struct task_struct *tsk = current;
1160 	struct irq_desc *desc;
1161 	struct irqaction *action;
1162 
1163 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1164 		return;
1165 
1166 	action = kthread_data(tsk);
1167 
1168 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1169 	       tsk->comm, tsk->pid, action->irq);
1170 
1171 
1172 	desc = irq_to_desc(action->irq);
1173 	/*
1174 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1175 	 * desc->threads_active and wake possible waiters.
1176 	 */
1177 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1178 		wake_threads_waitq(desc);
1179 
1180 	/* Prevent a stale desc->threads_oneshot */
1181 	irq_finalize_oneshot(desc, action);
1182 }
1183 
1184 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1185 {
1186 	struct irqaction *secondary = action->secondary;
1187 
1188 	if (WARN_ON_ONCE(!secondary))
1189 		return;
1190 
1191 	guard(raw_spinlock_irq)(&desc->lock);
1192 	__irq_wake_thread(desc, secondary);
1193 }
1194 
1195 /*
1196  * Internal function to notify that a interrupt thread is ready.
1197  */
1198 static void irq_thread_set_ready(struct irq_desc *desc,
1199 				 struct irqaction *action)
1200 {
1201 	set_bit(IRQTF_READY, &action->thread_flags);
1202 	wake_up(&desc->wait_for_threads);
1203 }
1204 
1205 /*
1206  * Internal function to wake up a interrupt thread and wait until it is
1207  * ready.
1208  */
1209 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1210 						  struct irqaction *action)
1211 {
1212 	if (!action || !action->thread)
1213 		return;
1214 
1215 	wake_up_process(action->thread);
1216 	wait_event(desc->wait_for_threads,
1217 		   test_bit(IRQTF_READY, &action->thread_flags));
1218 }
1219 
1220 /*
1221  * Interrupt handler thread
1222  */
1223 static int irq_thread(void *data)
1224 {
1225 	struct callback_head on_exit_work;
1226 	struct irqaction *action = data;
1227 	struct irq_desc *desc = irq_to_desc(action->irq);
1228 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1229 			struct irqaction *action);
1230 
1231 	irq_thread_set_ready(desc, action);
1232 
1233 	if (action->handler == irq_forced_secondary_handler)
1234 		sched_set_fifo_secondary(current);
1235 	else
1236 		sched_set_fifo(current);
1237 
1238 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1239 					   &action->thread_flags))
1240 		handler_fn = irq_forced_thread_fn;
1241 	else
1242 		handler_fn = irq_thread_fn;
1243 
1244 	init_task_work(&on_exit_work, irq_thread_dtor);
1245 	task_work_add(current, &on_exit_work, TWA_NONE);
1246 
1247 	while (!irq_wait_for_interrupt(desc, action)) {
1248 		irqreturn_t action_ret;
1249 
1250 		action_ret = handler_fn(desc, action);
1251 		if (action_ret == IRQ_WAKE_THREAD)
1252 			irq_wake_secondary(desc, action);
1253 
1254 		wake_threads_waitq(desc);
1255 	}
1256 
1257 	/*
1258 	 * This is the regular exit path. __free_irq() is stopping the
1259 	 * thread via kthread_stop() after calling
1260 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1261 	 * oneshot mask bit can be set.
1262 	 */
1263 	task_work_cancel_func(current, irq_thread_dtor);
1264 	return 0;
1265 }
1266 
1267 /**
1268  * irq_wake_thread - wake the irq thread for the action identified by dev_id
1269  * @irq:	Interrupt line
1270  * @dev_id:	Device identity for which the thread should be woken
1271  */
1272 void irq_wake_thread(unsigned int irq, void *dev_id)
1273 {
1274 	struct irq_desc *desc = irq_to_desc(irq);
1275 	struct irqaction *action;
1276 
1277 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1278 		return;
1279 
1280 	guard(raw_spinlock_irqsave)(&desc->lock);
1281 	for_each_action_of_desc(desc, action) {
1282 		if (action->dev_id == dev_id) {
1283 			if (action->thread)
1284 				__irq_wake_thread(desc, action);
1285 			break;
1286 		}
1287 	}
1288 }
1289 EXPORT_SYMBOL_GPL(irq_wake_thread);
1290 
1291 static int irq_setup_forced_threading(struct irqaction *new)
1292 {
1293 	if (!force_irqthreads())
1294 		return 0;
1295 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1296 		return 0;
1297 
1298 	/*
1299 	 * No further action required for interrupts which are requested as
1300 	 * threaded interrupts already
1301 	 */
1302 	if (new->handler == irq_default_primary_handler)
1303 		return 0;
1304 
1305 	new->flags |= IRQF_ONESHOT;
1306 
1307 	/*
1308 	 * Handle the case where we have a real primary handler and a
1309 	 * thread handler. We force thread them as well by creating a
1310 	 * secondary action.
1311 	 */
1312 	if (new->handler && new->thread_fn) {
1313 		/* Allocate the secondary action */
1314 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1315 		if (!new->secondary)
1316 			return -ENOMEM;
1317 		new->secondary->handler = irq_forced_secondary_handler;
1318 		new->secondary->thread_fn = new->thread_fn;
1319 		new->secondary->dev_id = new->dev_id;
1320 		new->secondary->irq = new->irq;
1321 		new->secondary->name = new->name;
1322 	}
1323 	/* Deal with the primary handler */
1324 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1325 	new->thread_fn = new->handler;
1326 	new->handler = irq_default_primary_handler;
1327 	return 0;
1328 }
1329 
1330 static int irq_request_resources(struct irq_desc *desc)
1331 {
1332 	struct irq_data *d = &desc->irq_data;
1333 	struct irq_chip *c = d->chip;
1334 
1335 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1336 }
1337 
1338 static void irq_release_resources(struct irq_desc *desc)
1339 {
1340 	struct irq_data *d = &desc->irq_data;
1341 	struct irq_chip *c = d->chip;
1342 
1343 	if (c->irq_release_resources)
1344 		c->irq_release_resources(d);
1345 }
1346 
1347 static bool irq_supports_nmi(struct irq_desc *desc)
1348 {
1349 	struct irq_data *d = irq_desc_get_irq_data(desc);
1350 
1351 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1352 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1353 	if (d->parent_data)
1354 		return false;
1355 #endif
1356 	/* Don't support NMIs for chips behind a slow bus */
1357 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1358 		return false;
1359 
1360 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1361 }
1362 
1363 static int irq_nmi_setup(struct irq_desc *desc)
1364 {
1365 	struct irq_data *d = irq_desc_get_irq_data(desc);
1366 	struct irq_chip *c = d->chip;
1367 
1368 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1369 }
1370 
1371 static void irq_nmi_teardown(struct irq_desc *desc)
1372 {
1373 	struct irq_data *d = irq_desc_get_irq_data(desc);
1374 	struct irq_chip *c = d->chip;
1375 
1376 	if (c->irq_nmi_teardown)
1377 		c->irq_nmi_teardown(d);
1378 }
1379 
1380 static int
1381 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1382 {
1383 	struct task_struct *t;
1384 
1385 	if (!secondary) {
1386 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1387 				   new->name);
1388 	} else {
1389 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1390 				   new->name);
1391 	}
1392 
1393 	if (IS_ERR(t))
1394 		return PTR_ERR(t);
1395 
1396 	/*
1397 	 * We keep the reference to the task struct even if
1398 	 * the thread dies to avoid that the interrupt code
1399 	 * references an already freed task_struct.
1400 	 */
1401 	new->thread = get_task_struct(t);
1402 
1403 	/*
1404 	 * The affinity can not be established yet, but it will be once the
1405 	 * interrupt is enabled. Delay and defer the actual setting to the
1406 	 * thread itself once it is ready to run. In the meantime, prevent
1407 	 * it from ever being re-affined directly by cpuset or
1408 	 * housekeeping. The proper way to do it is to re-affine the whole
1409 	 * vector.
1410 	 */
1411 	kthread_bind_mask(t, cpu_possible_mask);
1412 
1413 	/*
1414 	 * Ensure the thread adjusts the affinity once it reaches the
1415 	 * thread function.
1416 	 */
1417 	new->thread_flags = BIT(IRQTF_AFFINITY);
1418 
1419 	return 0;
1420 }
1421 
1422 static bool valid_percpu_irqaction(struct irqaction *old, struct irqaction *new)
1423 {
1424 	do {
1425 		if (cpumask_intersects(old->affinity, new->affinity) ||
1426 		    old->percpu_dev_id == new->percpu_dev_id)
1427 			return false;
1428 
1429 		old = old->next;
1430 	} while (old);
1431 
1432 	return true;
1433 }
1434 
1435 /*
1436  * Internal function to register an irqaction - typically used to
1437  * allocate special interrupts that are part of the architecture.
1438  *
1439  * Locking rules:
1440  *
1441  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1442  *   chip_bus_lock	Provides serialization for slow bus operations
1443  *     desc->lock	Provides serialization against hard interrupts
1444  *
1445  * chip_bus_lock and desc->lock are sufficient for all other management and
1446  * interrupt related functions. desc->request_mutex solely serializes
1447  * request/free_irq().
1448  */
1449 static int
1450 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1451 {
1452 	struct irqaction *old, **old_ptr;
1453 	unsigned long flags, thread_mask = 0;
1454 	int ret, nested, shared = 0;
1455 	bool per_cpu_devid;
1456 
1457 	if (!desc)
1458 		return -EINVAL;
1459 
1460 	if (desc->irq_data.chip == &no_irq_chip)
1461 		return -ENOSYS;
1462 	if (!try_module_get(desc->owner))
1463 		return -ENODEV;
1464 
1465 	per_cpu_devid = irq_settings_is_per_cpu_devid(desc);
1466 
1467 	new->irq = irq;
1468 
1469 	/*
1470 	 * If the trigger type is not specified by the caller,
1471 	 * then use the default for this interrupt.
1472 	 */
1473 	if (!(new->flags & IRQF_TRIGGER_MASK))
1474 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1475 
1476 	/*
1477 	 * Check whether the interrupt nests into another interrupt
1478 	 * thread.
1479 	 */
1480 	nested = irq_settings_is_nested_thread(desc);
1481 	if (nested) {
1482 		if (!new->thread_fn) {
1483 			ret = -EINVAL;
1484 			goto out_mput;
1485 		}
1486 		/*
1487 		 * Replace the primary handler which was provided from
1488 		 * the driver for non nested interrupt handling by the
1489 		 * dummy function which warns when called.
1490 		 */
1491 		new->handler = irq_nested_primary_handler;
1492 	} else {
1493 		if (irq_settings_can_thread(desc)) {
1494 			ret = irq_setup_forced_threading(new);
1495 			if (ret)
1496 				goto out_mput;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Create a handler thread when a thread function is supplied
1502 	 * and the interrupt does not nest into another interrupt
1503 	 * thread.
1504 	 */
1505 	if (new->thread_fn && !nested) {
1506 		ret = setup_irq_thread(new, irq, false);
1507 		if (ret)
1508 			goto out_mput;
1509 		if (new->secondary) {
1510 			ret = setup_irq_thread(new->secondary, irq, true);
1511 			if (ret)
1512 				goto out_thread;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Drivers are often written to work w/o knowledge about the
1518 	 * underlying irq chip implementation, so a request for a
1519 	 * threaded irq without a primary hard irq context handler
1520 	 * requires the ONESHOT flag to be set. Some irq chips like
1521 	 * MSI based interrupts are per se one shot safe. Check the
1522 	 * chip flags, so we can avoid the unmask dance at the end of
1523 	 * the threaded handler for those.
1524 	 */
1525 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1526 		new->flags &= ~IRQF_ONESHOT;
1527 
1528 	/*
1529 	 * Protects against a concurrent __free_irq() call which might wait
1530 	 * for synchronize_hardirq() to complete without holding the optional
1531 	 * chip bus lock and desc->lock. Also protects against handing out
1532 	 * a recycled oneshot thread_mask bit while it's still in use by
1533 	 * its previous owner.
1534 	 */
1535 	mutex_lock(&desc->request_mutex);
1536 
1537 	/*
1538 	 * Acquire bus lock as the irq_request_resources() callback below
1539 	 * might rely on the serialization or the magic power management
1540 	 * functions which are abusing the irq_bus_lock() callback,
1541 	 */
1542 	chip_bus_lock(desc);
1543 
1544 	/* First installed action requests resources. */
1545 	if (!desc->action) {
1546 		ret = irq_request_resources(desc);
1547 		if (ret) {
1548 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1549 			       new->name, irq, desc->irq_data.chip->name);
1550 			goto out_bus_unlock;
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * The following block of code has to be executed atomically
1556 	 * protected against a concurrent interrupt and any of the other
1557 	 * management calls which are not serialized via
1558 	 * desc->request_mutex or the optional bus lock.
1559 	 */
1560 	raw_spin_lock_irqsave(&desc->lock, flags);
1561 	old_ptr = &desc->action;
1562 	old = *old_ptr;
1563 	if (old) {
1564 		/*
1565 		 * Can't share interrupts unless both agree to and are
1566 		 * the same type (level, edge, polarity). So both flag
1567 		 * fields must have IRQF_SHARED set and the bits which
1568 		 * set the trigger type must match. Also all must
1569 		 * agree on ONESHOT.
1570 		 * Interrupt lines used for NMIs cannot be shared.
1571 		 */
1572 		unsigned int oldtype;
1573 
1574 		if (irq_is_nmi(desc) && !per_cpu_devid) {
1575 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1576 				new->name, irq, desc->irq_data.chip->name);
1577 			ret = -EINVAL;
1578 			goto out_unlock;
1579 		}
1580 
1581 		if (per_cpu_devid && !valid_percpu_irqaction(old, new)) {
1582 			pr_err("Overlapping affinities for %s (irq %d) on irqchip %s.\n",
1583 				new->name, irq, desc->irq_data.chip->name);
1584 			ret = -EINVAL;
1585 			goto out_unlock;
1586 		}
1587 
1588 		/*
1589 		 * If nobody did set the configuration before, inherit
1590 		 * the one provided by the requester.
1591 		 */
1592 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1593 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1594 		} else {
1595 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1596 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1597 		}
1598 
1599 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1600 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1601 			goto mismatch;
1602 
1603 		if ((old->flags & IRQF_ONESHOT) &&
1604 		    (new->flags & IRQF_COND_ONESHOT))
1605 			new->flags |= IRQF_ONESHOT;
1606 		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1607 			goto mismatch;
1608 
1609 		/* All handlers must agree on per-cpuness */
1610 		if ((old->flags & IRQF_PERCPU) !=
1611 		    (new->flags & IRQF_PERCPU))
1612 			goto mismatch;
1613 
1614 		/* add new interrupt at end of irq queue */
1615 		do {
1616 			/*
1617 			 * Or all existing action->thread_mask bits,
1618 			 * so we can find the next zero bit for this
1619 			 * new action.
1620 			 */
1621 			thread_mask |= old->thread_mask;
1622 			old_ptr = &old->next;
1623 			old = *old_ptr;
1624 		} while (old);
1625 		shared = 1;
1626 	}
1627 
1628 	/*
1629 	 * Setup the thread mask for this irqaction for ONESHOT. For
1630 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1631 	 * conditional in irq_wake_thread().
1632 	 */
1633 	if (new->flags & IRQF_ONESHOT) {
1634 		/*
1635 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1636 		 * but who knows.
1637 		 */
1638 		if (thread_mask == ~0UL) {
1639 			ret = -EBUSY;
1640 			goto out_unlock;
1641 		}
1642 		/*
1643 		 * The thread_mask for the action is or'ed to
1644 		 * desc->thread_active to indicate that the
1645 		 * IRQF_ONESHOT thread handler has been woken, but not
1646 		 * yet finished. The bit is cleared when a thread
1647 		 * completes. When all threads of a shared interrupt
1648 		 * line have completed desc->threads_active becomes
1649 		 * zero and the interrupt line is unmasked. See
1650 		 * handle.c:irq_wake_thread() for further information.
1651 		 *
1652 		 * If no thread is woken by primary (hard irq context)
1653 		 * interrupt handlers, then desc->threads_active is
1654 		 * also checked for zero to unmask the irq line in the
1655 		 * affected hard irq flow handlers
1656 		 * (handle_[fasteoi|level]_irq).
1657 		 *
1658 		 * The new action gets the first zero bit of
1659 		 * thread_mask assigned. See the loop above which or's
1660 		 * all existing action->thread_mask bits.
1661 		 */
1662 		new->thread_mask = 1UL << ffz(thread_mask);
1663 
1664 	} else if (new->handler == irq_default_primary_handler &&
1665 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1666 		/*
1667 		 * The interrupt was requested with handler = NULL, so
1668 		 * we use the default primary handler for it. But it
1669 		 * does not have the oneshot flag set. In combination
1670 		 * with level interrupts this is deadly, because the
1671 		 * default primary handler just wakes the thread, then
1672 		 * the irq lines is reenabled, but the device still
1673 		 * has the level irq asserted. Rinse and repeat....
1674 		 *
1675 		 * While this works for edge type interrupts, we play
1676 		 * it safe and reject unconditionally because we can't
1677 		 * say for sure which type this interrupt really
1678 		 * has. The type flags are unreliable as the
1679 		 * underlying chip implementation can override them.
1680 		 */
1681 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1682 		       new->name, irq);
1683 		ret = -EINVAL;
1684 		goto out_unlock;
1685 	}
1686 
1687 	if (!shared) {
1688 		/* Setup the type (level, edge polarity) if configured: */
1689 		if (new->flags & IRQF_TRIGGER_MASK) {
1690 			ret = __irq_set_trigger(desc,
1691 						new->flags & IRQF_TRIGGER_MASK);
1692 
1693 			if (ret)
1694 				goto out_unlock;
1695 		}
1696 
1697 		/*
1698 		 * Activate the interrupt. That activation must happen
1699 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1700 		 * and the callers are supposed to handle
1701 		 * that. enable_irq() of an interrupt requested with
1702 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1703 		 * keeps it in shutdown mode, it merily associates
1704 		 * resources if necessary and if that's not possible it
1705 		 * fails. Interrupts which are in managed shutdown mode
1706 		 * will simply ignore that activation request.
1707 		 */
1708 		ret = irq_activate(desc);
1709 		if (ret)
1710 			goto out_unlock;
1711 
1712 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1713 				  IRQS_ONESHOT | IRQS_WAITING);
1714 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1715 
1716 		if (new->flags & IRQF_PERCPU) {
1717 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1718 			irq_settings_set_per_cpu(desc);
1719 			if (new->flags & IRQF_NO_DEBUG)
1720 				irq_settings_set_no_debug(desc);
1721 		}
1722 
1723 		if (noirqdebug)
1724 			irq_settings_set_no_debug(desc);
1725 
1726 		if (new->flags & IRQF_ONESHOT)
1727 			desc->istate |= IRQS_ONESHOT;
1728 
1729 		/* Exclude IRQ from balancing if requested */
1730 		if (new->flags & IRQF_NOBALANCING) {
1731 			irq_settings_set_no_balancing(desc);
1732 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1733 		}
1734 
1735 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1736 		    irq_settings_can_autoenable(desc)) {
1737 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1738 		} else if (!per_cpu_devid) {
1739 			/*
1740 			 * Shared interrupts do not go well with disabling
1741 			 * auto enable. The sharing interrupt might request
1742 			 * it while it's still disabled and then wait for
1743 			 * interrupts forever.
1744 			 */
1745 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1746 			/* Undo nested disables: */
1747 			desc->depth = 1;
1748 		}
1749 
1750 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1751 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1752 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1753 
1754 		if (nmsk != omsk)
1755 			/* hope the handler works with current  trigger mode */
1756 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1757 				irq, omsk, nmsk);
1758 	}
1759 
1760 	*old_ptr = new;
1761 
1762 	irq_pm_install_action(desc, new);
1763 
1764 	/* Reset broken irq detection when installing new handler */
1765 	desc->irq_count = 0;
1766 	desc->irqs_unhandled = 0;
1767 
1768 	/*
1769 	 * Check whether we disabled the irq via the spurious handler
1770 	 * before. Reenable it and give it another chance.
1771 	 */
1772 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1773 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1774 		__enable_irq(desc);
1775 	}
1776 
1777 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1778 	chip_bus_sync_unlock(desc);
1779 	mutex_unlock(&desc->request_mutex);
1780 
1781 	irq_setup_timings(desc, new);
1782 
1783 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1784 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1785 
1786 	register_irq_proc(irq, desc);
1787 	new->dir = NULL;
1788 	register_handler_proc(irq, new);
1789 	return 0;
1790 
1791 mismatch:
1792 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1793 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1794 		       irq, new->flags, new->name, old->flags, old->name);
1795 #ifdef CONFIG_DEBUG_SHIRQ
1796 		dump_stack();
1797 #endif
1798 	}
1799 	ret = -EBUSY;
1800 
1801 out_unlock:
1802 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1803 
1804 	if (!desc->action)
1805 		irq_release_resources(desc);
1806 out_bus_unlock:
1807 	chip_bus_sync_unlock(desc);
1808 	mutex_unlock(&desc->request_mutex);
1809 
1810 out_thread:
1811 	if (new->thread) {
1812 		struct task_struct *t = new->thread;
1813 
1814 		new->thread = NULL;
1815 		kthread_stop_put(t);
1816 	}
1817 	if (new->secondary && new->secondary->thread) {
1818 		struct task_struct *t = new->secondary->thread;
1819 
1820 		new->secondary->thread = NULL;
1821 		kthread_stop_put(t);
1822 	}
1823 out_mput:
1824 	module_put(desc->owner);
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Internal function to unregister an irqaction - used to free
1830  * regular and special interrupts that are part of the architecture.
1831  */
1832 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1833 {
1834 	unsigned irq = desc->irq_data.irq;
1835 	struct irqaction *action, **action_ptr;
1836 	unsigned long flags;
1837 
1838 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1839 
1840 	mutex_lock(&desc->request_mutex);
1841 	chip_bus_lock(desc);
1842 	raw_spin_lock_irqsave(&desc->lock, flags);
1843 
1844 	/*
1845 	 * There can be multiple actions per IRQ descriptor, find the right
1846 	 * one based on the dev_id:
1847 	 */
1848 	action_ptr = &desc->action;
1849 	for (;;) {
1850 		action = *action_ptr;
1851 
1852 		if (!action) {
1853 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1854 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1855 			chip_bus_sync_unlock(desc);
1856 			mutex_unlock(&desc->request_mutex);
1857 			return NULL;
1858 		}
1859 
1860 		if (action->dev_id == dev_id)
1861 			break;
1862 		action_ptr = &action->next;
1863 	}
1864 
1865 	/* Found it - now remove it from the list of entries: */
1866 	*action_ptr = action->next;
1867 
1868 	irq_pm_remove_action(desc, action);
1869 
1870 	/* If this was the last handler, shut down the IRQ line: */
1871 	if (!desc->action) {
1872 		irq_settings_clr_disable_unlazy(desc);
1873 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1874 		irq_shutdown(desc);
1875 	}
1876 
1877 #ifdef CONFIG_SMP
1878 	/* make sure affinity_hint is cleaned up */
1879 	if (WARN_ON_ONCE(desc->affinity_hint))
1880 		desc->affinity_hint = NULL;
1881 #endif
1882 
1883 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1884 	/*
1885 	 * Drop bus_lock here so the changes which were done in the chip
1886 	 * callbacks above are synced out to the irq chips which hang
1887 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1888 	 *
1889 	 * Aside of that the bus_lock can also be taken from the threaded
1890 	 * handler in irq_finalize_oneshot() which results in a deadlock
1891 	 * because kthread_stop() would wait forever for the thread to
1892 	 * complete, which is blocked on the bus lock.
1893 	 *
1894 	 * The still held desc->request_mutex() protects against a
1895 	 * concurrent request_irq() of this irq so the release of resources
1896 	 * and timing data is properly serialized.
1897 	 */
1898 	chip_bus_sync_unlock(desc);
1899 
1900 	unregister_handler_proc(irq, action);
1901 
1902 	/*
1903 	 * Make sure it's not being used on another CPU and if the chip
1904 	 * supports it also make sure that there is no (not yet serviced)
1905 	 * interrupt in flight at the hardware level.
1906 	 */
1907 	__synchronize_irq(desc);
1908 
1909 #ifdef CONFIG_DEBUG_SHIRQ
1910 	/*
1911 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1912 	 * event to happen even now it's being freed, so let's make sure that
1913 	 * is so by doing an extra call to the handler ....
1914 	 *
1915 	 * ( We do this after actually deregistering it, to make sure that a
1916 	 *   'real' IRQ doesn't run in parallel with our fake. )
1917 	 */
1918 	if (action->flags & IRQF_SHARED) {
1919 		local_irq_save(flags);
1920 		action->handler(irq, dev_id);
1921 		local_irq_restore(flags);
1922 	}
1923 #endif
1924 
1925 	/*
1926 	 * The action has already been removed above, but the thread writes
1927 	 * its oneshot mask bit when it completes. Though request_mutex is
1928 	 * held across this which prevents __setup_irq() from handing out
1929 	 * the same bit to a newly requested action.
1930 	 */
1931 	if (action->thread) {
1932 		kthread_stop_put(action->thread);
1933 		if (action->secondary && action->secondary->thread)
1934 			kthread_stop_put(action->secondary->thread);
1935 	}
1936 
1937 	/* Last action releases resources */
1938 	if (!desc->action) {
1939 		/*
1940 		 * Reacquire bus lock as irq_release_resources() might
1941 		 * require it to deallocate resources over the slow bus.
1942 		 */
1943 		chip_bus_lock(desc);
1944 		/*
1945 		 * There is no interrupt on the fly anymore. Deactivate it
1946 		 * completely.
1947 		 */
1948 		scoped_guard(raw_spinlock_irqsave, &desc->lock)
1949 			irq_domain_deactivate_irq(&desc->irq_data);
1950 
1951 		irq_release_resources(desc);
1952 		chip_bus_sync_unlock(desc);
1953 		irq_remove_timings(desc);
1954 	}
1955 
1956 	mutex_unlock(&desc->request_mutex);
1957 
1958 	irq_chip_pm_put(&desc->irq_data);
1959 	module_put(desc->owner);
1960 	kfree(action->secondary);
1961 	return action;
1962 }
1963 
1964 /**
1965  * free_irq - free an interrupt allocated with request_irq
1966  * @irq:	Interrupt line to free
1967  * @dev_id:	Device identity to free
1968  *
1969  * Remove an interrupt handler. The handler is removed and if the interrupt
1970  * line is no longer in use by any driver it is disabled.  On a shared IRQ
1971  * the caller must ensure the interrupt is disabled on the card it drives
1972  * before calling this function. The function does not return until any
1973  * executing interrupts for this IRQ have completed.
1974  *
1975  * This function must not be called from interrupt context.
1976  *
1977  * Returns the devname argument passed to request_irq.
1978  */
1979 const void *free_irq(unsigned int irq, void *dev_id)
1980 {
1981 	struct irq_desc *desc = irq_to_desc(irq);
1982 	struct irqaction *action;
1983 	const char *devname;
1984 
1985 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1986 		return NULL;
1987 
1988 #ifdef CONFIG_SMP
1989 	if (WARN_ON(desc->affinity_notify))
1990 		desc->affinity_notify = NULL;
1991 #endif
1992 
1993 	action = __free_irq(desc, dev_id);
1994 
1995 	if (!action)
1996 		return NULL;
1997 
1998 	devname = action->name;
1999 	kfree(action);
2000 	return devname;
2001 }
2002 EXPORT_SYMBOL(free_irq);
2003 
2004 /* This function must be called with desc->lock held */
2005 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2006 {
2007 	const char *devname = NULL;
2008 
2009 	desc->istate &= ~IRQS_NMI;
2010 
2011 	if (!WARN_ON(desc->action == NULL)) {
2012 		irq_pm_remove_action(desc, desc->action);
2013 		devname = desc->action->name;
2014 		unregister_handler_proc(irq, desc->action);
2015 
2016 		kfree(desc->action);
2017 		desc->action = NULL;
2018 	}
2019 
2020 	irq_settings_clr_disable_unlazy(desc);
2021 	irq_shutdown_and_deactivate(desc);
2022 
2023 	irq_release_resources(desc);
2024 
2025 	irq_chip_pm_put(&desc->irq_data);
2026 	module_put(desc->owner);
2027 
2028 	return devname;
2029 }
2030 
2031 const void *free_nmi(unsigned int irq, void *dev_id)
2032 {
2033 	struct irq_desc *desc = irq_to_desc(irq);
2034 
2035 	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2036 		return NULL;
2037 
2038 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2039 		return NULL;
2040 
2041 	/* NMI still enabled */
2042 	if (WARN_ON(desc->depth == 0))
2043 		disable_nmi_nosync(irq);
2044 
2045 	guard(raw_spinlock_irqsave)(&desc->lock);
2046 	irq_nmi_teardown(desc);
2047 	return __cleanup_nmi(irq, desc);
2048 }
2049 
2050 /**
2051  * request_threaded_irq - allocate an interrupt line
2052  * @irq:	Interrupt line to allocate
2053  * @handler:	Function to be called when the IRQ occurs.
2054  *		Primary handler for threaded interrupts.
2055  *		If handler is NULL and thread_fn != NULL
2056  *		the default primary handler is installed.
2057  * @thread_fn:	Function called from the irq handler thread
2058  *		If NULL, no irq thread is created
2059  * @irqflags:	Interrupt type flags
2060  * @devname:	An ascii name for the claiming device
2061  * @dev_id:	A cookie passed back to the handler function
2062  *
2063  * This call allocates interrupt resources and enables the interrupt line
2064  * and IRQ handling. From the point this call is made your handler function
2065  * may be invoked. Since your handler function must clear any interrupt the
2066  * board raises, you must take care both to initialise your hardware and to
2067  * set up the interrupt handler in the right order.
2068  *
2069  * If you want to set up a threaded irq handler for your device then you
2070  * need to supply @handler and @thread_fn. @handler is still called in hard
2071  * interrupt context and has to check whether the interrupt originates from
2072  * the device. If yes it needs to disable the interrupt on the device and
2073  * return IRQ_WAKE_THREAD which will wake up the handler thread and run
2074  * @thread_fn. This split handler design is necessary to support shared
2075  * interrupts.
2076  *
2077  * @dev_id must be globally unique. Normally the address of the device data
2078  * structure is used as the cookie. Since the handler receives this value
2079  * it makes sense to use it.
2080  *
2081  * If your interrupt is shared you must pass a non NULL dev_id as this is
2082  * required when freeing the interrupt.
2083  *
2084  * Flags:
2085  *
2086  *	IRQF_SHARED		Interrupt is shared
2087  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2088  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2089  */
2090 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2091 			 irq_handler_t thread_fn, unsigned long irqflags,
2092 			 const char *devname, void *dev_id)
2093 {
2094 	struct irqaction *action;
2095 	struct irq_desc *desc;
2096 	int retval;
2097 
2098 	if (irq == IRQ_NOTCONNECTED)
2099 		return -ENOTCONN;
2100 
2101 	/*
2102 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2103 	 * otherwise we'll have trouble later trying to figure out
2104 	 * which interrupt is which (messes up the interrupt freeing
2105 	 * logic etc).
2106 	 *
2107 	 * Also shared interrupts do not go well with disabling auto enable.
2108 	 * The sharing interrupt might request it while it's still disabled
2109 	 * and then wait for interrupts forever.
2110 	 *
2111 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2112 	 * it cannot be set along with IRQF_NO_SUSPEND.
2113 	 */
2114 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2115 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2116 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2117 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2118 		return -EINVAL;
2119 
2120 	desc = irq_to_desc(irq);
2121 	if (!desc)
2122 		return -EINVAL;
2123 
2124 	if (!irq_settings_can_request(desc) ||
2125 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2126 		return -EINVAL;
2127 
2128 	if (!handler) {
2129 		if (!thread_fn)
2130 			return -EINVAL;
2131 		handler = irq_default_primary_handler;
2132 	}
2133 
2134 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2135 	if (!action)
2136 		return -ENOMEM;
2137 
2138 	action->handler = handler;
2139 	action->thread_fn = thread_fn;
2140 	action->flags = irqflags;
2141 	action->name = devname;
2142 	action->dev_id = dev_id;
2143 
2144 	retval = irq_chip_pm_get(&desc->irq_data);
2145 	if (retval < 0) {
2146 		kfree(action);
2147 		return retval;
2148 	}
2149 
2150 	retval = __setup_irq(irq, desc, action);
2151 
2152 	if (retval) {
2153 		irq_chip_pm_put(&desc->irq_data);
2154 		kfree(action->secondary);
2155 		kfree(action);
2156 	}
2157 
2158 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2159 	if (!retval && (irqflags & IRQF_SHARED)) {
2160 		/*
2161 		 * It's a shared IRQ -- the driver ought to be prepared for it
2162 		 * to happen immediately, so let's make sure....
2163 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2164 		 * run in parallel with our fake.
2165 		 */
2166 		unsigned long flags;
2167 
2168 		disable_irq(irq);
2169 		local_irq_save(flags);
2170 
2171 		handler(irq, dev_id);
2172 
2173 		local_irq_restore(flags);
2174 		enable_irq(irq);
2175 	}
2176 #endif
2177 	return retval;
2178 }
2179 EXPORT_SYMBOL(request_threaded_irq);
2180 
2181 /**
2182  * request_any_context_irq - allocate an interrupt line
2183  * @irq:	Interrupt line to allocate
2184  * @handler:	Function to be called when the IRQ occurs.
2185  *		Threaded handler for threaded interrupts.
2186  * @flags:	Interrupt type flags
2187  * @name:	An ascii name for the claiming device
2188  * @dev_id:	A cookie passed back to the handler function
2189  *
2190  * This call allocates interrupt resources and enables the interrupt line
2191  * and IRQ handling. It selects either a hardirq or threaded handling
2192  * method depending on the context.
2193  *
2194  * Returns: On failure, it returns a negative value. On success, it returns either
2195  * IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2196  */
2197 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2198 			    unsigned long flags, const char *name, void *dev_id)
2199 {
2200 	struct irq_desc *desc;
2201 	int ret;
2202 
2203 	if (irq == IRQ_NOTCONNECTED)
2204 		return -ENOTCONN;
2205 
2206 	desc = irq_to_desc(irq);
2207 	if (!desc)
2208 		return -EINVAL;
2209 
2210 	if (irq_settings_is_nested_thread(desc)) {
2211 		ret = request_threaded_irq(irq, NULL, handler,
2212 					   flags, name, dev_id);
2213 		return !ret ? IRQC_IS_NESTED : ret;
2214 	}
2215 
2216 	ret = request_irq(irq, handler, flags, name, dev_id);
2217 	return !ret ? IRQC_IS_HARDIRQ : ret;
2218 }
2219 EXPORT_SYMBOL_GPL(request_any_context_irq);
2220 
2221 /**
2222  * request_nmi - allocate an interrupt line for NMI delivery
2223  * @irq:	Interrupt line to allocate
2224  * @handler:	Function to be called when the IRQ occurs.
2225  *		Threaded handler for threaded interrupts.
2226  * @irqflags:	Interrupt type flags
2227  * @name:	An ascii name for the claiming device
2228  * @dev_id:	A cookie passed back to the handler function
2229  *
2230  * This call allocates interrupt resources and enables the interrupt line
2231  * and IRQ handling. It sets up the IRQ line to be handled as an NMI.
2232  *
2233  * An interrupt line delivering NMIs cannot be shared and IRQ handling
2234  * cannot be threaded.
2235  *
2236  * Interrupt lines requested for NMI delivering must produce per cpu
2237  * interrupts and have auto enabling setting disabled.
2238  *
2239  * @dev_id must be globally unique. Normally the address of the device data
2240  * structure is used as the cookie. Since the handler receives this value
2241  * it makes sense to use it.
2242  *
2243  * If the interrupt line cannot be used to deliver NMIs, function will fail
2244  * and return a negative value.
2245  */
2246 int request_nmi(unsigned int irq, irq_handler_t handler,
2247 		unsigned long irqflags, const char *name, void *dev_id)
2248 {
2249 	struct irqaction *action;
2250 	struct irq_desc *desc;
2251 	int retval;
2252 
2253 	if (irq == IRQ_NOTCONNECTED)
2254 		return -ENOTCONN;
2255 
2256 	/* NMI cannot be shared, used for Polling */
2257 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2258 		return -EINVAL;
2259 
2260 	if (!(irqflags & IRQF_PERCPU))
2261 		return -EINVAL;
2262 
2263 	if (!handler)
2264 		return -EINVAL;
2265 
2266 	desc = irq_to_desc(irq);
2267 
2268 	if (!desc || (irq_settings_can_autoenable(desc) &&
2269 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2270 	    !irq_settings_can_request(desc) ||
2271 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2272 	    !irq_supports_nmi(desc))
2273 		return -EINVAL;
2274 
2275 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2276 	if (!action)
2277 		return -ENOMEM;
2278 
2279 	action->handler = handler;
2280 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2281 	action->name = name;
2282 	action->dev_id = dev_id;
2283 
2284 	retval = irq_chip_pm_get(&desc->irq_data);
2285 	if (retval < 0)
2286 		goto err_out;
2287 
2288 	retval = __setup_irq(irq, desc, action);
2289 	if (retval)
2290 		goto err_irq_setup;
2291 
2292 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2293 		/* Setup NMI state */
2294 		desc->istate |= IRQS_NMI;
2295 		retval = irq_nmi_setup(desc);
2296 		if (retval) {
2297 			__cleanup_nmi(irq, desc);
2298 			return -EINVAL;
2299 		}
2300 		return 0;
2301 	}
2302 
2303 err_irq_setup:
2304 	irq_chip_pm_put(&desc->irq_data);
2305 err_out:
2306 	kfree(action);
2307 
2308 	return retval;
2309 }
2310 
2311 void enable_percpu_irq(unsigned int irq, unsigned int type)
2312 {
2313 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2314 		struct irq_desc *desc = scoped_irqdesc;
2315 
2316 		/*
2317 		 * If the trigger type is not specified by the caller, then
2318 		 * use the default for this interrupt.
2319 		 */
2320 		type &= IRQ_TYPE_SENSE_MASK;
2321 		if (type == IRQ_TYPE_NONE)
2322 			type = irqd_get_trigger_type(&desc->irq_data);
2323 
2324 		if (type != IRQ_TYPE_NONE) {
2325 			if (__irq_set_trigger(desc, type)) {
2326 				WARN(1, "failed to set type for IRQ%d\n", irq);
2327 				return;
2328 			}
2329 		}
2330 		irq_percpu_enable(desc, smp_processor_id());
2331 	}
2332 }
2333 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2334 
2335 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2336 {
2337 	enable_percpu_irq(irq, type);
2338 }
2339 
2340 /**
2341  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2342  * @irq:	Linux irq number to check for
2343  *
2344  * Must be called from a non migratable context. Returns the enable
2345  * state of a per cpu interrupt on the current cpu.
2346  */
2347 bool irq_percpu_is_enabled(unsigned int irq)
2348 {
2349 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2350 		return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled);
2351 	return false;
2352 }
2353 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2354 
2355 void disable_percpu_irq(unsigned int irq)
2356 {
2357 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2358 		irq_percpu_disable(scoped_irqdesc, smp_processor_id());
2359 }
2360 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2361 
2362 void disable_percpu_nmi(unsigned int irq)
2363 {
2364 	disable_percpu_irq(irq);
2365 }
2366 
2367 /*
2368  * Internal function to unregister a percpu irqaction.
2369  */
2370 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2371 {
2372 	struct irq_desc *desc = irq_to_desc(irq);
2373 	struct irqaction *action, **action_ptr;
2374 
2375 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2376 
2377 	if (!desc)
2378 		return NULL;
2379 
2380 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2381 		action_ptr = &desc->action;
2382 		for (;;) {
2383 			action = *action_ptr;
2384 
2385 			if (!action) {
2386 				WARN(1, "Trying to free already-free IRQ %d\n", irq);
2387 				return NULL;
2388 			}
2389 
2390 			if (action->percpu_dev_id == dev_id)
2391 				break;
2392 
2393 			action_ptr = &action->next;
2394 		}
2395 
2396 		if (cpumask_intersects(desc->percpu_enabled, action->affinity)) {
2397 			WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", irq,
2398 			     cpumask_first_and(desc->percpu_enabled, action->affinity));
2399 			return NULL;
2400 		}
2401 
2402 		/* Found it - now remove it from the list of entries: */
2403 		*action_ptr = action->next;
2404 
2405 		/* Demote from NMI if we killed the last action */
2406 		if (!desc->action)
2407 			desc->istate &= ~IRQS_NMI;
2408 	}
2409 
2410 	unregister_handler_proc(irq, action);
2411 	irq_chip_pm_put(&desc->irq_data);
2412 	module_put(desc->owner);
2413 	return action;
2414 }
2415 
2416 /**
2417  * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2418  * @irq:	Interrupt line to free
2419  * @dev_id:	Device identity to free
2420  *
2421  * Remove a percpu interrupt handler. The handler is removed, but the
2422  * interrupt line is not disabled. This must be done on each CPU before
2423  * calling this function. The function does not return until any executing
2424  * interrupts for this IRQ have completed.
2425  *
2426  * This function must not be called from interrupt context.
2427  */
2428 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2429 {
2430 	struct irq_desc *desc = irq_to_desc(irq);
2431 
2432 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2433 		return;
2434 
2435 	chip_bus_lock(desc);
2436 	kfree(__free_percpu_irq(irq, dev_id));
2437 	chip_bus_sync_unlock(desc);
2438 }
2439 EXPORT_SYMBOL_GPL(free_percpu_irq);
2440 
2441 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2442 {
2443 	struct irq_desc *desc = irq_to_desc(irq);
2444 
2445 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2446 		return;
2447 
2448 	if (WARN_ON(!irq_is_nmi(desc)))
2449 		return;
2450 
2451 	kfree(__free_percpu_irq(irq, dev_id));
2452 }
2453 
2454 /**
2455  * setup_percpu_irq - setup a per-cpu interrupt
2456  * @irq:	Interrupt line to setup
2457  * @act:	irqaction for the interrupt
2458  *
2459  * Used to statically setup per-cpu interrupts in the early boot process.
2460  */
2461 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2462 {
2463 	struct irq_desc *desc = irq_to_desc(irq);
2464 	int retval;
2465 
2466 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2467 		return -EINVAL;
2468 
2469 	retval = irq_chip_pm_get(&desc->irq_data);
2470 	if (retval < 0)
2471 		return retval;
2472 
2473 	retval = __setup_irq(irq, desc, act);
2474 
2475 	if (retval)
2476 		irq_chip_pm_put(&desc->irq_data);
2477 
2478 	return retval;
2479 }
2480 
2481 static
2482 struct irqaction *create_percpu_irqaction(irq_handler_t handler, unsigned long flags,
2483 					  const char *devname, const cpumask_t *affinity,
2484 					  void __percpu *dev_id)
2485 {
2486 	struct irqaction *action;
2487 
2488 	if (!affinity)
2489 		affinity = cpu_possible_mask;
2490 
2491 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2492 	if (!action)
2493 		return NULL;
2494 
2495 	action->handler = handler;
2496 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2497 	action->name = devname;
2498 	action->percpu_dev_id = dev_id;
2499 	action->affinity = affinity;
2500 
2501 	/*
2502 	 * We allow some form of sharing for non-overlapping affinity
2503 	 * masks. Obviously, covering all CPUs prevents any sharing in
2504 	 * the first place.
2505 	 */
2506 	if (!cpumask_equal(affinity, cpu_possible_mask))
2507 		action->flags |= IRQF_SHARED;
2508 
2509 	return action;
2510 }
2511 
2512 /**
2513  * __request_percpu_irq - allocate a percpu interrupt line
2514  * @irq:	Interrupt line to allocate
2515  * @handler:	Function to be called when the IRQ occurs.
2516  * @flags:	Interrupt type flags (IRQF_TIMER only)
2517  * @devname:	An ascii name for the claiming device
2518  * @affinity:	A cpumask describing the target CPUs for this interrupt
2519  * @dev_id:	A percpu cookie passed back to the handler function
2520  *
2521  * This call allocates interrupt resources, but doesn't enable the interrupt
2522  * on any CPU, as all percpu-devid interrupts are flagged with IRQ_NOAUTOEN.
2523  * It has to be done on each CPU using enable_percpu_irq().
2524  *
2525  * @dev_id must be globally unique. It is a per-cpu variable, and
2526  * the handler gets called with the interrupted CPU's instance of
2527  * that variable.
2528  */
2529 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2530 			 unsigned long flags, const char *devname,
2531 			 const cpumask_t *affinity, void __percpu *dev_id)
2532 {
2533 	struct irqaction *action;
2534 	struct irq_desc *desc;
2535 	int retval;
2536 
2537 	if (!dev_id)
2538 		return -EINVAL;
2539 
2540 	desc = irq_to_desc(irq);
2541 	if (!desc || !irq_settings_can_request(desc) ||
2542 	    !irq_settings_is_per_cpu_devid(desc))
2543 		return -EINVAL;
2544 
2545 	if (flags && flags != IRQF_TIMER)
2546 		return -EINVAL;
2547 
2548 	action = create_percpu_irqaction(handler, flags, devname, affinity, dev_id);
2549 	if (!action)
2550 		return -ENOMEM;
2551 
2552 	retval = irq_chip_pm_get(&desc->irq_data);
2553 	if (retval < 0) {
2554 		kfree(action);
2555 		return retval;
2556 	}
2557 
2558 	retval = __setup_irq(irq, desc, action);
2559 
2560 	if (retval) {
2561 		irq_chip_pm_put(&desc->irq_data);
2562 		kfree(action);
2563 	}
2564 
2565 	return retval;
2566 }
2567 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2568 
2569 /**
2570  * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2571  * @irq:	Interrupt line to allocate
2572  * @handler:	Function to be called when the IRQ occurs.
2573  * @name:	An ascii name for the claiming device
2574  * @affinity:	A cpumask describing the target CPUs for this interrupt
2575  * @dev_id:	A percpu cookie passed back to the handler function
2576  *
2577  * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2578  * have to be setup on each CPU by calling prepare_percpu_nmi() before
2579  * being enabled on the same CPU by using enable_percpu_nmi().
2580  *
2581  * @dev_id must be globally unique. It is a per-cpu variable, and the
2582  * handler gets called with the interrupted CPU's instance of that
2583  * variable.
2584  *
2585  * Interrupt lines requested for NMI delivering should have auto enabling
2586  * setting disabled.
2587  *
2588  * If the interrupt line cannot be used to deliver NMIs, function
2589  * will fail returning a negative value.
2590  */
2591 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *name,
2592 		       const struct cpumask *affinity, void __percpu *dev_id)
2593 {
2594 	struct irqaction *action;
2595 	struct irq_desc *desc;
2596 	int retval;
2597 
2598 	if (!handler)
2599 		return -EINVAL;
2600 
2601 	desc = irq_to_desc(irq);
2602 
2603 	if (!desc || !irq_settings_can_request(desc) ||
2604 	    !irq_settings_is_per_cpu_devid(desc) ||
2605 	    irq_settings_can_autoenable(desc) ||
2606 	    !irq_supports_nmi(desc))
2607 		return -EINVAL;
2608 
2609 	/* The line cannot be NMI already if the new request covers all CPUs */
2610 	if (irq_is_nmi(desc) &&
2611 	    (!affinity || cpumask_equal(affinity, cpu_possible_mask)))
2612 		return -EINVAL;
2613 
2614 	action = create_percpu_irqaction(handler, IRQF_NO_THREAD | IRQF_NOBALANCING,
2615 					 name, affinity, dev_id);
2616 	if (!action)
2617 		return -ENOMEM;
2618 
2619 	retval = irq_chip_pm_get(&desc->irq_data);
2620 	if (retval < 0)
2621 		goto err_out;
2622 
2623 	retval = __setup_irq(irq, desc, action);
2624 	if (retval)
2625 		goto err_irq_setup;
2626 
2627 	scoped_guard(raw_spinlock_irqsave, &desc->lock)
2628 		desc->istate |= IRQS_NMI;
2629 	return 0;
2630 
2631 err_irq_setup:
2632 	irq_chip_pm_put(&desc->irq_data);
2633 err_out:
2634 	kfree(action);
2635 
2636 	return retval;
2637 }
2638 
2639 /**
2640  * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2641  * @irq: Interrupt line to prepare for NMI delivery
2642  *
2643  * This call prepares an interrupt line to deliver NMI on the current CPU,
2644  * before that interrupt line gets enabled with enable_percpu_nmi().
2645  *
2646  * As a CPU local operation, this should be called from non-preemptible
2647  * context.
2648  *
2649  * If the interrupt line cannot be used to deliver NMIs, function will fail
2650  * returning a negative value.
2651  */
2652 int prepare_percpu_nmi(unsigned int irq)
2653 {
2654 	int ret = -EINVAL;
2655 
2656 	WARN_ON(preemptible());
2657 
2658 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2659 		if (WARN(!irq_is_nmi(scoped_irqdesc),
2660 			 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq))
2661 			return -EINVAL;
2662 
2663 		ret = irq_nmi_setup(scoped_irqdesc);
2664 		if (ret)
2665 			pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2666 	}
2667 	return ret;
2668 }
2669 
2670 /**
2671  * teardown_percpu_nmi - undoes NMI setup of IRQ line
2672  * @irq: Interrupt line from which CPU local NMI configuration should be removed
2673  *
2674  * This call undoes the setup done by prepare_percpu_nmi().
2675  *
2676  * IRQ line should not be enabled for the current CPU.
2677  * As a CPU local operation, this should be called from non-preemptible
2678  * context.
2679  */
2680 void teardown_percpu_nmi(unsigned int irq)
2681 {
2682 	WARN_ON(preemptible());
2683 
2684 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2685 		if (WARN_ON(!irq_is_nmi(scoped_irqdesc)))
2686 			return;
2687 		irq_nmi_teardown(scoped_irqdesc);
2688 	}
2689 }
2690 
2691 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2692 {
2693 	struct irq_chip *chip;
2694 	int err = -EINVAL;
2695 
2696 	do {
2697 		chip = irq_data_get_irq_chip(data);
2698 		if (WARN_ON_ONCE(!chip))
2699 			return -ENODEV;
2700 		if (chip->irq_get_irqchip_state)
2701 			break;
2702 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2703 		data = data->parent_data;
2704 #else
2705 		data = NULL;
2706 #endif
2707 	} while (data);
2708 
2709 	if (data)
2710 		err = chip->irq_get_irqchip_state(data, which, state);
2711 	return err;
2712 }
2713 
2714 /**
2715  * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2716  * @irq:	Interrupt line that is forwarded to a VM
2717  * @which:	One of IRQCHIP_STATE_* the caller wants to know about
2718  * @state:	a pointer to a boolean where the state is to be stored
2719  *
2720  * This call snapshots the internal irqchip state of an interrupt,
2721  * returning into @state the bit corresponding to stage @which
2722  *
2723  * This function should be called with preemption disabled if the interrupt
2724  * controller has per-cpu registers.
2725  */
2726 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state)
2727 {
2728 	scoped_irqdesc_get_and_buslock(irq, 0) {
2729 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2730 
2731 		return __irq_get_irqchip_state(data, which, state);
2732 	}
2733 	return -EINVAL;
2734 }
2735 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2736 
2737 /**
2738  * irq_set_irqchip_state - set the state of a forwarded interrupt.
2739  * @irq:	Interrupt line that is forwarded to a VM
2740  * @which:	State to be restored (one of IRQCHIP_STATE_*)
2741  * @val:	Value corresponding to @which
2742  *
2743  * This call sets the internal irqchip state of an interrupt, depending on
2744  * the value of @which.
2745  *
2746  * This function should be called with migration disabled if the interrupt
2747  * controller has per-cpu registers.
2748  */
2749 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
2750 {
2751 	scoped_irqdesc_get_and_buslock(irq, 0) {
2752 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2753 		struct irq_chip *chip;
2754 
2755 		do {
2756 			chip = irq_data_get_irq_chip(data);
2757 
2758 			if (WARN_ON_ONCE(!chip))
2759 				return -ENODEV;
2760 
2761 			if (chip->irq_set_irqchip_state)
2762 				break;
2763 
2764 			data = irqd_get_parent_data(data);
2765 		} while (data);
2766 
2767 		if (data)
2768 			return chip->irq_set_irqchip_state(data, which, val);
2769 	}
2770 	return -EINVAL;
2771 }
2772 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2773 
2774 /**
2775  * irq_has_action - Check whether an interrupt is requested
2776  * @irq:	The linux irq number
2777  *
2778  * Returns: A snapshot of the current state
2779  */
2780 bool irq_has_action(unsigned int irq)
2781 {
2782 	bool res;
2783 
2784 	rcu_read_lock();
2785 	res = irq_desc_has_action(irq_to_desc(irq));
2786 	rcu_read_unlock();
2787 	return res;
2788 }
2789 EXPORT_SYMBOL_GPL(irq_has_action);
2790 
2791 /**
2792  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2793  * @irq:	The linux irq number
2794  * @bitmask:	The bitmask to evaluate
2795  *
2796  * Returns: True if one of the bits in @bitmask is set
2797  */
2798 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2799 {
2800 	struct irq_desc *desc;
2801 	bool res = false;
2802 
2803 	rcu_read_lock();
2804 	desc = irq_to_desc(irq);
2805 	if (desc)
2806 		res = !!(desc->status_use_accessors & bitmask);
2807 	rcu_read_unlock();
2808 	return res;
2809 }
2810 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2811