1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 static void __synchronize_irq(struct irq_desc *desc) 112 { 113 __synchronize_hardirq(desc, true); 114 /* 115 * We made sure that no hardirq handler is running. Now verify that no 116 * threaded handlers are active. 117 */ 118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active)); 119 } 120 121 /** 122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 123 * @irq: interrupt number to wait for 124 * 125 * This function waits for any pending IRQ handlers for this interrupt 126 * to complete before returning. If you use this function while 127 * holding a resource the IRQ handler may need you will deadlock. 128 * 129 * Can only be called from preemptible code as it might sleep when 130 * an interrupt thread is associated to @irq. 131 * 132 * It optionally makes sure (when the irq chip supports that method) 133 * that the interrupt is not pending in any CPU and waiting for 134 * service. 135 */ 136 void synchronize_irq(unsigned int irq) 137 { 138 struct irq_desc *desc = irq_to_desc(irq); 139 140 if (desc) 141 __synchronize_irq(desc); 142 } 143 EXPORT_SYMBOL(synchronize_irq); 144 145 #ifdef CONFIG_SMP 146 cpumask_var_t irq_default_affinity; 147 148 static bool __irq_can_set_affinity(struct irq_desc *desc) 149 { 150 if (!desc || !irqd_can_balance(&desc->irq_data) || 151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 152 return false; 153 return true; 154 } 155 156 /** 157 * irq_can_set_affinity - Check if the affinity of a given irq can be set 158 * @irq: Interrupt to check 159 * 160 */ 161 int irq_can_set_affinity(unsigned int irq) 162 { 163 return __irq_can_set_affinity(irq_to_desc(irq)); 164 } 165 166 /** 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 168 * @irq: Interrupt to check 169 * 170 * Like irq_can_set_affinity() above, but additionally checks for the 171 * AFFINITY_MANAGED flag. 172 */ 173 bool irq_can_set_affinity_usr(unsigned int irq) 174 { 175 struct irq_desc *desc = irq_to_desc(irq); 176 177 return __irq_can_set_affinity(desc) && 178 !irqd_affinity_is_managed(&desc->irq_data); 179 } 180 181 /** 182 * irq_set_thread_affinity - Notify irq threads to adjust affinity 183 * @desc: irq descriptor which has affinity changed 184 * 185 * We just set IRQTF_AFFINITY and delegate the affinity setting 186 * to the interrupt thread itself. We can not call 187 * set_cpus_allowed_ptr() here as we hold desc->lock and this 188 * code can be called from hard interrupt context. 189 */ 190 void irq_set_thread_affinity(struct irq_desc *desc) 191 { 192 struct irqaction *action; 193 194 for_each_action_of_desc(desc, action) { 195 if (action->thread) 196 set_bit(IRQTF_AFFINITY, &action->thread_flags); 197 if (action->secondary && action->secondary->thread) 198 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 199 } 200 } 201 202 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 203 static void irq_validate_effective_affinity(struct irq_data *data) 204 { 205 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 206 struct irq_chip *chip = irq_data_get_irq_chip(data); 207 208 if (!cpumask_empty(m)) 209 return; 210 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 211 chip->name, data->irq); 212 } 213 #else 214 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 215 #endif 216 217 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 218 bool force) 219 { 220 struct irq_desc *desc = irq_data_to_desc(data); 221 struct irq_chip *chip = irq_data_get_irq_chip(data); 222 const struct cpumask *prog_mask; 223 int ret; 224 225 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 226 static struct cpumask tmp_mask; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 raw_spin_lock(&tmp_mask_lock); 232 /* 233 * If this is a managed interrupt and housekeeping is enabled on 234 * it check whether the requested affinity mask intersects with 235 * a housekeeping CPU. If so, then remove the isolated CPUs from 236 * the mask and just keep the housekeeping CPU(s). This prevents 237 * the affinity setter from routing the interrupt to an isolated 238 * CPU to avoid that I/O submitted from a housekeeping CPU causes 239 * interrupts on an isolated one. 240 * 241 * If the masks do not intersect or include online CPU(s) then 242 * keep the requested mask. The isolated target CPUs are only 243 * receiving interrupts when the I/O operation was submitted 244 * directly from them. 245 * 246 * If all housekeeping CPUs in the affinity mask are offline, the 247 * interrupt will be migrated by the CPU hotplug code once a 248 * housekeeping CPU which belongs to the affinity mask comes 249 * online. 250 */ 251 if (irqd_affinity_is_managed(data) && 252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 253 const struct cpumask *hk_mask; 254 255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 256 257 cpumask_and(&tmp_mask, mask, hk_mask); 258 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 259 prog_mask = mask; 260 else 261 prog_mask = &tmp_mask; 262 } else { 263 prog_mask = mask; 264 } 265 266 /* 267 * Make sure we only provide online CPUs to the irqchip, 268 * unless we are being asked to force the affinity (in which 269 * case we do as we are told). 270 */ 271 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 272 if (!force && !cpumask_empty(&tmp_mask)) 273 ret = chip->irq_set_affinity(data, &tmp_mask, force); 274 else if (force) 275 ret = chip->irq_set_affinity(data, mask, force); 276 else 277 ret = -EINVAL; 278 279 raw_spin_unlock(&tmp_mask_lock); 280 281 switch (ret) { 282 case IRQ_SET_MASK_OK: 283 case IRQ_SET_MASK_OK_DONE: 284 cpumask_copy(desc->irq_common_data.affinity, mask); 285 fallthrough; 286 case IRQ_SET_MASK_OK_NOCOPY: 287 irq_validate_effective_affinity(data); 288 irq_set_thread_affinity(desc); 289 ret = 0; 290 } 291 292 return ret; 293 } 294 295 #ifdef CONFIG_GENERIC_PENDING_IRQ 296 static inline int irq_set_affinity_pending(struct irq_data *data, 297 const struct cpumask *dest) 298 { 299 struct irq_desc *desc = irq_data_to_desc(data); 300 301 irqd_set_move_pending(data); 302 irq_copy_pending(desc, dest); 303 return 0; 304 } 305 #else 306 static inline int irq_set_affinity_pending(struct irq_data *data, 307 const struct cpumask *dest) 308 { 309 return -EBUSY; 310 } 311 #endif 312 313 static int irq_try_set_affinity(struct irq_data *data, 314 const struct cpumask *dest, bool force) 315 { 316 int ret = irq_do_set_affinity(data, dest, force); 317 318 /* 319 * In case that the underlying vector management is busy and the 320 * architecture supports the generic pending mechanism then utilize 321 * this to avoid returning an error to user space. 322 */ 323 if (ret == -EBUSY && !force) 324 ret = irq_set_affinity_pending(data, dest); 325 return ret; 326 } 327 328 static bool irq_set_affinity_deactivated(struct irq_data *data, 329 const struct cpumask *mask) 330 { 331 struct irq_desc *desc = irq_data_to_desc(data); 332 333 /* 334 * Handle irq chips which can handle affinity only in activated 335 * state correctly 336 * 337 * If the interrupt is not yet activated, just store the affinity 338 * mask and do not call the chip driver at all. On activation the 339 * driver has to make sure anyway that the interrupt is in a 340 * usable state so startup works. 341 */ 342 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 343 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 344 return false; 345 346 cpumask_copy(desc->irq_common_data.affinity, mask); 347 irq_data_update_effective_affinity(data, mask); 348 irqd_set(data, IRQD_AFFINITY_SET); 349 return true; 350 } 351 352 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 353 bool force) 354 { 355 struct irq_chip *chip = irq_data_get_irq_chip(data); 356 struct irq_desc *desc = irq_data_to_desc(data); 357 int ret = 0; 358 359 if (!chip || !chip->irq_set_affinity) 360 return -EINVAL; 361 362 if (irq_set_affinity_deactivated(data, mask)) 363 return 0; 364 365 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 366 ret = irq_try_set_affinity(data, mask, force); 367 } else { 368 irqd_set_move_pending(data); 369 irq_copy_pending(desc, mask); 370 } 371 372 if (desc->affinity_notify) { 373 kref_get(&desc->affinity_notify->kref); 374 if (!schedule_work(&desc->affinity_notify->work)) { 375 /* Work was already scheduled, drop our extra ref */ 376 kref_put(&desc->affinity_notify->kref, 377 desc->affinity_notify->release); 378 } 379 } 380 irqd_set(data, IRQD_AFFINITY_SET); 381 382 return ret; 383 } 384 385 /** 386 * irq_update_affinity_desc - Update affinity management for an interrupt 387 * @irq: The interrupt number to update 388 * @affinity: Pointer to the affinity descriptor 389 * 390 * This interface can be used to configure the affinity management of 391 * interrupts which have been allocated already. 392 * 393 * There are certain limitations on when it may be used - attempts to use it 394 * for when the kernel is configured for generic IRQ reservation mode (in 395 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 396 * managed/non-managed interrupt accounting. In addition, attempts to use it on 397 * an interrupt which is already started or which has already been configured 398 * as managed will also fail, as these mean invalid init state or double init. 399 */ 400 int irq_update_affinity_desc(unsigned int irq, 401 struct irq_affinity_desc *affinity) 402 { 403 struct irq_desc *desc; 404 unsigned long flags; 405 bool activated; 406 int ret = 0; 407 408 /* 409 * Supporting this with the reservation scheme used by x86 needs 410 * some more thought. Fail it for now. 411 */ 412 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 413 return -EOPNOTSUPP; 414 415 desc = irq_get_desc_buslock(irq, &flags, 0); 416 if (!desc) 417 return -EINVAL; 418 419 /* Requires the interrupt to be shut down */ 420 if (irqd_is_started(&desc->irq_data)) { 421 ret = -EBUSY; 422 goto out_unlock; 423 } 424 425 /* Interrupts which are already managed cannot be modified */ 426 if (irqd_affinity_is_managed(&desc->irq_data)) { 427 ret = -EBUSY; 428 goto out_unlock; 429 } 430 431 /* 432 * Deactivate the interrupt. That's required to undo 433 * anything an earlier activation has established. 434 */ 435 activated = irqd_is_activated(&desc->irq_data); 436 if (activated) 437 irq_domain_deactivate_irq(&desc->irq_data); 438 439 if (affinity->is_managed) { 440 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 441 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 442 } 443 444 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 445 446 /* Restore the activation state */ 447 if (activated) 448 irq_domain_activate_irq(&desc->irq_data, false); 449 450 out_unlock: 451 irq_put_desc_busunlock(desc, flags); 452 return ret; 453 } 454 455 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 456 bool force) 457 { 458 struct irq_desc *desc = irq_to_desc(irq); 459 unsigned long flags; 460 int ret; 461 462 if (!desc) 463 return -EINVAL; 464 465 raw_spin_lock_irqsave(&desc->lock, flags); 466 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 467 raw_spin_unlock_irqrestore(&desc->lock, flags); 468 return ret; 469 } 470 471 /** 472 * irq_set_affinity - Set the irq affinity of a given irq 473 * @irq: Interrupt to set affinity 474 * @cpumask: cpumask 475 * 476 * Fails if cpumask does not contain an online CPU 477 */ 478 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 479 { 480 return __irq_set_affinity(irq, cpumask, false); 481 } 482 EXPORT_SYMBOL_GPL(irq_set_affinity); 483 484 /** 485 * irq_force_affinity - Force the irq affinity of a given irq 486 * @irq: Interrupt to set affinity 487 * @cpumask: cpumask 488 * 489 * Same as irq_set_affinity, but without checking the mask against 490 * online cpus. 491 * 492 * Solely for low level cpu hotplug code, where we need to make per 493 * cpu interrupts affine before the cpu becomes online. 494 */ 495 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 496 { 497 return __irq_set_affinity(irq, cpumask, true); 498 } 499 EXPORT_SYMBOL_GPL(irq_force_affinity); 500 501 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 502 bool setaffinity) 503 { 504 unsigned long flags; 505 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 506 507 if (!desc) 508 return -EINVAL; 509 desc->affinity_hint = m; 510 irq_put_desc_unlock(desc, flags); 511 if (m && setaffinity) 512 __irq_set_affinity(irq, m, false); 513 return 0; 514 } 515 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 516 517 static void irq_affinity_notify(struct work_struct *work) 518 { 519 struct irq_affinity_notify *notify = 520 container_of(work, struct irq_affinity_notify, work); 521 struct irq_desc *desc = irq_to_desc(notify->irq); 522 cpumask_var_t cpumask; 523 unsigned long flags; 524 525 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 526 goto out; 527 528 raw_spin_lock_irqsave(&desc->lock, flags); 529 if (irq_move_pending(&desc->irq_data)) 530 irq_get_pending(cpumask, desc); 531 else 532 cpumask_copy(cpumask, desc->irq_common_data.affinity); 533 raw_spin_unlock_irqrestore(&desc->lock, flags); 534 535 notify->notify(notify, cpumask); 536 537 free_cpumask_var(cpumask); 538 out: 539 kref_put(¬ify->kref, notify->release); 540 } 541 542 /** 543 * irq_set_affinity_notifier - control notification of IRQ affinity changes 544 * @irq: Interrupt for which to enable/disable notification 545 * @notify: Context for notification, or %NULL to disable 546 * notification. Function pointers must be initialised; 547 * the other fields will be initialised by this function. 548 * 549 * Must be called in process context. Notification may only be enabled 550 * after the IRQ is allocated and must be disabled before the IRQ is 551 * freed using free_irq(). 552 */ 553 int 554 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 555 { 556 struct irq_desc *desc = irq_to_desc(irq); 557 struct irq_affinity_notify *old_notify; 558 unsigned long flags; 559 560 /* The release function is promised process context */ 561 might_sleep(); 562 563 if (!desc || desc->istate & IRQS_NMI) 564 return -EINVAL; 565 566 /* Complete initialisation of *notify */ 567 if (notify) { 568 notify->irq = irq; 569 kref_init(¬ify->kref); 570 INIT_WORK(¬ify->work, irq_affinity_notify); 571 } 572 573 raw_spin_lock_irqsave(&desc->lock, flags); 574 old_notify = desc->affinity_notify; 575 desc->affinity_notify = notify; 576 raw_spin_unlock_irqrestore(&desc->lock, flags); 577 578 if (old_notify) { 579 if (cancel_work_sync(&old_notify->work)) { 580 /* Pending work had a ref, put that one too */ 581 kref_put(&old_notify->kref, old_notify->release); 582 } 583 kref_put(&old_notify->kref, old_notify->release); 584 } 585 586 return 0; 587 } 588 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 589 590 #ifndef CONFIG_AUTO_IRQ_AFFINITY 591 /* 592 * Generic version of the affinity autoselector. 593 */ 594 int irq_setup_affinity(struct irq_desc *desc) 595 { 596 struct cpumask *set = irq_default_affinity; 597 int ret, node = irq_desc_get_node(desc); 598 static DEFINE_RAW_SPINLOCK(mask_lock); 599 static struct cpumask mask; 600 601 /* Excludes PER_CPU and NO_BALANCE interrupts */ 602 if (!__irq_can_set_affinity(desc)) 603 return 0; 604 605 raw_spin_lock(&mask_lock); 606 /* 607 * Preserve the managed affinity setting and a userspace affinity 608 * setup, but make sure that one of the targets is online. 609 */ 610 if (irqd_affinity_is_managed(&desc->irq_data) || 611 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 612 if (cpumask_intersects(desc->irq_common_data.affinity, 613 cpu_online_mask)) 614 set = desc->irq_common_data.affinity; 615 else 616 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 617 } 618 619 cpumask_and(&mask, cpu_online_mask, set); 620 if (cpumask_empty(&mask)) 621 cpumask_copy(&mask, cpu_online_mask); 622 623 if (node != NUMA_NO_NODE) { 624 const struct cpumask *nodemask = cpumask_of_node(node); 625 626 /* make sure at least one of the cpus in nodemask is online */ 627 if (cpumask_intersects(&mask, nodemask)) 628 cpumask_and(&mask, &mask, nodemask); 629 } 630 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 631 raw_spin_unlock(&mask_lock); 632 return ret; 633 } 634 #else 635 /* Wrapper for ALPHA specific affinity selector magic */ 636 int irq_setup_affinity(struct irq_desc *desc) 637 { 638 return irq_select_affinity(irq_desc_get_irq(desc)); 639 } 640 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 641 #endif /* CONFIG_SMP */ 642 643 644 /** 645 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 646 * @irq: interrupt number to set affinity 647 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 648 * specific data for percpu_devid interrupts 649 * 650 * This function uses the vCPU specific data to set the vCPU 651 * affinity for an irq. The vCPU specific data is passed from 652 * outside, such as KVM. One example code path is as below: 653 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 654 */ 655 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 656 { 657 unsigned long flags; 658 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 659 struct irq_data *data; 660 struct irq_chip *chip; 661 int ret = -ENOSYS; 662 663 if (!desc) 664 return -EINVAL; 665 666 data = irq_desc_get_irq_data(desc); 667 do { 668 chip = irq_data_get_irq_chip(data); 669 if (chip && chip->irq_set_vcpu_affinity) 670 break; 671 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 672 data = data->parent_data; 673 #else 674 data = NULL; 675 #endif 676 } while (data); 677 678 if (data) 679 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 680 irq_put_desc_unlock(desc, flags); 681 682 return ret; 683 } 684 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 685 686 void __disable_irq(struct irq_desc *desc) 687 { 688 if (!desc->depth++) 689 irq_disable(desc); 690 } 691 692 static int __disable_irq_nosync(unsigned int irq) 693 { 694 unsigned long flags; 695 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 696 697 if (!desc) 698 return -EINVAL; 699 __disable_irq(desc); 700 irq_put_desc_busunlock(desc, flags); 701 return 0; 702 } 703 704 /** 705 * disable_irq_nosync - disable an irq without waiting 706 * @irq: Interrupt to disable 707 * 708 * Disable the selected interrupt line. Disables and Enables are 709 * nested. 710 * Unlike disable_irq(), this function does not ensure existing 711 * instances of the IRQ handler have completed before returning. 712 * 713 * This function may be called from IRQ context. 714 */ 715 void disable_irq_nosync(unsigned int irq) 716 { 717 __disable_irq_nosync(irq); 718 } 719 EXPORT_SYMBOL(disable_irq_nosync); 720 721 /** 722 * disable_irq - disable an irq and wait for completion 723 * @irq: Interrupt to disable 724 * 725 * Disable the selected interrupt line. Enables and Disables are 726 * nested. 727 * This function waits for any pending IRQ handlers for this interrupt 728 * to complete before returning. If you use this function while 729 * holding a resource the IRQ handler may need you will deadlock. 730 * 731 * Can only be called from preemptible code as it might sleep when 732 * an interrupt thread is associated to @irq. 733 * 734 */ 735 void disable_irq(unsigned int irq) 736 { 737 might_sleep(); 738 if (!__disable_irq_nosync(irq)) 739 synchronize_irq(irq); 740 } 741 EXPORT_SYMBOL(disable_irq); 742 743 /** 744 * disable_hardirq - disables an irq and waits for hardirq completion 745 * @irq: Interrupt to disable 746 * 747 * Disable the selected interrupt line. Enables and Disables are 748 * nested. 749 * This function waits for any pending hard IRQ handlers for this 750 * interrupt to complete before returning. If you use this function while 751 * holding a resource the hard IRQ handler may need you will deadlock. 752 * 753 * When used to optimistically disable an interrupt from atomic context 754 * the return value must be checked. 755 * 756 * Returns: false if a threaded handler is active. 757 * 758 * This function may be called - with care - from IRQ context. 759 */ 760 bool disable_hardirq(unsigned int irq) 761 { 762 if (!__disable_irq_nosync(irq)) 763 return synchronize_hardirq(irq); 764 765 return false; 766 } 767 EXPORT_SYMBOL_GPL(disable_hardirq); 768 769 /** 770 * disable_nmi_nosync - disable an nmi without waiting 771 * @irq: Interrupt to disable 772 * 773 * Disable the selected interrupt line. Disables and enables are 774 * nested. 775 * The interrupt to disable must have been requested through request_nmi. 776 * Unlike disable_nmi(), this function does not ensure existing 777 * instances of the IRQ handler have completed before returning. 778 */ 779 void disable_nmi_nosync(unsigned int irq) 780 { 781 disable_irq_nosync(irq); 782 } 783 784 void __enable_irq(struct irq_desc *desc) 785 { 786 switch (desc->depth) { 787 case 0: 788 err_out: 789 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 790 irq_desc_get_irq(desc)); 791 break; 792 case 1: { 793 if (desc->istate & IRQS_SUSPENDED) 794 goto err_out; 795 /* Prevent probing on this irq: */ 796 irq_settings_set_noprobe(desc); 797 /* 798 * Call irq_startup() not irq_enable() here because the 799 * interrupt might be marked NOAUTOEN. So irq_startup() 800 * needs to be invoked when it gets enabled the first 801 * time. If it was already started up, then irq_startup() 802 * will invoke irq_enable() under the hood. 803 */ 804 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 805 break; 806 } 807 default: 808 desc->depth--; 809 } 810 } 811 812 /** 813 * enable_irq - enable handling of an irq 814 * @irq: Interrupt to enable 815 * 816 * Undoes the effect of one call to disable_irq(). If this 817 * matches the last disable, processing of interrupts on this 818 * IRQ line is re-enabled. 819 * 820 * This function may be called from IRQ context only when 821 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 822 */ 823 void enable_irq(unsigned int irq) 824 { 825 unsigned long flags; 826 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 827 828 if (!desc) 829 return; 830 if (WARN(!desc->irq_data.chip, 831 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 832 goto out; 833 834 __enable_irq(desc); 835 out: 836 irq_put_desc_busunlock(desc, flags); 837 } 838 EXPORT_SYMBOL(enable_irq); 839 840 /** 841 * enable_nmi - enable handling of an nmi 842 * @irq: Interrupt to enable 843 * 844 * The interrupt to enable must have been requested through request_nmi. 845 * Undoes the effect of one call to disable_nmi(). If this 846 * matches the last disable, processing of interrupts on this 847 * IRQ line is re-enabled. 848 */ 849 void enable_nmi(unsigned int irq) 850 { 851 enable_irq(irq); 852 } 853 854 static int set_irq_wake_real(unsigned int irq, unsigned int on) 855 { 856 struct irq_desc *desc = irq_to_desc(irq); 857 int ret = -ENXIO; 858 859 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 860 return 0; 861 862 if (desc->irq_data.chip->irq_set_wake) 863 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 864 865 return ret; 866 } 867 868 /** 869 * irq_set_irq_wake - control irq power management wakeup 870 * @irq: interrupt to control 871 * @on: enable/disable power management wakeup 872 * 873 * Enable/disable power management wakeup mode, which is 874 * disabled by default. Enables and disables must match, 875 * just as they match for non-wakeup mode support. 876 * 877 * Wakeup mode lets this IRQ wake the system from sleep 878 * states like "suspend to RAM". 879 * 880 * Note: irq enable/disable state is completely orthogonal 881 * to the enable/disable state of irq wake. An irq can be 882 * disabled with disable_irq() and still wake the system as 883 * long as the irq has wake enabled. If this does not hold, 884 * then the underlying irq chip and the related driver need 885 * to be investigated. 886 */ 887 int irq_set_irq_wake(unsigned int irq, unsigned int on) 888 { 889 unsigned long flags; 890 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 891 int ret = 0; 892 893 if (!desc) 894 return -EINVAL; 895 896 /* Don't use NMIs as wake up interrupts please */ 897 if (desc->istate & IRQS_NMI) { 898 ret = -EINVAL; 899 goto out_unlock; 900 } 901 902 /* wakeup-capable irqs can be shared between drivers that 903 * don't need to have the same sleep mode behaviors. 904 */ 905 if (on) { 906 if (desc->wake_depth++ == 0) { 907 ret = set_irq_wake_real(irq, on); 908 if (ret) 909 desc->wake_depth = 0; 910 else 911 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 912 } 913 } else { 914 if (desc->wake_depth == 0) { 915 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 916 } else if (--desc->wake_depth == 0) { 917 ret = set_irq_wake_real(irq, on); 918 if (ret) 919 desc->wake_depth = 1; 920 else 921 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 922 } 923 } 924 925 out_unlock: 926 irq_put_desc_busunlock(desc, flags); 927 return ret; 928 } 929 EXPORT_SYMBOL(irq_set_irq_wake); 930 931 /* 932 * Internal function that tells the architecture code whether a 933 * particular irq has been exclusively allocated or is available 934 * for driver use. 935 */ 936 int can_request_irq(unsigned int irq, unsigned long irqflags) 937 { 938 unsigned long flags; 939 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 940 int canrequest = 0; 941 942 if (!desc) 943 return 0; 944 945 if (irq_settings_can_request(desc)) { 946 if (!desc->action || 947 irqflags & desc->action->flags & IRQF_SHARED) 948 canrequest = 1; 949 } 950 irq_put_desc_unlock(desc, flags); 951 return canrequest; 952 } 953 954 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 955 { 956 struct irq_chip *chip = desc->irq_data.chip; 957 int ret, unmask = 0; 958 959 if (!chip || !chip->irq_set_type) { 960 /* 961 * IRQF_TRIGGER_* but the PIC does not support multiple 962 * flow-types? 963 */ 964 pr_debug("No set_type function for IRQ %d (%s)\n", 965 irq_desc_get_irq(desc), 966 chip ? (chip->name ? : "unknown") : "unknown"); 967 return 0; 968 } 969 970 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 971 if (!irqd_irq_masked(&desc->irq_data)) 972 mask_irq(desc); 973 if (!irqd_irq_disabled(&desc->irq_data)) 974 unmask = 1; 975 } 976 977 /* Mask all flags except trigger mode */ 978 flags &= IRQ_TYPE_SENSE_MASK; 979 ret = chip->irq_set_type(&desc->irq_data, flags); 980 981 switch (ret) { 982 case IRQ_SET_MASK_OK: 983 case IRQ_SET_MASK_OK_DONE: 984 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 985 irqd_set(&desc->irq_data, flags); 986 fallthrough; 987 988 case IRQ_SET_MASK_OK_NOCOPY: 989 flags = irqd_get_trigger_type(&desc->irq_data); 990 irq_settings_set_trigger_mask(desc, flags); 991 irqd_clear(&desc->irq_data, IRQD_LEVEL); 992 irq_settings_clr_level(desc); 993 if (flags & IRQ_TYPE_LEVEL_MASK) { 994 irq_settings_set_level(desc); 995 irqd_set(&desc->irq_data, IRQD_LEVEL); 996 } 997 998 ret = 0; 999 break; 1000 default: 1001 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1002 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1003 } 1004 if (unmask) 1005 unmask_irq(desc); 1006 return ret; 1007 } 1008 1009 #ifdef CONFIG_HARDIRQS_SW_RESEND 1010 int irq_set_parent(int irq, int parent_irq) 1011 { 1012 unsigned long flags; 1013 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1014 1015 if (!desc) 1016 return -EINVAL; 1017 1018 desc->parent_irq = parent_irq; 1019 1020 irq_put_desc_unlock(desc, flags); 1021 return 0; 1022 } 1023 EXPORT_SYMBOL_GPL(irq_set_parent); 1024 #endif 1025 1026 /* 1027 * Default primary interrupt handler for threaded interrupts. Is 1028 * assigned as primary handler when request_threaded_irq is called 1029 * with handler == NULL. Useful for oneshot interrupts. 1030 */ 1031 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1032 { 1033 return IRQ_WAKE_THREAD; 1034 } 1035 1036 /* 1037 * Primary handler for nested threaded interrupts. Should never be 1038 * called. 1039 */ 1040 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1041 { 1042 WARN(1, "Primary handler called for nested irq %d\n", irq); 1043 return IRQ_NONE; 1044 } 1045 1046 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1047 { 1048 WARN(1, "Secondary action handler called for irq %d\n", irq); 1049 return IRQ_NONE; 1050 } 1051 1052 static int irq_wait_for_interrupt(struct irqaction *action) 1053 { 1054 for (;;) { 1055 set_current_state(TASK_INTERRUPTIBLE); 1056 1057 if (kthread_should_stop()) { 1058 /* may need to run one last time */ 1059 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1060 &action->thread_flags)) { 1061 __set_current_state(TASK_RUNNING); 1062 return 0; 1063 } 1064 __set_current_state(TASK_RUNNING); 1065 return -1; 1066 } 1067 1068 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1069 &action->thread_flags)) { 1070 __set_current_state(TASK_RUNNING); 1071 return 0; 1072 } 1073 schedule(); 1074 } 1075 } 1076 1077 /* 1078 * Oneshot interrupts keep the irq line masked until the threaded 1079 * handler finished. unmask if the interrupt has not been disabled and 1080 * is marked MASKED. 1081 */ 1082 static void irq_finalize_oneshot(struct irq_desc *desc, 1083 struct irqaction *action) 1084 { 1085 if (!(desc->istate & IRQS_ONESHOT) || 1086 action->handler == irq_forced_secondary_handler) 1087 return; 1088 again: 1089 chip_bus_lock(desc); 1090 raw_spin_lock_irq(&desc->lock); 1091 1092 /* 1093 * Implausible though it may be we need to protect us against 1094 * the following scenario: 1095 * 1096 * The thread is faster done than the hard interrupt handler 1097 * on the other CPU. If we unmask the irq line then the 1098 * interrupt can come in again and masks the line, leaves due 1099 * to IRQS_INPROGRESS and the irq line is masked forever. 1100 * 1101 * This also serializes the state of shared oneshot handlers 1102 * versus "desc->threads_oneshot |= action->thread_mask;" in 1103 * irq_wake_thread(). See the comment there which explains the 1104 * serialization. 1105 */ 1106 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1107 raw_spin_unlock_irq(&desc->lock); 1108 chip_bus_sync_unlock(desc); 1109 cpu_relax(); 1110 goto again; 1111 } 1112 1113 /* 1114 * Now check again, whether the thread should run. Otherwise 1115 * we would clear the threads_oneshot bit of this thread which 1116 * was just set. 1117 */ 1118 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1119 goto out_unlock; 1120 1121 desc->threads_oneshot &= ~action->thread_mask; 1122 1123 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1124 irqd_irq_masked(&desc->irq_data)) 1125 unmask_threaded_irq(desc); 1126 1127 out_unlock: 1128 raw_spin_unlock_irq(&desc->lock); 1129 chip_bus_sync_unlock(desc); 1130 } 1131 1132 #ifdef CONFIG_SMP 1133 /* 1134 * Check whether we need to change the affinity of the interrupt thread. 1135 */ 1136 static void 1137 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1138 { 1139 cpumask_var_t mask; 1140 bool valid = true; 1141 1142 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1143 return; 1144 1145 /* 1146 * In case we are out of memory we set IRQTF_AFFINITY again and 1147 * try again next time 1148 */ 1149 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1150 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1151 return; 1152 } 1153 1154 raw_spin_lock_irq(&desc->lock); 1155 /* 1156 * This code is triggered unconditionally. Check the affinity 1157 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1158 */ 1159 if (cpumask_available(desc->irq_common_data.affinity)) { 1160 const struct cpumask *m; 1161 1162 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1163 cpumask_copy(mask, m); 1164 } else { 1165 valid = false; 1166 } 1167 raw_spin_unlock_irq(&desc->lock); 1168 1169 if (valid) 1170 set_cpus_allowed_ptr(current, mask); 1171 free_cpumask_var(mask); 1172 } 1173 #else 1174 static inline void 1175 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1176 #endif 1177 1178 /* 1179 * Interrupts which are not explicitly requested as threaded 1180 * interrupts rely on the implicit bh/preempt disable of the hard irq 1181 * context. So we need to disable bh here to avoid deadlocks and other 1182 * side effects. 1183 */ 1184 static irqreturn_t 1185 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1186 { 1187 irqreturn_t ret; 1188 1189 local_bh_disable(); 1190 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1191 local_irq_disable(); 1192 ret = action->thread_fn(action->irq, action->dev_id); 1193 if (ret == IRQ_HANDLED) 1194 atomic_inc(&desc->threads_handled); 1195 1196 irq_finalize_oneshot(desc, action); 1197 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1198 local_irq_enable(); 1199 local_bh_enable(); 1200 return ret; 1201 } 1202 1203 /* 1204 * Interrupts explicitly requested as threaded interrupts want to be 1205 * preemptible - many of them need to sleep and wait for slow busses to 1206 * complete. 1207 */ 1208 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1209 struct irqaction *action) 1210 { 1211 irqreturn_t ret; 1212 1213 ret = action->thread_fn(action->irq, action->dev_id); 1214 if (ret == IRQ_HANDLED) 1215 atomic_inc(&desc->threads_handled); 1216 1217 irq_finalize_oneshot(desc, action); 1218 return ret; 1219 } 1220 1221 void wake_threads_waitq(struct irq_desc *desc) 1222 { 1223 if (atomic_dec_and_test(&desc->threads_active)) 1224 wake_up(&desc->wait_for_threads); 1225 } 1226 1227 static void irq_thread_dtor(struct callback_head *unused) 1228 { 1229 struct task_struct *tsk = current; 1230 struct irq_desc *desc; 1231 struct irqaction *action; 1232 1233 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1234 return; 1235 1236 action = kthread_data(tsk); 1237 1238 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1239 tsk->comm, tsk->pid, action->irq); 1240 1241 1242 desc = irq_to_desc(action->irq); 1243 /* 1244 * If IRQTF_RUNTHREAD is set, we need to decrement 1245 * desc->threads_active and wake possible waiters. 1246 */ 1247 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1248 wake_threads_waitq(desc); 1249 1250 /* Prevent a stale desc->threads_oneshot */ 1251 irq_finalize_oneshot(desc, action); 1252 } 1253 1254 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1255 { 1256 struct irqaction *secondary = action->secondary; 1257 1258 if (WARN_ON_ONCE(!secondary)) 1259 return; 1260 1261 raw_spin_lock_irq(&desc->lock); 1262 __irq_wake_thread(desc, secondary); 1263 raw_spin_unlock_irq(&desc->lock); 1264 } 1265 1266 /* 1267 * Internal function to notify that a interrupt thread is ready. 1268 */ 1269 static void irq_thread_set_ready(struct irq_desc *desc, 1270 struct irqaction *action) 1271 { 1272 set_bit(IRQTF_READY, &action->thread_flags); 1273 wake_up(&desc->wait_for_threads); 1274 } 1275 1276 /* 1277 * Internal function to wake up a interrupt thread and wait until it is 1278 * ready. 1279 */ 1280 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1281 struct irqaction *action) 1282 { 1283 if (!action || !action->thread) 1284 return; 1285 1286 wake_up_process(action->thread); 1287 wait_event(desc->wait_for_threads, 1288 test_bit(IRQTF_READY, &action->thread_flags)); 1289 } 1290 1291 /* 1292 * Interrupt handler thread 1293 */ 1294 static int irq_thread(void *data) 1295 { 1296 struct callback_head on_exit_work; 1297 struct irqaction *action = data; 1298 struct irq_desc *desc = irq_to_desc(action->irq); 1299 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1300 struct irqaction *action); 1301 1302 irq_thread_set_ready(desc, action); 1303 1304 sched_set_fifo(current); 1305 1306 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1307 &action->thread_flags)) 1308 handler_fn = irq_forced_thread_fn; 1309 else 1310 handler_fn = irq_thread_fn; 1311 1312 init_task_work(&on_exit_work, irq_thread_dtor); 1313 task_work_add(current, &on_exit_work, TWA_NONE); 1314 1315 irq_thread_check_affinity(desc, action); 1316 1317 while (!irq_wait_for_interrupt(action)) { 1318 irqreturn_t action_ret; 1319 1320 irq_thread_check_affinity(desc, action); 1321 1322 action_ret = handler_fn(desc, action); 1323 if (action_ret == IRQ_WAKE_THREAD) 1324 irq_wake_secondary(desc, action); 1325 1326 wake_threads_waitq(desc); 1327 } 1328 1329 /* 1330 * This is the regular exit path. __free_irq() is stopping the 1331 * thread via kthread_stop() after calling 1332 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1333 * oneshot mask bit can be set. 1334 */ 1335 task_work_cancel(current, irq_thread_dtor); 1336 return 0; 1337 } 1338 1339 /** 1340 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1341 * @irq: Interrupt line 1342 * @dev_id: Device identity for which the thread should be woken 1343 * 1344 */ 1345 void irq_wake_thread(unsigned int irq, void *dev_id) 1346 { 1347 struct irq_desc *desc = irq_to_desc(irq); 1348 struct irqaction *action; 1349 unsigned long flags; 1350 1351 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1352 return; 1353 1354 raw_spin_lock_irqsave(&desc->lock, flags); 1355 for_each_action_of_desc(desc, action) { 1356 if (action->dev_id == dev_id) { 1357 if (action->thread) 1358 __irq_wake_thread(desc, action); 1359 break; 1360 } 1361 } 1362 raw_spin_unlock_irqrestore(&desc->lock, flags); 1363 } 1364 EXPORT_SYMBOL_GPL(irq_wake_thread); 1365 1366 static int irq_setup_forced_threading(struct irqaction *new) 1367 { 1368 if (!force_irqthreads()) 1369 return 0; 1370 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1371 return 0; 1372 1373 /* 1374 * No further action required for interrupts which are requested as 1375 * threaded interrupts already 1376 */ 1377 if (new->handler == irq_default_primary_handler) 1378 return 0; 1379 1380 new->flags |= IRQF_ONESHOT; 1381 1382 /* 1383 * Handle the case where we have a real primary handler and a 1384 * thread handler. We force thread them as well by creating a 1385 * secondary action. 1386 */ 1387 if (new->handler && new->thread_fn) { 1388 /* Allocate the secondary action */ 1389 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1390 if (!new->secondary) 1391 return -ENOMEM; 1392 new->secondary->handler = irq_forced_secondary_handler; 1393 new->secondary->thread_fn = new->thread_fn; 1394 new->secondary->dev_id = new->dev_id; 1395 new->secondary->irq = new->irq; 1396 new->secondary->name = new->name; 1397 } 1398 /* Deal with the primary handler */ 1399 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1400 new->thread_fn = new->handler; 1401 new->handler = irq_default_primary_handler; 1402 return 0; 1403 } 1404 1405 static int irq_request_resources(struct irq_desc *desc) 1406 { 1407 struct irq_data *d = &desc->irq_data; 1408 struct irq_chip *c = d->chip; 1409 1410 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1411 } 1412 1413 static void irq_release_resources(struct irq_desc *desc) 1414 { 1415 struct irq_data *d = &desc->irq_data; 1416 struct irq_chip *c = d->chip; 1417 1418 if (c->irq_release_resources) 1419 c->irq_release_resources(d); 1420 } 1421 1422 static bool irq_supports_nmi(struct irq_desc *desc) 1423 { 1424 struct irq_data *d = irq_desc_get_irq_data(desc); 1425 1426 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1427 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1428 if (d->parent_data) 1429 return false; 1430 #endif 1431 /* Don't support NMIs for chips behind a slow bus */ 1432 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1433 return false; 1434 1435 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1436 } 1437 1438 static int irq_nmi_setup(struct irq_desc *desc) 1439 { 1440 struct irq_data *d = irq_desc_get_irq_data(desc); 1441 struct irq_chip *c = d->chip; 1442 1443 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1444 } 1445 1446 static void irq_nmi_teardown(struct irq_desc *desc) 1447 { 1448 struct irq_data *d = irq_desc_get_irq_data(desc); 1449 struct irq_chip *c = d->chip; 1450 1451 if (c->irq_nmi_teardown) 1452 c->irq_nmi_teardown(d); 1453 } 1454 1455 static int 1456 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1457 { 1458 struct task_struct *t; 1459 1460 if (!secondary) { 1461 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1462 new->name); 1463 } else { 1464 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1465 new->name); 1466 } 1467 1468 if (IS_ERR(t)) 1469 return PTR_ERR(t); 1470 1471 /* 1472 * We keep the reference to the task struct even if 1473 * the thread dies to avoid that the interrupt code 1474 * references an already freed task_struct. 1475 */ 1476 new->thread = get_task_struct(t); 1477 /* 1478 * Tell the thread to set its affinity. This is 1479 * important for shared interrupt handlers as we do 1480 * not invoke setup_affinity() for the secondary 1481 * handlers as everything is already set up. Even for 1482 * interrupts marked with IRQF_NO_BALANCE this is 1483 * correct as we want the thread to move to the cpu(s) 1484 * on which the requesting code placed the interrupt. 1485 */ 1486 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1487 return 0; 1488 } 1489 1490 /* 1491 * Internal function to register an irqaction - typically used to 1492 * allocate special interrupts that are part of the architecture. 1493 * 1494 * Locking rules: 1495 * 1496 * desc->request_mutex Provides serialization against a concurrent free_irq() 1497 * chip_bus_lock Provides serialization for slow bus operations 1498 * desc->lock Provides serialization against hard interrupts 1499 * 1500 * chip_bus_lock and desc->lock are sufficient for all other management and 1501 * interrupt related functions. desc->request_mutex solely serializes 1502 * request/free_irq(). 1503 */ 1504 static int 1505 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1506 { 1507 struct irqaction *old, **old_ptr; 1508 unsigned long flags, thread_mask = 0; 1509 int ret, nested, shared = 0; 1510 1511 if (!desc) 1512 return -EINVAL; 1513 1514 if (desc->irq_data.chip == &no_irq_chip) 1515 return -ENOSYS; 1516 if (!try_module_get(desc->owner)) 1517 return -ENODEV; 1518 1519 new->irq = irq; 1520 1521 /* 1522 * If the trigger type is not specified by the caller, 1523 * then use the default for this interrupt. 1524 */ 1525 if (!(new->flags & IRQF_TRIGGER_MASK)) 1526 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1527 1528 /* 1529 * Check whether the interrupt nests into another interrupt 1530 * thread. 1531 */ 1532 nested = irq_settings_is_nested_thread(desc); 1533 if (nested) { 1534 if (!new->thread_fn) { 1535 ret = -EINVAL; 1536 goto out_mput; 1537 } 1538 /* 1539 * Replace the primary handler which was provided from 1540 * the driver for non nested interrupt handling by the 1541 * dummy function which warns when called. 1542 */ 1543 new->handler = irq_nested_primary_handler; 1544 } else { 1545 if (irq_settings_can_thread(desc)) { 1546 ret = irq_setup_forced_threading(new); 1547 if (ret) 1548 goto out_mput; 1549 } 1550 } 1551 1552 /* 1553 * Create a handler thread when a thread function is supplied 1554 * and the interrupt does not nest into another interrupt 1555 * thread. 1556 */ 1557 if (new->thread_fn && !nested) { 1558 ret = setup_irq_thread(new, irq, false); 1559 if (ret) 1560 goto out_mput; 1561 if (new->secondary) { 1562 ret = setup_irq_thread(new->secondary, irq, true); 1563 if (ret) 1564 goto out_thread; 1565 } 1566 } 1567 1568 /* 1569 * Drivers are often written to work w/o knowledge about the 1570 * underlying irq chip implementation, so a request for a 1571 * threaded irq without a primary hard irq context handler 1572 * requires the ONESHOT flag to be set. Some irq chips like 1573 * MSI based interrupts are per se one shot safe. Check the 1574 * chip flags, so we can avoid the unmask dance at the end of 1575 * the threaded handler for those. 1576 */ 1577 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1578 new->flags &= ~IRQF_ONESHOT; 1579 1580 /* 1581 * Protects against a concurrent __free_irq() call which might wait 1582 * for synchronize_hardirq() to complete without holding the optional 1583 * chip bus lock and desc->lock. Also protects against handing out 1584 * a recycled oneshot thread_mask bit while it's still in use by 1585 * its previous owner. 1586 */ 1587 mutex_lock(&desc->request_mutex); 1588 1589 /* 1590 * Acquire bus lock as the irq_request_resources() callback below 1591 * might rely on the serialization or the magic power management 1592 * functions which are abusing the irq_bus_lock() callback, 1593 */ 1594 chip_bus_lock(desc); 1595 1596 /* First installed action requests resources. */ 1597 if (!desc->action) { 1598 ret = irq_request_resources(desc); 1599 if (ret) { 1600 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1601 new->name, irq, desc->irq_data.chip->name); 1602 goto out_bus_unlock; 1603 } 1604 } 1605 1606 /* 1607 * The following block of code has to be executed atomically 1608 * protected against a concurrent interrupt and any of the other 1609 * management calls which are not serialized via 1610 * desc->request_mutex or the optional bus lock. 1611 */ 1612 raw_spin_lock_irqsave(&desc->lock, flags); 1613 old_ptr = &desc->action; 1614 old = *old_ptr; 1615 if (old) { 1616 /* 1617 * Can't share interrupts unless both agree to and are 1618 * the same type (level, edge, polarity). So both flag 1619 * fields must have IRQF_SHARED set and the bits which 1620 * set the trigger type must match. Also all must 1621 * agree on ONESHOT. 1622 * Interrupt lines used for NMIs cannot be shared. 1623 */ 1624 unsigned int oldtype; 1625 1626 if (desc->istate & IRQS_NMI) { 1627 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1628 new->name, irq, desc->irq_data.chip->name); 1629 ret = -EINVAL; 1630 goto out_unlock; 1631 } 1632 1633 /* 1634 * If nobody did set the configuration before, inherit 1635 * the one provided by the requester. 1636 */ 1637 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1638 oldtype = irqd_get_trigger_type(&desc->irq_data); 1639 } else { 1640 oldtype = new->flags & IRQF_TRIGGER_MASK; 1641 irqd_set_trigger_type(&desc->irq_data, oldtype); 1642 } 1643 1644 if (!((old->flags & new->flags) & IRQF_SHARED) || 1645 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1646 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1647 goto mismatch; 1648 1649 /* All handlers must agree on per-cpuness */ 1650 if ((old->flags & IRQF_PERCPU) != 1651 (new->flags & IRQF_PERCPU)) 1652 goto mismatch; 1653 1654 /* add new interrupt at end of irq queue */ 1655 do { 1656 /* 1657 * Or all existing action->thread_mask bits, 1658 * so we can find the next zero bit for this 1659 * new action. 1660 */ 1661 thread_mask |= old->thread_mask; 1662 old_ptr = &old->next; 1663 old = *old_ptr; 1664 } while (old); 1665 shared = 1; 1666 } 1667 1668 /* 1669 * Setup the thread mask for this irqaction for ONESHOT. For 1670 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1671 * conditional in irq_wake_thread(). 1672 */ 1673 if (new->flags & IRQF_ONESHOT) { 1674 /* 1675 * Unlikely to have 32 resp 64 irqs sharing one line, 1676 * but who knows. 1677 */ 1678 if (thread_mask == ~0UL) { 1679 ret = -EBUSY; 1680 goto out_unlock; 1681 } 1682 /* 1683 * The thread_mask for the action is or'ed to 1684 * desc->thread_active to indicate that the 1685 * IRQF_ONESHOT thread handler has been woken, but not 1686 * yet finished. The bit is cleared when a thread 1687 * completes. When all threads of a shared interrupt 1688 * line have completed desc->threads_active becomes 1689 * zero and the interrupt line is unmasked. See 1690 * handle.c:irq_wake_thread() for further information. 1691 * 1692 * If no thread is woken by primary (hard irq context) 1693 * interrupt handlers, then desc->threads_active is 1694 * also checked for zero to unmask the irq line in the 1695 * affected hard irq flow handlers 1696 * (handle_[fasteoi|level]_irq). 1697 * 1698 * The new action gets the first zero bit of 1699 * thread_mask assigned. See the loop above which or's 1700 * all existing action->thread_mask bits. 1701 */ 1702 new->thread_mask = 1UL << ffz(thread_mask); 1703 1704 } else if (new->handler == irq_default_primary_handler && 1705 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1706 /* 1707 * The interrupt was requested with handler = NULL, so 1708 * we use the default primary handler for it. But it 1709 * does not have the oneshot flag set. In combination 1710 * with level interrupts this is deadly, because the 1711 * default primary handler just wakes the thread, then 1712 * the irq lines is reenabled, but the device still 1713 * has the level irq asserted. Rinse and repeat.... 1714 * 1715 * While this works for edge type interrupts, we play 1716 * it safe and reject unconditionally because we can't 1717 * say for sure which type this interrupt really 1718 * has. The type flags are unreliable as the 1719 * underlying chip implementation can override them. 1720 */ 1721 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1722 new->name, irq); 1723 ret = -EINVAL; 1724 goto out_unlock; 1725 } 1726 1727 if (!shared) { 1728 /* Setup the type (level, edge polarity) if configured: */ 1729 if (new->flags & IRQF_TRIGGER_MASK) { 1730 ret = __irq_set_trigger(desc, 1731 new->flags & IRQF_TRIGGER_MASK); 1732 1733 if (ret) 1734 goto out_unlock; 1735 } 1736 1737 /* 1738 * Activate the interrupt. That activation must happen 1739 * independently of IRQ_NOAUTOEN. request_irq() can fail 1740 * and the callers are supposed to handle 1741 * that. enable_irq() of an interrupt requested with 1742 * IRQ_NOAUTOEN is not supposed to fail. The activation 1743 * keeps it in shutdown mode, it merily associates 1744 * resources if necessary and if that's not possible it 1745 * fails. Interrupts which are in managed shutdown mode 1746 * will simply ignore that activation request. 1747 */ 1748 ret = irq_activate(desc); 1749 if (ret) 1750 goto out_unlock; 1751 1752 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1753 IRQS_ONESHOT | IRQS_WAITING); 1754 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1755 1756 if (new->flags & IRQF_PERCPU) { 1757 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1758 irq_settings_set_per_cpu(desc); 1759 if (new->flags & IRQF_NO_DEBUG) 1760 irq_settings_set_no_debug(desc); 1761 } 1762 1763 if (noirqdebug) 1764 irq_settings_set_no_debug(desc); 1765 1766 if (new->flags & IRQF_ONESHOT) 1767 desc->istate |= IRQS_ONESHOT; 1768 1769 /* Exclude IRQ from balancing if requested */ 1770 if (new->flags & IRQF_NOBALANCING) { 1771 irq_settings_set_no_balancing(desc); 1772 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1773 } 1774 1775 if (!(new->flags & IRQF_NO_AUTOEN) && 1776 irq_settings_can_autoenable(desc)) { 1777 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1778 } else { 1779 /* 1780 * Shared interrupts do not go well with disabling 1781 * auto enable. The sharing interrupt might request 1782 * it while it's still disabled and then wait for 1783 * interrupts forever. 1784 */ 1785 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1786 /* Undo nested disables: */ 1787 desc->depth = 1; 1788 } 1789 1790 } else if (new->flags & IRQF_TRIGGER_MASK) { 1791 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1792 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1793 1794 if (nmsk != omsk) 1795 /* hope the handler works with current trigger mode */ 1796 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1797 irq, omsk, nmsk); 1798 } 1799 1800 *old_ptr = new; 1801 1802 irq_pm_install_action(desc, new); 1803 1804 /* Reset broken irq detection when installing new handler */ 1805 desc->irq_count = 0; 1806 desc->irqs_unhandled = 0; 1807 1808 /* 1809 * Check whether we disabled the irq via the spurious handler 1810 * before. Reenable it and give it another chance. 1811 */ 1812 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1813 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1814 __enable_irq(desc); 1815 } 1816 1817 raw_spin_unlock_irqrestore(&desc->lock, flags); 1818 chip_bus_sync_unlock(desc); 1819 mutex_unlock(&desc->request_mutex); 1820 1821 irq_setup_timings(desc, new); 1822 1823 wake_up_and_wait_for_irq_thread_ready(desc, new); 1824 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1825 1826 register_irq_proc(irq, desc); 1827 new->dir = NULL; 1828 register_handler_proc(irq, new); 1829 return 0; 1830 1831 mismatch: 1832 if (!(new->flags & IRQF_PROBE_SHARED)) { 1833 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1834 irq, new->flags, new->name, old->flags, old->name); 1835 #ifdef CONFIG_DEBUG_SHIRQ 1836 dump_stack(); 1837 #endif 1838 } 1839 ret = -EBUSY; 1840 1841 out_unlock: 1842 raw_spin_unlock_irqrestore(&desc->lock, flags); 1843 1844 if (!desc->action) 1845 irq_release_resources(desc); 1846 out_bus_unlock: 1847 chip_bus_sync_unlock(desc); 1848 mutex_unlock(&desc->request_mutex); 1849 1850 out_thread: 1851 if (new->thread) { 1852 struct task_struct *t = new->thread; 1853 1854 new->thread = NULL; 1855 kthread_stop(t); 1856 put_task_struct(t); 1857 } 1858 if (new->secondary && new->secondary->thread) { 1859 struct task_struct *t = new->secondary->thread; 1860 1861 new->secondary->thread = NULL; 1862 kthread_stop(t); 1863 put_task_struct(t); 1864 } 1865 out_mput: 1866 module_put(desc->owner); 1867 return ret; 1868 } 1869 1870 /* 1871 * Internal function to unregister an irqaction - used to free 1872 * regular and special interrupts that are part of the architecture. 1873 */ 1874 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1875 { 1876 unsigned irq = desc->irq_data.irq; 1877 struct irqaction *action, **action_ptr; 1878 unsigned long flags; 1879 1880 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1881 1882 mutex_lock(&desc->request_mutex); 1883 chip_bus_lock(desc); 1884 raw_spin_lock_irqsave(&desc->lock, flags); 1885 1886 /* 1887 * There can be multiple actions per IRQ descriptor, find the right 1888 * one based on the dev_id: 1889 */ 1890 action_ptr = &desc->action; 1891 for (;;) { 1892 action = *action_ptr; 1893 1894 if (!action) { 1895 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1896 raw_spin_unlock_irqrestore(&desc->lock, flags); 1897 chip_bus_sync_unlock(desc); 1898 mutex_unlock(&desc->request_mutex); 1899 return NULL; 1900 } 1901 1902 if (action->dev_id == dev_id) 1903 break; 1904 action_ptr = &action->next; 1905 } 1906 1907 /* Found it - now remove it from the list of entries: */ 1908 *action_ptr = action->next; 1909 1910 irq_pm_remove_action(desc, action); 1911 1912 /* If this was the last handler, shut down the IRQ line: */ 1913 if (!desc->action) { 1914 irq_settings_clr_disable_unlazy(desc); 1915 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1916 irq_shutdown(desc); 1917 } 1918 1919 #ifdef CONFIG_SMP 1920 /* make sure affinity_hint is cleaned up */ 1921 if (WARN_ON_ONCE(desc->affinity_hint)) 1922 desc->affinity_hint = NULL; 1923 #endif 1924 1925 raw_spin_unlock_irqrestore(&desc->lock, flags); 1926 /* 1927 * Drop bus_lock here so the changes which were done in the chip 1928 * callbacks above are synced out to the irq chips which hang 1929 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1930 * 1931 * Aside of that the bus_lock can also be taken from the threaded 1932 * handler in irq_finalize_oneshot() which results in a deadlock 1933 * because kthread_stop() would wait forever for the thread to 1934 * complete, which is blocked on the bus lock. 1935 * 1936 * The still held desc->request_mutex() protects against a 1937 * concurrent request_irq() of this irq so the release of resources 1938 * and timing data is properly serialized. 1939 */ 1940 chip_bus_sync_unlock(desc); 1941 1942 unregister_handler_proc(irq, action); 1943 1944 /* 1945 * Make sure it's not being used on another CPU and if the chip 1946 * supports it also make sure that there is no (not yet serviced) 1947 * interrupt in flight at the hardware level. 1948 */ 1949 __synchronize_irq(desc); 1950 1951 #ifdef CONFIG_DEBUG_SHIRQ 1952 /* 1953 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1954 * event to happen even now it's being freed, so let's make sure that 1955 * is so by doing an extra call to the handler .... 1956 * 1957 * ( We do this after actually deregistering it, to make sure that a 1958 * 'real' IRQ doesn't run in parallel with our fake. ) 1959 */ 1960 if (action->flags & IRQF_SHARED) { 1961 local_irq_save(flags); 1962 action->handler(irq, dev_id); 1963 local_irq_restore(flags); 1964 } 1965 #endif 1966 1967 /* 1968 * The action has already been removed above, but the thread writes 1969 * its oneshot mask bit when it completes. Though request_mutex is 1970 * held across this which prevents __setup_irq() from handing out 1971 * the same bit to a newly requested action. 1972 */ 1973 if (action->thread) { 1974 kthread_stop(action->thread); 1975 put_task_struct(action->thread); 1976 if (action->secondary && action->secondary->thread) { 1977 kthread_stop(action->secondary->thread); 1978 put_task_struct(action->secondary->thread); 1979 } 1980 } 1981 1982 /* Last action releases resources */ 1983 if (!desc->action) { 1984 /* 1985 * Reacquire bus lock as irq_release_resources() might 1986 * require it to deallocate resources over the slow bus. 1987 */ 1988 chip_bus_lock(desc); 1989 /* 1990 * There is no interrupt on the fly anymore. Deactivate it 1991 * completely. 1992 */ 1993 raw_spin_lock_irqsave(&desc->lock, flags); 1994 irq_domain_deactivate_irq(&desc->irq_data); 1995 raw_spin_unlock_irqrestore(&desc->lock, flags); 1996 1997 irq_release_resources(desc); 1998 chip_bus_sync_unlock(desc); 1999 irq_remove_timings(desc); 2000 } 2001 2002 mutex_unlock(&desc->request_mutex); 2003 2004 irq_chip_pm_put(&desc->irq_data); 2005 module_put(desc->owner); 2006 kfree(action->secondary); 2007 return action; 2008 } 2009 2010 /** 2011 * free_irq - free an interrupt allocated with request_irq 2012 * @irq: Interrupt line to free 2013 * @dev_id: Device identity to free 2014 * 2015 * Remove an interrupt handler. The handler is removed and if the 2016 * interrupt line is no longer in use by any driver it is disabled. 2017 * On a shared IRQ the caller must ensure the interrupt is disabled 2018 * on the card it drives before calling this function. The function 2019 * does not return until any executing interrupts for this IRQ 2020 * have completed. 2021 * 2022 * This function must not be called from interrupt context. 2023 * 2024 * Returns the devname argument passed to request_irq. 2025 */ 2026 const void *free_irq(unsigned int irq, void *dev_id) 2027 { 2028 struct irq_desc *desc = irq_to_desc(irq); 2029 struct irqaction *action; 2030 const char *devname; 2031 2032 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2033 return NULL; 2034 2035 #ifdef CONFIG_SMP 2036 if (WARN_ON(desc->affinity_notify)) 2037 desc->affinity_notify = NULL; 2038 #endif 2039 2040 action = __free_irq(desc, dev_id); 2041 2042 if (!action) 2043 return NULL; 2044 2045 devname = action->name; 2046 kfree(action); 2047 return devname; 2048 } 2049 EXPORT_SYMBOL(free_irq); 2050 2051 /* This function must be called with desc->lock held */ 2052 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2053 { 2054 const char *devname = NULL; 2055 2056 desc->istate &= ~IRQS_NMI; 2057 2058 if (!WARN_ON(desc->action == NULL)) { 2059 irq_pm_remove_action(desc, desc->action); 2060 devname = desc->action->name; 2061 unregister_handler_proc(irq, desc->action); 2062 2063 kfree(desc->action); 2064 desc->action = NULL; 2065 } 2066 2067 irq_settings_clr_disable_unlazy(desc); 2068 irq_shutdown_and_deactivate(desc); 2069 2070 irq_release_resources(desc); 2071 2072 irq_chip_pm_put(&desc->irq_data); 2073 module_put(desc->owner); 2074 2075 return devname; 2076 } 2077 2078 const void *free_nmi(unsigned int irq, void *dev_id) 2079 { 2080 struct irq_desc *desc = irq_to_desc(irq); 2081 unsigned long flags; 2082 const void *devname; 2083 2084 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2085 return NULL; 2086 2087 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2088 return NULL; 2089 2090 /* NMI still enabled */ 2091 if (WARN_ON(desc->depth == 0)) 2092 disable_nmi_nosync(irq); 2093 2094 raw_spin_lock_irqsave(&desc->lock, flags); 2095 2096 irq_nmi_teardown(desc); 2097 devname = __cleanup_nmi(irq, desc); 2098 2099 raw_spin_unlock_irqrestore(&desc->lock, flags); 2100 2101 return devname; 2102 } 2103 2104 /** 2105 * request_threaded_irq - allocate an interrupt line 2106 * @irq: Interrupt line to allocate 2107 * @handler: Function to be called when the IRQ occurs. 2108 * Primary handler for threaded interrupts. 2109 * If handler is NULL and thread_fn != NULL 2110 * the default primary handler is installed. 2111 * @thread_fn: Function called from the irq handler thread 2112 * If NULL, no irq thread is created 2113 * @irqflags: Interrupt type flags 2114 * @devname: An ascii name for the claiming device 2115 * @dev_id: A cookie passed back to the handler function 2116 * 2117 * This call allocates interrupt resources and enables the 2118 * interrupt line and IRQ handling. From the point this 2119 * call is made your handler function may be invoked. Since 2120 * your handler function must clear any interrupt the board 2121 * raises, you must take care both to initialise your hardware 2122 * and to set up the interrupt handler in the right order. 2123 * 2124 * If you want to set up a threaded irq handler for your device 2125 * then you need to supply @handler and @thread_fn. @handler is 2126 * still called in hard interrupt context and has to check 2127 * whether the interrupt originates from the device. If yes it 2128 * needs to disable the interrupt on the device and return 2129 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2130 * @thread_fn. This split handler design is necessary to support 2131 * shared interrupts. 2132 * 2133 * Dev_id must be globally unique. Normally the address of the 2134 * device data structure is used as the cookie. Since the handler 2135 * receives this value it makes sense to use it. 2136 * 2137 * If your interrupt is shared you must pass a non NULL dev_id 2138 * as this is required when freeing the interrupt. 2139 * 2140 * Flags: 2141 * 2142 * IRQF_SHARED Interrupt is shared 2143 * IRQF_TRIGGER_* Specify active edge(s) or level 2144 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2145 */ 2146 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2147 irq_handler_t thread_fn, unsigned long irqflags, 2148 const char *devname, void *dev_id) 2149 { 2150 struct irqaction *action; 2151 struct irq_desc *desc; 2152 int retval; 2153 2154 if (irq == IRQ_NOTCONNECTED) 2155 return -ENOTCONN; 2156 2157 /* 2158 * Sanity-check: shared interrupts must pass in a real dev-ID, 2159 * otherwise we'll have trouble later trying to figure out 2160 * which interrupt is which (messes up the interrupt freeing 2161 * logic etc). 2162 * 2163 * Also shared interrupts do not go well with disabling auto enable. 2164 * The sharing interrupt might request it while it's still disabled 2165 * and then wait for interrupts forever. 2166 * 2167 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2168 * it cannot be set along with IRQF_NO_SUSPEND. 2169 */ 2170 if (((irqflags & IRQF_SHARED) && !dev_id) || 2171 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2172 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2173 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2174 return -EINVAL; 2175 2176 desc = irq_to_desc(irq); 2177 if (!desc) 2178 return -EINVAL; 2179 2180 if (!irq_settings_can_request(desc) || 2181 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2182 return -EINVAL; 2183 2184 if (!handler) { 2185 if (!thread_fn) 2186 return -EINVAL; 2187 handler = irq_default_primary_handler; 2188 } 2189 2190 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2191 if (!action) 2192 return -ENOMEM; 2193 2194 action->handler = handler; 2195 action->thread_fn = thread_fn; 2196 action->flags = irqflags; 2197 action->name = devname; 2198 action->dev_id = dev_id; 2199 2200 retval = irq_chip_pm_get(&desc->irq_data); 2201 if (retval < 0) { 2202 kfree(action); 2203 return retval; 2204 } 2205 2206 retval = __setup_irq(irq, desc, action); 2207 2208 if (retval) { 2209 irq_chip_pm_put(&desc->irq_data); 2210 kfree(action->secondary); 2211 kfree(action); 2212 } 2213 2214 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2215 if (!retval && (irqflags & IRQF_SHARED)) { 2216 /* 2217 * It's a shared IRQ -- the driver ought to be prepared for it 2218 * to happen immediately, so let's make sure.... 2219 * We disable the irq to make sure that a 'real' IRQ doesn't 2220 * run in parallel with our fake. 2221 */ 2222 unsigned long flags; 2223 2224 disable_irq(irq); 2225 local_irq_save(flags); 2226 2227 handler(irq, dev_id); 2228 2229 local_irq_restore(flags); 2230 enable_irq(irq); 2231 } 2232 #endif 2233 return retval; 2234 } 2235 EXPORT_SYMBOL(request_threaded_irq); 2236 2237 /** 2238 * request_any_context_irq - allocate an interrupt line 2239 * @irq: Interrupt line to allocate 2240 * @handler: Function to be called when the IRQ occurs. 2241 * Threaded handler for threaded interrupts. 2242 * @flags: Interrupt type flags 2243 * @name: An ascii name for the claiming device 2244 * @dev_id: A cookie passed back to the handler function 2245 * 2246 * This call allocates interrupt resources and enables the 2247 * interrupt line and IRQ handling. It selects either a 2248 * hardirq or threaded handling method depending on the 2249 * context. 2250 * 2251 * On failure, it returns a negative value. On success, 2252 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2253 */ 2254 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2255 unsigned long flags, const char *name, void *dev_id) 2256 { 2257 struct irq_desc *desc; 2258 int ret; 2259 2260 if (irq == IRQ_NOTCONNECTED) 2261 return -ENOTCONN; 2262 2263 desc = irq_to_desc(irq); 2264 if (!desc) 2265 return -EINVAL; 2266 2267 if (irq_settings_is_nested_thread(desc)) { 2268 ret = request_threaded_irq(irq, NULL, handler, 2269 flags, name, dev_id); 2270 return !ret ? IRQC_IS_NESTED : ret; 2271 } 2272 2273 ret = request_irq(irq, handler, flags, name, dev_id); 2274 return !ret ? IRQC_IS_HARDIRQ : ret; 2275 } 2276 EXPORT_SYMBOL_GPL(request_any_context_irq); 2277 2278 /** 2279 * request_nmi - allocate an interrupt line for NMI delivery 2280 * @irq: Interrupt line to allocate 2281 * @handler: Function to be called when the IRQ occurs. 2282 * Threaded handler for threaded interrupts. 2283 * @irqflags: Interrupt type flags 2284 * @name: An ascii name for the claiming device 2285 * @dev_id: A cookie passed back to the handler function 2286 * 2287 * This call allocates interrupt resources and enables the 2288 * interrupt line and IRQ handling. It sets up the IRQ line 2289 * to be handled as an NMI. 2290 * 2291 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2292 * cannot be threaded. 2293 * 2294 * Interrupt lines requested for NMI delivering must produce per cpu 2295 * interrupts and have auto enabling setting disabled. 2296 * 2297 * Dev_id must be globally unique. Normally the address of the 2298 * device data structure is used as the cookie. Since the handler 2299 * receives this value it makes sense to use it. 2300 * 2301 * If the interrupt line cannot be used to deliver NMIs, function 2302 * will fail and return a negative value. 2303 */ 2304 int request_nmi(unsigned int irq, irq_handler_t handler, 2305 unsigned long irqflags, const char *name, void *dev_id) 2306 { 2307 struct irqaction *action; 2308 struct irq_desc *desc; 2309 unsigned long flags; 2310 int retval; 2311 2312 if (irq == IRQ_NOTCONNECTED) 2313 return -ENOTCONN; 2314 2315 /* NMI cannot be shared, used for Polling */ 2316 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2317 return -EINVAL; 2318 2319 if (!(irqflags & IRQF_PERCPU)) 2320 return -EINVAL; 2321 2322 if (!handler) 2323 return -EINVAL; 2324 2325 desc = irq_to_desc(irq); 2326 2327 if (!desc || (irq_settings_can_autoenable(desc) && 2328 !(irqflags & IRQF_NO_AUTOEN)) || 2329 !irq_settings_can_request(desc) || 2330 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2331 !irq_supports_nmi(desc)) 2332 return -EINVAL; 2333 2334 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2335 if (!action) 2336 return -ENOMEM; 2337 2338 action->handler = handler; 2339 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2340 action->name = name; 2341 action->dev_id = dev_id; 2342 2343 retval = irq_chip_pm_get(&desc->irq_data); 2344 if (retval < 0) 2345 goto err_out; 2346 2347 retval = __setup_irq(irq, desc, action); 2348 if (retval) 2349 goto err_irq_setup; 2350 2351 raw_spin_lock_irqsave(&desc->lock, flags); 2352 2353 /* Setup NMI state */ 2354 desc->istate |= IRQS_NMI; 2355 retval = irq_nmi_setup(desc); 2356 if (retval) { 2357 __cleanup_nmi(irq, desc); 2358 raw_spin_unlock_irqrestore(&desc->lock, flags); 2359 return -EINVAL; 2360 } 2361 2362 raw_spin_unlock_irqrestore(&desc->lock, flags); 2363 2364 return 0; 2365 2366 err_irq_setup: 2367 irq_chip_pm_put(&desc->irq_data); 2368 err_out: 2369 kfree(action); 2370 2371 return retval; 2372 } 2373 2374 void enable_percpu_irq(unsigned int irq, unsigned int type) 2375 { 2376 unsigned int cpu = smp_processor_id(); 2377 unsigned long flags; 2378 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2379 2380 if (!desc) 2381 return; 2382 2383 /* 2384 * If the trigger type is not specified by the caller, then 2385 * use the default for this interrupt. 2386 */ 2387 type &= IRQ_TYPE_SENSE_MASK; 2388 if (type == IRQ_TYPE_NONE) 2389 type = irqd_get_trigger_type(&desc->irq_data); 2390 2391 if (type != IRQ_TYPE_NONE) { 2392 int ret; 2393 2394 ret = __irq_set_trigger(desc, type); 2395 2396 if (ret) { 2397 WARN(1, "failed to set type for IRQ%d\n", irq); 2398 goto out; 2399 } 2400 } 2401 2402 irq_percpu_enable(desc, cpu); 2403 out: 2404 irq_put_desc_unlock(desc, flags); 2405 } 2406 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2407 2408 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2409 { 2410 enable_percpu_irq(irq, type); 2411 } 2412 2413 /** 2414 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2415 * @irq: Linux irq number to check for 2416 * 2417 * Must be called from a non migratable context. Returns the enable 2418 * state of a per cpu interrupt on the current cpu. 2419 */ 2420 bool irq_percpu_is_enabled(unsigned int irq) 2421 { 2422 unsigned int cpu = smp_processor_id(); 2423 struct irq_desc *desc; 2424 unsigned long flags; 2425 bool is_enabled; 2426 2427 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2428 if (!desc) 2429 return false; 2430 2431 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2432 irq_put_desc_unlock(desc, flags); 2433 2434 return is_enabled; 2435 } 2436 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2437 2438 void disable_percpu_irq(unsigned int irq) 2439 { 2440 unsigned int cpu = smp_processor_id(); 2441 unsigned long flags; 2442 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2443 2444 if (!desc) 2445 return; 2446 2447 irq_percpu_disable(desc, cpu); 2448 irq_put_desc_unlock(desc, flags); 2449 } 2450 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2451 2452 void disable_percpu_nmi(unsigned int irq) 2453 { 2454 disable_percpu_irq(irq); 2455 } 2456 2457 /* 2458 * Internal function to unregister a percpu irqaction. 2459 */ 2460 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2461 { 2462 struct irq_desc *desc = irq_to_desc(irq); 2463 struct irqaction *action; 2464 unsigned long flags; 2465 2466 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2467 2468 if (!desc) 2469 return NULL; 2470 2471 raw_spin_lock_irqsave(&desc->lock, flags); 2472 2473 action = desc->action; 2474 if (!action || action->percpu_dev_id != dev_id) { 2475 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2476 goto bad; 2477 } 2478 2479 if (!cpumask_empty(desc->percpu_enabled)) { 2480 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2481 irq, cpumask_first(desc->percpu_enabled)); 2482 goto bad; 2483 } 2484 2485 /* Found it - now remove it from the list of entries: */ 2486 desc->action = NULL; 2487 2488 desc->istate &= ~IRQS_NMI; 2489 2490 raw_spin_unlock_irqrestore(&desc->lock, flags); 2491 2492 unregister_handler_proc(irq, action); 2493 2494 irq_chip_pm_put(&desc->irq_data); 2495 module_put(desc->owner); 2496 return action; 2497 2498 bad: 2499 raw_spin_unlock_irqrestore(&desc->lock, flags); 2500 return NULL; 2501 } 2502 2503 /** 2504 * remove_percpu_irq - free a per-cpu interrupt 2505 * @irq: Interrupt line to free 2506 * @act: irqaction for the interrupt 2507 * 2508 * Used to remove interrupts statically setup by the early boot process. 2509 */ 2510 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2511 { 2512 struct irq_desc *desc = irq_to_desc(irq); 2513 2514 if (desc && irq_settings_is_per_cpu_devid(desc)) 2515 __free_percpu_irq(irq, act->percpu_dev_id); 2516 } 2517 2518 /** 2519 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2520 * @irq: Interrupt line to free 2521 * @dev_id: Device identity to free 2522 * 2523 * Remove a percpu interrupt handler. The handler is removed, but 2524 * the interrupt line is not disabled. This must be done on each 2525 * CPU before calling this function. The function does not return 2526 * until any executing interrupts for this IRQ have completed. 2527 * 2528 * This function must not be called from interrupt context. 2529 */ 2530 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2531 { 2532 struct irq_desc *desc = irq_to_desc(irq); 2533 2534 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2535 return; 2536 2537 chip_bus_lock(desc); 2538 kfree(__free_percpu_irq(irq, dev_id)); 2539 chip_bus_sync_unlock(desc); 2540 } 2541 EXPORT_SYMBOL_GPL(free_percpu_irq); 2542 2543 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2544 { 2545 struct irq_desc *desc = irq_to_desc(irq); 2546 2547 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2548 return; 2549 2550 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2551 return; 2552 2553 kfree(__free_percpu_irq(irq, dev_id)); 2554 } 2555 2556 /** 2557 * setup_percpu_irq - setup a per-cpu interrupt 2558 * @irq: Interrupt line to setup 2559 * @act: irqaction for the interrupt 2560 * 2561 * Used to statically setup per-cpu interrupts in the early boot process. 2562 */ 2563 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2564 { 2565 struct irq_desc *desc = irq_to_desc(irq); 2566 int retval; 2567 2568 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2569 return -EINVAL; 2570 2571 retval = irq_chip_pm_get(&desc->irq_data); 2572 if (retval < 0) 2573 return retval; 2574 2575 retval = __setup_irq(irq, desc, act); 2576 2577 if (retval) 2578 irq_chip_pm_put(&desc->irq_data); 2579 2580 return retval; 2581 } 2582 2583 /** 2584 * __request_percpu_irq - allocate a percpu interrupt line 2585 * @irq: Interrupt line to allocate 2586 * @handler: Function to be called when the IRQ occurs. 2587 * @flags: Interrupt type flags (IRQF_TIMER only) 2588 * @devname: An ascii name for the claiming device 2589 * @dev_id: A percpu cookie passed back to the handler function 2590 * 2591 * This call allocates interrupt resources and enables the 2592 * interrupt on the local CPU. If the interrupt is supposed to be 2593 * enabled on other CPUs, it has to be done on each CPU using 2594 * enable_percpu_irq(). 2595 * 2596 * Dev_id must be globally unique. It is a per-cpu variable, and 2597 * the handler gets called with the interrupted CPU's instance of 2598 * that variable. 2599 */ 2600 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2601 unsigned long flags, const char *devname, 2602 void __percpu *dev_id) 2603 { 2604 struct irqaction *action; 2605 struct irq_desc *desc; 2606 int retval; 2607 2608 if (!dev_id) 2609 return -EINVAL; 2610 2611 desc = irq_to_desc(irq); 2612 if (!desc || !irq_settings_can_request(desc) || 2613 !irq_settings_is_per_cpu_devid(desc)) 2614 return -EINVAL; 2615 2616 if (flags && flags != IRQF_TIMER) 2617 return -EINVAL; 2618 2619 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2620 if (!action) 2621 return -ENOMEM; 2622 2623 action->handler = handler; 2624 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2625 action->name = devname; 2626 action->percpu_dev_id = dev_id; 2627 2628 retval = irq_chip_pm_get(&desc->irq_data); 2629 if (retval < 0) { 2630 kfree(action); 2631 return retval; 2632 } 2633 2634 retval = __setup_irq(irq, desc, action); 2635 2636 if (retval) { 2637 irq_chip_pm_put(&desc->irq_data); 2638 kfree(action); 2639 } 2640 2641 return retval; 2642 } 2643 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2644 2645 /** 2646 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2647 * @irq: Interrupt line to allocate 2648 * @handler: Function to be called when the IRQ occurs. 2649 * @name: An ascii name for the claiming device 2650 * @dev_id: A percpu cookie passed back to the handler function 2651 * 2652 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2653 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2654 * being enabled on the same CPU by using enable_percpu_nmi(). 2655 * 2656 * Dev_id must be globally unique. It is a per-cpu variable, and 2657 * the handler gets called with the interrupted CPU's instance of 2658 * that variable. 2659 * 2660 * Interrupt lines requested for NMI delivering should have auto enabling 2661 * setting disabled. 2662 * 2663 * If the interrupt line cannot be used to deliver NMIs, function 2664 * will fail returning a negative value. 2665 */ 2666 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2667 const char *name, void __percpu *dev_id) 2668 { 2669 struct irqaction *action; 2670 struct irq_desc *desc; 2671 unsigned long flags; 2672 int retval; 2673 2674 if (!handler) 2675 return -EINVAL; 2676 2677 desc = irq_to_desc(irq); 2678 2679 if (!desc || !irq_settings_can_request(desc) || 2680 !irq_settings_is_per_cpu_devid(desc) || 2681 irq_settings_can_autoenable(desc) || 2682 !irq_supports_nmi(desc)) 2683 return -EINVAL; 2684 2685 /* The line cannot already be NMI */ 2686 if (desc->istate & IRQS_NMI) 2687 return -EINVAL; 2688 2689 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2690 if (!action) 2691 return -ENOMEM; 2692 2693 action->handler = handler; 2694 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2695 | IRQF_NOBALANCING; 2696 action->name = name; 2697 action->percpu_dev_id = dev_id; 2698 2699 retval = irq_chip_pm_get(&desc->irq_data); 2700 if (retval < 0) 2701 goto err_out; 2702 2703 retval = __setup_irq(irq, desc, action); 2704 if (retval) 2705 goto err_irq_setup; 2706 2707 raw_spin_lock_irqsave(&desc->lock, flags); 2708 desc->istate |= IRQS_NMI; 2709 raw_spin_unlock_irqrestore(&desc->lock, flags); 2710 2711 return 0; 2712 2713 err_irq_setup: 2714 irq_chip_pm_put(&desc->irq_data); 2715 err_out: 2716 kfree(action); 2717 2718 return retval; 2719 } 2720 2721 /** 2722 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2723 * @irq: Interrupt line to prepare for NMI delivery 2724 * 2725 * This call prepares an interrupt line to deliver NMI on the current CPU, 2726 * before that interrupt line gets enabled with enable_percpu_nmi(). 2727 * 2728 * As a CPU local operation, this should be called from non-preemptible 2729 * context. 2730 * 2731 * If the interrupt line cannot be used to deliver NMIs, function 2732 * will fail returning a negative value. 2733 */ 2734 int prepare_percpu_nmi(unsigned int irq) 2735 { 2736 unsigned long flags; 2737 struct irq_desc *desc; 2738 int ret = 0; 2739 2740 WARN_ON(preemptible()); 2741 2742 desc = irq_get_desc_lock(irq, &flags, 2743 IRQ_GET_DESC_CHECK_PERCPU); 2744 if (!desc) 2745 return -EINVAL; 2746 2747 if (WARN(!(desc->istate & IRQS_NMI), 2748 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2749 irq)) { 2750 ret = -EINVAL; 2751 goto out; 2752 } 2753 2754 ret = irq_nmi_setup(desc); 2755 if (ret) { 2756 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2757 goto out; 2758 } 2759 2760 out: 2761 irq_put_desc_unlock(desc, flags); 2762 return ret; 2763 } 2764 2765 /** 2766 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2767 * @irq: Interrupt line from which CPU local NMI configuration should be 2768 * removed 2769 * 2770 * This call undoes the setup done by prepare_percpu_nmi(). 2771 * 2772 * IRQ line should not be enabled for the current CPU. 2773 * 2774 * As a CPU local operation, this should be called from non-preemptible 2775 * context. 2776 */ 2777 void teardown_percpu_nmi(unsigned int irq) 2778 { 2779 unsigned long flags; 2780 struct irq_desc *desc; 2781 2782 WARN_ON(preemptible()); 2783 2784 desc = irq_get_desc_lock(irq, &flags, 2785 IRQ_GET_DESC_CHECK_PERCPU); 2786 if (!desc) 2787 return; 2788 2789 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2790 goto out; 2791 2792 irq_nmi_teardown(desc); 2793 out: 2794 irq_put_desc_unlock(desc, flags); 2795 } 2796 2797 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2798 bool *state) 2799 { 2800 struct irq_chip *chip; 2801 int err = -EINVAL; 2802 2803 do { 2804 chip = irq_data_get_irq_chip(data); 2805 if (WARN_ON_ONCE(!chip)) 2806 return -ENODEV; 2807 if (chip->irq_get_irqchip_state) 2808 break; 2809 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2810 data = data->parent_data; 2811 #else 2812 data = NULL; 2813 #endif 2814 } while (data); 2815 2816 if (data) 2817 err = chip->irq_get_irqchip_state(data, which, state); 2818 return err; 2819 } 2820 2821 /** 2822 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2823 * @irq: Interrupt line that is forwarded to a VM 2824 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2825 * @state: a pointer to a boolean where the state is to be stored 2826 * 2827 * This call snapshots the internal irqchip state of an 2828 * interrupt, returning into @state the bit corresponding to 2829 * stage @which 2830 * 2831 * This function should be called with preemption disabled if the 2832 * interrupt controller has per-cpu registers. 2833 */ 2834 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2835 bool *state) 2836 { 2837 struct irq_desc *desc; 2838 struct irq_data *data; 2839 unsigned long flags; 2840 int err = -EINVAL; 2841 2842 desc = irq_get_desc_buslock(irq, &flags, 0); 2843 if (!desc) 2844 return err; 2845 2846 data = irq_desc_get_irq_data(desc); 2847 2848 err = __irq_get_irqchip_state(data, which, state); 2849 2850 irq_put_desc_busunlock(desc, flags); 2851 return err; 2852 } 2853 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2854 2855 /** 2856 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2857 * @irq: Interrupt line that is forwarded to a VM 2858 * @which: State to be restored (one of IRQCHIP_STATE_*) 2859 * @val: Value corresponding to @which 2860 * 2861 * This call sets the internal irqchip state of an interrupt, 2862 * depending on the value of @which. 2863 * 2864 * This function should be called with migration disabled if the 2865 * interrupt controller has per-cpu registers. 2866 */ 2867 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2868 bool val) 2869 { 2870 struct irq_desc *desc; 2871 struct irq_data *data; 2872 struct irq_chip *chip; 2873 unsigned long flags; 2874 int err = -EINVAL; 2875 2876 desc = irq_get_desc_buslock(irq, &flags, 0); 2877 if (!desc) 2878 return err; 2879 2880 data = irq_desc_get_irq_data(desc); 2881 2882 do { 2883 chip = irq_data_get_irq_chip(data); 2884 if (WARN_ON_ONCE(!chip)) { 2885 err = -ENODEV; 2886 goto out_unlock; 2887 } 2888 if (chip->irq_set_irqchip_state) 2889 break; 2890 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2891 data = data->parent_data; 2892 #else 2893 data = NULL; 2894 #endif 2895 } while (data); 2896 2897 if (data) 2898 err = chip->irq_set_irqchip_state(data, which, val); 2899 2900 out_unlock: 2901 irq_put_desc_busunlock(desc, flags); 2902 return err; 2903 } 2904 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2905 2906 /** 2907 * irq_has_action - Check whether an interrupt is requested 2908 * @irq: The linux irq number 2909 * 2910 * Returns: A snapshot of the current state 2911 */ 2912 bool irq_has_action(unsigned int irq) 2913 { 2914 bool res; 2915 2916 rcu_read_lock(); 2917 res = irq_desc_has_action(irq_to_desc(irq)); 2918 rcu_read_unlock(); 2919 return res; 2920 } 2921 EXPORT_SYMBOL_GPL(irq_has_action); 2922 2923 /** 2924 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2925 * @irq: The linux irq number 2926 * @bitmask: The bitmask to evaluate 2927 * 2928 * Returns: True if one of the bits in @bitmask is set 2929 */ 2930 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2931 { 2932 struct irq_desc *desc; 2933 bool res = false; 2934 2935 rcu_read_lock(); 2936 desc = irq_to_desc(irq); 2937 if (desc) 2938 res = !!(desc->status_use_accessors & bitmask); 2939 rcu_read_unlock(); 2940 return res; 2941 } 2942 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2943