1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) { 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 wake_up_process(action->thread); 198 } 199 if (action->secondary && action->secondary->thread) { 200 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 201 wake_up_process(action->secondary->thread); 202 } 203 } 204 } 205 206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 207 static void irq_validate_effective_affinity(struct irq_data *data) 208 { 209 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 210 struct irq_chip *chip = irq_data_get_irq_chip(data); 211 212 if (!cpumask_empty(m)) 213 return; 214 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 215 chip->name, data->irq); 216 } 217 #else 218 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 const struct cpumask *prog_mask; 227 int ret; 228 229 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 230 static struct cpumask tmp_mask; 231 232 if (!chip || !chip->irq_set_affinity) 233 return -EINVAL; 234 235 raw_spin_lock(&tmp_mask_lock); 236 /* 237 * If this is a managed interrupt and housekeeping is enabled on 238 * it check whether the requested affinity mask intersects with 239 * a housekeeping CPU. If so, then remove the isolated CPUs from 240 * the mask and just keep the housekeeping CPU(s). This prevents 241 * the affinity setter from routing the interrupt to an isolated 242 * CPU to avoid that I/O submitted from a housekeeping CPU causes 243 * interrupts on an isolated one. 244 * 245 * If the masks do not intersect or include online CPU(s) then 246 * keep the requested mask. The isolated target CPUs are only 247 * receiving interrupts when the I/O operation was submitted 248 * directly from them. 249 * 250 * If all housekeeping CPUs in the affinity mask are offline, the 251 * interrupt will be migrated by the CPU hotplug code once a 252 * housekeeping CPU which belongs to the affinity mask comes 253 * online. 254 */ 255 if (irqd_affinity_is_managed(data) && 256 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 257 const struct cpumask *hk_mask; 258 259 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 260 261 cpumask_and(&tmp_mask, mask, hk_mask); 262 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 263 prog_mask = mask; 264 else 265 prog_mask = &tmp_mask; 266 } else { 267 prog_mask = mask; 268 } 269 270 /* 271 * Make sure we only provide online CPUs to the irqchip, 272 * unless we are being asked to force the affinity (in which 273 * case we do as we are told). 274 */ 275 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 276 if (!force && !cpumask_empty(&tmp_mask)) 277 ret = chip->irq_set_affinity(data, &tmp_mask, force); 278 else if (force) 279 ret = chip->irq_set_affinity(data, mask, force); 280 else 281 ret = -EINVAL; 282 283 raw_spin_unlock(&tmp_mask_lock); 284 285 switch (ret) { 286 case IRQ_SET_MASK_OK: 287 case IRQ_SET_MASK_OK_DONE: 288 cpumask_copy(desc->irq_common_data.affinity, mask); 289 fallthrough; 290 case IRQ_SET_MASK_OK_NOCOPY: 291 irq_validate_effective_affinity(data); 292 irq_set_thread_affinity(desc); 293 ret = 0; 294 } 295 296 return ret; 297 } 298 299 #ifdef CONFIG_GENERIC_PENDING_IRQ 300 static inline int irq_set_affinity_pending(struct irq_data *data, 301 const struct cpumask *dest) 302 { 303 struct irq_desc *desc = irq_data_to_desc(data); 304 305 irqd_set_move_pending(data); 306 irq_copy_pending(desc, dest); 307 return 0; 308 } 309 #else 310 static inline int irq_set_affinity_pending(struct irq_data *data, 311 const struct cpumask *dest) 312 { 313 return -EBUSY; 314 } 315 #endif 316 317 static int irq_try_set_affinity(struct irq_data *data, 318 const struct cpumask *dest, bool force) 319 { 320 int ret = irq_do_set_affinity(data, dest, force); 321 322 /* 323 * In case that the underlying vector management is busy and the 324 * architecture supports the generic pending mechanism then utilize 325 * this to avoid returning an error to user space. 326 */ 327 if (ret == -EBUSY && !force) 328 ret = irq_set_affinity_pending(data, dest); 329 return ret; 330 } 331 332 static bool irq_set_affinity_deactivated(struct irq_data *data, 333 const struct cpumask *mask) 334 { 335 struct irq_desc *desc = irq_data_to_desc(data); 336 337 /* 338 * Handle irq chips which can handle affinity only in activated 339 * state correctly 340 * 341 * If the interrupt is not yet activated, just store the affinity 342 * mask and do not call the chip driver at all. On activation the 343 * driver has to make sure anyway that the interrupt is in a 344 * usable state so startup works. 345 */ 346 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 347 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 348 return false; 349 350 cpumask_copy(desc->irq_common_data.affinity, mask); 351 irq_data_update_effective_affinity(data, mask); 352 irqd_set(data, IRQD_AFFINITY_SET); 353 return true; 354 } 355 356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 357 bool force) 358 { 359 struct irq_chip *chip = irq_data_get_irq_chip(data); 360 struct irq_desc *desc = irq_data_to_desc(data); 361 int ret = 0; 362 363 if (!chip || !chip->irq_set_affinity) 364 return -EINVAL; 365 366 if (irq_set_affinity_deactivated(data, mask)) 367 return 0; 368 369 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 370 ret = irq_try_set_affinity(data, mask, force); 371 } else { 372 irqd_set_move_pending(data); 373 irq_copy_pending(desc, mask); 374 } 375 376 if (desc->affinity_notify) { 377 kref_get(&desc->affinity_notify->kref); 378 if (!schedule_work(&desc->affinity_notify->work)) { 379 /* Work was already scheduled, drop our extra ref */ 380 kref_put(&desc->affinity_notify->kref, 381 desc->affinity_notify->release); 382 } 383 } 384 irqd_set(data, IRQD_AFFINITY_SET); 385 386 return ret; 387 } 388 389 /** 390 * irq_update_affinity_desc - Update affinity management for an interrupt 391 * @irq: The interrupt number to update 392 * @affinity: Pointer to the affinity descriptor 393 * 394 * This interface can be used to configure the affinity management of 395 * interrupts which have been allocated already. 396 * 397 * There are certain limitations on when it may be used - attempts to use it 398 * for when the kernel is configured for generic IRQ reservation mode (in 399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 400 * managed/non-managed interrupt accounting. In addition, attempts to use it on 401 * an interrupt which is already started or which has already been configured 402 * as managed will also fail, as these mean invalid init state or double init. 403 */ 404 int irq_update_affinity_desc(unsigned int irq, 405 struct irq_affinity_desc *affinity) 406 { 407 struct irq_desc *desc; 408 unsigned long flags; 409 bool activated; 410 int ret = 0; 411 412 /* 413 * Supporting this with the reservation scheme used by x86 needs 414 * some more thought. Fail it for now. 415 */ 416 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 417 return -EOPNOTSUPP; 418 419 desc = irq_get_desc_buslock(irq, &flags, 0); 420 if (!desc) 421 return -EINVAL; 422 423 /* Requires the interrupt to be shut down */ 424 if (irqd_is_started(&desc->irq_data)) { 425 ret = -EBUSY; 426 goto out_unlock; 427 } 428 429 /* Interrupts which are already managed cannot be modified */ 430 if (irqd_affinity_is_managed(&desc->irq_data)) { 431 ret = -EBUSY; 432 goto out_unlock; 433 } 434 435 /* 436 * Deactivate the interrupt. That's required to undo 437 * anything an earlier activation has established. 438 */ 439 activated = irqd_is_activated(&desc->irq_data); 440 if (activated) 441 irq_domain_deactivate_irq(&desc->irq_data); 442 443 if (affinity->is_managed) { 444 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 445 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 446 } 447 448 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 449 450 /* Restore the activation state */ 451 if (activated) 452 irq_domain_activate_irq(&desc->irq_data, false); 453 454 out_unlock: 455 irq_put_desc_busunlock(desc, flags); 456 return ret; 457 } 458 459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 460 bool force) 461 { 462 struct irq_desc *desc = irq_to_desc(irq); 463 unsigned long flags; 464 int ret; 465 466 if (!desc) 467 return -EINVAL; 468 469 raw_spin_lock_irqsave(&desc->lock, flags); 470 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 471 raw_spin_unlock_irqrestore(&desc->lock, flags); 472 return ret; 473 } 474 475 /** 476 * irq_set_affinity - Set the irq affinity of a given irq 477 * @irq: Interrupt to set affinity 478 * @cpumask: cpumask 479 * 480 * Fails if cpumask does not contain an online CPU 481 */ 482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 483 { 484 return __irq_set_affinity(irq, cpumask, false); 485 } 486 EXPORT_SYMBOL_GPL(irq_set_affinity); 487 488 /** 489 * irq_force_affinity - Force the irq affinity of a given irq 490 * @irq: Interrupt to set affinity 491 * @cpumask: cpumask 492 * 493 * Same as irq_set_affinity, but without checking the mask against 494 * online cpus. 495 * 496 * Solely for low level cpu hotplug code, where we need to make per 497 * cpu interrupts affine before the cpu becomes online. 498 */ 499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 500 { 501 return __irq_set_affinity(irq, cpumask, true); 502 } 503 EXPORT_SYMBOL_GPL(irq_force_affinity); 504 505 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 506 bool setaffinity) 507 { 508 unsigned long flags; 509 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 510 511 if (!desc) 512 return -EINVAL; 513 desc->affinity_hint = m; 514 irq_put_desc_unlock(desc, flags); 515 if (m && setaffinity) 516 __irq_set_affinity(irq, m, false); 517 return 0; 518 } 519 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 520 521 static void irq_affinity_notify(struct work_struct *work) 522 { 523 struct irq_affinity_notify *notify = 524 container_of(work, struct irq_affinity_notify, work); 525 struct irq_desc *desc = irq_to_desc(notify->irq); 526 cpumask_var_t cpumask; 527 unsigned long flags; 528 529 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 530 goto out; 531 532 raw_spin_lock_irqsave(&desc->lock, flags); 533 if (irq_move_pending(&desc->irq_data)) 534 irq_get_pending(cpumask, desc); 535 else 536 cpumask_copy(cpumask, desc->irq_common_data.affinity); 537 raw_spin_unlock_irqrestore(&desc->lock, flags); 538 539 notify->notify(notify, cpumask); 540 541 free_cpumask_var(cpumask); 542 out: 543 kref_put(¬ify->kref, notify->release); 544 } 545 546 /** 547 * irq_set_affinity_notifier - control notification of IRQ affinity changes 548 * @irq: Interrupt for which to enable/disable notification 549 * @notify: Context for notification, or %NULL to disable 550 * notification. Function pointers must be initialised; 551 * the other fields will be initialised by this function. 552 * 553 * Must be called in process context. Notification may only be enabled 554 * after the IRQ is allocated and must be disabled before the IRQ is 555 * freed using free_irq(). 556 */ 557 int 558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 559 { 560 struct irq_desc *desc = irq_to_desc(irq); 561 struct irq_affinity_notify *old_notify; 562 unsigned long flags; 563 564 /* The release function is promised process context */ 565 might_sleep(); 566 567 if (!desc || desc->istate & IRQS_NMI) 568 return -EINVAL; 569 570 /* Complete initialisation of *notify */ 571 if (notify) { 572 notify->irq = irq; 573 kref_init(¬ify->kref); 574 INIT_WORK(¬ify->work, irq_affinity_notify); 575 } 576 577 raw_spin_lock_irqsave(&desc->lock, flags); 578 old_notify = desc->affinity_notify; 579 desc->affinity_notify = notify; 580 raw_spin_unlock_irqrestore(&desc->lock, flags); 581 582 if (old_notify) { 583 if (cancel_work_sync(&old_notify->work)) { 584 /* Pending work had a ref, put that one too */ 585 kref_put(&old_notify->kref, old_notify->release); 586 } 587 kref_put(&old_notify->kref, old_notify->release); 588 } 589 590 return 0; 591 } 592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 593 594 #ifndef CONFIG_AUTO_IRQ_AFFINITY 595 /* 596 * Generic version of the affinity autoselector. 597 */ 598 int irq_setup_affinity(struct irq_desc *desc) 599 { 600 struct cpumask *set = irq_default_affinity; 601 int ret, node = irq_desc_get_node(desc); 602 static DEFINE_RAW_SPINLOCK(mask_lock); 603 static struct cpumask mask; 604 605 /* Excludes PER_CPU and NO_BALANCE interrupts */ 606 if (!__irq_can_set_affinity(desc)) 607 return 0; 608 609 raw_spin_lock(&mask_lock); 610 /* 611 * Preserve the managed affinity setting and a userspace affinity 612 * setup, but make sure that one of the targets is online. 613 */ 614 if (irqd_affinity_is_managed(&desc->irq_data) || 615 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 616 if (cpumask_intersects(desc->irq_common_data.affinity, 617 cpu_online_mask)) 618 set = desc->irq_common_data.affinity; 619 else 620 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 621 } 622 623 cpumask_and(&mask, cpu_online_mask, set); 624 if (cpumask_empty(&mask)) 625 cpumask_copy(&mask, cpu_online_mask); 626 627 if (node != NUMA_NO_NODE) { 628 const struct cpumask *nodemask = cpumask_of_node(node); 629 630 /* make sure at least one of the cpus in nodemask is online */ 631 if (cpumask_intersects(&mask, nodemask)) 632 cpumask_and(&mask, &mask, nodemask); 633 } 634 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 635 raw_spin_unlock(&mask_lock); 636 return ret; 637 } 638 #else 639 /* Wrapper for ALPHA specific affinity selector magic */ 640 int irq_setup_affinity(struct irq_desc *desc) 641 { 642 return irq_select_affinity(irq_desc_get_irq(desc)); 643 } 644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 645 #endif /* CONFIG_SMP */ 646 647 648 /** 649 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 650 * @irq: interrupt number to set affinity 651 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 652 * specific data for percpu_devid interrupts 653 * 654 * This function uses the vCPU specific data to set the vCPU 655 * affinity for an irq. The vCPU specific data is passed from 656 * outside, such as KVM. One example code path is as below: 657 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 658 */ 659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 660 { 661 unsigned long flags; 662 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 663 struct irq_data *data; 664 struct irq_chip *chip; 665 int ret = -ENOSYS; 666 667 if (!desc) 668 return -EINVAL; 669 670 data = irq_desc_get_irq_data(desc); 671 do { 672 chip = irq_data_get_irq_chip(data); 673 if (chip && chip->irq_set_vcpu_affinity) 674 break; 675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 676 data = data->parent_data; 677 #else 678 data = NULL; 679 #endif 680 } while (data); 681 682 if (data) 683 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 684 irq_put_desc_unlock(desc, flags); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 689 690 void __disable_irq(struct irq_desc *desc) 691 { 692 if (!desc->depth++) 693 irq_disable(desc); 694 } 695 696 static int __disable_irq_nosync(unsigned int irq) 697 { 698 unsigned long flags; 699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 700 701 if (!desc) 702 return -EINVAL; 703 __disable_irq(desc); 704 irq_put_desc_busunlock(desc, flags); 705 return 0; 706 } 707 708 /** 709 * disable_irq_nosync - disable an irq without waiting 710 * @irq: Interrupt to disable 711 * 712 * Disable the selected interrupt line. Disables and Enables are 713 * nested. 714 * Unlike disable_irq(), this function does not ensure existing 715 * instances of the IRQ handler have completed before returning. 716 * 717 * This function may be called from IRQ context. 718 */ 719 void disable_irq_nosync(unsigned int irq) 720 { 721 __disable_irq_nosync(irq); 722 } 723 EXPORT_SYMBOL(disable_irq_nosync); 724 725 /** 726 * disable_irq - disable an irq and wait for completion 727 * @irq: Interrupt to disable 728 * 729 * Disable the selected interrupt line. Enables and Disables are 730 * nested. 731 * This function waits for any pending IRQ handlers for this interrupt 732 * to complete before returning. If you use this function while 733 * holding a resource the IRQ handler may need you will deadlock. 734 * 735 * Can only be called from preemptible code as it might sleep when 736 * an interrupt thread is associated to @irq. 737 * 738 */ 739 void disable_irq(unsigned int irq) 740 { 741 might_sleep(); 742 if (!__disable_irq_nosync(irq)) 743 synchronize_irq(irq); 744 } 745 EXPORT_SYMBOL(disable_irq); 746 747 /** 748 * disable_hardirq - disables an irq and waits for hardirq completion 749 * @irq: Interrupt to disable 750 * 751 * Disable the selected interrupt line. Enables and Disables are 752 * nested. 753 * This function waits for any pending hard IRQ handlers for this 754 * interrupt to complete before returning. If you use this function while 755 * holding a resource the hard IRQ handler may need you will deadlock. 756 * 757 * When used to optimistically disable an interrupt from atomic context 758 * the return value must be checked. 759 * 760 * Returns: false if a threaded handler is active. 761 * 762 * This function may be called - with care - from IRQ context. 763 */ 764 bool disable_hardirq(unsigned int irq) 765 { 766 if (!__disable_irq_nosync(irq)) 767 return synchronize_hardirq(irq); 768 769 return false; 770 } 771 EXPORT_SYMBOL_GPL(disable_hardirq); 772 773 /** 774 * disable_nmi_nosync - disable an nmi without waiting 775 * @irq: Interrupt to disable 776 * 777 * Disable the selected interrupt line. Disables and enables are 778 * nested. 779 * The interrupt to disable must have been requested through request_nmi. 780 * Unlike disable_nmi(), this function does not ensure existing 781 * instances of the IRQ handler have completed before returning. 782 */ 783 void disable_nmi_nosync(unsigned int irq) 784 { 785 disable_irq_nosync(irq); 786 } 787 788 void __enable_irq(struct irq_desc *desc) 789 { 790 switch (desc->depth) { 791 case 0: 792 err_out: 793 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 794 irq_desc_get_irq(desc)); 795 break; 796 case 1: { 797 if (desc->istate & IRQS_SUSPENDED) 798 goto err_out; 799 /* Prevent probing on this irq: */ 800 irq_settings_set_noprobe(desc); 801 /* 802 * Call irq_startup() not irq_enable() here because the 803 * interrupt might be marked NOAUTOEN. So irq_startup() 804 * needs to be invoked when it gets enabled the first 805 * time. If it was already started up, then irq_startup() 806 * will invoke irq_enable() under the hood. 807 */ 808 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 809 break; 810 } 811 default: 812 desc->depth--; 813 } 814 } 815 816 /** 817 * enable_irq - enable handling of an irq 818 * @irq: Interrupt to enable 819 * 820 * Undoes the effect of one call to disable_irq(). If this 821 * matches the last disable, processing of interrupts on this 822 * IRQ line is re-enabled. 823 * 824 * This function may be called from IRQ context only when 825 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 826 */ 827 void enable_irq(unsigned int irq) 828 { 829 unsigned long flags; 830 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 831 832 if (!desc) 833 return; 834 if (WARN(!desc->irq_data.chip, 835 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 836 goto out; 837 838 __enable_irq(desc); 839 out: 840 irq_put_desc_busunlock(desc, flags); 841 } 842 EXPORT_SYMBOL(enable_irq); 843 844 /** 845 * enable_nmi - enable handling of an nmi 846 * @irq: Interrupt to enable 847 * 848 * The interrupt to enable must have been requested through request_nmi. 849 * Undoes the effect of one call to disable_nmi(). If this 850 * matches the last disable, processing of interrupts on this 851 * IRQ line is re-enabled. 852 */ 853 void enable_nmi(unsigned int irq) 854 { 855 enable_irq(irq); 856 } 857 858 static int set_irq_wake_real(unsigned int irq, unsigned int on) 859 { 860 struct irq_desc *desc = irq_to_desc(irq); 861 int ret = -ENXIO; 862 863 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 864 return 0; 865 866 if (desc->irq_data.chip->irq_set_wake) 867 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 868 869 return ret; 870 } 871 872 /** 873 * irq_set_irq_wake - control irq power management wakeup 874 * @irq: interrupt to control 875 * @on: enable/disable power management wakeup 876 * 877 * Enable/disable power management wakeup mode, which is 878 * disabled by default. Enables and disables must match, 879 * just as they match for non-wakeup mode support. 880 * 881 * Wakeup mode lets this IRQ wake the system from sleep 882 * states like "suspend to RAM". 883 * 884 * Note: irq enable/disable state is completely orthogonal 885 * to the enable/disable state of irq wake. An irq can be 886 * disabled with disable_irq() and still wake the system as 887 * long as the irq has wake enabled. If this does not hold, 888 * then the underlying irq chip and the related driver need 889 * to be investigated. 890 */ 891 int irq_set_irq_wake(unsigned int irq, unsigned int on) 892 { 893 unsigned long flags; 894 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 895 int ret = 0; 896 897 if (!desc) 898 return -EINVAL; 899 900 /* Don't use NMIs as wake up interrupts please */ 901 if (desc->istate & IRQS_NMI) { 902 ret = -EINVAL; 903 goto out_unlock; 904 } 905 906 /* wakeup-capable irqs can be shared between drivers that 907 * don't need to have the same sleep mode behaviors. 908 */ 909 if (on) { 910 if (desc->wake_depth++ == 0) { 911 ret = set_irq_wake_real(irq, on); 912 if (ret) 913 desc->wake_depth = 0; 914 else 915 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 916 } 917 } else { 918 if (desc->wake_depth == 0) { 919 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 920 } else if (--desc->wake_depth == 0) { 921 ret = set_irq_wake_real(irq, on); 922 if (ret) 923 desc->wake_depth = 1; 924 else 925 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 926 } 927 } 928 929 out_unlock: 930 irq_put_desc_busunlock(desc, flags); 931 return ret; 932 } 933 EXPORT_SYMBOL(irq_set_irq_wake); 934 935 /* 936 * Internal function that tells the architecture code whether a 937 * particular irq has been exclusively allocated or is available 938 * for driver use. 939 */ 940 int can_request_irq(unsigned int irq, unsigned long irqflags) 941 { 942 unsigned long flags; 943 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 944 int canrequest = 0; 945 946 if (!desc) 947 return 0; 948 949 if (irq_settings_can_request(desc)) { 950 if (!desc->action || 951 irqflags & desc->action->flags & IRQF_SHARED) 952 canrequest = 1; 953 } 954 irq_put_desc_unlock(desc, flags); 955 return canrequest; 956 } 957 958 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 959 { 960 struct irq_chip *chip = desc->irq_data.chip; 961 int ret, unmask = 0; 962 963 if (!chip || !chip->irq_set_type) { 964 /* 965 * IRQF_TRIGGER_* but the PIC does not support multiple 966 * flow-types? 967 */ 968 pr_debug("No set_type function for IRQ %d (%s)\n", 969 irq_desc_get_irq(desc), 970 chip ? (chip->name ? : "unknown") : "unknown"); 971 return 0; 972 } 973 974 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 975 if (!irqd_irq_masked(&desc->irq_data)) 976 mask_irq(desc); 977 if (!irqd_irq_disabled(&desc->irq_data)) 978 unmask = 1; 979 } 980 981 /* Mask all flags except trigger mode */ 982 flags &= IRQ_TYPE_SENSE_MASK; 983 ret = chip->irq_set_type(&desc->irq_data, flags); 984 985 switch (ret) { 986 case IRQ_SET_MASK_OK: 987 case IRQ_SET_MASK_OK_DONE: 988 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 989 irqd_set(&desc->irq_data, flags); 990 fallthrough; 991 992 case IRQ_SET_MASK_OK_NOCOPY: 993 flags = irqd_get_trigger_type(&desc->irq_data); 994 irq_settings_set_trigger_mask(desc, flags); 995 irqd_clear(&desc->irq_data, IRQD_LEVEL); 996 irq_settings_clr_level(desc); 997 if (flags & IRQ_TYPE_LEVEL_MASK) { 998 irq_settings_set_level(desc); 999 irqd_set(&desc->irq_data, IRQD_LEVEL); 1000 } 1001 1002 ret = 0; 1003 break; 1004 default: 1005 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1006 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1007 } 1008 if (unmask) 1009 unmask_irq(desc); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_HARDIRQS_SW_RESEND 1014 int irq_set_parent(int irq, int parent_irq) 1015 { 1016 unsigned long flags; 1017 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1018 1019 if (!desc) 1020 return -EINVAL; 1021 1022 desc->parent_irq = parent_irq; 1023 1024 irq_put_desc_unlock(desc, flags); 1025 return 0; 1026 } 1027 EXPORT_SYMBOL_GPL(irq_set_parent); 1028 #endif 1029 1030 /* 1031 * Default primary interrupt handler for threaded interrupts. Is 1032 * assigned as primary handler when request_threaded_irq is called 1033 * with handler == NULL. Useful for oneshot interrupts. 1034 */ 1035 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1036 { 1037 return IRQ_WAKE_THREAD; 1038 } 1039 1040 /* 1041 * Primary handler for nested threaded interrupts. Should never be 1042 * called. 1043 */ 1044 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1045 { 1046 WARN(1, "Primary handler called for nested irq %d\n", irq); 1047 return IRQ_NONE; 1048 } 1049 1050 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1051 { 1052 WARN(1, "Secondary action handler called for irq %d\n", irq); 1053 return IRQ_NONE; 1054 } 1055 1056 #ifdef CONFIG_SMP 1057 /* 1058 * Check whether we need to change the affinity of the interrupt thread. 1059 */ 1060 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1061 { 1062 cpumask_var_t mask; 1063 bool valid = false; 1064 1065 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1066 return; 1067 1068 __set_current_state(TASK_RUNNING); 1069 1070 /* 1071 * In case we are out of memory we set IRQTF_AFFINITY again and 1072 * try again next time 1073 */ 1074 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1075 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1076 return; 1077 } 1078 1079 raw_spin_lock_irq(&desc->lock); 1080 /* 1081 * This code is triggered unconditionally. Check the affinity 1082 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1083 */ 1084 if (cpumask_available(desc->irq_common_data.affinity)) { 1085 const struct cpumask *m; 1086 1087 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1088 cpumask_copy(mask, m); 1089 valid = true; 1090 } 1091 raw_spin_unlock_irq(&desc->lock); 1092 1093 if (valid) 1094 set_cpus_allowed_ptr(current, mask); 1095 free_cpumask_var(mask); 1096 } 1097 #else 1098 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1099 #endif 1100 1101 static int irq_wait_for_interrupt(struct irq_desc *desc, 1102 struct irqaction *action) 1103 { 1104 for (;;) { 1105 set_current_state(TASK_INTERRUPTIBLE); 1106 irq_thread_check_affinity(desc, action); 1107 1108 if (kthread_should_stop()) { 1109 /* may need to run one last time */ 1110 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1111 &action->thread_flags)) { 1112 __set_current_state(TASK_RUNNING); 1113 return 0; 1114 } 1115 __set_current_state(TASK_RUNNING); 1116 return -1; 1117 } 1118 1119 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1120 &action->thread_flags)) { 1121 __set_current_state(TASK_RUNNING); 1122 return 0; 1123 } 1124 schedule(); 1125 } 1126 } 1127 1128 /* 1129 * Oneshot interrupts keep the irq line masked until the threaded 1130 * handler finished. unmask if the interrupt has not been disabled and 1131 * is marked MASKED. 1132 */ 1133 static void irq_finalize_oneshot(struct irq_desc *desc, 1134 struct irqaction *action) 1135 { 1136 if (!(desc->istate & IRQS_ONESHOT) || 1137 action->handler == irq_forced_secondary_handler) 1138 return; 1139 again: 1140 chip_bus_lock(desc); 1141 raw_spin_lock_irq(&desc->lock); 1142 1143 /* 1144 * Implausible though it may be we need to protect us against 1145 * the following scenario: 1146 * 1147 * The thread is faster done than the hard interrupt handler 1148 * on the other CPU. If we unmask the irq line then the 1149 * interrupt can come in again and masks the line, leaves due 1150 * to IRQS_INPROGRESS and the irq line is masked forever. 1151 * 1152 * This also serializes the state of shared oneshot handlers 1153 * versus "desc->threads_oneshot |= action->thread_mask;" in 1154 * irq_wake_thread(). See the comment there which explains the 1155 * serialization. 1156 */ 1157 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1158 raw_spin_unlock_irq(&desc->lock); 1159 chip_bus_sync_unlock(desc); 1160 cpu_relax(); 1161 goto again; 1162 } 1163 1164 /* 1165 * Now check again, whether the thread should run. Otherwise 1166 * we would clear the threads_oneshot bit of this thread which 1167 * was just set. 1168 */ 1169 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1170 goto out_unlock; 1171 1172 desc->threads_oneshot &= ~action->thread_mask; 1173 1174 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1175 irqd_irq_masked(&desc->irq_data)) 1176 unmask_threaded_irq(desc); 1177 1178 out_unlock: 1179 raw_spin_unlock_irq(&desc->lock); 1180 chip_bus_sync_unlock(desc); 1181 } 1182 1183 /* 1184 * Interrupts which are not explicitly requested as threaded 1185 * interrupts rely on the implicit bh/preempt disable of the hard irq 1186 * context. So we need to disable bh here to avoid deadlocks and other 1187 * side effects. 1188 */ 1189 static irqreturn_t 1190 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1191 { 1192 irqreturn_t ret; 1193 1194 local_bh_disable(); 1195 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1196 local_irq_disable(); 1197 ret = action->thread_fn(action->irq, action->dev_id); 1198 if (ret == IRQ_HANDLED) 1199 atomic_inc(&desc->threads_handled); 1200 1201 irq_finalize_oneshot(desc, action); 1202 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1203 local_irq_enable(); 1204 local_bh_enable(); 1205 return ret; 1206 } 1207 1208 /* 1209 * Interrupts explicitly requested as threaded interrupts want to be 1210 * preemptible - many of them need to sleep and wait for slow busses to 1211 * complete. 1212 */ 1213 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1214 struct irqaction *action) 1215 { 1216 irqreturn_t ret; 1217 1218 ret = action->thread_fn(action->irq, action->dev_id); 1219 if (ret == IRQ_HANDLED) 1220 atomic_inc(&desc->threads_handled); 1221 1222 irq_finalize_oneshot(desc, action); 1223 return ret; 1224 } 1225 1226 void wake_threads_waitq(struct irq_desc *desc) 1227 { 1228 if (atomic_dec_and_test(&desc->threads_active)) 1229 wake_up(&desc->wait_for_threads); 1230 } 1231 1232 static void irq_thread_dtor(struct callback_head *unused) 1233 { 1234 struct task_struct *tsk = current; 1235 struct irq_desc *desc; 1236 struct irqaction *action; 1237 1238 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1239 return; 1240 1241 action = kthread_data(tsk); 1242 1243 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1244 tsk->comm, tsk->pid, action->irq); 1245 1246 1247 desc = irq_to_desc(action->irq); 1248 /* 1249 * If IRQTF_RUNTHREAD is set, we need to decrement 1250 * desc->threads_active and wake possible waiters. 1251 */ 1252 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1253 wake_threads_waitq(desc); 1254 1255 /* Prevent a stale desc->threads_oneshot */ 1256 irq_finalize_oneshot(desc, action); 1257 } 1258 1259 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1260 { 1261 struct irqaction *secondary = action->secondary; 1262 1263 if (WARN_ON_ONCE(!secondary)) 1264 return; 1265 1266 raw_spin_lock_irq(&desc->lock); 1267 __irq_wake_thread(desc, secondary); 1268 raw_spin_unlock_irq(&desc->lock); 1269 } 1270 1271 /* 1272 * Internal function to notify that a interrupt thread is ready. 1273 */ 1274 static void irq_thread_set_ready(struct irq_desc *desc, 1275 struct irqaction *action) 1276 { 1277 set_bit(IRQTF_READY, &action->thread_flags); 1278 wake_up(&desc->wait_for_threads); 1279 } 1280 1281 /* 1282 * Internal function to wake up a interrupt thread and wait until it is 1283 * ready. 1284 */ 1285 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1286 struct irqaction *action) 1287 { 1288 if (!action || !action->thread) 1289 return; 1290 1291 wake_up_process(action->thread); 1292 wait_event(desc->wait_for_threads, 1293 test_bit(IRQTF_READY, &action->thread_flags)); 1294 } 1295 1296 /* 1297 * Interrupt handler thread 1298 */ 1299 static int irq_thread(void *data) 1300 { 1301 struct callback_head on_exit_work; 1302 struct irqaction *action = data; 1303 struct irq_desc *desc = irq_to_desc(action->irq); 1304 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1305 struct irqaction *action); 1306 1307 irq_thread_set_ready(desc, action); 1308 1309 sched_set_fifo(current); 1310 1311 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1312 &action->thread_flags)) 1313 handler_fn = irq_forced_thread_fn; 1314 else 1315 handler_fn = irq_thread_fn; 1316 1317 init_task_work(&on_exit_work, irq_thread_dtor); 1318 task_work_add(current, &on_exit_work, TWA_NONE); 1319 1320 while (!irq_wait_for_interrupt(desc, action)) { 1321 irqreturn_t action_ret; 1322 1323 action_ret = handler_fn(desc, action); 1324 if (action_ret == IRQ_WAKE_THREAD) 1325 irq_wake_secondary(desc, action); 1326 1327 wake_threads_waitq(desc); 1328 } 1329 1330 /* 1331 * This is the regular exit path. __free_irq() is stopping the 1332 * thread via kthread_stop() after calling 1333 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1334 * oneshot mask bit can be set. 1335 */ 1336 task_work_cancel(current, irq_thread_dtor); 1337 return 0; 1338 } 1339 1340 /** 1341 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1342 * @irq: Interrupt line 1343 * @dev_id: Device identity for which the thread should be woken 1344 * 1345 */ 1346 void irq_wake_thread(unsigned int irq, void *dev_id) 1347 { 1348 struct irq_desc *desc = irq_to_desc(irq); 1349 struct irqaction *action; 1350 unsigned long flags; 1351 1352 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1353 return; 1354 1355 raw_spin_lock_irqsave(&desc->lock, flags); 1356 for_each_action_of_desc(desc, action) { 1357 if (action->dev_id == dev_id) { 1358 if (action->thread) 1359 __irq_wake_thread(desc, action); 1360 break; 1361 } 1362 } 1363 raw_spin_unlock_irqrestore(&desc->lock, flags); 1364 } 1365 EXPORT_SYMBOL_GPL(irq_wake_thread); 1366 1367 static int irq_setup_forced_threading(struct irqaction *new) 1368 { 1369 if (!force_irqthreads()) 1370 return 0; 1371 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1372 return 0; 1373 1374 /* 1375 * No further action required for interrupts which are requested as 1376 * threaded interrupts already 1377 */ 1378 if (new->handler == irq_default_primary_handler) 1379 return 0; 1380 1381 new->flags |= IRQF_ONESHOT; 1382 1383 /* 1384 * Handle the case where we have a real primary handler and a 1385 * thread handler. We force thread them as well by creating a 1386 * secondary action. 1387 */ 1388 if (new->handler && new->thread_fn) { 1389 /* Allocate the secondary action */ 1390 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1391 if (!new->secondary) 1392 return -ENOMEM; 1393 new->secondary->handler = irq_forced_secondary_handler; 1394 new->secondary->thread_fn = new->thread_fn; 1395 new->secondary->dev_id = new->dev_id; 1396 new->secondary->irq = new->irq; 1397 new->secondary->name = new->name; 1398 } 1399 /* Deal with the primary handler */ 1400 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1401 new->thread_fn = new->handler; 1402 new->handler = irq_default_primary_handler; 1403 return 0; 1404 } 1405 1406 static int irq_request_resources(struct irq_desc *desc) 1407 { 1408 struct irq_data *d = &desc->irq_data; 1409 struct irq_chip *c = d->chip; 1410 1411 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1412 } 1413 1414 static void irq_release_resources(struct irq_desc *desc) 1415 { 1416 struct irq_data *d = &desc->irq_data; 1417 struct irq_chip *c = d->chip; 1418 1419 if (c->irq_release_resources) 1420 c->irq_release_resources(d); 1421 } 1422 1423 static bool irq_supports_nmi(struct irq_desc *desc) 1424 { 1425 struct irq_data *d = irq_desc_get_irq_data(desc); 1426 1427 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1428 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1429 if (d->parent_data) 1430 return false; 1431 #endif 1432 /* Don't support NMIs for chips behind a slow bus */ 1433 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1434 return false; 1435 1436 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1437 } 1438 1439 static int irq_nmi_setup(struct irq_desc *desc) 1440 { 1441 struct irq_data *d = irq_desc_get_irq_data(desc); 1442 struct irq_chip *c = d->chip; 1443 1444 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1445 } 1446 1447 static void irq_nmi_teardown(struct irq_desc *desc) 1448 { 1449 struct irq_data *d = irq_desc_get_irq_data(desc); 1450 struct irq_chip *c = d->chip; 1451 1452 if (c->irq_nmi_teardown) 1453 c->irq_nmi_teardown(d); 1454 } 1455 1456 static int 1457 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1458 { 1459 struct task_struct *t; 1460 1461 if (!secondary) { 1462 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1463 new->name); 1464 } else { 1465 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1466 new->name); 1467 } 1468 1469 if (IS_ERR(t)) 1470 return PTR_ERR(t); 1471 1472 /* 1473 * We keep the reference to the task struct even if 1474 * the thread dies to avoid that the interrupt code 1475 * references an already freed task_struct. 1476 */ 1477 new->thread = get_task_struct(t); 1478 /* 1479 * Tell the thread to set its affinity. This is 1480 * important for shared interrupt handlers as we do 1481 * not invoke setup_affinity() for the secondary 1482 * handlers as everything is already set up. Even for 1483 * interrupts marked with IRQF_NO_BALANCE this is 1484 * correct as we want the thread to move to the cpu(s) 1485 * on which the requesting code placed the interrupt. 1486 */ 1487 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1488 return 0; 1489 } 1490 1491 /* 1492 * Internal function to register an irqaction - typically used to 1493 * allocate special interrupts that are part of the architecture. 1494 * 1495 * Locking rules: 1496 * 1497 * desc->request_mutex Provides serialization against a concurrent free_irq() 1498 * chip_bus_lock Provides serialization for slow bus operations 1499 * desc->lock Provides serialization against hard interrupts 1500 * 1501 * chip_bus_lock and desc->lock are sufficient for all other management and 1502 * interrupt related functions. desc->request_mutex solely serializes 1503 * request/free_irq(). 1504 */ 1505 static int 1506 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1507 { 1508 struct irqaction *old, **old_ptr; 1509 unsigned long flags, thread_mask = 0; 1510 int ret, nested, shared = 0; 1511 1512 if (!desc) 1513 return -EINVAL; 1514 1515 if (desc->irq_data.chip == &no_irq_chip) 1516 return -ENOSYS; 1517 if (!try_module_get(desc->owner)) 1518 return -ENODEV; 1519 1520 new->irq = irq; 1521 1522 /* 1523 * If the trigger type is not specified by the caller, 1524 * then use the default for this interrupt. 1525 */ 1526 if (!(new->flags & IRQF_TRIGGER_MASK)) 1527 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1528 1529 /* 1530 * Check whether the interrupt nests into another interrupt 1531 * thread. 1532 */ 1533 nested = irq_settings_is_nested_thread(desc); 1534 if (nested) { 1535 if (!new->thread_fn) { 1536 ret = -EINVAL; 1537 goto out_mput; 1538 } 1539 /* 1540 * Replace the primary handler which was provided from 1541 * the driver for non nested interrupt handling by the 1542 * dummy function which warns when called. 1543 */ 1544 new->handler = irq_nested_primary_handler; 1545 } else { 1546 if (irq_settings_can_thread(desc)) { 1547 ret = irq_setup_forced_threading(new); 1548 if (ret) 1549 goto out_mput; 1550 } 1551 } 1552 1553 /* 1554 * Create a handler thread when a thread function is supplied 1555 * and the interrupt does not nest into another interrupt 1556 * thread. 1557 */ 1558 if (new->thread_fn && !nested) { 1559 ret = setup_irq_thread(new, irq, false); 1560 if (ret) 1561 goto out_mput; 1562 if (new->secondary) { 1563 ret = setup_irq_thread(new->secondary, irq, true); 1564 if (ret) 1565 goto out_thread; 1566 } 1567 } 1568 1569 /* 1570 * Drivers are often written to work w/o knowledge about the 1571 * underlying irq chip implementation, so a request for a 1572 * threaded irq without a primary hard irq context handler 1573 * requires the ONESHOT flag to be set. Some irq chips like 1574 * MSI based interrupts are per se one shot safe. Check the 1575 * chip flags, so we can avoid the unmask dance at the end of 1576 * the threaded handler for those. 1577 */ 1578 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1579 new->flags &= ~IRQF_ONESHOT; 1580 1581 /* 1582 * Protects against a concurrent __free_irq() call which might wait 1583 * for synchronize_hardirq() to complete without holding the optional 1584 * chip bus lock and desc->lock. Also protects against handing out 1585 * a recycled oneshot thread_mask bit while it's still in use by 1586 * its previous owner. 1587 */ 1588 mutex_lock(&desc->request_mutex); 1589 1590 /* 1591 * Acquire bus lock as the irq_request_resources() callback below 1592 * might rely on the serialization or the magic power management 1593 * functions which are abusing the irq_bus_lock() callback, 1594 */ 1595 chip_bus_lock(desc); 1596 1597 /* First installed action requests resources. */ 1598 if (!desc->action) { 1599 ret = irq_request_resources(desc); 1600 if (ret) { 1601 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1602 new->name, irq, desc->irq_data.chip->name); 1603 goto out_bus_unlock; 1604 } 1605 } 1606 1607 /* 1608 * The following block of code has to be executed atomically 1609 * protected against a concurrent interrupt and any of the other 1610 * management calls which are not serialized via 1611 * desc->request_mutex or the optional bus lock. 1612 */ 1613 raw_spin_lock_irqsave(&desc->lock, flags); 1614 old_ptr = &desc->action; 1615 old = *old_ptr; 1616 if (old) { 1617 /* 1618 * Can't share interrupts unless both agree to and are 1619 * the same type (level, edge, polarity). So both flag 1620 * fields must have IRQF_SHARED set and the bits which 1621 * set the trigger type must match. Also all must 1622 * agree on ONESHOT. 1623 * Interrupt lines used for NMIs cannot be shared. 1624 */ 1625 unsigned int oldtype; 1626 1627 if (desc->istate & IRQS_NMI) { 1628 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1629 new->name, irq, desc->irq_data.chip->name); 1630 ret = -EINVAL; 1631 goto out_unlock; 1632 } 1633 1634 /* 1635 * If nobody did set the configuration before, inherit 1636 * the one provided by the requester. 1637 */ 1638 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1639 oldtype = irqd_get_trigger_type(&desc->irq_data); 1640 } else { 1641 oldtype = new->flags & IRQF_TRIGGER_MASK; 1642 irqd_set_trigger_type(&desc->irq_data, oldtype); 1643 } 1644 1645 if (!((old->flags & new->flags) & IRQF_SHARED) || 1646 (oldtype != (new->flags & IRQF_TRIGGER_MASK))) 1647 goto mismatch; 1648 1649 if ((old->flags & IRQF_ONESHOT) && 1650 (new->flags & IRQF_COND_ONESHOT)) 1651 new->flags |= IRQF_ONESHOT; 1652 else if ((old->flags ^ new->flags) & IRQF_ONESHOT) 1653 goto mismatch; 1654 1655 /* All handlers must agree on per-cpuness */ 1656 if ((old->flags & IRQF_PERCPU) != 1657 (new->flags & IRQF_PERCPU)) 1658 goto mismatch; 1659 1660 /* add new interrupt at end of irq queue */ 1661 do { 1662 /* 1663 * Or all existing action->thread_mask bits, 1664 * so we can find the next zero bit for this 1665 * new action. 1666 */ 1667 thread_mask |= old->thread_mask; 1668 old_ptr = &old->next; 1669 old = *old_ptr; 1670 } while (old); 1671 shared = 1; 1672 } 1673 1674 /* 1675 * Setup the thread mask for this irqaction for ONESHOT. For 1676 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1677 * conditional in irq_wake_thread(). 1678 */ 1679 if (new->flags & IRQF_ONESHOT) { 1680 /* 1681 * Unlikely to have 32 resp 64 irqs sharing one line, 1682 * but who knows. 1683 */ 1684 if (thread_mask == ~0UL) { 1685 ret = -EBUSY; 1686 goto out_unlock; 1687 } 1688 /* 1689 * The thread_mask for the action is or'ed to 1690 * desc->thread_active to indicate that the 1691 * IRQF_ONESHOT thread handler has been woken, but not 1692 * yet finished. The bit is cleared when a thread 1693 * completes. When all threads of a shared interrupt 1694 * line have completed desc->threads_active becomes 1695 * zero and the interrupt line is unmasked. See 1696 * handle.c:irq_wake_thread() for further information. 1697 * 1698 * If no thread is woken by primary (hard irq context) 1699 * interrupt handlers, then desc->threads_active is 1700 * also checked for zero to unmask the irq line in the 1701 * affected hard irq flow handlers 1702 * (handle_[fasteoi|level]_irq). 1703 * 1704 * The new action gets the first zero bit of 1705 * thread_mask assigned. See the loop above which or's 1706 * all existing action->thread_mask bits. 1707 */ 1708 new->thread_mask = 1UL << ffz(thread_mask); 1709 1710 } else if (new->handler == irq_default_primary_handler && 1711 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1712 /* 1713 * The interrupt was requested with handler = NULL, so 1714 * we use the default primary handler for it. But it 1715 * does not have the oneshot flag set. In combination 1716 * with level interrupts this is deadly, because the 1717 * default primary handler just wakes the thread, then 1718 * the irq lines is reenabled, but the device still 1719 * has the level irq asserted. Rinse and repeat.... 1720 * 1721 * While this works for edge type interrupts, we play 1722 * it safe and reject unconditionally because we can't 1723 * say for sure which type this interrupt really 1724 * has. The type flags are unreliable as the 1725 * underlying chip implementation can override them. 1726 */ 1727 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1728 new->name, irq); 1729 ret = -EINVAL; 1730 goto out_unlock; 1731 } 1732 1733 if (!shared) { 1734 /* Setup the type (level, edge polarity) if configured: */ 1735 if (new->flags & IRQF_TRIGGER_MASK) { 1736 ret = __irq_set_trigger(desc, 1737 new->flags & IRQF_TRIGGER_MASK); 1738 1739 if (ret) 1740 goto out_unlock; 1741 } 1742 1743 /* 1744 * Activate the interrupt. That activation must happen 1745 * independently of IRQ_NOAUTOEN. request_irq() can fail 1746 * and the callers are supposed to handle 1747 * that. enable_irq() of an interrupt requested with 1748 * IRQ_NOAUTOEN is not supposed to fail. The activation 1749 * keeps it in shutdown mode, it merily associates 1750 * resources if necessary and if that's not possible it 1751 * fails. Interrupts which are in managed shutdown mode 1752 * will simply ignore that activation request. 1753 */ 1754 ret = irq_activate(desc); 1755 if (ret) 1756 goto out_unlock; 1757 1758 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1759 IRQS_ONESHOT | IRQS_WAITING); 1760 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1761 1762 if (new->flags & IRQF_PERCPU) { 1763 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1764 irq_settings_set_per_cpu(desc); 1765 if (new->flags & IRQF_NO_DEBUG) 1766 irq_settings_set_no_debug(desc); 1767 } 1768 1769 if (noirqdebug) 1770 irq_settings_set_no_debug(desc); 1771 1772 if (new->flags & IRQF_ONESHOT) 1773 desc->istate |= IRQS_ONESHOT; 1774 1775 /* Exclude IRQ from balancing if requested */ 1776 if (new->flags & IRQF_NOBALANCING) { 1777 irq_settings_set_no_balancing(desc); 1778 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1779 } 1780 1781 if (!(new->flags & IRQF_NO_AUTOEN) && 1782 irq_settings_can_autoenable(desc)) { 1783 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1784 } else { 1785 /* 1786 * Shared interrupts do not go well with disabling 1787 * auto enable. The sharing interrupt might request 1788 * it while it's still disabled and then wait for 1789 * interrupts forever. 1790 */ 1791 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1792 /* Undo nested disables: */ 1793 desc->depth = 1; 1794 } 1795 1796 } else if (new->flags & IRQF_TRIGGER_MASK) { 1797 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1798 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1799 1800 if (nmsk != omsk) 1801 /* hope the handler works with current trigger mode */ 1802 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1803 irq, omsk, nmsk); 1804 } 1805 1806 *old_ptr = new; 1807 1808 irq_pm_install_action(desc, new); 1809 1810 /* Reset broken irq detection when installing new handler */ 1811 desc->irq_count = 0; 1812 desc->irqs_unhandled = 0; 1813 1814 /* 1815 * Check whether we disabled the irq via the spurious handler 1816 * before. Reenable it and give it another chance. 1817 */ 1818 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1819 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1820 __enable_irq(desc); 1821 } 1822 1823 raw_spin_unlock_irqrestore(&desc->lock, flags); 1824 chip_bus_sync_unlock(desc); 1825 mutex_unlock(&desc->request_mutex); 1826 1827 irq_setup_timings(desc, new); 1828 1829 wake_up_and_wait_for_irq_thread_ready(desc, new); 1830 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1831 1832 register_irq_proc(irq, desc); 1833 new->dir = NULL; 1834 register_handler_proc(irq, new); 1835 return 0; 1836 1837 mismatch: 1838 if (!(new->flags & IRQF_PROBE_SHARED)) { 1839 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1840 irq, new->flags, new->name, old->flags, old->name); 1841 #ifdef CONFIG_DEBUG_SHIRQ 1842 dump_stack(); 1843 #endif 1844 } 1845 ret = -EBUSY; 1846 1847 out_unlock: 1848 raw_spin_unlock_irqrestore(&desc->lock, flags); 1849 1850 if (!desc->action) 1851 irq_release_resources(desc); 1852 out_bus_unlock: 1853 chip_bus_sync_unlock(desc); 1854 mutex_unlock(&desc->request_mutex); 1855 1856 out_thread: 1857 if (new->thread) { 1858 struct task_struct *t = new->thread; 1859 1860 new->thread = NULL; 1861 kthread_stop_put(t); 1862 } 1863 if (new->secondary && new->secondary->thread) { 1864 struct task_struct *t = new->secondary->thread; 1865 1866 new->secondary->thread = NULL; 1867 kthread_stop_put(t); 1868 } 1869 out_mput: 1870 module_put(desc->owner); 1871 return ret; 1872 } 1873 1874 /* 1875 * Internal function to unregister an irqaction - used to free 1876 * regular and special interrupts that are part of the architecture. 1877 */ 1878 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1879 { 1880 unsigned irq = desc->irq_data.irq; 1881 struct irqaction *action, **action_ptr; 1882 unsigned long flags; 1883 1884 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1885 1886 mutex_lock(&desc->request_mutex); 1887 chip_bus_lock(desc); 1888 raw_spin_lock_irqsave(&desc->lock, flags); 1889 1890 /* 1891 * There can be multiple actions per IRQ descriptor, find the right 1892 * one based on the dev_id: 1893 */ 1894 action_ptr = &desc->action; 1895 for (;;) { 1896 action = *action_ptr; 1897 1898 if (!action) { 1899 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1900 raw_spin_unlock_irqrestore(&desc->lock, flags); 1901 chip_bus_sync_unlock(desc); 1902 mutex_unlock(&desc->request_mutex); 1903 return NULL; 1904 } 1905 1906 if (action->dev_id == dev_id) 1907 break; 1908 action_ptr = &action->next; 1909 } 1910 1911 /* Found it - now remove it from the list of entries: */ 1912 *action_ptr = action->next; 1913 1914 irq_pm_remove_action(desc, action); 1915 1916 /* If this was the last handler, shut down the IRQ line: */ 1917 if (!desc->action) { 1918 irq_settings_clr_disable_unlazy(desc); 1919 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1920 irq_shutdown(desc); 1921 } 1922 1923 #ifdef CONFIG_SMP 1924 /* make sure affinity_hint is cleaned up */ 1925 if (WARN_ON_ONCE(desc->affinity_hint)) 1926 desc->affinity_hint = NULL; 1927 #endif 1928 1929 raw_spin_unlock_irqrestore(&desc->lock, flags); 1930 /* 1931 * Drop bus_lock here so the changes which were done in the chip 1932 * callbacks above are synced out to the irq chips which hang 1933 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1934 * 1935 * Aside of that the bus_lock can also be taken from the threaded 1936 * handler in irq_finalize_oneshot() which results in a deadlock 1937 * because kthread_stop() would wait forever for the thread to 1938 * complete, which is blocked on the bus lock. 1939 * 1940 * The still held desc->request_mutex() protects against a 1941 * concurrent request_irq() of this irq so the release of resources 1942 * and timing data is properly serialized. 1943 */ 1944 chip_bus_sync_unlock(desc); 1945 1946 unregister_handler_proc(irq, action); 1947 1948 /* 1949 * Make sure it's not being used on another CPU and if the chip 1950 * supports it also make sure that there is no (not yet serviced) 1951 * interrupt in flight at the hardware level. 1952 */ 1953 __synchronize_irq(desc); 1954 1955 #ifdef CONFIG_DEBUG_SHIRQ 1956 /* 1957 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1958 * event to happen even now it's being freed, so let's make sure that 1959 * is so by doing an extra call to the handler .... 1960 * 1961 * ( We do this after actually deregistering it, to make sure that a 1962 * 'real' IRQ doesn't run in parallel with our fake. ) 1963 */ 1964 if (action->flags & IRQF_SHARED) { 1965 local_irq_save(flags); 1966 action->handler(irq, dev_id); 1967 local_irq_restore(flags); 1968 } 1969 #endif 1970 1971 /* 1972 * The action has already been removed above, but the thread writes 1973 * its oneshot mask bit when it completes. Though request_mutex is 1974 * held across this which prevents __setup_irq() from handing out 1975 * the same bit to a newly requested action. 1976 */ 1977 if (action->thread) { 1978 kthread_stop_put(action->thread); 1979 if (action->secondary && action->secondary->thread) 1980 kthread_stop_put(action->secondary->thread); 1981 } 1982 1983 /* Last action releases resources */ 1984 if (!desc->action) { 1985 /* 1986 * Reacquire bus lock as irq_release_resources() might 1987 * require it to deallocate resources over the slow bus. 1988 */ 1989 chip_bus_lock(desc); 1990 /* 1991 * There is no interrupt on the fly anymore. Deactivate it 1992 * completely. 1993 */ 1994 raw_spin_lock_irqsave(&desc->lock, flags); 1995 irq_domain_deactivate_irq(&desc->irq_data); 1996 raw_spin_unlock_irqrestore(&desc->lock, flags); 1997 1998 irq_release_resources(desc); 1999 chip_bus_sync_unlock(desc); 2000 irq_remove_timings(desc); 2001 } 2002 2003 mutex_unlock(&desc->request_mutex); 2004 2005 irq_chip_pm_put(&desc->irq_data); 2006 module_put(desc->owner); 2007 kfree(action->secondary); 2008 return action; 2009 } 2010 2011 /** 2012 * free_irq - free an interrupt allocated with request_irq 2013 * @irq: Interrupt line to free 2014 * @dev_id: Device identity to free 2015 * 2016 * Remove an interrupt handler. The handler is removed and if the 2017 * interrupt line is no longer in use by any driver it is disabled. 2018 * On a shared IRQ the caller must ensure the interrupt is disabled 2019 * on the card it drives before calling this function. The function 2020 * does not return until any executing interrupts for this IRQ 2021 * have completed. 2022 * 2023 * This function must not be called from interrupt context. 2024 * 2025 * Returns the devname argument passed to request_irq. 2026 */ 2027 const void *free_irq(unsigned int irq, void *dev_id) 2028 { 2029 struct irq_desc *desc = irq_to_desc(irq); 2030 struct irqaction *action; 2031 const char *devname; 2032 2033 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2034 return NULL; 2035 2036 #ifdef CONFIG_SMP 2037 if (WARN_ON(desc->affinity_notify)) 2038 desc->affinity_notify = NULL; 2039 #endif 2040 2041 action = __free_irq(desc, dev_id); 2042 2043 if (!action) 2044 return NULL; 2045 2046 devname = action->name; 2047 kfree(action); 2048 return devname; 2049 } 2050 EXPORT_SYMBOL(free_irq); 2051 2052 /* This function must be called with desc->lock held */ 2053 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2054 { 2055 const char *devname = NULL; 2056 2057 desc->istate &= ~IRQS_NMI; 2058 2059 if (!WARN_ON(desc->action == NULL)) { 2060 irq_pm_remove_action(desc, desc->action); 2061 devname = desc->action->name; 2062 unregister_handler_proc(irq, desc->action); 2063 2064 kfree(desc->action); 2065 desc->action = NULL; 2066 } 2067 2068 irq_settings_clr_disable_unlazy(desc); 2069 irq_shutdown_and_deactivate(desc); 2070 2071 irq_release_resources(desc); 2072 2073 irq_chip_pm_put(&desc->irq_data); 2074 module_put(desc->owner); 2075 2076 return devname; 2077 } 2078 2079 const void *free_nmi(unsigned int irq, void *dev_id) 2080 { 2081 struct irq_desc *desc = irq_to_desc(irq); 2082 unsigned long flags; 2083 const void *devname; 2084 2085 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2086 return NULL; 2087 2088 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2089 return NULL; 2090 2091 /* NMI still enabled */ 2092 if (WARN_ON(desc->depth == 0)) 2093 disable_nmi_nosync(irq); 2094 2095 raw_spin_lock_irqsave(&desc->lock, flags); 2096 2097 irq_nmi_teardown(desc); 2098 devname = __cleanup_nmi(irq, desc); 2099 2100 raw_spin_unlock_irqrestore(&desc->lock, flags); 2101 2102 return devname; 2103 } 2104 2105 /** 2106 * request_threaded_irq - allocate an interrupt line 2107 * @irq: Interrupt line to allocate 2108 * @handler: Function to be called when the IRQ occurs. 2109 * Primary handler for threaded interrupts. 2110 * If handler is NULL and thread_fn != NULL 2111 * the default primary handler is installed. 2112 * @thread_fn: Function called from the irq handler thread 2113 * If NULL, no irq thread is created 2114 * @irqflags: Interrupt type flags 2115 * @devname: An ascii name for the claiming device 2116 * @dev_id: A cookie passed back to the handler function 2117 * 2118 * This call allocates interrupt resources and enables the 2119 * interrupt line and IRQ handling. From the point this 2120 * call is made your handler function may be invoked. Since 2121 * your handler function must clear any interrupt the board 2122 * raises, you must take care both to initialise your hardware 2123 * and to set up the interrupt handler in the right order. 2124 * 2125 * If you want to set up a threaded irq handler for your device 2126 * then you need to supply @handler and @thread_fn. @handler is 2127 * still called in hard interrupt context and has to check 2128 * whether the interrupt originates from the device. If yes it 2129 * needs to disable the interrupt on the device and return 2130 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2131 * @thread_fn. This split handler design is necessary to support 2132 * shared interrupts. 2133 * 2134 * Dev_id must be globally unique. Normally the address of the 2135 * device data structure is used as the cookie. Since the handler 2136 * receives this value it makes sense to use it. 2137 * 2138 * If your interrupt is shared you must pass a non NULL dev_id 2139 * as this is required when freeing the interrupt. 2140 * 2141 * Flags: 2142 * 2143 * IRQF_SHARED Interrupt is shared 2144 * IRQF_TRIGGER_* Specify active edge(s) or level 2145 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2146 */ 2147 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2148 irq_handler_t thread_fn, unsigned long irqflags, 2149 const char *devname, void *dev_id) 2150 { 2151 struct irqaction *action; 2152 struct irq_desc *desc; 2153 int retval; 2154 2155 if (irq == IRQ_NOTCONNECTED) 2156 return -ENOTCONN; 2157 2158 /* 2159 * Sanity-check: shared interrupts must pass in a real dev-ID, 2160 * otherwise we'll have trouble later trying to figure out 2161 * which interrupt is which (messes up the interrupt freeing 2162 * logic etc). 2163 * 2164 * Also shared interrupts do not go well with disabling auto enable. 2165 * The sharing interrupt might request it while it's still disabled 2166 * and then wait for interrupts forever. 2167 * 2168 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2169 * it cannot be set along with IRQF_NO_SUSPEND. 2170 */ 2171 if (((irqflags & IRQF_SHARED) && !dev_id) || 2172 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2173 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2174 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2175 return -EINVAL; 2176 2177 desc = irq_to_desc(irq); 2178 if (!desc) 2179 return -EINVAL; 2180 2181 if (!irq_settings_can_request(desc) || 2182 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2183 return -EINVAL; 2184 2185 if (!handler) { 2186 if (!thread_fn) 2187 return -EINVAL; 2188 handler = irq_default_primary_handler; 2189 } 2190 2191 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2192 if (!action) 2193 return -ENOMEM; 2194 2195 action->handler = handler; 2196 action->thread_fn = thread_fn; 2197 action->flags = irqflags; 2198 action->name = devname; 2199 action->dev_id = dev_id; 2200 2201 retval = irq_chip_pm_get(&desc->irq_data); 2202 if (retval < 0) { 2203 kfree(action); 2204 return retval; 2205 } 2206 2207 retval = __setup_irq(irq, desc, action); 2208 2209 if (retval) { 2210 irq_chip_pm_put(&desc->irq_data); 2211 kfree(action->secondary); 2212 kfree(action); 2213 } 2214 2215 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2216 if (!retval && (irqflags & IRQF_SHARED)) { 2217 /* 2218 * It's a shared IRQ -- the driver ought to be prepared for it 2219 * to happen immediately, so let's make sure.... 2220 * We disable the irq to make sure that a 'real' IRQ doesn't 2221 * run in parallel with our fake. 2222 */ 2223 unsigned long flags; 2224 2225 disable_irq(irq); 2226 local_irq_save(flags); 2227 2228 handler(irq, dev_id); 2229 2230 local_irq_restore(flags); 2231 enable_irq(irq); 2232 } 2233 #endif 2234 return retval; 2235 } 2236 EXPORT_SYMBOL(request_threaded_irq); 2237 2238 /** 2239 * request_any_context_irq - allocate an interrupt line 2240 * @irq: Interrupt line to allocate 2241 * @handler: Function to be called when the IRQ occurs. 2242 * Threaded handler for threaded interrupts. 2243 * @flags: Interrupt type flags 2244 * @name: An ascii name for the claiming device 2245 * @dev_id: A cookie passed back to the handler function 2246 * 2247 * This call allocates interrupt resources and enables the 2248 * interrupt line and IRQ handling. It selects either a 2249 * hardirq or threaded handling method depending on the 2250 * context. 2251 * 2252 * On failure, it returns a negative value. On success, 2253 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2254 */ 2255 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2256 unsigned long flags, const char *name, void *dev_id) 2257 { 2258 struct irq_desc *desc; 2259 int ret; 2260 2261 if (irq == IRQ_NOTCONNECTED) 2262 return -ENOTCONN; 2263 2264 desc = irq_to_desc(irq); 2265 if (!desc) 2266 return -EINVAL; 2267 2268 if (irq_settings_is_nested_thread(desc)) { 2269 ret = request_threaded_irq(irq, NULL, handler, 2270 flags, name, dev_id); 2271 return !ret ? IRQC_IS_NESTED : ret; 2272 } 2273 2274 ret = request_irq(irq, handler, flags, name, dev_id); 2275 return !ret ? IRQC_IS_HARDIRQ : ret; 2276 } 2277 EXPORT_SYMBOL_GPL(request_any_context_irq); 2278 2279 /** 2280 * request_nmi - allocate an interrupt line for NMI delivery 2281 * @irq: Interrupt line to allocate 2282 * @handler: Function to be called when the IRQ occurs. 2283 * Threaded handler for threaded interrupts. 2284 * @irqflags: Interrupt type flags 2285 * @name: An ascii name for the claiming device 2286 * @dev_id: A cookie passed back to the handler function 2287 * 2288 * This call allocates interrupt resources and enables the 2289 * interrupt line and IRQ handling. It sets up the IRQ line 2290 * to be handled as an NMI. 2291 * 2292 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2293 * cannot be threaded. 2294 * 2295 * Interrupt lines requested for NMI delivering must produce per cpu 2296 * interrupts and have auto enabling setting disabled. 2297 * 2298 * Dev_id must be globally unique. Normally the address of the 2299 * device data structure is used as the cookie. Since the handler 2300 * receives this value it makes sense to use it. 2301 * 2302 * If the interrupt line cannot be used to deliver NMIs, function 2303 * will fail and return a negative value. 2304 */ 2305 int request_nmi(unsigned int irq, irq_handler_t handler, 2306 unsigned long irqflags, const char *name, void *dev_id) 2307 { 2308 struct irqaction *action; 2309 struct irq_desc *desc; 2310 unsigned long flags; 2311 int retval; 2312 2313 if (irq == IRQ_NOTCONNECTED) 2314 return -ENOTCONN; 2315 2316 /* NMI cannot be shared, used for Polling */ 2317 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2318 return -EINVAL; 2319 2320 if (!(irqflags & IRQF_PERCPU)) 2321 return -EINVAL; 2322 2323 if (!handler) 2324 return -EINVAL; 2325 2326 desc = irq_to_desc(irq); 2327 2328 if (!desc || (irq_settings_can_autoenable(desc) && 2329 !(irqflags & IRQF_NO_AUTOEN)) || 2330 !irq_settings_can_request(desc) || 2331 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2332 !irq_supports_nmi(desc)) 2333 return -EINVAL; 2334 2335 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2336 if (!action) 2337 return -ENOMEM; 2338 2339 action->handler = handler; 2340 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2341 action->name = name; 2342 action->dev_id = dev_id; 2343 2344 retval = irq_chip_pm_get(&desc->irq_data); 2345 if (retval < 0) 2346 goto err_out; 2347 2348 retval = __setup_irq(irq, desc, action); 2349 if (retval) 2350 goto err_irq_setup; 2351 2352 raw_spin_lock_irqsave(&desc->lock, flags); 2353 2354 /* Setup NMI state */ 2355 desc->istate |= IRQS_NMI; 2356 retval = irq_nmi_setup(desc); 2357 if (retval) { 2358 __cleanup_nmi(irq, desc); 2359 raw_spin_unlock_irqrestore(&desc->lock, flags); 2360 return -EINVAL; 2361 } 2362 2363 raw_spin_unlock_irqrestore(&desc->lock, flags); 2364 2365 return 0; 2366 2367 err_irq_setup: 2368 irq_chip_pm_put(&desc->irq_data); 2369 err_out: 2370 kfree(action); 2371 2372 return retval; 2373 } 2374 2375 void enable_percpu_irq(unsigned int irq, unsigned int type) 2376 { 2377 unsigned int cpu = smp_processor_id(); 2378 unsigned long flags; 2379 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2380 2381 if (!desc) 2382 return; 2383 2384 /* 2385 * If the trigger type is not specified by the caller, then 2386 * use the default for this interrupt. 2387 */ 2388 type &= IRQ_TYPE_SENSE_MASK; 2389 if (type == IRQ_TYPE_NONE) 2390 type = irqd_get_trigger_type(&desc->irq_data); 2391 2392 if (type != IRQ_TYPE_NONE) { 2393 int ret; 2394 2395 ret = __irq_set_trigger(desc, type); 2396 2397 if (ret) { 2398 WARN(1, "failed to set type for IRQ%d\n", irq); 2399 goto out; 2400 } 2401 } 2402 2403 irq_percpu_enable(desc, cpu); 2404 out: 2405 irq_put_desc_unlock(desc, flags); 2406 } 2407 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2408 2409 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2410 { 2411 enable_percpu_irq(irq, type); 2412 } 2413 2414 /** 2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2416 * @irq: Linux irq number to check for 2417 * 2418 * Must be called from a non migratable context. Returns the enable 2419 * state of a per cpu interrupt on the current cpu. 2420 */ 2421 bool irq_percpu_is_enabled(unsigned int irq) 2422 { 2423 unsigned int cpu = smp_processor_id(); 2424 struct irq_desc *desc; 2425 unsigned long flags; 2426 bool is_enabled; 2427 2428 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2429 if (!desc) 2430 return false; 2431 2432 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2433 irq_put_desc_unlock(desc, flags); 2434 2435 return is_enabled; 2436 } 2437 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2438 2439 void disable_percpu_irq(unsigned int irq) 2440 { 2441 unsigned int cpu = smp_processor_id(); 2442 unsigned long flags; 2443 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2444 2445 if (!desc) 2446 return; 2447 2448 irq_percpu_disable(desc, cpu); 2449 irq_put_desc_unlock(desc, flags); 2450 } 2451 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2452 2453 void disable_percpu_nmi(unsigned int irq) 2454 { 2455 disable_percpu_irq(irq); 2456 } 2457 2458 /* 2459 * Internal function to unregister a percpu irqaction. 2460 */ 2461 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2462 { 2463 struct irq_desc *desc = irq_to_desc(irq); 2464 struct irqaction *action; 2465 unsigned long flags; 2466 2467 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2468 2469 if (!desc) 2470 return NULL; 2471 2472 raw_spin_lock_irqsave(&desc->lock, flags); 2473 2474 action = desc->action; 2475 if (!action || action->percpu_dev_id != dev_id) { 2476 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2477 goto bad; 2478 } 2479 2480 if (!cpumask_empty(desc->percpu_enabled)) { 2481 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2482 irq, cpumask_first(desc->percpu_enabled)); 2483 goto bad; 2484 } 2485 2486 /* Found it - now remove it from the list of entries: */ 2487 desc->action = NULL; 2488 2489 desc->istate &= ~IRQS_NMI; 2490 2491 raw_spin_unlock_irqrestore(&desc->lock, flags); 2492 2493 unregister_handler_proc(irq, action); 2494 2495 irq_chip_pm_put(&desc->irq_data); 2496 module_put(desc->owner); 2497 return action; 2498 2499 bad: 2500 raw_spin_unlock_irqrestore(&desc->lock, flags); 2501 return NULL; 2502 } 2503 2504 /** 2505 * remove_percpu_irq - free a per-cpu interrupt 2506 * @irq: Interrupt line to free 2507 * @act: irqaction for the interrupt 2508 * 2509 * Used to remove interrupts statically setup by the early boot process. 2510 */ 2511 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2512 { 2513 struct irq_desc *desc = irq_to_desc(irq); 2514 2515 if (desc && irq_settings_is_per_cpu_devid(desc)) 2516 __free_percpu_irq(irq, act->percpu_dev_id); 2517 } 2518 2519 /** 2520 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2521 * @irq: Interrupt line to free 2522 * @dev_id: Device identity to free 2523 * 2524 * Remove a percpu interrupt handler. The handler is removed, but 2525 * the interrupt line is not disabled. This must be done on each 2526 * CPU before calling this function. The function does not return 2527 * until any executing interrupts for this IRQ have completed. 2528 * 2529 * This function must not be called from interrupt context. 2530 */ 2531 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2532 { 2533 struct irq_desc *desc = irq_to_desc(irq); 2534 2535 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2536 return; 2537 2538 chip_bus_lock(desc); 2539 kfree(__free_percpu_irq(irq, dev_id)); 2540 chip_bus_sync_unlock(desc); 2541 } 2542 EXPORT_SYMBOL_GPL(free_percpu_irq); 2543 2544 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2545 { 2546 struct irq_desc *desc = irq_to_desc(irq); 2547 2548 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2549 return; 2550 2551 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2552 return; 2553 2554 kfree(__free_percpu_irq(irq, dev_id)); 2555 } 2556 2557 /** 2558 * setup_percpu_irq - setup a per-cpu interrupt 2559 * @irq: Interrupt line to setup 2560 * @act: irqaction for the interrupt 2561 * 2562 * Used to statically setup per-cpu interrupts in the early boot process. 2563 */ 2564 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2565 { 2566 struct irq_desc *desc = irq_to_desc(irq); 2567 int retval; 2568 2569 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2570 return -EINVAL; 2571 2572 retval = irq_chip_pm_get(&desc->irq_data); 2573 if (retval < 0) 2574 return retval; 2575 2576 retval = __setup_irq(irq, desc, act); 2577 2578 if (retval) 2579 irq_chip_pm_put(&desc->irq_data); 2580 2581 return retval; 2582 } 2583 2584 /** 2585 * __request_percpu_irq - allocate a percpu interrupt line 2586 * @irq: Interrupt line to allocate 2587 * @handler: Function to be called when the IRQ occurs. 2588 * @flags: Interrupt type flags (IRQF_TIMER only) 2589 * @devname: An ascii name for the claiming device 2590 * @dev_id: A percpu cookie passed back to the handler function 2591 * 2592 * This call allocates interrupt resources and enables the 2593 * interrupt on the local CPU. If the interrupt is supposed to be 2594 * enabled on other CPUs, it has to be done on each CPU using 2595 * enable_percpu_irq(). 2596 * 2597 * Dev_id must be globally unique. It is a per-cpu variable, and 2598 * the handler gets called with the interrupted CPU's instance of 2599 * that variable. 2600 */ 2601 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2602 unsigned long flags, const char *devname, 2603 void __percpu *dev_id) 2604 { 2605 struct irqaction *action; 2606 struct irq_desc *desc; 2607 int retval; 2608 2609 if (!dev_id) 2610 return -EINVAL; 2611 2612 desc = irq_to_desc(irq); 2613 if (!desc || !irq_settings_can_request(desc) || 2614 !irq_settings_is_per_cpu_devid(desc)) 2615 return -EINVAL; 2616 2617 if (flags && flags != IRQF_TIMER) 2618 return -EINVAL; 2619 2620 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2621 if (!action) 2622 return -ENOMEM; 2623 2624 action->handler = handler; 2625 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2626 action->name = devname; 2627 action->percpu_dev_id = dev_id; 2628 2629 retval = irq_chip_pm_get(&desc->irq_data); 2630 if (retval < 0) { 2631 kfree(action); 2632 return retval; 2633 } 2634 2635 retval = __setup_irq(irq, desc, action); 2636 2637 if (retval) { 2638 irq_chip_pm_put(&desc->irq_data); 2639 kfree(action); 2640 } 2641 2642 return retval; 2643 } 2644 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2645 2646 /** 2647 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2648 * @irq: Interrupt line to allocate 2649 * @handler: Function to be called when the IRQ occurs. 2650 * @name: An ascii name for the claiming device 2651 * @dev_id: A percpu cookie passed back to the handler function 2652 * 2653 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2654 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2655 * being enabled on the same CPU by using enable_percpu_nmi(). 2656 * 2657 * Dev_id must be globally unique. It is a per-cpu variable, and 2658 * the handler gets called with the interrupted CPU's instance of 2659 * that variable. 2660 * 2661 * Interrupt lines requested for NMI delivering should have auto enabling 2662 * setting disabled. 2663 * 2664 * If the interrupt line cannot be used to deliver NMIs, function 2665 * will fail returning a negative value. 2666 */ 2667 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2668 const char *name, void __percpu *dev_id) 2669 { 2670 struct irqaction *action; 2671 struct irq_desc *desc; 2672 unsigned long flags; 2673 int retval; 2674 2675 if (!handler) 2676 return -EINVAL; 2677 2678 desc = irq_to_desc(irq); 2679 2680 if (!desc || !irq_settings_can_request(desc) || 2681 !irq_settings_is_per_cpu_devid(desc) || 2682 irq_settings_can_autoenable(desc) || 2683 !irq_supports_nmi(desc)) 2684 return -EINVAL; 2685 2686 /* The line cannot already be NMI */ 2687 if (desc->istate & IRQS_NMI) 2688 return -EINVAL; 2689 2690 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2691 if (!action) 2692 return -ENOMEM; 2693 2694 action->handler = handler; 2695 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2696 | IRQF_NOBALANCING; 2697 action->name = name; 2698 action->percpu_dev_id = dev_id; 2699 2700 retval = irq_chip_pm_get(&desc->irq_data); 2701 if (retval < 0) 2702 goto err_out; 2703 2704 retval = __setup_irq(irq, desc, action); 2705 if (retval) 2706 goto err_irq_setup; 2707 2708 raw_spin_lock_irqsave(&desc->lock, flags); 2709 desc->istate |= IRQS_NMI; 2710 raw_spin_unlock_irqrestore(&desc->lock, flags); 2711 2712 return 0; 2713 2714 err_irq_setup: 2715 irq_chip_pm_put(&desc->irq_data); 2716 err_out: 2717 kfree(action); 2718 2719 return retval; 2720 } 2721 2722 /** 2723 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2724 * @irq: Interrupt line to prepare for NMI delivery 2725 * 2726 * This call prepares an interrupt line to deliver NMI on the current CPU, 2727 * before that interrupt line gets enabled with enable_percpu_nmi(). 2728 * 2729 * As a CPU local operation, this should be called from non-preemptible 2730 * context. 2731 * 2732 * If the interrupt line cannot be used to deliver NMIs, function 2733 * will fail returning a negative value. 2734 */ 2735 int prepare_percpu_nmi(unsigned int irq) 2736 { 2737 unsigned long flags; 2738 struct irq_desc *desc; 2739 int ret = 0; 2740 2741 WARN_ON(preemptible()); 2742 2743 desc = irq_get_desc_lock(irq, &flags, 2744 IRQ_GET_DESC_CHECK_PERCPU); 2745 if (!desc) 2746 return -EINVAL; 2747 2748 if (WARN(!(desc->istate & IRQS_NMI), 2749 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2750 irq)) { 2751 ret = -EINVAL; 2752 goto out; 2753 } 2754 2755 ret = irq_nmi_setup(desc); 2756 if (ret) { 2757 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2758 goto out; 2759 } 2760 2761 out: 2762 irq_put_desc_unlock(desc, flags); 2763 return ret; 2764 } 2765 2766 /** 2767 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2768 * @irq: Interrupt line from which CPU local NMI configuration should be 2769 * removed 2770 * 2771 * This call undoes the setup done by prepare_percpu_nmi(). 2772 * 2773 * IRQ line should not be enabled for the current CPU. 2774 * 2775 * As a CPU local operation, this should be called from non-preemptible 2776 * context. 2777 */ 2778 void teardown_percpu_nmi(unsigned int irq) 2779 { 2780 unsigned long flags; 2781 struct irq_desc *desc; 2782 2783 WARN_ON(preemptible()); 2784 2785 desc = irq_get_desc_lock(irq, &flags, 2786 IRQ_GET_DESC_CHECK_PERCPU); 2787 if (!desc) 2788 return; 2789 2790 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2791 goto out; 2792 2793 irq_nmi_teardown(desc); 2794 out: 2795 irq_put_desc_unlock(desc, flags); 2796 } 2797 2798 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2799 bool *state) 2800 { 2801 struct irq_chip *chip; 2802 int err = -EINVAL; 2803 2804 do { 2805 chip = irq_data_get_irq_chip(data); 2806 if (WARN_ON_ONCE(!chip)) 2807 return -ENODEV; 2808 if (chip->irq_get_irqchip_state) 2809 break; 2810 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2811 data = data->parent_data; 2812 #else 2813 data = NULL; 2814 #endif 2815 } while (data); 2816 2817 if (data) 2818 err = chip->irq_get_irqchip_state(data, which, state); 2819 return err; 2820 } 2821 2822 /** 2823 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2824 * @irq: Interrupt line that is forwarded to a VM 2825 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2826 * @state: a pointer to a boolean where the state is to be stored 2827 * 2828 * This call snapshots the internal irqchip state of an 2829 * interrupt, returning into @state the bit corresponding to 2830 * stage @which 2831 * 2832 * This function should be called with preemption disabled if the 2833 * interrupt controller has per-cpu registers. 2834 */ 2835 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2836 bool *state) 2837 { 2838 struct irq_desc *desc; 2839 struct irq_data *data; 2840 unsigned long flags; 2841 int err = -EINVAL; 2842 2843 desc = irq_get_desc_buslock(irq, &flags, 0); 2844 if (!desc) 2845 return err; 2846 2847 data = irq_desc_get_irq_data(desc); 2848 2849 err = __irq_get_irqchip_state(data, which, state); 2850 2851 irq_put_desc_busunlock(desc, flags); 2852 return err; 2853 } 2854 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2855 2856 /** 2857 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2858 * @irq: Interrupt line that is forwarded to a VM 2859 * @which: State to be restored (one of IRQCHIP_STATE_*) 2860 * @val: Value corresponding to @which 2861 * 2862 * This call sets the internal irqchip state of an interrupt, 2863 * depending on the value of @which. 2864 * 2865 * This function should be called with migration disabled if the 2866 * interrupt controller has per-cpu registers. 2867 */ 2868 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2869 bool val) 2870 { 2871 struct irq_desc *desc; 2872 struct irq_data *data; 2873 struct irq_chip *chip; 2874 unsigned long flags; 2875 int err = -EINVAL; 2876 2877 desc = irq_get_desc_buslock(irq, &flags, 0); 2878 if (!desc) 2879 return err; 2880 2881 data = irq_desc_get_irq_data(desc); 2882 2883 do { 2884 chip = irq_data_get_irq_chip(data); 2885 if (WARN_ON_ONCE(!chip)) { 2886 err = -ENODEV; 2887 goto out_unlock; 2888 } 2889 if (chip->irq_set_irqchip_state) 2890 break; 2891 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2892 data = data->parent_data; 2893 #else 2894 data = NULL; 2895 #endif 2896 } while (data); 2897 2898 if (data) 2899 err = chip->irq_set_irqchip_state(data, which, val); 2900 2901 out_unlock: 2902 irq_put_desc_busunlock(desc, flags); 2903 return err; 2904 } 2905 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2906 2907 /** 2908 * irq_has_action - Check whether an interrupt is requested 2909 * @irq: The linux irq number 2910 * 2911 * Returns: A snapshot of the current state 2912 */ 2913 bool irq_has_action(unsigned int irq) 2914 { 2915 bool res; 2916 2917 rcu_read_lock(); 2918 res = irq_desc_has_action(irq_to_desc(irq)); 2919 rcu_read_unlock(); 2920 return res; 2921 } 2922 EXPORT_SYMBOL_GPL(irq_has_action); 2923 2924 /** 2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2926 * @irq: The linux irq number 2927 * @bitmask: The bitmask to evaluate 2928 * 2929 * Returns: True if one of the bits in @bitmask is set 2930 */ 2931 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2932 { 2933 struct irq_desc *desc; 2934 bool res = false; 2935 2936 rcu_read_lock(); 2937 desc = irq_to_desc(irq); 2938 if (desc) 2939 res = !!(desc->status_use_accessors & bitmask); 2940 rcu_read_unlock(); 2941 return res; 2942 } 2943 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2944