1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affinity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 } 196 197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 201 struct irq_chip *chip = irq_data_get_irq_chip(data); 202 203 if (!cpumask_empty(m)) 204 return; 205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 206 chip->name, data->irq); 207 } 208 209 static inline void irq_init_effective_affinity(struct irq_data *data, 210 const struct cpumask *mask) 211 { 212 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 213 } 214 #else 215 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 216 static inline void irq_init_effective_affinity(struct irq_data *data, 217 const struct cpumask *mask) { } 218 #endif 219 220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 221 bool force) 222 { 223 struct irq_desc *desc = irq_data_to_desc(data); 224 struct irq_chip *chip = irq_data_get_irq_chip(data); 225 int ret; 226 227 if (!chip || !chip->irq_set_affinity) 228 return -EINVAL; 229 230 /* 231 * If this is a managed interrupt and housekeeping is enabled on 232 * it check whether the requested affinity mask intersects with 233 * a housekeeping CPU. If so, then remove the isolated CPUs from 234 * the mask and just keep the housekeeping CPU(s). This prevents 235 * the affinity setter from routing the interrupt to an isolated 236 * CPU to avoid that I/O submitted from a housekeeping CPU causes 237 * interrupts on an isolated one. 238 * 239 * If the masks do not intersect or include online CPU(s) then 240 * keep the requested mask. The isolated target CPUs are only 241 * receiving interrupts when the I/O operation was submitted 242 * directly from them. 243 * 244 * If all housekeeping CPUs in the affinity mask are offline, the 245 * interrupt will be migrated by the CPU hotplug code once a 246 * housekeeping CPU which belongs to the affinity mask comes 247 * online. 248 */ 249 if (irqd_affinity_is_managed(data) && 250 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 251 const struct cpumask *hk_mask, *prog_mask; 252 253 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 254 static struct cpumask tmp_mask; 255 256 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 257 258 raw_spin_lock(&tmp_mask_lock); 259 cpumask_and(&tmp_mask, mask, hk_mask); 260 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 261 prog_mask = mask; 262 else 263 prog_mask = &tmp_mask; 264 ret = chip->irq_set_affinity(data, prog_mask, force); 265 raw_spin_unlock(&tmp_mask_lock); 266 } else { 267 ret = chip->irq_set_affinity(data, mask, force); 268 } 269 switch (ret) { 270 case IRQ_SET_MASK_OK: 271 case IRQ_SET_MASK_OK_DONE: 272 cpumask_copy(desc->irq_common_data.affinity, mask); 273 fallthrough; 274 case IRQ_SET_MASK_OK_NOCOPY: 275 irq_validate_effective_affinity(data); 276 irq_set_thread_affinity(desc); 277 ret = 0; 278 } 279 280 return ret; 281 } 282 283 #ifdef CONFIG_GENERIC_PENDING_IRQ 284 static inline int irq_set_affinity_pending(struct irq_data *data, 285 const struct cpumask *dest) 286 { 287 struct irq_desc *desc = irq_data_to_desc(data); 288 289 irqd_set_move_pending(data); 290 irq_copy_pending(desc, dest); 291 return 0; 292 } 293 #else 294 static inline int irq_set_affinity_pending(struct irq_data *data, 295 const struct cpumask *dest) 296 { 297 return -EBUSY; 298 } 299 #endif 300 301 static int irq_try_set_affinity(struct irq_data *data, 302 const struct cpumask *dest, bool force) 303 { 304 int ret = irq_do_set_affinity(data, dest, force); 305 306 /* 307 * In case that the underlying vector management is busy and the 308 * architecture supports the generic pending mechanism then utilize 309 * this to avoid returning an error to user space. 310 */ 311 if (ret == -EBUSY && !force) 312 ret = irq_set_affinity_pending(data, dest); 313 return ret; 314 } 315 316 static bool irq_set_affinity_deactivated(struct irq_data *data, 317 const struct cpumask *mask, bool force) 318 { 319 struct irq_desc *desc = irq_data_to_desc(data); 320 321 /* 322 * Handle irq chips which can handle affinity only in activated 323 * state correctly 324 * 325 * If the interrupt is not yet activated, just store the affinity 326 * mask and do not call the chip driver at all. On activation the 327 * driver has to make sure anyway that the interrupt is in a 328 * usable state so startup works. 329 */ 330 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 331 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 332 return false; 333 334 cpumask_copy(desc->irq_common_data.affinity, mask); 335 irq_init_effective_affinity(data, mask); 336 irqd_set(data, IRQD_AFFINITY_SET); 337 return true; 338 } 339 340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 341 bool force) 342 { 343 struct irq_chip *chip = irq_data_get_irq_chip(data); 344 struct irq_desc *desc = irq_data_to_desc(data); 345 int ret = 0; 346 347 if (!chip || !chip->irq_set_affinity) 348 return -EINVAL; 349 350 if (irq_set_affinity_deactivated(data, mask, force)) 351 return 0; 352 353 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 354 ret = irq_try_set_affinity(data, mask, force); 355 } else { 356 irqd_set_move_pending(data); 357 irq_copy_pending(desc, mask); 358 } 359 360 if (desc->affinity_notify) { 361 kref_get(&desc->affinity_notify->kref); 362 if (!schedule_work(&desc->affinity_notify->work)) { 363 /* Work was already scheduled, drop our extra ref */ 364 kref_put(&desc->affinity_notify->kref, 365 desc->affinity_notify->release); 366 } 367 } 368 irqd_set(data, IRQD_AFFINITY_SET); 369 370 return ret; 371 } 372 373 /** 374 * irq_update_affinity_desc - Update affinity management for an interrupt 375 * @irq: The interrupt number to update 376 * @affinity: Pointer to the affinity descriptor 377 * 378 * This interface can be used to configure the affinity management of 379 * interrupts which have been allocated already. 380 * 381 * There are certain limitations on when it may be used - attempts to use it 382 * for when the kernel is configured for generic IRQ reservation mode (in 383 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 384 * managed/non-managed interrupt accounting. In addition, attempts to use it on 385 * an interrupt which is already started or which has already been configured 386 * as managed will also fail, as these mean invalid init state or double init. 387 */ 388 int irq_update_affinity_desc(unsigned int irq, 389 struct irq_affinity_desc *affinity) 390 { 391 struct irq_desc *desc; 392 unsigned long flags; 393 bool activated; 394 int ret = 0; 395 396 /* 397 * Supporting this with the reservation scheme used by x86 needs 398 * some more thought. Fail it for now. 399 */ 400 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 401 return -EOPNOTSUPP; 402 403 desc = irq_get_desc_buslock(irq, &flags, 0); 404 if (!desc) 405 return -EINVAL; 406 407 /* Requires the interrupt to be shut down */ 408 if (irqd_is_started(&desc->irq_data)) { 409 ret = -EBUSY; 410 goto out_unlock; 411 } 412 413 /* Interrupts which are already managed cannot be modified */ 414 if (irqd_affinity_is_managed(&desc->irq_data)) { 415 ret = -EBUSY; 416 goto out_unlock; 417 } 418 419 /* 420 * Deactivate the interrupt. That's required to undo 421 * anything an earlier activation has established. 422 */ 423 activated = irqd_is_activated(&desc->irq_data); 424 if (activated) 425 irq_domain_deactivate_irq(&desc->irq_data); 426 427 if (affinity->is_managed) { 428 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 429 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 430 } 431 432 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 433 434 /* Restore the activation state */ 435 if (activated) 436 irq_domain_activate_irq(&desc->irq_data, false); 437 438 out_unlock: 439 irq_put_desc_busunlock(desc, flags); 440 return ret; 441 } 442 443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 444 bool force) 445 { 446 struct irq_desc *desc = irq_to_desc(irq); 447 unsigned long flags; 448 int ret; 449 450 if (!desc) 451 return -EINVAL; 452 453 raw_spin_lock_irqsave(&desc->lock, flags); 454 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 455 raw_spin_unlock_irqrestore(&desc->lock, flags); 456 return ret; 457 } 458 459 /** 460 * irq_set_affinity - Set the irq affinity of a given irq 461 * @irq: Interrupt to set affinity 462 * @cpumask: cpumask 463 * 464 * Fails if cpumask does not contain an online CPU 465 */ 466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 467 { 468 return __irq_set_affinity(irq, cpumask, false); 469 } 470 EXPORT_SYMBOL_GPL(irq_set_affinity); 471 472 /** 473 * irq_force_affinity - Force the irq affinity of a given irq 474 * @irq: Interrupt to set affinity 475 * @cpumask: cpumask 476 * 477 * Same as irq_set_affinity, but without checking the mask against 478 * online cpus. 479 * 480 * Solely for low level cpu hotplug code, where we need to make per 481 * cpu interrupts affine before the cpu becomes online. 482 */ 483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 484 { 485 return __irq_set_affinity(irq, cpumask, true); 486 } 487 EXPORT_SYMBOL_GPL(irq_force_affinity); 488 489 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 490 { 491 unsigned long flags; 492 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 493 494 if (!desc) 495 return -EINVAL; 496 desc->affinity_hint = m; 497 irq_put_desc_unlock(desc, flags); 498 /* set the initial affinity to prevent every interrupt being on CPU0 */ 499 if (m) 500 __irq_set_affinity(irq, m, false); 501 return 0; 502 } 503 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 504 505 static void irq_affinity_notify(struct work_struct *work) 506 { 507 struct irq_affinity_notify *notify = 508 container_of(work, struct irq_affinity_notify, work); 509 struct irq_desc *desc = irq_to_desc(notify->irq); 510 cpumask_var_t cpumask; 511 unsigned long flags; 512 513 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 514 goto out; 515 516 raw_spin_lock_irqsave(&desc->lock, flags); 517 if (irq_move_pending(&desc->irq_data)) 518 irq_get_pending(cpumask, desc); 519 else 520 cpumask_copy(cpumask, desc->irq_common_data.affinity); 521 raw_spin_unlock_irqrestore(&desc->lock, flags); 522 523 notify->notify(notify, cpumask); 524 525 free_cpumask_var(cpumask); 526 out: 527 kref_put(¬ify->kref, notify->release); 528 } 529 530 /** 531 * irq_set_affinity_notifier - control notification of IRQ affinity changes 532 * @irq: Interrupt for which to enable/disable notification 533 * @notify: Context for notification, or %NULL to disable 534 * notification. Function pointers must be initialised; 535 * the other fields will be initialised by this function. 536 * 537 * Must be called in process context. Notification may only be enabled 538 * after the IRQ is allocated and must be disabled before the IRQ is 539 * freed using free_irq(). 540 */ 541 int 542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 543 { 544 struct irq_desc *desc = irq_to_desc(irq); 545 struct irq_affinity_notify *old_notify; 546 unsigned long flags; 547 548 /* The release function is promised process context */ 549 might_sleep(); 550 551 if (!desc || desc->istate & IRQS_NMI) 552 return -EINVAL; 553 554 /* Complete initialisation of *notify */ 555 if (notify) { 556 notify->irq = irq; 557 kref_init(¬ify->kref); 558 INIT_WORK(¬ify->work, irq_affinity_notify); 559 } 560 561 raw_spin_lock_irqsave(&desc->lock, flags); 562 old_notify = desc->affinity_notify; 563 desc->affinity_notify = notify; 564 raw_spin_unlock_irqrestore(&desc->lock, flags); 565 566 if (old_notify) { 567 if (cancel_work_sync(&old_notify->work)) { 568 /* Pending work had a ref, put that one too */ 569 kref_put(&old_notify->kref, old_notify->release); 570 } 571 kref_put(&old_notify->kref, old_notify->release); 572 } 573 574 return 0; 575 } 576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 577 578 #ifndef CONFIG_AUTO_IRQ_AFFINITY 579 /* 580 * Generic version of the affinity autoselector. 581 */ 582 int irq_setup_affinity(struct irq_desc *desc) 583 { 584 struct cpumask *set = irq_default_affinity; 585 int ret, node = irq_desc_get_node(desc); 586 static DEFINE_RAW_SPINLOCK(mask_lock); 587 static struct cpumask mask; 588 589 /* Excludes PER_CPU and NO_BALANCE interrupts */ 590 if (!__irq_can_set_affinity(desc)) 591 return 0; 592 593 raw_spin_lock(&mask_lock); 594 /* 595 * Preserve the managed affinity setting and a userspace affinity 596 * setup, but make sure that one of the targets is online. 597 */ 598 if (irqd_affinity_is_managed(&desc->irq_data) || 599 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 600 if (cpumask_intersects(desc->irq_common_data.affinity, 601 cpu_online_mask)) 602 set = desc->irq_common_data.affinity; 603 else 604 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 605 } 606 607 cpumask_and(&mask, cpu_online_mask, set); 608 if (cpumask_empty(&mask)) 609 cpumask_copy(&mask, cpu_online_mask); 610 611 if (node != NUMA_NO_NODE) { 612 const struct cpumask *nodemask = cpumask_of_node(node); 613 614 /* make sure at least one of the cpus in nodemask is online */ 615 if (cpumask_intersects(&mask, nodemask)) 616 cpumask_and(&mask, &mask, nodemask); 617 } 618 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 619 raw_spin_unlock(&mask_lock); 620 return ret; 621 } 622 #else 623 /* Wrapper for ALPHA specific affinity selector magic */ 624 int irq_setup_affinity(struct irq_desc *desc) 625 { 626 return irq_select_affinity(irq_desc_get_irq(desc)); 627 } 628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 629 #endif /* CONFIG_SMP */ 630 631 632 /** 633 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 634 * @irq: interrupt number to set affinity 635 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 636 * specific data for percpu_devid interrupts 637 * 638 * This function uses the vCPU specific data to set the vCPU 639 * affinity for an irq. The vCPU specific data is passed from 640 * outside, such as KVM. One example code path is as below: 641 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 642 */ 643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 644 { 645 unsigned long flags; 646 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 647 struct irq_data *data; 648 struct irq_chip *chip; 649 int ret = -ENOSYS; 650 651 if (!desc) 652 return -EINVAL; 653 654 data = irq_desc_get_irq_data(desc); 655 do { 656 chip = irq_data_get_irq_chip(data); 657 if (chip && chip->irq_set_vcpu_affinity) 658 break; 659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 660 data = data->parent_data; 661 #else 662 data = NULL; 663 #endif 664 } while (data); 665 666 if (data) 667 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 668 irq_put_desc_unlock(desc, flags); 669 670 return ret; 671 } 672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 673 674 void __disable_irq(struct irq_desc *desc) 675 { 676 if (!desc->depth++) 677 irq_disable(desc); 678 } 679 680 static int __disable_irq_nosync(unsigned int irq) 681 { 682 unsigned long flags; 683 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 684 685 if (!desc) 686 return -EINVAL; 687 __disable_irq(desc); 688 irq_put_desc_busunlock(desc, flags); 689 return 0; 690 } 691 692 /** 693 * disable_irq_nosync - disable an irq without waiting 694 * @irq: Interrupt to disable 695 * 696 * Disable the selected interrupt line. Disables and Enables are 697 * nested. 698 * Unlike disable_irq(), this function does not ensure existing 699 * instances of the IRQ handler have completed before returning. 700 * 701 * This function may be called from IRQ context. 702 */ 703 void disable_irq_nosync(unsigned int irq) 704 { 705 __disable_irq_nosync(irq); 706 } 707 EXPORT_SYMBOL(disable_irq_nosync); 708 709 /** 710 * disable_irq - disable an irq and wait for completion 711 * @irq: Interrupt to disable 712 * 713 * Disable the selected interrupt line. Enables and Disables are 714 * nested. 715 * This function waits for any pending IRQ handlers for this interrupt 716 * to complete before returning. If you use this function while 717 * holding a resource the IRQ handler may need you will deadlock. 718 * 719 * This function may be called - with care - from IRQ context. 720 */ 721 void disable_irq(unsigned int irq) 722 { 723 if (!__disable_irq_nosync(irq)) 724 synchronize_irq(irq); 725 } 726 EXPORT_SYMBOL(disable_irq); 727 728 /** 729 * disable_hardirq - disables an irq and waits for hardirq completion 730 * @irq: Interrupt to disable 731 * 732 * Disable the selected interrupt line. Enables and Disables are 733 * nested. 734 * This function waits for any pending hard IRQ handlers for this 735 * interrupt to complete before returning. If you use this function while 736 * holding a resource the hard IRQ handler may need you will deadlock. 737 * 738 * When used to optimistically disable an interrupt from atomic context 739 * the return value must be checked. 740 * 741 * Returns: false if a threaded handler is active. 742 * 743 * This function may be called - with care - from IRQ context. 744 */ 745 bool disable_hardirq(unsigned int irq) 746 { 747 if (!__disable_irq_nosync(irq)) 748 return synchronize_hardirq(irq); 749 750 return false; 751 } 752 EXPORT_SYMBOL_GPL(disable_hardirq); 753 754 /** 755 * disable_nmi_nosync - disable an nmi without waiting 756 * @irq: Interrupt to disable 757 * 758 * Disable the selected interrupt line. Disables and enables are 759 * nested. 760 * The interrupt to disable must have been requested through request_nmi. 761 * Unlike disable_nmi(), this function does not ensure existing 762 * instances of the IRQ handler have completed before returning. 763 */ 764 void disable_nmi_nosync(unsigned int irq) 765 { 766 disable_irq_nosync(irq); 767 } 768 769 void __enable_irq(struct irq_desc *desc) 770 { 771 switch (desc->depth) { 772 case 0: 773 err_out: 774 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 775 irq_desc_get_irq(desc)); 776 break; 777 case 1: { 778 if (desc->istate & IRQS_SUSPENDED) 779 goto err_out; 780 /* Prevent probing on this irq: */ 781 irq_settings_set_noprobe(desc); 782 /* 783 * Call irq_startup() not irq_enable() here because the 784 * interrupt might be marked NOAUTOEN. So irq_startup() 785 * needs to be invoked when it gets enabled the first 786 * time. If it was already started up, then irq_startup() 787 * will invoke irq_enable() under the hood. 788 */ 789 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 790 break; 791 } 792 default: 793 desc->depth--; 794 } 795 } 796 797 /** 798 * enable_irq - enable handling of an irq 799 * @irq: Interrupt to enable 800 * 801 * Undoes the effect of one call to disable_irq(). If this 802 * matches the last disable, processing of interrupts on this 803 * IRQ line is re-enabled. 804 * 805 * This function may be called from IRQ context only when 806 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 807 */ 808 void enable_irq(unsigned int irq) 809 { 810 unsigned long flags; 811 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 812 813 if (!desc) 814 return; 815 if (WARN(!desc->irq_data.chip, 816 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 817 goto out; 818 819 __enable_irq(desc); 820 out: 821 irq_put_desc_busunlock(desc, flags); 822 } 823 EXPORT_SYMBOL(enable_irq); 824 825 /** 826 * enable_nmi - enable handling of an nmi 827 * @irq: Interrupt to enable 828 * 829 * The interrupt to enable must have been requested through request_nmi. 830 * Undoes the effect of one call to disable_nmi(). If this 831 * matches the last disable, processing of interrupts on this 832 * IRQ line is re-enabled. 833 */ 834 void enable_nmi(unsigned int irq) 835 { 836 enable_irq(irq); 837 } 838 839 static int set_irq_wake_real(unsigned int irq, unsigned int on) 840 { 841 struct irq_desc *desc = irq_to_desc(irq); 842 int ret = -ENXIO; 843 844 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 845 return 0; 846 847 if (desc->irq_data.chip->irq_set_wake) 848 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 849 850 return ret; 851 } 852 853 /** 854 * irq_set_irq_wake - control irq power management wakeup 855 * @irq: interrupt to control 856 * @on: enable/disable power management wakeup 857 * 858 * Enable/disable power management wakeup mode, which is 859 * disabled by default. Enables and disables must match, 860 * just as they match for non-wakeup mode support. 861 * 862 * Wakeup mode lets this IRQ wake the system from sleep 863 * states like "suspend to RAM". 864 * 865 * Note: irq enable/disable state is completely orthogonal 866 * to the enable/disable state of irq wake. An irq can be 867 * disabled with disable_irq() and still wake the system as 868 * long as the irq has wake enabled. If this does not hold, 869 * then the underlying irq chip and the related driver need 870 * to be investigated. 871 */ 872 int irq_set_irq_wake(unsigned int irq, unsigned int on) 873 { 874 unsigned long flags; 875 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 876 int ret = 0; 877 878 if (!desc) 879 return -EINVAL; 880 881 /* Don't use NMIs as wake up interrupts please */ 882 if (desc->istate & IRQS_NMI) { 883 ret = -EINVAL; 884 goto out_unlock; 885 } 886 887 /* wakeup-capable irqs can be shared between drivers that 888 * don't need to have the same sleep mode behaviors. 889 */ 890 if (on) { 891 if (desc->wake_depth++ == 0) { 892 ret = set_irq_wake_real(irq, on); 893 if (ret) 894 desc->wake_depth = 0; 895 else 896 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 897 } 898 } else { 899 if (desc->wake_depth == 0) { 900 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 901 } else if (--desc->wake_depth == 0) { 902 ret = set_irq_wake_real(irq, on); 903 if (ret) 904 desc->wake_depth = 1; 905 else 906 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 907 } 908 } 909 910 out_unlock: 911 irq_put_desc_busunlock(desc, flags); 912 return ret; 913 } 914 EXPORT_SYMBOL(irq_set_irq_wake); 915 916 /* 917 * Internal function that tells the architecture code whether a 918 * particular irq has been exclusively allocated or is available 919 * for driver use. 920 */ 921 int can_request_irq(unsigned int irq, unsigned long irqflags) 922 { 923 unsigned long flags; 924 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 925 int canrequest = 0; 926 927 if (!desc) 928 return 0; 929 930 if (irq_settings_can_request(desc)) { 931 if (!desc->action || 932 irqflags & desc->action->flags & IRQF_SHARED) 933 canrequest = 1; 934 } 935 irq_put_desc_unlock(desc, flags); 936 return canrequest; 937 } 938 939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 940 { 941 struct irq_chip *chip = desc->irq_data.chip; 942 int ret, unmask = 0; 943 944 if (!chip || !chip->irq_set_type) { 945 /* 946 * IRQF_TRIGGER_* but the PIC does not support multiple 947 * flow-types? 948 */ 949 pr_debug("No set_type function for IRQ %d (%s)\n", 950 irq_desc_get_irq(desc), 951 chip ? (chip->name ? : "unknown") : "unknown"); 952 return 0; 953 } 954 955 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 956 if (!irqd_irq_masked(&desc->irq_data)) 957 mask_irq(desc); 958 if (!irqd_irq_disabled(&desc->irq_data)) 959 unmask = 1; 960 } 961 962 /* Mask all flags except trigger mode */ 963 flags &= IRQ_TYPE_SENSE_MASK; 964 ret = chip->irq_set_type(&desc->irq_data, flags); 965 966 switch (ret) { 967 case IRQ_SET_MASK_OK: 968 case IRQ_SET_MASK_OK_DONE: 969 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 970 irqd_set(&desc->irq_data, flags); 971 fallthrough; 972 973 case IRQ_SET_MASK_OK_NOCOPY: 974 flags = irqd_get_trigger_type(&desc->irq_data); 975 irq_settings_set_trigger_mask(desc, flags); 976 irqd_clear(&desc->irq_data, IRQD_LEVEL); 977 irq_settings_clr_level(desc); 978 if (flags & IRQ_TYPE_LEVEL_MASK) { 979 irq_settings_set_level(desc); 980 irqd_set(&desc->irq_data, IRQD_LEVEL); 981 } 982 983 ret = 0; 984 break; 985 default: 986 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 987 flags, irq_desc_get_irq(desc), chip->irq_set_type); 988 } 989 if (unmask) 990 unmask_irq(desc); 991 return ret; 992 } 993 994 #ifdef CONFIG_HARDIRQS_SW_RESEND 995 int irq_set_parent(int irq, int parent_irq) 996 { 997 unsigned long flags; 998 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 999 1000 if (!desc) 1001 return -EINVAL; 1002 1003 desc->parent_irq = parent_irq; 1004 1005 irq_put_desc_unlock(desc, flags); 1006 return 0; 1007 } 1008 EXPORT_SYMBOL_GPL(irq_set_parent); 1009 #endif 1010 1011 /* 1012 * Default primary interrupt handler for threaded interrupts. Is 1013 * assigned as primary handler when request_threaded_irq is called 1014 * with handler == NULL. Useful for oneshot interrupts. 1015 */ 1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1017 { 1018 return IRQ_WAKE_THREAD; 1019 } 1020 1021 /* 1022 * Primary handler for nested threaded interrupts. Should never be 1023 * called. 1024 */ 1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1026 { 1027 WARN(1, "Primary handler called for nested irq %d\n", irq); 1028 return IRQ_NONE; 1029 } 1030 1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1032 { 1033 WARN(1, "Secondary action handler called for irq %d\n", irq); 1034 return IRQ_NONE; 1035 } 1036 1037 static int irq_wait_for_interrupt(struct irqaction *action) 1038 { 1039 for (;;) { 1040 set_current_state(TASK_INTERRUPTIBLE); 1041 1042 if (kthread_should_stop()) { 1043 /* may need to run one last time */ 1044 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1045 &action->thread_flags)) { 1046 __set_current_state(TASK_RUNNING); 1047 return 0; 1048 } 1049 __set_current_state(TASK_RUNNING); 1050 return -1; 1051 } 1052 1053 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1054 &action->thread_flags)) { 1055 __set_current_state(TASK_RUNNING); 1056 return 0; 1057 } 1058 schedule(); 1059 } 1060 } 1061 1062 /* 1063 * Oneshot interrupts keep the irq line masked until the threaded 1064 * handler finished. unmask if the interrupt has not been disabled and 1065 * is marked MASKED. 1066 */ 1067 static void irq_finalize_oneshot(struct irq_desc *desc, 1068 struct irqaction *action) 1069 { 1070 if (!(desc->istate & IRQS_ONESHOT) || 1071 action->handler == irq_forced_secondary_handler) 1072 return; 1073 again: 1074 chip_bus_lock(desc); 1075 raw_spin_lock_irq(&desc->lock); 1076 1077 /* 1078 * Implausible though it may be we need to protect us against 1079 * the following scenario: 1080 * 1081 * The thread is faster done than the hard interrupt handler 1082 * on the other CPU. If we unmask the irq line then the 1083 * interrupt can come in again and masks the line, leaves due 1084 * to IRQS_INPROGRESS and the irq line is masked forever. 1085 * 1086 * This also serializes the state of shared oneshot handlers 1087 * versus "desc->threads_oneshot |= action->thread_mask;" in 1088 * irq_wake_thread(). See the comment there which explains the 1089 * serialization. 1090 */ 1091 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1092 raw_spin_unlock_irq(&desc->lock); 1093 chip_bus_sync_unlock(desc); 1094 cpu_relax(); 1095 goto again; 1096 } 1097 1098 /* 1099 * Now check again, whether the thread should run. Otherwise 1100 * we would clear the threads_oneshot bit of this thread which 1101 * was just set. 1102 */ 1103 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1104 goto out_unlock; 1105 1106 desc->threads_oneshot &= ~action->thread_mask; 1107 1108 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1109 irqd_irq_masked(&desc->irq_data)) 1110 unmask_threaded_irq(desc); 1111 1112 out_unlock: 1113 raw_spin_unlock_irq(&desc->lock); 1114 chip_bus_sync_unlock(desc); 1115 } 1116 1117 #ifdef CONFIG_SMP 1118 /* 1119 * Check whether we need to change the affinity of the interrupt thread. 1120 */ 1121 static void 1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1123 { 1124 cpumask_var_t mask; 1125 bool valid = true; 1126 1127 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1128 return; 1129 1130 /* 1131 * In case we are out of memory we set IRQTF_AFFINITY again and 1132 * try again next time 1133 */ 1134 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1135 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1136 return; 1137 } 1138 1139 raw_spin_lock_irq(&desc->lock); 1140 /* 1141 * This code is triggered unconditionally. Check the affinity 1142 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1143 */ 1144 if (cpumask_available(desc->irq_common_data.affinity)) { 1145 const struct cpumask *m; 1146 1147 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1148 cpumask_copy(mask, m); 1149 } else { 1150 valid = false; 1151 } 1152 raw_spin_unlock_irq(&desc->lock); 1153 1154 if (valid) 1155 set_cpus_allowed_ptr(current, mask); 1156 free_cpumask_var(mask); 1157 } 1158 #else 1159 static inline void 1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1161 #endif 1162 1163 /* 1164 * Interrupts which are not explicitly requested as threaded 1165 * interrupts rely on the implicit bh/preempt disable of the hard irq 1166 * context. So we need to disable bh here to avoid deadlocks and other 1167 * side effects. 1168 */ 1169 static irqreturn_t 1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1171 { 1172 irqreturn_t ret; 1173 1174 local_bh_disable(); 1175 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1176 local_irq_disable(); 1177 ret = action->thread_fn(action->irq, action->dev_id); 1178 if (ret == IRQ_HANDLED) 1179 atomic_inc(&desc->threads_handled); 1180 1181 irq_finalize_oneshot(desc, action); 1182 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1183 local_irq_enable(); 1184 local_bh_enable(); 1185 return ret; 1186 } 1187 1188 /* 1189 * Interrupts explicitly requested as threaded interrupts want to be 1190 * preemptible - many of them need to sleep and wait for slow busses to 1191 * complete. 1192 */ 1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1194 struct irqaction *action) 1195 { 1196 irqreturn_t ret; 1197 1198 ret = action->thread_fn(action->irq, action->dev_id); 1199 if (ret == IRQ_HANDLED) 1200 atomic_inc(&desc->threads_handled); 1201 1202 irq_finalize_oneshot(desc, action); 1203 return ret; 1204 } 1205 1206 static void wake_threads_waitq(struct irq_desc *desc) 1207 { 1208 if (atomic_dec_and_test(&desc->threads_active)) 1209 wake_up(&desc->wait_for_threads); 1210 } 1211 1212 static void irq_thread_dtor(struct callback_head *unused) 1213 { 1214 struct task_struct *tsk = current; 1215 struct irq_desc *desc; 1216 struct irqaction *action; 1217 1218 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1219 return; 1220 1221 action = kthread_data(tsk); 1222 1223 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1224 tsk->comm, tsk->pid, action->irq); 1225 1226 1227 desc = irq_to_desc(action->irq); 1228 /* 1229 * If IRQTF_RUNTHREAD is set, we need to decrement 1230 * desc->threads_active and wake possible waiters. 1231 */ 1232 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1233 wake_threads_waitq(desc); 1234 1235 /* Prevent a stale desc->threads_oneshot */ 1236 irq_finalize_oneshot(desc, action); 1237 } 1238 1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1240 { 1241 struct irqaction *secondary = action->secondary; 1242 1243 if (WARN_ON_ONCE(!secondary)) 1244 return; 1245 1246 raw_spin_lock_irq(&desc->lock); 1247 __irq_wake_thread(desc, secondary); 1248 raw_spin_unlock_irq(&desc->lock); 1249 } 1250 1251 /* 1252 * Interrupt handler thread 1253 */ 1254 static int irq_thread(void *data) 1255 { 1256 struct callback_head on_exit_work; 1257 struct irqaction *action = data; 1258 struct irq_desc *desc = irq_to_desc(action->irq); 1259 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1260 struct irqaction *action); 1261 1262 sched_set_fifo(current); 1263 1264 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1265 &action->thread_flags)) 1266 handler_fn = irq_forced_thread_fn; 1267 else 1268 handler_fn = irq_thread_fn; 1269 1270 init_task_work(&on_exit_work, irq_thread_dtor); 1271 task_work_add(current, &on_exit_work, TWA_NONE); 1272 1273 irq_thread_check_affinity(desc, action); 1274 1275 while (!irq_wait_for_interrupt(action)) { 1276 irqreturn_t action_ret; 1277 1278 irq_thread_check_affinity(desc, action); 1279 1280 action_ret = handler_fn(desc, action); 1281 if (action_ret == IRQ_WAKE_THREAD) 1282 irq_wake_secondary(desc, action); 1283 1284 wake_threads_waitq(desc); 1285 } 1286 1287 /* 1288 * This is the regular exit path. __free_irq() is stopping the 1289 * thread via kthread_stop() after calling 1290 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1291 * oneshot mask bit can be set. 1292 */ 1293 task_work_cancel(current, irq_thread_dtor); 1294 return 0; 1295 } 1296 1297 /** 1298 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1299 * @irq: Interrupt line 1300 * @dev_id: Device identity for which the thread should be woken 1301 * 1302 */ 1303 void irq_wake_thread(unsigned int irq, void *dev_id) 1304 { 1305 struct irq_desc *desc = irq_to_desc(irq); 1306 struct irqaction *action; 1307 unsigned long flags; 1308 1309 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1310 return; 1311 1312 raw_spin_lock_irqsave(&desc->lock, flags); 1313 for_each_action_of_desc(desc, action) { 1314 if (action->dev_id == dev_id) { 1315 if (action->thread) 1316 __irq_wake_thread(desc, action); 1317 break; 1318 } 1319 } 1320 raw_spin_unlock_irqrestore(&desc->lock, flags); 1321 } 1322 EXPORT_SYMBOL_GPL(irq_wake_thread); 1323 1324 static int irq_setup_forced_threading(struct irqaction *new) 1325 { 1326 if (!force_irqthreads()) 1327 return 0; 1328 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1329 return 0; 1330 1331 /* 1332 * No further action required for interrupts which are requested as 1333 * threaded interrupts already 1334 */ 1335 if (new->handler == irq_default_primary_handler) 1336 return 0; 1337 1338 new->flags |= IRQF_ONESHOT; 1339 1340 /* 1341 * Handle the case where we have a real primary handler and a 1342 * thread handler. We force thread them as well by creating a 1343 * secondary action. 1344 */ 1345 if (new->handler && new->thread_fn) { 1346 /* Allocate the secondary action */ 1347 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1348 if (!new->secondary) 1349 return -ENOMEM; 1350 new->secondary->handler = irq_forced_secondary_handler; 1351 new->secondary->thread_fn = new->thread_fn; 1352 new->secondary->dev_id = new->dev_id; 1353 new->secondary->irq = new->irq; 1354 new->secondary->name = new->name; 1355 } 1356 /* Deal with the primary handler */ 1357 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1358 new->thread_fn = new->handler; 1359 new->handler = irq_default_primary_handler; 1360 return 0; 1361 } 1362 1363 static int irq_request_resources(struct irq_desc *desc) 1364 { 1365 struct irq_data *d = &desc->irq_data; 1366 struct irq_chip *c = d->chip; 1367 1368 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1369 } 1370 1371 static void irq_release_resources(struct irq_desc *desc) 1372 { 1373 struct irq_data *d = &desc->irq_data; 1374 struct irq_chip *c = d->chip; 1375 1376 if (c->irq_release_resources) 1377 c->irq_release_resources(d); 1378 } 1379 1380 static bool irq_supports_nmi(struct irq_desc *desc) 1381 { 1382 struct irq_data *d = irq_desc_get_irq_data(desc); 1383 1384 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1385 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1386 if (d->parent_data) 1387 return false; 1388 #endif 1389 /* Don't support NMIs for chips behind a slow bus */ 1390 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1391 return false; 1392 1393 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1394 } 1395 1396 static int irq_nmi_setup(struct irq_desc *desc) 1397 { 1398 struct irq_data *d = irq_desc_get_irq_data(desc); 1399 struct irq_chip *c = d->chip; 1400 1401 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1402 } 1403 1404 static void irq_nmi_teardown(struct irq_desc *desc) 1405 { 1406 struct irq_data *d = irq_desc_get_irq_data(desc); 1407 struct irq_chip *c = d->chip; 1408 1409 if (c->irq_nmi_teardown) 1410 c->irq_nmi_teardown(d); 1411 } 1412 1413 static int 1414 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1415 { 1416 struct task_struct *t; 1417 1418 if (!secondary) { 1419 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1420 new->name); 1421 } else { 1422 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1423 new->name); 1424 } 1425 1426 if (IS_ERR(t)) 1427 return PTR_ERR(t); 1428 1429 /* 1430 * We keep the reference to the task struct even if 1431 * the thread dies to avoid that the interrupt code 1432 * references an already freed task_struct. 1433 */ 1434 new->thread = get_task_struct(t); 1435 /* 1436 * Tell the thread to set its affinity. This is 1437 * important for shared interrupt handlers as we do 1438 * not invoke setup_affinity() for the secondary 1439 * handlers as everything is already set up. Even for 1440 * interrupts marked with IRQF_NO_BALANCE this is 1441 * correct as we want the thread to move to the cpu(s) 1442 * on which the requesting code placed the interrupt. 1443 */ 1444 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1445 return 0; 1446 } 1447 1448 /* 1449 * Internal function to register an irqaction - typically used to 1450 * allocate special interrupts that are part of the architecture. 1451 * 1452 * Locking rules: 1453 * 1454 * desc->request_mutex Provides serialization against a concurrent free_irq() 1455 * chip_bus_lock Provides serialization for slow bus operations 1456 * desc->lock Provides serialization against hard interrupts 1457 * 1458 * chip_bus_lock and desc->lock are sufficient for all other management and 1459 * interrupt related functions. desc->request_mutex solely serializes 1460 * request/free_irq(). 1461 */ 1462 static int 1463 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1464 { 1465 struct irqaction *old, **old_ptr; 1466 unsigned long flags, thread_mask = 0; 1467 int ret, nested, shared = 0; 1468 1469 if (!desc) 1470 return -EINVAL; 1471 1472 if (desc->irq_data.chip == &no_irq_chip) 1473 return -ENOSYS; 1474 if (!try_module_get(desc->owner)) 1475 return -ENODEV; 1476 1477 new->irq = irq; 1478 1479 /* 1480 * If the trigger type is not specified by the caller, 1481 * then use the default for this interrupt. 1482 */ 1483 if (!(new->flags & IRQF_TRIGGER_MASK)) 1484 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1485 1486 /* 1487 * Check whether the interrupt nests into another interrupt 1488 * thread. 1489 */ 1490 nested = irq_settings_is_nested_thread(desc); 1491 if (nested) { 1492 if (!new->thread_fn) { 1493 ret = -EINVAL; 1494 goto out_mput; 1495 } 1496 /* 1497 * Replace the primary handler which was provided from 1498 * the driver for non nested interrupt handling by the 1499 * dummy function which warns when called. 1500 */ 1501 new->handler = irq_nested_primary_handler; 1502 } else { 1503 if (irq_settings_can_thread(desc)) { 1504 ret = irq_setup_forced_threading(new); 1505 if (ret) 1506 goto out_mput; 1507 } 1508 } 1509 1510 /* 1511 * Create a handler thread when a thread function is supplied 1512 * and the interrupt does not nest into another interrupt 1513 * thread. 1514 */ 1515 if (new->thread_fn && !nested) { 1516 ret = setup_irq_thread(new, irq, false); 1517 if (ret) 1518 goto out_mput; 1519 if (new->secondary) { 1520 ret = setup_irq_thread(new->secondary, irq, true); 1521 if (ret) 1522 goto out_thread; 1523 } 1524 } 1525 1526 /* 1527 * Drivers are often written to work w/o knowledge about the 1528 * underlying irq chip implementation, so a request for a 1529 * threaded irq without a primary hard irq context handler 1530 * requires the ONESHOT flag to be set. Some irq chips like 1531 * MSI based interrupts are per se one shot safe. Check the 1532 * chip flags, so we can avoid the unmask dance at the end of 1533 * the threaded handler for those. 1534 */ 1535 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1536 new->flags &= ~IRQF_ONESHOT; 1537 1538 /* 1539 * Protects against a concurrent __free_irq() call which might wait 1540 * for synchronize_hardirq() to complete without holding the optional 1541 * chip bus lock and desc->lock. Also protects against handing out 1542 * a recycled oneshot thread_mask bit while it's still in use by 1543 * its previous owner. 1544 */ 1545 mutex_lock(&desc->request_mutex); 1546 1547 /* 1548 * Acquire bus lock as the irq_request_resources() callback below 1549 * might rely on the serialization or the magic power management 1550 * functions which are abusing the irq_bus_lock() callback, 1551 */ 1552 chip_bus_lock(desc); 1553 1554 /* First installed action requests resources. */ 1555 if (!desc->action) { 1556 ret = irq_request_resources(desc); 1557 if (ret) { 1558 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1559 new->name, irq, desc->irq_data.chip->name); 1560 goto out_bus_unlock; 1561 } 1562 } 1563 1564 /* 1565 * The following block of code has to be executed atomically 1566 * protected against a concurrent interrupt and any of the other 1567 * management calls which are not serialized via 1568 * desc->request_mutex or the optional bus lock. 1569 */ 1570 raw_spin_lock_irqsave(&desc->lock, flags); 1571 old_ptr = &desc->action; 1572 old = *old_ptr; 1573 if (old) { 1574 /* 1575 * Can't share interrupts unless both agree to and are 1576 * the same type (level, edge, polarity). So both flag 1577 * fields must have IRQF_SHARED set and the bits which 1578 * set the trigger type must match. Also all must 1579 * agree on ONESHOT. 1580 * Interrupt lines used for NMIs cannot be shared. 1581 */ 1582 unsigned int oldtype; 1583 1584 if (desc->istate & IRQS_NMI) { 1585 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1586 new->name, irq, desc->irq_data.chip->name); 1587 ret = -EINVAL; 1588 goto out_unlock; 1589 } 1590 1591 /* 1592 * If nobody did set the configuration before, inherit 1593 * the one provided by the requester. 1594 */ 1595 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1596 oldtype = irqd_get_trigger_type(&desc->irq_data); 1597 } else { 1598 oldtype = new->flags & IRQF_TRIGGER_MASK; 1599 irqd_set_trigger_type(&desc->irq_data, oldtype); 1600 } 1601 1602 if (!((old->flags & new->flags) & IRQF_SHARED) || 1603 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1604 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1605 goto mismatch; 1606 1607 /* All handlers must agree on per-cpuness */ 1608 if ((old->flags & IRQF_PERCPU) != 1609 (new->flags & IRQF_PERCPU)) 1610 goto mismatch; 1611 1612 /* add new interrupt at end of irq queue */ 1613 do { 1614 /* 1615 * Or all existing action->thread_mask bits, 1616 * so we can find the next zero bit for this 1617 * new action. 1618 */ 1619 thread_mask |= old->thread_mask; 1620 old_ptr = &old->next; 1621 old = *old_ptr; 1622 } while (old); 1623 shared = 1; 1624 } 1625 1626 /* 1627 * Setup the thread mask for this irqaction for ONESHOT. For 1628 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1629 * conditional in irq_wake_thread(). 1630 */ 1631 if (new->flags & IRQF_ONESHOT) { 1632 /* 1633 * Unlikely to have 32 resp 64 irqs sharing one line, 1634 * but who knows. 1635 */ 1636 if (thread_mask == ~0UL) { 1637 ret = -EBUSY; 1638 goto out_unlock; 1639 } 1640 /* 1641 * The thread_mask for the action is or'ed to 1642 * desc->thread_active to indicate that the 1643 * IRQF_ONESHOT thread handler has been woken, but not 1644 * yet finished. The bit is cleared when a thread 1645 * completes. When all threads of a shared interrupt 1646 * line have completed desc->threads_active becomes 1647 * zero and the interrupt line is unmasked. See 1648 * handle.c:irq_wake_thread() for further information. 1649 * 1650 * If no thread is woken by primary (hard irq context) 1651 * interrupt handlers, then desc->threads_active is 1652 * also checked for zero to unmask the irq line in the 1653 * affected hard irq flow handlers 1654 * (handle_[fasteoi|level]_irq). 1655 * 1656 * The new action gets the first zero bit of 1657 * thread_mask assigned. See the loop above which or's 1658 * all existing action->thread_mask bits. 1659 */ 1660 new->thread_mask = 1UL << ffz(thread_mask); 1661 1662 } else if (new->handler == irq_default_primary_handler && 1663 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1664 /* 1665 * The interrupt was requested with handler = NULL, so 1666 * we use the default primary handler for it. But it 1667 * does not have the oneshot flag set. In combination 1668 * with level interrupts this is deadly, because the 1669 * default primary handler just wakes the thread, then 1670 * the irq lines is reenabled, but the device still 1671 * has the level irq asserted. Rinse and repeat.... 1672 * 1673 * While this works for edge type interrupts, we play 1674 * it safe and reject unconditionally because we can't 1675 * say for sure which type this interrupt really 1676 * has. The type flags are unreliable as the 1677 * underlying chip implementation can override them. 1678 */ 1679 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1680 new->name, irq); 1681 ret = -EINVAL; 1682 goto out_unlock; 1683 } 1684 1685 if (!shared) { 1686 init_waitqueue_head(&desc->wait_for_threads); 1687 1688 /* Setup the type (level, edge polarity) if configured: */ 1689 if (new->flags & IRQF_TRIGGER_MASK) { 1690 ret = __irq_set_trigger(desc, 1691 new->flags & IRQF_TRIGGER_MASK); 1692 1693 if (ret) 1694 goto out_unlock; 1695 } 1696 1697 /* 1698 * Activate the interrupt. That activation must happen 1699 * independently of IRQ_NOAUTOEN. request_irq() can fail 1700 * and the callers are supposed to handle 1701 * that. enable_irq() of an interrupt requested with 1702 * IRQ_NOAUTOEN is not supposed to fail. The activation 1703 * keeps it in shutdown mode, it merily associates 1704 * resources if necessary and if that's not possible it 1705 * fails. Interrupts which are in managed shutdown mode 1706 * will simply ignore that activation request. 1707 */ 1708 ret = irq_activate(desc); 1709 if (ret) 1710 goto out_unlock; 1711 1712 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1713 IRQS_ONESHOT | IRQS_WAITING); 1714 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1715 1716 if (new->flags & IRQF_PERCPU) { 1717 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1718 irq_settings_set_per_cpu(desc); 1719 if (new->flags & IRQF_NO_DEBUG) 1720 irq_settings_set_no_debug(desc); 1721 } 1722 1723 if (noirqdebug) 1724 irq_settings_set_no_debug(desc); 1725 1726 if (new->flags & IRQF_ONESHOT) 1727 desc->istate |= IRQS_ONESHOT; 1728 1729 /* Exclude IRQ from balancing if requested */ 1730 if (new->flags & IRQF_NOBALANCING) { 1731 irq_settings_set_no_balancing(desc); 1732 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1733 } 1734 1735 if (!(new->flags & IRQF_NO_AUTOEN) && 1736 irq_settings_can_autoenable(desc)) { 1737 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1738 } else { 1739 /* 1740 * Shared interrupts do not go well with disabling 1741 * auto enable. The sharing interrupt might request 1742 * it while it's still disabled and then wait for 1743 * interrupts forever. 1744 */ 1745 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1746 /* Undo nested disables: */ 1747 desc->depth = 1; 1748 } 1749 1750 } else if (new->flags & IRQF_TRIGGER_MASK) { 1751 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1752 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1753 1754 if (nmsk != omsk) 1755 /* hope the handler works with current trigger mode */ 1756 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1757 irq, omsk, nmsk); 1758 } 1759 1760 *old_ptr = new; 1761 1762 irq_pm_install_action(desc, new); 1763 1764 /* Reset broken irq detection when installing new handler */ 1765 desc->irq_count = 0; 1766 desc->irqs_unhandled = 0; 1767 1768 /* 1769 * Check whether we disabled the irq via the spurious handler 1770 * before. Reenable it and give it another chance. 1771 */ 1772 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1773 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1774 __enable_irq(desc); 1775 } 1776 1777 raw_spin_unlock_irqrestore(&desc->lock, flags); 1778 chip_bus_sync_unlock(desc); 1779 mutex_unlock(&desc->request_mutex); 1780 1781 irq_setup_timings(desc, new); 1782 1783 /* 1784 * Strictly no need to wake it up, but hung_task complains 1785 * when no hard interrupt wakes the thread up. 1786 */ 1787 if (new->thread) 1788 wake_up_process(new->thread); 1789 if (new->secondary) 1790 wake_up_process(new->secondary->thread); 1791 1792 register_irq_proc(irq, desc); 1793 new->dir = NULL; 1794 register_handler_proc(irq, new); 1795 return 0; 1796 1797 mismatch: 1798 if (!(new->flags & IRQF_PROBE_SHARED)) { 1799 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1800 irq, new->flags, new->name, old->flags, old->name); 1801 #ifdef CONFIG_DEBUG_SHIRQ 1802 dump_stack(); 1803 #endif 1804 } 1805 ret = -EBUSY; 1806 1807 out_unlock: 1808 raw_spin_unlock_irqrestore(&desc->lock, flags); 1809 1810 if (!desc->action) 1811 irq_release_resources(desc); 1812 out_bus_unlock: 1813 chip_bus_sync_unlock(desc); 1814 mutex_unlock(&desc->request_mutex); 1815 1816 out_thread: 1817 if (new->thread) { 1818 struct task_struct *t = new->thread; 1819 1820 new->thread = NULL; 1821 kthread_stop(t); 1822 put_task_struct(t); 1823 } 1824 if (new->secondary && new->secondary->thread) { 1825 struct task_struct *t = new->secondary->thread; 1826 1827 new->secondary->thread = NULL; 1828 kthread_stop(t); 1829 put_task_struct(t); 1830 } 1831 out_mput: 1832 module_put(desc->owner); 1833 return ret; 1834 } 1835 1836 /* 1837 * Internal function to unregister an irqaction - used to free 1838 * regular and special interrupts that are part of the architecture. 1839 */ 1840 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1841 { 1842 unsigned irq = desc->irq_data.irq; 1843 struct irqaction *action, **action_ptr; 1844 unsigned long flags; 1845 1846 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1847 1848 mutex_lock(&desc->request_mutex); 1849 chip_bus_lock(desc); 1850 raw_spin_lock_irqsave(&desc->lock, flags); 1851 1852 /* 1853 * There can be multiple actions per IRQ descriptor, find the right 1854 * one based on the dev_id: 1855 */ 1856 action_ptr = &desc->action; 1857 for (;;) { 1858 action = *action_ptr; 1859 1860 if (!action) { 1861 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1862 raw_spin_unlock_irqrestore(&desc->lock, flags); 1863 chip_bus_sync_unlock(desc); 1864 mutex_unlock(&desc->request_mutex); 1865 return NULL; 1866 } 1867 1868 if (action->dev_id == dev_id) 1869 break; 1870 action_ptr = &action->next; 1871 } 1872 1873 /* Found it - now remove it from the list of entries: */ 1874 *action_ptr = action->next; 1875 1876 irq_pm_remove_action(desc, action); 1877 1878 /* If this was the last handler, shut down the IRQ line: */ 1879 if (!desc->action) { 1880 irq_settings_clr_disable_unlazy(desc); 1881 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1882 irq_shutdown(desc); 1883 } 1884 1885 #ifdef CONFIG_SMP 1886 /* make sure affinity_hint is cleaned up */ 1887 if (WARN_ON_ONCE(desc->affinity_hint)) 1888 desc->affinity_hint = NULL; 1889 #endif 1890 1891 raw_spin_unlock_irqrestore(&desc->lock, flags); 1892 /* 1893 * Drop bus_lock here so the changes which were done in the chip 1894 * callbacks above are synced out to the irq chips which hang 1895 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1896 * 1897 * Aside of that the bus_lock can also be taken from the threaded 1898 * handler in irq_finalize_oneshot() which results in a deadlock 1899 * because kthread_stop() would wait forever for the thread to 1900 * complete, which is blocked on the bus lock. 1901 * 1902 * The still held desc->request_mutex() protects against a 1903 * concurrent request_irq() of this irq so the release of resources 1904 * and timing data is properly serialized. 1905 */ 1906 chip_bus_sync_unlock(desc); 1907 1908 unregister_handler_proc(irq, action); 1909 1910 /* 1911 * Make sure it's not being used on another CPU and if the chip 1912 * supports it also make sure that there is no (not yet serviced) 1913 * interrupt in flight at the hardware level. 1914 */ 1915 __synchronize_hardirq(desc, true); 1916 1917 #ifdef CONFIG_DEBUG_SHIRQ 1918 /* 1919 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1920 * event to happen even now it's being freed, so let's make sure that 1921 * is so by doing an extra call to the handler .... 1922 * 1923 * ( We do this after actually deregistering it, to make sure that a 1924 * 'real' IRQ doesn't run in parallel with our fake. ) 1925 */ 1926 if (action->flags & IRQF_SHARED) { 1927 local_irq_save(flags); 1928 action->handler(irq, dev_id); 1929 local_irq_restore(flags); 1930 } 1931 #endif 1932 1933 /* 1934 * The action has already been removed above, but the thread writes 1935 * its oneshot mask bit when it completes. Though request_mutex is 1936 * held across this which prevents __setup_irq() from handing out 1937 * the same bit to a newly requested action. 1938 */ 1939 if (action->thread) { 1940 kthread_stop(action->thread); 1941 put_task_struct(action->thread); 1942 if (action->secondary && action->secondary->thread) { 1943 kthread_stop(action->secondary->thread); 1944 put_task_struct(action->secondary->thread); 1945 } 1946 } 1947 1948 /* Last action releases resources */ 1949 if (!desc->action) { 1950 /* 1951 * Reacquire bus lock as irq_release_resources() might 1952 * require it to deallocate resources over the slow bus. 1953 */ 1954 chip_bus_lock(desc); 1955 /* 1956 * There is no interrupt on the fly anymore. Deactivate it 1957 * completely. 1958 */ 1959 raw_spin_lock_irqsave(&desc->lock, flags); 1960 irq_domain_deactivate_irq(&desc->irq_data); 1961 raw_spin_unlock_irqrestore(&desc->lock, flags); 1962 1963 irq_release_resources(desc); 1964 chip_bus_sync_unlock(desc); 1965 irq_remove_timings(desc); 1966 } 1967 1968 mutex_unlock(&desc->request_mutex); 1969 1970 irq_chip_pm_put(&desc->irq_data); 1971 module_put(desc->owner); 1972 kfree(action->secondary); 1973 return action; 1974 } 1975 1976 /** 1977 * free_irq - free an interrupt allocated with request_irq 1978 * @irq: Interrupt line to free 1979 * @dev_id: Device identity to free 1980 * 1981 * Remove an interrupt handler. The handler is removed and if the 1982 * interrupt line is no longer in use by any driver it is disabled. 1983 * On a shared IRQ the caller must ensure the interrupt is disabled 1984 * on the card it drives before calling this function. The function 1985 * does not return until any executing interrupts for this IRQ 1986 * have completed. 1987 * 1988 * This function must not be called from interrupt context. 1989 * 1990 * Returns the devname argument passed to request_irq. 1991 */ 1992 const void *free_irq(unsigned int irq, void *dev_id) 1993 { 1994 struct irq_desc *desc = irq_to_desc(irq); 1995 struct irqaction *action; 1996 const char *devname; 1997 1998 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1999 return NULL; 2000 2001 #ifdef CONFIG_SMP 2002 if (WARN_ON(desc->affinity_notify)) 2003 desc->affinity_notify = NULL; 2004 #endif 2005 2006 action = __free_irq(desc, dev_id); 2007 2008 if (!action) 2009 return NULL; 2010 2011 devname = action->name; 2012 kfree(action); 2013 return devname; 2014 } 2015 EXPORT_SYMBOL(free_irq); 2016 2017 /* This function must be called with desc->lock held */ 2018 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2019 { 2020 const char *devname = NULL; 2021 2022 desc->istate &= ~IRQS_NMI; 2023 2024 if (!WARN_ON(desc->action == NULL)) { 2025 irq_pm_remove_action(desc, desc->action); 2026 devname = desc->action->name; 2027 unregister_handler_proc(irq, desc->action); 2028 2029 kfree(desc->action); 2030 desc->action = NULL; 2031 } 2032 2033 irq_settings_clr_disable_unlazy(desc); 2034 irq_shutdown_and_deactivate(desc); 2035 2036 irq_release_resources(desc); 2037 2038 irq_chip_pm_put(&desc->irq_data); 2039 module_put(desc->owner); 2040 2041 return devname; 2042 } 2043 2044 const void *free_nmi(unsigned int irq, void *dev_id) 2045 { 2046 struct irq_desc *desc = irq_to_desc(irq); 2047 unsigned long flags; 2048 const void *devname; 2049 2050 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2051 return NULL; 2052 2053 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2054 return NULL; 2055 2056 /* NMI still enabled */ 2057 if (WARN_ON(desc->depth == 0)) 2058 disable_nmi_nosync(irq); 2059 2060 raw_spin_lock_irqsave(&desc->lock, flags); 2061 2062 irq_nmi_teardown(desc); 2063 devname = __cleanup_nmi(irq, desc); 2064 2065 raw_spin_unlock_irqrestore(&desc->lock, flags); 2066 2067 return devname; 2068 } 2069 2070 /** 2071 * request_threaded_irq - allocate an interrupt line 2072 * @irq: Interrupt line to allocate 2073 * @handler: Function to be called when the IRQ occurs. 2074 * Primary handler for threaded interrupts. 2075 * If handler is NULL and thread_fn != NULL 2076 * the default primary handler is installed. 2077 * @thread_fn: Function called from the irq handler thread 2078 * If NULL, no irq thread is created 2079 * @irqflags: Interrupt type flags 2080 * @devname: An ascii name for the claiming device 2081 * @dev_id: A cookie passed back to the handler function 2082 * 2083 * This call allocates interrupt resources and enables the 2084 * interrupt line and IRQ handling. From the point this 2085 * call is made your handler function may be invoked. Since 2086 * your handler function must clear any interrupt the board 2087 * raises, you must take care both to initialise your hardware 2088 * and to set up the interrupt handler in the right order. 2089 * 2090 * If you want to set up a threaded irq handler for your device 2091 * then you need to supply @handler and @thread_fn. @handler is 2092 * still called in hard interrupt context and has to check 2093 * whether the interrupt originates from the device. If yes it 2094 * needs to disable the interrupt on the device and return 2095 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2096 * @thread_fn. This split handler design is necessary to support 2097 * shared interrupts. 2098 * 2099 * Dev_id must be globally unique. Normally the address of the 2100 * device data structure is used as the cookie. Since the handler 2101 * receives this value it makes sense to use it. 2102 * 2103 * If your interrupt is shared you must pass a non NULL dev_id 2104 * as this is required when freeing the interrupt. 2105 * 2106 * Flags: 2107 * 2108 * IRQF_SHARED Interrupt is shared 2109 * IRQF_TRIGGER_* Specify active edge(s) or level 2110 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2111 */ 2112 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2113 irq_handler_t thread_fn, unsigned long irqflags, 2114 const char *devname, void *dev_id) 2115 { 2116 struct irqaction *action; 2117 struct irq_desc *desc; 2118 int retval; 2119 2120 if (irq == IRQ_NOTCONNECTED) 2121 return -ENOTCONN; 2122 2123 /* 2124 * Sanity-check: shared interrupts must pass in a real dev-ID, 2125 * otherwise we'll have trouble later trying to figure out 2126 * which interrupt is which (messes up the interrupt freeing 2127 * logic etc). 2128 * 2129 * Also shared interrupts do not go well with disabling auto enable. 2130 * The sharing interrupt might request it while it's still disabled 2131 * and then wait for interrupts forever. 2132 * 2133 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2134 * it cannot be set along with IRQF_NO_SUSPEND. 2135 */ 2136 if (((irqflags & IRQF_SHARED) && !dev_id) || 2137 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2138 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2139 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2140 return -EINVAL; 2141 2142 desc = irq_to_desc(irq); 2143 if (!desc) 2144 return -EINVAL; 2145 2146 if (!irq_settings_can_request(desc) || 2147 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2148 return -EINVAL; 2149 2150 if (!handler) { 2151 if (!thread_fn) 2152 return -EINVAL; 2153 handler = irq_default_primary_handler; 2154 } 2155 2156 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2157 if (!action) 2158 return -ENOMEM; 2159 2160 action->handler = handler; 2161 action->thread_fn = thread_fn; 2162 action->flags = irqflags; 2163 action->name = devname; 2164 action->dev_id = dev_id; 2165 2166 retval = irq_chip_pm_get(&desc->irq_data); 2167 if (retval < 0) { 2168 kfree(action); 2169 return retval; 2170 } 2171 2172 retval = __setup_irq(irq, desc, action); 2173 2174 if (retval) { 2175 irq_chip_pm_put(&desc->irq_data); 2176 kfree(action->secondary); 2177 kfree(action); 2178 } 2179 2180 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2181 if (!retval && (irqflags & IRQF_SHARED)) { 2182 /* 2183 * It's a shared IRQ -- the driver ought to be prepared for it 2184 * to happen immediately, so let's make sure.... 2185 * We disable the irq to make sure that a 'real' IRQ doesn't 2186 * run in parallel with our fake. 2187 */ 2188 unsigned long flags; 2189 2190 disable_irq(irq); 2191 local_irq_save(flags); 2192 2193 handler(irq, dev_id); 2194 2195 local_irq_restore(flags); 2196 enable_irq(irq); 2197 } 2198 #endif 2199 return retval; 2200 } 2201 EXPORT_SYMBOL(request_threaded_irq); 2202 2203 /** 2204 * request_any_context_irq - allocate an interrupt line 2205 * @irq: Interrupt line to allocate 2206 * @handler: Function to be called when the IRQ occurs. 2207 * Threaded handler for threaded interrupts. 2208 * @flags: Interrupt type flags 2209 * @name: An ascii name for the claiming device 2210 * @dev_id: A cookie passed back to the handler function 2211 * 2212 * This call allocates interrupt resources and enables the 2213 * interrupt line and IRQ handling. It selects either a 2214 * hardirq or threaded handling method depending on the 2215 * context. 2216 * 2217 * On failure, it returns a negative value. On success, 2218 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2219 */ 2220 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2221 unsigned long flags, const char *name, void *dev_id) 2222 { 2223 struct irq_desc *desc; 2224 int ret; 2225 2226 if (irq == IRQ_NOTCONNECTED) 2227 return -ENOTCONN; 2228 2229 desc = irq_to_desc(irq); 2230 if (!desc) 2231 return -EINVAL; 2232 2233 if (irq_settings_is_nested_thread(desc)) { 2234 ret = request_threaded_irq(irq, NULL, handler, 2235 flags, name, dev_id); 2236 return !ret ? IRQC_IS_NESTED : ret; 2237 } 2238 2239 ret = request_irq(irq, handler, flags, name, dev_id); 2240 return !ret ? IRQC_IS_HARDIRQ : ret; 2241 } 2242 EXPORT_SYMBOL_GPL(request_any_context_irq); 2243 2244 /** 2245 * request_nmi - allocate an interrupt line for NMI delivery 2246 * @irq: Interrupt line to allocate 2247 * @handler: Function to be called when the IRQ occurs. 2248 * Threaded handler for threaded interrupts. 2249 * @irqflags: Interrupt type flags 2250 * @name: An ascii name for the claiming device 2251 * @dev_id: A cookie passed back to the handler function 2252 * 2253 * This call allocates interrupt resources and enables the 2254 * interrupt line and IRQ handling. It sets up the IRQ line 2255 * to be handled as an NMI. 2256 * 2257 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2258 * cannot be threaded. 2259 * 2260 * Interrupt lines requested for NMI delivering must produce per cpu 2261 * interrupts and have auto enabling setting disabled. 2262 * 2263 * Dev_id must be globally unique. Normally the address of the 2264 * device data structure is used as the cookie. Since the handler 2265 * receives this value it makes sense to use it. 2266 * 2267 * If the interrupt line cannot be used to deliver NMIs, function 2268 * will fail and return a negative value. 2269 */ 2270 int request_nmi(unsigned int irq, irq_handler_t handler, 2271 unsigned long irqflags, const char *name, void *dev_id) 2272 { 2273 struct irqaction *action; 2274 struct irq_desc *desc; 2275 unsigned long flags; 2276 int retval; 2277 2278 if (irq == IRQ_NOTCONNECTED) 2279 return -ENOTCONN; 2280 2281 /* NMI cannot be shared, used for Polling */ 2282 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2283 return -EINVAL; 2284 2285 if (!(irqflags & IRQF_PERCPU)) 2286 return -EINVAL; 2287 2288 if (!handler) 2289 return -EINVAL; 2290 2291 desc = irq_to_desc(irq); 2292 2293 if (!desc || (irq_settings_can_autoenable(desc) && 2294 !(irqflags & IRQF_NO_AUTOEN)) || 2295 !irq_settings_can_request(desc) || 2296 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2297 !irq_supports_nmi(desc)) 2298 return -EINVAL; 2299 2300 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2301 if (!action) 2302 return -ENOMEM; 2303 2304 action->handler = handler; 2305 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2306 action->name = name; 2307 action->dev_id = dev_id; 2308 2309 retval = irq_chip_pm_get(&desc->irq_data); 2310 if (retval < 0) 2311 goto err_out; 2312 2313 retval = __setup_irq(irq, desc, action); 2314 if (retval) 2315 goto err_irq_setup; 2316 2317 raw_spin_lock_irqsave(&desc->lock, flags); 2318 2319 /* Setup NMI state */ 2320 desc->istate |= IRQS_NMI; 2321 retval = irq_nmi_setup(desc); 2322 if (retval) { 2323 __cleanup_nmi(irq, desc); 2324 raw_spin_unlock_irqrestore(&desc->lock, flags); 2325 return -EINVAL; 2326 } 2327 2328 raw_spin_unlock_irqrestore(&desc->lock, flags); 2329 2330 return 0; 2331 2332 err_irq_setup: 2333 irq_chip_pm_put(&desc->irq_data); 2334 err_out: 2335 kfree(action); 2336 2337 return retval; 2338 } 2339 2340 void enable_percpu_irq(unsigned int irq, unsigned int type) 2341 { 2342 unsigned int cpu = smp_processor_id(); 2343 unsigned long flags; 2344 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2345 2346 if (!desc) 2347 return; 2348 2349 /* 2350 * If the trigger type is not specified by the caller, then 2351 * use the default for this interrupt. 2352 */ 2353 type &= IRQ_TYPE_SENSE_MASK; 2354 if (type == IRQ_TYPE_NONE) 2355 type = irqd_get_trigger_type(&desc->irq_data); 2356 2357 if (type != IRQ_TYPE_NONE) { 2358 int ret; 2359 2360 ret = __irq_set_trigger(desc, type); 2361 2362 if (ret) { 2363 WARN(1, "failed to set type for IRQ%d\n", irq); 2364 goto out; 2365 } 2366 } 2367 2368 irq_percpu_enable(desc, cpu); 2369 out: 2370 irq_put_desc_unlock(desc, flags); 2371 } 2372 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2373 2374 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2375 { 2376 enable_percpu_irq(irq, type); 2377 } 2378 2379 /** 2380 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2381 * @irq: Linux irq number to check for 2382 * 2383 * Must be called from a non migratable context. Returns the enable 2384 * state of a per cpu interrupt on the current cpu. 2385 */ 2386 bool irq_percpu_is_enabled(unsigned int irq) 2387 { 2388 unsigned int cpu = smp_processor_id(); 2389 struct irq_desc *desc; 2390 unsigned long flags; 2391 bool is_enabled; 2392 2393 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2394 if (!desc) 2395 return false; 2396 2397 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2398 irq_put_desc_unlock(desc, flags); 2399 2400 return is_enabled; 2401 } 2402 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2403 2404 void disable_percpu_irq(unsigned int irq) 2405 { 2406 unsigned int cpu = smp_processor_id(); 2407 unsigned long flags; 2408 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2409 2410 if (!desc) 2411 return; 2412 2413 irq_percpu_disable(desc, cpu); 2414 irq_put_desc_unlock(desc, flags); 2415 } 2416 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2417 2418 void disable_percpu_nmi(unsigned int irq) 2419 { 2420 disable_percpu_irq(irq); 2421 } 2422 2423 /* 2424 * Internal function to unregister a percpu irqaction. 2425 */ 2426 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2427 { 2428 struct irq_desc *desc = irq_to_desc(irq); 2429 struct irqaction *action; 2430 unsigned long flags; 2431 2432 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2433 2434 if (!desc) 2435 return NULL; 2436 2437 raw_spin_lock_irqsave(&desc->lock, flags); 2438 2439 action = desc->action; 2440 if (!action || action->percpu_dev_id != dev_id) { 2441 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2442 goto bad; 2443 } 2444 2445 if (!cpumask_empty(desc->percpu_enabled)) { 2446 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2447 irq, cpumask_first(desc->percpu_enabled)); 2448 goto bad; 2449 } 2450 2451 /* Found it - now remove it from the list of entries: */ 2452 desc->action = NULL; 2453 2454 desc->istate &= ~IRQS_NMI; 2455 2456 raw_spin_unlock_irqrestore(&desc->lock, flags); 2457 2458 unregister_handler_proc(irq, action); 2459 2460 irq_chip_pm_put(&desc->irq_data); 2461 module_put(desc->owner); 2462 return action; 2463 2464 bad: 2465 raw_spin_unlock_irqrestore(&desc->lock, flags); 2466 return NULL; 2467 } 2468 2469 /** 2470 * remove_percpu_irq - free a per-cpu interrupt 2471 * @irq: Interrupt line to free 2472 * @act: irqaction for the interrupt 2473 * 2474 * Used to remove interrupts statically setup by the early boot process. 2475 */ 2476 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2477 { 2478 struct irq_desc *desc = irq_to_desc(irq); 2479 2480 if (desc && irq_settings_is_per_cpu_devid(desc)) 2481 __free_percpu_irq(irq, act->percpu_dev_id); 2482 } 2483 2484 /** 2485 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2486 * @irq: Interrupt line to free 2487 * @dev_id: Device identity to free 2488 * 2489 * Remove a percpu interrupt handler. The handler is removed, but 2490 * the interrupt line is not disabled. This must be done on each 2491 * CPU before calling this function. The function does not return 2492 * until any executing interrupts for this IRQ have completed. 2493 * 2494 * This function must not be called from interrupt context. 2495 */ 2496 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2497 { 2498 struct irq_desc *desc = irq_to_desc(irq); 2499 2500 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2501 return; 2502 2503 chip_bus_lock(desc); 2504 kfree(__free_percpu_irq(irq, dev_id)); 2505 chip_bus_sync_unlock(desc); 2506 } 2507 EXPORT_SYMBOL_GPL(free_percpu_irq); 2508 2509 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2510 { 2511 struct irq_desc *desc = irq_to_desc(irq); 2512 2513 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2514 return; 2515 2516 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2517 return; 2518 2519 kfree(__free_percpu_irq(irq, dev_id)); 2520 } 2521 2522 /** 2523 * setup_percpu_irq - setup a per-cpu interrupt 2524 * @irq: Interrupt line to setup 2525 * @act: irqaction for the interrupt 2526 * 2527 * Used to statically setup per-cpu interrupts in the early boot process. 2528 */ 2529 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2530 { 2531 struct irq_desc *desc = irq_to_desc(irq); 2532 int retval; 2533 2534 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2535 return -EINVAL; 2536 2537 retval = irq_chip_pm_get(&desc->irq_data); 2538 if (retval < 0) 2539 return retval; 2540 2541 retval = __setup_irq(irq, desc, act); 2542 2543 if (retval) 2544 irq_chip_pm_put(&desc->irq_data); 2545 2546 return retval; 2547 } 2548 2549 /** 2550 * __request_percpu_irq - allocate a percpu interrupt line 2551 * @irq: Interrupt line to allocate 2552 * @handler: Function to be called when the IRQ occurs. 2553 * @flags: Interrupt type flags (IRQF_TIMER only) 2554 * @devname: An ascii name for the claiming device 2555 * @dev_id: A percpu cookie passed back to the handler function 2556 * 2557 * This call allocates interrupt resources and enables the 2558 * interrupt on the local CPU. If the interrupt is supposed to be 2559 * enabled on other CPUs, it has to be done on each CPU using 2560 * enable_percpu_irq(). 2561 * 2562 * Dev_id must be globally unique. It is a per-cpu variable, and 2563 * the handler gets called with the interrupted CPU's instance of 2564 * that variable. 2565 */ 2566 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2567 unsigned long flags, const char *devname, 2568 void __percpu *dev_id) 2569 { 2570 struct irqaction *action; 2571 struct irq_desc *desc; 2572 int retval; 2573 2574 if (!dev_id) 2575 return -EINVAL; 2576 2577 desc = irq_to_desc(irq); 2578 if (!desc || !irq_settings_can_request(desc) || 2579 !irq_settings_is_per_cpu_devid(desc)) 2580 return -EINVAL; 2581 2582 if (flags && flags != IRQF_TIMER) 2583 return -EINVAL; 2584 2585 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2586 if (!action) 2587 return -ENOMEM; 2588 2589 action->handler = handler; 2590 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2591 action->name = devname; 2592 action->percpu_dev_id = dev_id; 2593 2594 retval = irq_chip_pm_get(&desc->irq_data); 2595 if (retval < 0) { 2596 kfree(action); 2597 return retval; 2598 } 2599 2600 retval = __setup_irq(irq, desc, action); 2601 2602 if (retval) { 2603 irq_chip_pm_put(&desc->irq_data); 2604 kfree(action); 2605 } 2606 2607 return retval; 2608 } 2609 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2610 2611 /** 2612 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2613 * @irq: Interrupt line to allocate 2614 * @handler: Function to be called when the IRQ occurs. 2615 * @name: An ascii name for the claiming device 2616 * @dev_id: A percpu cookie passed back to the handler function 2617 * 2618 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2619 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2620 * being enabled on the same CPU by using enable_percpu_nmi(). 2621 * 2622 * Dev_id must be globally unique. It is a per-cpu variable, and 2623 * the handler gets called with the interrupted CPU's instance of 2624 * that variable. 2625 * 2626 * Interrupt lines requested for NMI delivering should have auto enabling 2627 * setting disabled. 2628 * 2629 * If the interrupt line cannot be used to deliver NMIs, function 2630 * will fail returning a negative value. 2631 */ 2632 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2633 const char *name, void __percpu *dev_id) 2634 { 2635 struct irqaction *action; 2636 struct irq_desc *desc; 2637 unsigned long flags; 2638 int retval; 2639 2640 if (!handler) 2641 return -EINVAL; 2642 2643 desc = irq_to_desc(irq); 2644 2645 if (!desc || !irq_settings_can_request(desc) || 2646 !irq_settings_is_per_cpu_devid(desc) || 2647 irq_settings_can_autoenable(desc) || 2648 !irq_supports_nmi(desc)) 2649 return -EINVAL; 2650 2651 /* The line cannot already be NMI */ 2652 if (desc->istate & IRQS_NMI) 2653 return -EINVAL; 2654 2655 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2656 if (!action) 2657 return -ENOMEM; 2658 2659 action->handler = handler; 2660 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2661 | IRQF_NOBALANCING; 2662 action->name = name; 2663 action->percpu_dev_id = dev_id; 2664 2665 retval = irq_chip_pm_get(&desc->irq_data); 2666 if (retval < 0) 2667 goto err_out; 2668 2669 retval = __setup_irq(irq, desc, action); 2670 if (retval) 2671 goto err_irq_setup; 2672 2673 raw_spin_lock_irqsave(&desc->lock, flags); 2674 desc->istate |= IRQS_NMI; 2675 raw_spin_unlock_irqrestore(&desc->lock, flags); 2676 2677 return 0; 2678 2679 err_irq_setup: 2680 irq_chip_pm_put(&desc->irq_data); 2681 err_out: 2682 kfree(action); 2683 2684 return retval; 2685 } 2686 2687 /** 2688 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2689 * @irq: Interrupt line to prepare for NMI delivery 2690 * 2691 * This call prepares an interrupt line to deliver NMI on the current CPU, 2692 * before that interrupt line gets enabled with enable_percpu_nmi(). 2693 * 2694 * As a CPU local operation, this should be called from non-preemptible 2695 * context. 2696 * 2697 * If the interrupt line cannot be used to deliver NMIs, function 2698 * will fail returning a negative value. 2699 */ 2700 int prepare_percpu_nmi(unsigned int irq) 2701 { 2702 unsigned long flags; 2703 struct irq_desc *desc; 2704 int ret = 0; 2705 2706 WARN_ON(preemptible()); 2707 2708 desc = irq_get_desc_lock(irq, &flags, 2709 IRQ_GET_DESC_CHECK_PERCPU); 2710 if (!desc) 2711 return -EINVAL; 2712 2713 if (WARN(!(desc->istate & IRQS_NMI), 2714 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2715 irq)) { 2716 ret = -EINVAL; 2717 goto out; 2718 } 2719 2720 ret = irq_nmi_setup(desc); 2721 if (ret) { 2722 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2723 goto out; 2724 } 2725 2726 out: 2727 irq_put_desc_unlock(desc, flags); 2728 return ret; 2729 } 2730 2731 /** 2732 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2733 * @irq: Interrupt line from which CPU local NMI configuration should be 2734 * removed 2735 * 2736 * This call undoes the setup done by prepare_percpu_nmi(). 2737 * 2738 * IRQ line should not be enabled for the current CPU. 2739 * 2740 * As a CPU local operation, this should be called from non-preemptible 2741 * context. 2742 */ 2743 void teardown_percpu_nmi(unsigned int irq) 2744 { 2745 unsigned long flags; 2746 struct irq_desc *desc; 2747 2748 WARN_ON(preemptible()); 2749 2750 desc = irq_get_desc_lock(irq, &flags, 2751 IRQ_GET_DESC_CHECK_PERCPU); 2752 if (!desc) 2753 return; 2754 2755 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2756 goto out; 2757 2758 irq_nmi_teardown(desc); 2759 out: 2760 irq_put_desc_unlock(desc, flags); 2761 } 2762 2763 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2764 bool *state) 2765 { 2766 struct irq_chip *chip; 2767 int err = -EINVAL; 2768 2769 do { 2770 chip = irq_data_get_irq_chip(data); 2771 if (WARN_ON_ONCE(!chip)) 2772 return -ENODEV; 2773 if (chip->irq_get_irqchip_state) 2774 break; 2775 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2776 data = data->parent_data; 2777 #else 2778 data = NULL; 2779 #endif 2780 } while (data); 2781 2782 if (data) 2783 err = chip->irq_get_irqchip_state(data, which, state); 2784 return err; 2785 } 2786 2787 /** 2788 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2789 * @irq: Interrupt line that is forwarded to a VM 2790 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2791 * @state: a pointer to a boolean where the state is to be stored 2792 * 2793 * This call snapshots the internal irqchip state of an 2794 * interrupt, returning into @state the bit corresponding to 2795 * stage @which 2796 * 2797 * This function should be called with preemption disabled if the 2798 * interrupt controller has per-cpu registers. 2799 */ 2800 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2801 bool *state) 2802 { 2803 struct irq_desc *desc; 2804 struct irq_data *data; 2805 unsigned long flags; 2806 int err = -EINVAL; 2807 2808 desc = irq_get_desc_buslock(irq, &flags, 0); 2809 if (!desc) 2810 return err; 2811 2812 data = irq_desc_get_irq_data(desc); 2813 2814 err = __irq_get_irqchip_state(data, which, state); 2815 2816 irq_put_desc_busunlock(desc, flags); 2817 return err; 2818 } 2819 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2820 2821 /** 2822 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2823 * @irq: Interrupt line that is forwarded to a VM 2824 * @which: State to be restored (one of IRQCHIP_STATE_*) 2825 * @val: Value corresponding to @which 2826 * 2827 * This call sets the internal irqchip state of an interrupt, 2828 * depending on the value of @which. 2829 * 2830 * This function should be called with migration disabled if the 2831 * interrupt controller has per-cpu registers. 2832 */ 2833 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2834 bool val) 2835 { 2836 struct irq_desc *desc; 2837 struct irq_data *data; 2838 struct irq_chip *chip; 2839 unsigned long flags; 2840 int err = -EINVAL; 2841 2842 desc = irq_get_desc_buslock(irq, &flags, 0); 2843 if (!desc) 2844 return err; 2845 2846 data = irq_desc_get_irq_data(desc); 2847 2848 do { 2849 chip = irq_data_get_irq_chip(data); 2850 if (WARN_ON_ONCE(!chip)) { 2851 err = -ENODEV; 2852 goto out_unlock; 2853 } 2854 if (chip->irq_set_irqchip_state) 2855 break; 2856 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2857 data = data->parent_data; 2858 #else 2859 data = NULL; 2860 #endif 2861 } while (data); 2862 2863 if (data) 2864 err = chip->irq_set_irqchip_state(data, which, val); 2865 2866 out_unlock: 2867 irq_put_desc_busunlock(desc, flags); 2868 return err; 2869 } 2870 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2871 2872 /** 2873 * irq_has_action - Check whether an interrupt is requested 2874 * @irq: The linux irq number 2875 * 2876 * Returns: A snapshot of the current state 2877 */ 2878 bool irq_has_action(unsigned int irq) 2879 { 2880 bool res; 2881 2882 rcu_read_lock(); 2883 res = irq_desc_has_action(irq_to_desc(irq)); 2884 rcu_read_unlock(); 2885 return res; 2886 } 2887 EXPORT_SYMBOL_GPL(irq_has_action); 2888 2889 /** 2890 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2891 * @irq: The linux irq number 2892 * @bitmask: The bitmask to evaluate 2893 * 2894 * Returns: True if one of the bits in @bitmask is set 2895 */ 2896 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2897 { 2898 struct irq_desc *desc; 2899 bool res = false; 2900 2901 rcu_read_lock(); 2902 desc = irq_to_desc(irq); 2903 if (desc) 2904 res = !!(desc->status_use_accessors & bitmask); 2905 rcu_read_unlock(); 2906 return res; 2907 } 2908 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2909