1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 199 static void irq_validate_effective_affinity(struct irq_data *data) 200 { 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 } 209 210 static inline void irq_init_effective_affinity(struct irq_data *data, 211 const struct cpumask *mask) 212 { 213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask); 214 } 215 #else 216 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 217 static inline void irq_init_effective_affinity(struct irq_data *data, 218 const struct cpumask *mask) { } 219 #endif 220 221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 222 bool force) 223 { 224 struct irq_desc *desc = irq_data_to_desc(data); 225 struct irq_chip *chip = irq_data_get_irq_chip(data); 226 int ret; 227 228 if (!chip || !chip->irq_set_affinity) 229 return -EINVAL; 230 231 /* 232 * If this is a managed interrupt and housekeeping is enabled on 233 * it check whether the requested affinity mask intersects with 234 * a housekeeping CPU. If so, then remove the isolated CPUs from 235 * the mask and just keep the housekeeping CPU(s). This prevents 236 * the affinity setter from routing the interrupt to an isolated 237 * CPU to avoid that I/O submitted from a housekeeping CPU causes 238 * interrupts on an isolated one. 239 * 240 * If the masks do not intersect or include online CPU(s) then 241 * keep the requested mask. The isolated target CPUs are only 242 * receiving interrupts when the I/O operation was submitted 243 * directly from them. 244 * 245 * If all housekeeping CPUs in the affinity mask are offline, the 246 * interrupt will be migrated by the CPU hotplug code once a 247 * housekeeping CPU which belongs to the affinity mask comes 248 * online. 249 */ 250 if (irqd_affinity_is_managed(data) && 251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 252 const struct cpumask *hk_mask, *prog_mask; 253 254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 255 static struct cpumask tmp_mask; 256 257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 258 259 raw_spin_lock(&tmp_mask_lock); 260 cpumask_and(&tmp_mask, mask, hk_mask); 261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 262 prog_mask = mask; 263 else 264 prog_mask = &tmp_mask; 265 ret = chip->irq_set_affinity(data, prog_mask, force); 266 raw_spin_unlock(&tmp_mask_lock); 267 } else { 268 ret = chip->irq_set_affinity(data, mask, force); 269 } 270 switch (ret) { 271 case IRQ_SET_MASK_OK: 272 case IRQ_SET_MASK_OK_DONE: 273 cpumask_copy(desc->irq_common_data.affinity, mask); 274 /* fall through */ 275 case IRQ_SET_MASK_OK_NOCOPY: 276 irq_validate_effective_affinity(data); 277 irq_set_thread_affinity(desc); 278 ret = 0; 279 } 280 281 return ret; 282 } 283 284 #ifdef CONFIG_GENERIC_PENDING_IRQ 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 struct irq_desc *desc = irq_data_to_desc(data); 289 290 irqd_set_move_pending(data); 291 irq_copy_pending(desc, dest); 292 return 0; 293 } 294 #else 295 static inline int irq_set_affinity_pending(struct irq_data *data, 296 const struct cpumask *dest) 297 { 298 return -EBUSY; 299 } 300 #endif 301 302 static int irq_try_set_affinity(struct irq_data *data, 303 const struct cpumask *dest, bool force) 304 { 305 int ret = irq_do_set_affinity(data, dest, force); 306 307 /* 308 * In case that the underlying vector management is busy and the 309 * architecture supports the generic pending mechanism then utilize 310 * this to avoid returning an error to user space. 311 */ 312 if (ret == -EBUSY && !force) 313 ret = irq_set_affinity_pending(data, dest); 314 return ret; 315 } 316 317 static bool irq_set_affinity_deactivated(struct irq_data *data, 318 const struct cpumask *mask, bool force) 319 { 320 struct irq_desc *desc = irq_data_to_desc(data); 321 322 /* 323 * Handle irq chips which can handle affinity only in activated 324 * state correctly 325 * 326 * If the interrupt is not yet activated, just store the affinity 327 * mask and do not call the chip driver at all. On activation the 328 * driver has to make sure anyway that the interrupt is in a 329 * useable state so startup works. 330 */ 331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 332 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 333 return false; 334 335 cpumask_copy(desc->irq_common_data.affinity, mask); 336 irq_init_effective_affinity(data, mask); 337 irqd_set(data, IRQD_AFFINITY_SET); 338 return true; 339 } 340 341 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 342 bool force) 343 { 344 struct irq_chip *chip = irq_data_get_irq_chip(data); 345 struct irq_desc *desc = irq_data_to_desc(data); 346 int ret = 0; 347 348 if (!chip || !chip->irq_set_affinity) 349 return -EINVAL; 350 351 if (irq_set_affinity_deactivated(data, mask, force)) 352 return 0; 353 354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 355 ret = irq_try_set_affinity(data, mask, force); 356 } else { 357 irqd_set_move_pending(data); 358 irq_copy_pending(desc, mask); 359 } 360 361 if (desc->affinity_notify) { 362 kref_get(&desc->affinity_notify->kref); 363 if (!schedule_work(&desc->affinity_notify->work)) { 364 /* Work was already scheduled, drop our extra ref */ 365 kref_put(&desc->affinity_notify->kref, 366 desc->affinity_notify->release); 367 } 368 } 369 irqd_set(data, IRQD_AFFINITY_SET); 370 371 return ret; 372 } 373 374 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 375 { 376 struct irq_desc *desc = irq_to_desc(irq); 377 unsigned long flags; 378 int ret; 379 380 if (!desc) 381 return -EINVAL; 382 383 raw_spin_lock_irqsave(&desc->lock, flags); 384 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 385 raw_spin_unlock_irqrestore(&desc->lock, flags); 386 return ret; 387 } 388 389 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 390 { 391 unsigned long flags; 392 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 393 394 if (!desc) 395 return -EINVAL; 396 desc->affinity_hint = m; 397 irq_put_desc_unlock(desc, flags); 398 /* set the initial affinity to prevent every interrupt being on CPU0 */ 399 if (m) 400 __irq_set_affinity(irq, m, false); 401 return 0; 402 } 403 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 404 405 static void irq_affinity_notify(struct work_struct *work) 406 { 407 struct irq_affinity_notify *notify = 408 container_of(work, struct irq_affinity_notify, work); 409 struct irq_desc *desc = irq_to_desc(notify->irq); 410 cpumask_var_t cpumask; 411 unsigned long flags; 412 413 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 414 goto out; 415 416 raw_spin_lock_irqsave(&desc->lock, flags); 417 if (irq_move_pending(&desc->irq_data)) 418 irq_get_pending(cpumask, desc); 419 else 420 cpumask_copy(cpumask, desc->irq_common_data.affinity); 421 raw_spin_unlock_irqrestore(&desc->lock, flags); 422 423 notify->notify(notify, cpumask); 424 425 free_cpumask_var(cpumask); 426 out: 427 kref_put(¬ify->kref, notify->release); 428 } 429 430 /** 431 * irq_set_affinity_notifier - control notification of IRQ affinity changes 432 * @irq: Interrupt for which to enable/disable notification 433 * @notify: Context for notification, or %NULL to disable 434 * notification. Function pointers must be initialised; 435 * the other fields will be initialised by this function. 436 * 437 * Must be called in process context. Notification may only be enabled 438 * after the IRQ is allocated and must be disabled before the IRQ is 439 * freed using free_irq(). 440 */ 441 int 442 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 443 { 444 struct irq_desc *desc = irq_to_desc(irq); 445 struct irq_affinity_notify *old_notify; 446 unsigned long flags; 447 448 /* The release function is promised process context */ 449 might_sleep(); 450 451 if (!desc || desc->istate & IRQS_NMI) 452 return -EINVAL; 453 454 /* Complete initialisation of *notify */ 455 if (notify) { 456 notify->irq = irq; 457 kref_init(¬ify->kref); 458 INIT_WORK(¬ify->work, irq_affinity_notify); 459 } 460 461 raw_spin_lock_irqsave(&desc->lock, flags); 462 old_notify = desc->affinity_notify; 463 desc->affinity_notify = notify; 464 raw_spin_unlock_irqrestore(&desc->lock, flags); 465 466 if (old_notify) { 467 if (cancel_work_sync(&old_notify->work)) { 468 /* Pending work had a ref, put that one too */ 469 kref_put(&old_notify->kref, old_notify->release); 470 } 471 kref_put(&old_notify->kref, old_notify->release); 472 } 473 474 return 0; 475 } 476 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 477 478 #ifndef CONFIG_AUTO_IRQ_AFFINITY 479 /* 480 * Generic version of the affinity autoselector. 481 */ 482 int irq_setup_affinity(struct irq_desc *desc) 483 { 484 struct cpumask *set = irq_default_affinity; 485 int ret, node = irq_desc_get_node(desc); 486 static DEFINE_RAW_SPINLOCK(mask_lock); 487 static struct cpumask mask; 488 489 /* Excludes PER_CPU and NO_BALANCE interrupts */ 490 if (!__irq_can_set_affinity(desc)) 491 return 0; 492 493 raw_spin_lock(&mask_lock); 494 /* 495 * Preserve the managed affinity setting and a userspace affinity 496 * setup, but make sure that one of the targets is online. 497 */ 498 if (irqd_affinity_is_managed(&desc->irq_data) || 499 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 500 if (cpumask_intersects(desc->irq_common_data.affinity, 501 cpu_online_mask)) 502 set = desc->irq_common_data.affinity; 503 else 504 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 505 } 506 507 cpumask_and(&mask, cpu_online_mask, set); 508 if (cpumask_empty(&mask)) 509 cpumask_copy(&mask, cpu_online_mask); 510 511 if (node != NUMA_NO_NODE) { 512 const struct cpumask *nodemask = cpumask_of_node(node); 513 514 /* make sure at least one of the cpus in nodemask is online */ 515 if (cpumask_intersects(&mask, nodemask)) 516 cpumask_and(&mask, &mask, nodemask); 517 } 518 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 519 raw_spin_unlock(&mask_lock); 520 return ret; 521 } 522 #else 523 /* Wrapper for ALPHA specific affinity selector magic */ 524 int irq_setup_affinity(struct irq_desc *desc) 525 { 526 return irq_select_affinity(irq_desc_get_irq(desc)); 527 } 528 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 529 #endif /* CONFIG_SMP */ 530 531 532 /** 533 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 534 * @irq: interrupt number to set affinity 535 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 536 * specific data for percpu_devid interrupts 537 * 538 * This function uses the vCPU specific data to set the vCPU 539 * affinity for an irq. The vCPU specific data is passed from 540 * outside, such as KVM. One example code path is as below: 541 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 542 */ 543 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 544 { 545 unsigned long flags; 546 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 547 struct irq_data *data; 548 struct irq_chip *chip; 549 int ret = -ENOSYS; 550 551 if (!desc) 552 return -EINVAL; 553 554 data = irq_desc_get_irq_data(desc); 555 do { 556 chip = irq_data_get_irq_chip(data); 557 if (chip && chip->irq_set_vcpu_affinity) 558 break; 559 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 560 data = data->parent_data; 561 #else 562 data = NULL; 563 #endif 564 } while (data); 565 566 if (data) 567 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 568 irq_put_desc_unlock(desc, flags); 569 570 return ret; 571 } 572 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 573 574 void __disable_irq(struct irq_desc *desc) 575 { 576 if (!desc->depth++) 577 irq_disable(desc); 578 } 579 580 static int __disable_irq_nosync(unsigned int irq) 581 { 582 unsigned long flags; 583 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 584 585 if (!desc) 586 return -EINVAL; 587 __disable_irq(desc); 588 irq_put_desc_busunlock(desc, flags); 589 return 0; 590 } 591 592 /** 593 * disable_irq_nosync - disable an irq without waiting 594 * @irq: Interrupt to disable 595 * 596 * Disable the selected interrupt line. Disables and Enables are 597 * nested. 598 * Unlike disable_irq(), this function does not ensure existing 599 * instances of the IRQ handler have completed before returning. 600 * 601 * This function may be called from IRQ context. 602 */ 603 void disable_irq_nosync(unsigned int irq) 604 { 605 __disable_irq_nosync(irq); 606 } 607 EXPORT_SYMBOL(disable_irq_nosync); 608 609 /** 610 * disable_irq - disable an irq and wait for completion 611 * @irq: Interrupt to disable 612 * 613 * Disable the selected interrupt line. Enables and Disables are 614 * nested. 615 * This function waits for any pending IRQ handlers for this interrupt 616 * to complete before returning. If you use this function while 617 * holding a resource the IRQ handler may need you will deadlock. 618 * 619 * This function may be called - with care - from IRQ context. 620 */ 621 void disable_irq(unsigned int irq) 622 { 623 if (!__disable_irq_nosync(irq)) 624 synchronize_irq(irq); 625 } 626 EXPORT_SYMBOL(disable_irq); 627 628 /** 629 * disable_hardirq - disables an irq and waits for hardirq completion 630 * @irq: Interrupt to disable 631 * 632 * Disable the selected interrupt line. Enables and Disables are 633 * nested. 634 * This function waits for any pending hard IRQ handlers for this 635 * interrupt to complete before returning. If you use this function while 636 * holding a resource the hard IRQ handler may need you will deadlock. 637 * 638 * When used to optimistically disable an interrupt from atomic context 639 * the return value must be checked. 640 * 641 * Returns: false if a threaded handler is active. 642 * 643 * This function may be called - with care - from IRQ context. 644 */ 645 bool disable_hardirq(unsigned int irq) 646 { 647 if (!__disable_irq_nosync(irq)) 648 return synchronize_hardirq(irq); 649 650 return false; 651 } 652 EXPORT_SYMBOL_GPL(disable_hardirq); 653 654 /** 655 * disable_nmi_nosync - disable an nmi without waiting 656 * @irq: Interrupt to disable 657 * 658 * Disable the selected interrupt line. Disables and enables are 659 * nested. 660 * The interrupt to disable must have been requested through request_nmi. 661 * Unlike disable_nmi(), this function does not ensure existing 662 * instances of the IRQ handler have completed before returning. 663 */ 664 void disable_nmi_nosync(unsigned int irq) 665 { 666 disable_irq_nosync(irq); 667 } 668 669 void __enable_irq(struct irq_desc *desc) 670 { 671 switch (desc->depth) { 672 case 0: 673 err_out: 674 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 675 irq_desc_get_irq(desc)); 676 break; 677 case 1: { 678 if (desc->istate & IRQS_SUSPENDED) 679 goto err_out; 680 /* Prevent probing on this irq: */ 681 irq_settings_set_noprobe(desc); 682 /* 683 * Call irq_startup() not irq_enable() here because the 684 * interrupt might be marked NOAUTOEN. So irq_startup() 685 * needs to be invoked when it gets enabled the first 686 * time. If it was already started up, then irq_startup() 687 * will invoke irq_enable() under the hood. 688 */ 689 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 690 break; 691 } 692 default: 693 desc->depth--; 694 } 695 } 696 697 /** 698 * enable_irq - enable handling of an irq 699 * @irq: Interrupt to enable 700 * 701 * Undoes the effect of one call to disable_irq(). If this 702 * matches the last disable, processing of interrupts on this 703 * IRQ line is re-enabled. 704 * 705 * This function may be called from IRQ context only when 706 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 707 */ 708 void enable_irq(unsigned int irq) 709 { 710 unsigned long flags; 711 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 712 713 if (!desc) 714 return; 715 if (WARN(!desc->irq_data.chip, 716 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 717 goto out; 718 719 __enable_irq(desc); 720 out: 721 irq_put_desc_busunlock(desc, flags); 722 } 723 EXPORT_SYMBOL(enable_irq); 724 725 /** 726 * enable_nmi - enable handling of an nmi 727 * @irq: Interrupt to enable 728 * 729 * The interrupt to enable must have been requested through request_nmi. 730 * Undoes the effect of one call to disable_nmi(). If this 731 * matches the last disable, processing of interrupts on this 732 * IRQ line is re-enabled. 733 */ 734 void enable_nmi(unsigned int irq) 735 { 736 enable_irq(irq); 737 } 738 739 static int set_irq_wake_real(unsigned int irq, unsigned int on) 740 { 741 struct irq_desc *desc = irq_to_desc(irq); 742 int ret = -ENXIO; 743 744 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 745 return 0; 746 747 if (desc->irq_data.chip->irq_set_wake) 748 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 749 750 return ret; 751 } 752 753 /** 754 * irq_set_irq_wake - control irq power management wakeup 755 * @irq: interrupt to control 756 * @on: enable/disable power management wakeup 757 * 758 * Enable/disable power management wakeup mode, which is 759 * disabled by default. Enables and disables must match, 760 * just as they match for non-wakeup mode support. 761 * 762 * Wakeup mode lets this IRQ wake the system from sleep 763 * states like "suspend to RAM". 764 * 765 * Note: irq enable/disable state is completely orthogonal 766 * to the enable/disable state of irq wake. An irq can be 767 * disabled with disable_irq() and still wake the system as 768 * long as the irq has wake enabled. If this does not hold, 769 * then the underlying irq chip and the related driver need 770 * to be investigated. 771 */ 772 int irq_set_irq_wake(unsigned int irq, unsigned int on) 773 { 774 unsigned long flags; 775 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 776 int ret = 0; 777 778 if (!desc) 779 return -EINVAL; 780 781 /* Don't use NMIs as wake up interrupts please */ 782 if (desc->istate & IRQS_NMI) { 783 ret = -EINVAL; 784 goto out_unlock; 785 } 786 787 /* wakeup-capable irqs can be shared between drivers that 788 * don't need to have the same sleep mode behaviors. 789 */ 790 if (on) { 791 if (desc->wake_depth++ == 0) { 792 ret = set_irq_wake_real(irq, on); 793 if (ret) 794 desc->wake_depth = 0; 795 else 796 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 797 } 798 } else { 799 if (desc->wake_depth == 0) { 800 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 801 } else if (--desc->wake_depth == 0) { 802 ret = set_irq_wake_real(irq, on); 803 if (ret) 804 desc->wake_depth = 1; 805 else 806 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 807 } 808 } 809 810 out_unlock: 811 irq_put_desc_busunlock(desc, flags); 812 return ret; 813 } 814 EXPORT_SYMBOL(irq_set_irq_wake); 815 816 /* 817 * Internal function that tells the architecture code whether a 818 * particular irq has been exclusively allocated or is available 819 * for driver use. 820 */ 821 int can_request_irq(unsigned int irq, unsigned long irqflags) 822 { 823 unsigned long flags; 824 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 825 int canrequest = 0; 826 827 if (!desc) 828 return 0; 829 830 if (irq_settings_can_request(desc)) { 831 if (!desc->action || 832 irqflags & desc->action->flags & IRQF_SHARED) 833 canrequest = 1; 834 } 835 irq_put_desc_unlock(desc, flags); 836 return canrequest; 837 } 838 839 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 840 { 841 struct irq_chip *chip = desc->irq_data.chip; 842 int ret, unmask = 0; 843 844 if (!chip || !chip->irq_set_type) { 845 /* 846 * IRQF_TRIGGER_* but the PIC does not support multiple 847 * flow-types? 848 */ 849 pr_debug("No set_type function for IRQ %d (%s)\n", 850 irq_desc_get_irq(desc), 851 chip ? (chip->name ? : "unknown") : "unknown"); 852 return 0; 853 } 854 855 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 856 if (!irqd_irq_masked(&desc->irq_data)) 857 mask_irq(desc); 858 if (!irqd_irq_disabled(&desc->irq_data)) 859 unmask = 1; 860 } 861 862 /* Mask all flags except trigger mode */ 863 flags &= IRQ_TYPE_SENSE_MASK; 864 ret = chip->irq_set_type(&desc->irq_data, flags); 865 866 switch (ret) { 867 case IRQ_SET_MASK_OK: 868 case IRQ_SET_MASK_OK_DONE: 869 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 870 irqd_set(&desc->irq_data, flags); 871 /* fall through */ 872 873 case IRQ_SET_MASK_OK_NOCOPY: 874 flags = irqd_get_trigger_type(&desc->irq_data); 875 irq_settings_set_trigger_mask(desc, flags); 876 irqd_clear(&desc->irq_data, IRQD_LEVEL); 877 irq_settings_clr_level(desc); 878 if (flags & IRQ_TYPE_LEVEL_MASK) { 879 irq_settings_set_level(desc); 880 irqd_set(&desc->irq_data, IRQD_LEVEL); 881 } 882 883 ret = 0; 884 break; 885 default: 886 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 887 flags, irq_desc_get_irq(desc), chip->irq_set_type); 888 } 889 if (unmask) 890 unmask_irq(desc); 891 return ret; 892 } 893 894 #ifdef CONFIG_HARDIRQS_SW_RESEND 895 int irq_set_parent(int irq, int parent_irq) 896 { 897 unsigned long flags; 898 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 899 900 if (!desc) 901 return -EINVAL; 902 903 desc->parent_irq = parent_irq; 904 905 irq_put_desc_unlock(desc, flags); 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(irq_set_parent); 909 #endif 910 911 /* 912 * Default primary interrupt handler for threaded interrupts. Is 913 * assigned as primary handler when request_threaded_irq is called 914 * with handler == NULL. Useful for oneshot interrupts. 915 */ 916 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 917 { 918 return IRQ_WAKE_THREAD; 919 } 920 921 /* 922 * Primary handler for nested threaded interrupts. Should never be 923 * called. 924 */ 925 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 926 { 927 WARN(1, "Primary handler called for nested irq %d\n", irq); 928 return IRQ_NONE; 929 } 930 931 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 932 { 933 WARN(1, "Secondary action handler called for irq %d\n", irq); 934 return IRQ_NONE; 935 } 936 937 static int irq_wait_for_interrupt(struct irqaction *action) 938 { 939 for (;;) { 940 set_current_state(TASK_INTERRUPTIBLE); 941 942 if (kthread_should_stop()) { 943 /* may need to run one last time */ 944 if (test_and_clear_bit(IRQTF_RUNTHREAD, 945 &action->thread_flags)) { 946 __set_current_state(TASK_RUNNING); 947 return 0; 948 } 949 __set_current_state(TASK_RUNNING); 950 return -1; 951 } 952 953 if (test_and_clear_bit(IRQTF_RUNTHREAD, 954 &action->thread_flags)) { 955 __set_current_state(TASK_RUNNING); 956 return 0; 957 } 958 schedule(); 959 } 960 } 961 962 /* 963 * Oneshot interrupts keep the irq line masked until the threaded 964 * handler finished. unmask if the interrupt has not been disabled and 965 * is marked MASKED. 966 */ 967 static void irq_finalize_oneshot(struct irq_desc *desc, 968 struct irqaction *action) 969 { 970 if (!(desc->istate & IRQS_ONESHOT) || 971 action->handler == irq_forced_secondary_handler) 972 return; 973 again: 974 chip_bus_lock(desc); 975 raw_spin_lock_irq(&desc->lock); 976 977 /* 978 * Implausible though it may be we need to protect us against 979 * the following scenario: 980 * 981 * The thread is faster done than the hard interrupt handler 982 * on the other CPU. If we unmask the irq line then the 983 * interrupt can come in again and masks the line, leaves due 984 * to IRQS_INPROGRESS and the irq line is masked forever. 985 * 986 * This also serializes the state of shared oneshot handlers 987 * versus "desc->threads_onehsot |= action->thread_mask;" in 988 * irq_wake_thread(). See the comment there which explains the 989 * serialization. 990 */ 991 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 992 raw_spin_unlock_irq(&desc->lock); 993 chip_bus_sync_unlock(desc); 994 cpu_relax(); 995 goto again; 996 } 997 998 /* 999 * Now check again, whether the thread should run. Otherwise 1000 * we would clear the threads_oneshot bit of this thread which 1001 * was just set. 1002 */ 1003 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1004 goto out_unlock; 1005 1006 desc->threads_oneshot &= ~action->thread_mask; 1007 1008 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1009 irqd_irq_masked(&desc->irq_data)) 1010 unmask_threaded_irq(desc); 1011 1012 out_unlock: 1013 raw_spin_unlock_irq(&desc->lock); 1014 chip_bus_sync_unlock(desc); 1015 } 1016 1017 #ifdef CONFIG_SMP 1018 /* 1019 * Check whether we need to change the affinity of the interrupt thread. 1020 */ 1021 static void 1022 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1023 { 1024 cpumask_var_t mask; 1025 bool valid = true; 1026 1027 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1028 return; 1029 1030 /* 1031 * In case we are out of memory we set IRQTF_AFFINITY again and 1032 * try again next time 1033 */ 1034 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1035 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1036 return; 1037 } 1038 1039 raw_spin_lock_irq(&desc->lock); 1040 /* 1041 * This code is triggered unconditionally. Check the affinity 1042 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1043 */ 1044 if (cpumask_available(desc->irq_common_data.affinity)) { 1045 const struct cpumask *m; 1046 1047 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1048 cpumask_copy(mask, m); 1049 } else { 1050 valid = false; 1051 } 1052 raw_spin_unlock_irq(&desc->lock); 1053 1054 if (valid) 1055 set_cpus_allowed_ptr(current, mask); 1056 free_cpumask_var(mask); 1057 } 1058 #else 1059 static inline void 1060 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1061 #endif 1062 1063 /* 1064 * Interrupts which are not explicitly requested as threaded 1065 * interrupts rely on the implicit bh/preempt disable of the hard irq 1066 * context. So we need to disable bh here to avoid deadlocks and other 1067 * side effects. 1068 */ 1069 static irqreturn_t 1070 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1071 { 1072 irqreturn_t ret; 1073 1074 local_bh_disable(); 1075 ret = action->thread_fn(action->irq, action->dev_id); 1076 if (ret == IRQ_HANDLED) 1077 atomic_inc(&desc->threads_handled); 1078 1079 irq_finalize_oneshot(desc, action); 1080 local_bh_enable(); 1081 return ret; 1082 } 1083 1084 /* 1085 * Interrupts explicitly requested as threaded interrupts want to be 1086 * preemtible - many of them need to sleep and wait for slow busses to 1087 * complete. 1088 */ 1089 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1090 struct irqaction *action) 1091 { 1092 irqreturn_t ret; 1093 1094 ret = action->thread_fn(action->irq, action->dev_id); 1095 if (ret == IRQ_HANDLED) 1096 atomic_inc(&desc->threads_handled); 1097 1098 irq_finalize_oneshot(desc, action); 1099 return ret; 1100 } 1101 1102 static void wake_threads_waitq(struct irq_desc *desc) 1103 { 1104 if (atomic_dec_and_test(&desc->threads_active)) 1105 wake_up(&desc->wait_for_threads); 1106 } 1107 1108 static void irq_thread_dtor(struct callback_head *unused) 1109 { 1110 struct task_struct *tsk = current; 1111 struct irq_desc *desc; 1112 struct irqaction *action; 1113 1114 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1115 return; 1116 1117 action = kthread_data(tsk); 1118 1119 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1120 tsk->comm, tsk->pid, action->irq); 1121 1122 1123 desc = irq_to_desc(action->irq); 1124 /* 1125 * If IRQTF_RUNTHREAD is set, we need to decrement 1126 * desc->threads_active and wake possible waiters. 1127 */ 1128 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1129 wake_threads_waitq(desc); 1130 1131 /* Prevent a stale desc->threads_oneshot */ 1132 irq_finalize_oneshot(desc, action); 1133 } 1134 1135 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1136 { 1137 struct irqaction *secondary = action->secondary; 1138 1139 if (WARN_ON_ONCE(!secondary)) 1140 return; 1141 1142 raw_spin_lock_irq(&desc->lock); 1143 __irq_wake_thread(desc, secondary); 1144 raw_spin_unlock_irq(&desc->lock); 1145 } 1146 1147 /* 1148 * Interrupt handler thread 1149 */ 1150 static int irq_thread(void *data) 1151 { 1152 struct callback_head on_exit_work; 1153 struct irqaction *action = data; 1154 struct irq_desc *desc = irq_to_desc(action->irq); 1155 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1156 struct irqaction *action); 1157 1158 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1159 &action->thread_flags)) 1160 handler_fn = irq_forced_thread_fn; 1161 else 1162 handler_fn = irq_thread_fn; 1163 1164 init_task_work(&on_exit_work, irq_thread_dtor); 1165 task_work_add(current, &on_exit_work, false); 1166 1167 irq_thread_check_affinity(desc, action); 1168 1169 while (!irq_wait_for_interrupt(action)) { 1170 irqreturn_t action_ret; 1171 1172 irq_thread_check_affinity(desc, action); 1173 1174 action_ret = handler_fn(desc, action); 1175 if (action_ret == IRQ_WAKE_THREAD) 1176 irq_wake_secondary(desc, action); 1177 1178 wake_threads_waitq(desc); 1179 } 1180 1181 /* 1182 * This is the regular exit path. __free_irq() is stopping the 1183 * thread via kthread_stop() after calling 1184 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1185 * oneshot mask bit can be set. 1186 */ 1187 task_work_cancel(current, irq_thread_dtor); 1188 return 0; 1189 } 1190 1191 /** 1192 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1193 * @irq: Interrupt line 1194 * @dev_id: Device identity for which the thread should be woken 1195 * 1196 */ 1197 void irq_wake_thread(unsigned int irq, void *dev_id) 1198 { 1199 struct irq_desc *desc = irq_to_desc(irq); 1200 struct irqaction *action; 1201 unsigned long flags; 1202 1203 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1204 return; 1205 1206 raw_spin_lock_irqsave(&desc->lock, flags); 1207 for_each_action_of_desc(desc, action) { 1208 if (action->dev_id == dev_id) { 1209 if (action->thread) 1210 __irq_wake_thread(desc, action); 1211 break; 1212 } 1213 } 1214 raw_spin_unlock_irqrestore(&desc->lock, flags); 1215 } 1216 EXPORT_SYMBOL_GPL(irq_wake_thread); 1217 1218 static int irq_setup_forced_threading(struct irqaction *new) 1219 { 1220 if (!force_irqthreads) 1221 return 0; 1222 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1223 return 0; 1224 1225 /* 1226 * No further action required for interrupts which are requested as 1227 * threaded interrupts already 1228 */ 1229 if (new->handler == irq_default_primary_handler) 1230 return 0; 1231 1232 new->flags |= IRQF_ONESHOT; 1233 1234 /* 1235 * Handle the case where we have a real primary handler and a 1236 * thread handler. We force thread them as well by creating a 1237 * secondary action. 1238 */ 1239 if (new->handler && new->thread_fn) { 1240 /* Allocate the secondary action */ 1241 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1242 if (!new->secondary) 1243 return -ENOMEM; 1244 new->secondary->handler = irq_forced_secondary_handler; 1245 new->secondary->thread_fn = new->thread_fn; 1246 new->secondary->dev_id = new->dev_id; 1247 new->secondary->irq = new->irq; 1248 new->secondary->name = new->name; 1249 } 1250 /* Deal with the primary handler */ 1251 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1252 new->thread_fn = new->handler; 1253 new->handler = irq_default_primary_handler; 1254 return 0; 1255 } 1256 1257 static int irq_request_resources(struct irq_desc *desc) 1258 { 1259 struct irq_data *d = &desc->irq_data; 1260 struct irq_chip *c = d->chip; 1261 1262 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1263 } 1264 1265 static void irq_release_resources(struct irq_desc *desc) 1266 { 1267 struct irq_data *d = &desc->irq_data; 1268 struct irq_chip *c = d->chip; 1269 1270 if (c->irq_release_resources) 1271 c->irq_release_resources(d); 1272 } 1273 1274 static bool irq_supports_nmi(struct irq_desc *desc) 1275 { 1276 struct irq_data *d = irq_desc_get_irq_data(desc); 1277 1278 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1279 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1280 if (d->parent_data) 1281 return false; 1282 #endif 1283 /* Don't support NMIs for chips behind a slow bus */ 1284 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1285 return false; 1286 1287 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1288 } 1289 1290 static int irq_nmi_setup(struct irq_desc *desc) 1291 { 1292 struct irq_data *d = irq_desc_get_irq_data(desc); 1293 struct irq_chip *c = d->chip; 1294 1295 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1296 } 1297 1298 static void irq_nmi_teardown(struct irq_desc *desc) 1299 { 1300 struct irq_data *d = irq_desc_get_irq_data(desc); 1301 struct irq_chip *c = d->chip; 1302 1303 if (c->irq_nmi_teardown) 1304 c->irq_nmi_teardown(d); 1305 } 1306 1307 static int 1308 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1309 { 1310 struct task_struct *t; 1311 struct sched_param param = { 1312 .sched_priority = MAX_USER_RT_PRIO/2, 1313 }; 1314 1315 if (!secondary) { 1316 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1317 new->name); 1318 } else { 1319 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1320 new->name); 1321 param.sched_priority -= 1; 1322 } 1323 1324 if (IS_ERR(t)) 1325 return PTR_ERR(t); 1326 1327 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1328 1329 /* 1330 * We keep the reference to the task struct even if 1331 * the thread dies to avoid that the interrupt code 1332 * references an already freed task_struct. 1333 */ 1334 new->thread = get_task_struct(t); 1335 /* 1336 * Tell the thread to set its affinity. This is 1337 * important for shared interrupt handlers as we do 1338 * not invoke setup_affinity() for the secondary 1339 * handlers as everything is already set up. Even for 1340 * interrupts marked with IRQF_NO_BALANCE this is 1341 * correct as we want the thread to move to the cpu(s) 1342 * on which the requesting code placed the interrupt. 1343 */ 1344 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1345 return 0; 1346 } 1347 1348 /* 1349 * Internal function to register an irqaction - typically used to 1350 * allocate special interrupts that are part of the architecture. 1351 * 1352 * Locking rules: 1353 * 1354 * desc->request_mutex Provides serialization against a concurrent free_irq() 1355 * chip_bus_lock Provides serialization for slow bus operations 1356 * desc->lock Provides serialization against hard interrupts 1357 * 1358 * chip_bus_lock and desc->lock are sufficient for all other management and 1359 * interrupt related functions. desc->request_mutex solely serializes 1360 * request/free_irq(). 1361 */ 1362 static int 1363 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1364 { 1365 struct irqaction *old, **old_ptr; 1366 unsigned long flags, thread_mask = 0; 1367 int ret, nested, shared = 0; 1368 1369 if (!desc) 1370 return -EINVAL; 1371 1372 if (desc->irq_data.chip == &no_irq_chip) 1373 return -ENOSYS; 1374 if (!try_module_get(desc->owner)) 1375 return -ENODEV; 1376 1377 new->irq = irq; 1378 1379 /* 1380 * If the trigger type is not specified by the caller, 1381 * then use the default for this interrupt. 1382 */ 1383 if (!(new->flags & IRQF_TRIGGER_MASK)) 1384 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1385 1386 /* 1387 * Check whether the interrupt nests into another interrupt 1388 * thread. 1389 */ 1390 nested = irq_settings_is_nested_thread(desc); 1391 if (nested) { 1392 if (!new->thread_fn) { 1393 ret = -EINVAL; 1394 goto out_mput; 1395 } 1396 /* 1397 * Replace the primary handler which was provided from 1398 * the driver for non nested interrupt handling by the 1399 * dummy function which warns when called. 1400 */ 1401 new->handler = irq_nested_primary_handler; 1402 } else { 1403 if (irq_settings_can_thread(desc)) { 1404 ret = irq_setup_forced_threading(new); 1405 if (ret) 1406 goto out_mput; 1407 } 1408 } 1409 1410 /* 1411 * Create a handler thread when a thread function is supplied 1412 * and the interrupt does not nest into another interrupt 1413 * thread. 1414 */ 1415 if (new->thread_fn && !nested) { 1416 ret = setup_irq_thread(new, irq, false); 1417 if (ret) 1418 goto out_mput; 1419 if (new->secondary) { 1420 ret = setup_irq_thread(new->secondary, irq, true); 1421 if (ret) 1422 goto out_thread; 1423 } 1424 } 1425 1426 /* 1427 * Drivers are often written to work w/o knowledge about the 1428 * underlying irq chip implementation, so a request for a 1429 * threaded irq without a primary hard irq context handler 1430 * requires the ONESHOT flag to be set. Some irq chips like 1431 * MSI based interrupts are per se one shot safe. Check the 1432 * chip flags, so we can avoid the unmask dance at the end of 1433 * the threaded handler for those. 1434 */ 1435 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1436 new->flags &= ~IRQF_ONESHOT; 1437 1438 /* 1439 * Protects against a concurrent __free_irq() call which might wait 1440 * for synchronize_hardirq() to complete without holding the optional 1441 * chip bus lock and desc->lock. Also protects against handing out 1442 * a recycled oneshot thread_mask bit while it's still in use by 1443 * its previous owner. 1444 */ 1445 mutex_lock(&desc->request_mutex); 1446 1447 /* 1448 * Acquire bus lock as the irq_request_resources() callback below 1449 * might rely on the serialization or the magic power management 1450 * functions which are abusing the irq_bus_lock() callback, 1451 */ 1452 chip_bus_lock(desc); 1453 1454 /* First installed action requests resources. */ 1455 if (!desc->action) { 1456 ret = irq_request_resources(desc); 1457 if (ret) { 1458 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1459 new->name, irq, desc->irq_data.chip->name); 1460 goto out_bus_unlock; 1461 } 1462 } 1463 1464 /* 1465 * The following block of code has to be executed atomically 1466 * protected against a concurrent interrupt and any of the other 1467 * management calls which are not serialized via 1468 * desc->request_mutex or the optional bus lock. 1469 */ 1470 raw_spin_lock_irqsave(&desc->lock, flags); 1471 old_ptr = &desc->action; 1472 old = *old_ptr; 1473 if (old) { 1474 /* 1475 * Can't share interrupts unless both agree to and are 1476 * the same type (level, edge, polarity). So both flag 1477 * fields must have IRQF_SHARED set and the bits which 1478 * set the trigger type must match. Also all must 1479 * agree on ONESHOT. 1480 * Interrupt lines used for NMIs cannot be shared. 1481 */ 1482 unsigned int oldtype; 1483 1484 if (desc->istate & IRQS_NMI) { 1485 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1486 new->name, irq, desc->irq_data.chip->name); 1487 ret = -EINVAL; 1488 goto out_unlock; 1489 } 1490 1491 /* 1492 * If nobody did set the configuration before, inherit 1493 * the one provided by the requester. 1494 */ 1495 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1496 oldtype = irqd_get_trigger_type(&desc->irq_data); 1497 } else { 1498 oldtype = new->flags & IRQF_TRIGGER_MASK; 1499 irqd_set_trigger_type(&desc->irq_data, oldtype); 1500 } 1501 1502 if (!((old->flags & new->flags) & IRQF_SHARED) || 1503 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1504 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1505 goto mismatch; 1506 1507 /* All handlers must agree on per-cpuness */ 1508 if ((old->flags & IRQF_PERCPU) != 1509 (new->flags & IRQF_PERCPU)) 1510 goto mismatch; 1511 1512 /* add new interrupt at end of irq queue */ 1513 do { 1514 /* 1515 * Or all existing action->thread_mask bits, 1516 * so we can find the next zero bit for this 1517 * new action. 1518 */ 1519 thread_mask |= old->thread_mask; 1520 old_ptr = &old->next; 1521 old = *old_ptr; 1522 } while (old); 1523 shared = 1; 1524 } 1525 1526 /* 1527 * Setup the thread mask for this irqaction for ONESHOT. For 1528 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1529 * conditional in irq_wake_thread(). 1530 */ 1531 if (new->flags & IRQF_ONESHOT) { 1532 /* 1533 * Unlikely to have 32 resp 64 irqs sharing one line, 1534 * but who knows. 1535 */ 1536 if (thread_mask == ~0UL) { 1537 ret = -EBUSY; 1538 goto out_unlock; 1539 } 1540 /* 1541 * The thread_mask for the action is or'ed to 1542 * desc->thread_active to indicate that the 1543 * IRQF_ONESHOT thread handler has been woken, but not 1544 * yet finished. The bit is cleared when a thread 1545 * completes. When all threads of a shared interrupt 1546 * line have completed desc->threads_active becomes 1547 * zero and the interrupt line is unmasked. See 1548 * handle.c:irq_wake_thread() for further information. 1549 * 1550 * If no thread is woken by primary (hard irq context) 1551 * interrupt handlers, then desc->threads_active is 1552 * also checked for zero to unmask the irq line in the 1553 * affected hard irq flow handlers 1554 * (handle_[fasteoi|level]_irq). 1555 * 1556 * The new action gets the first zero bit of 1557 * thread_mask assigned. See the loop above which or's 1558 * all existing action->thread_mask bits. 1559 */ 1560 new->thread_mask = 1UL << ffz(thread_mask); 1561 1562 } else if (new->handler == irq_default_primary_handler && 1563 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1564 /* 1565 * The interrupt was requested with handler = NULL, so 1566 * we use the default primary handler for it. But it 1567 * does not have the oneshot flag set. In combination 1568 * with level interrupts this is deadly, because the 1569 * default primary handler just wakes the thread, then 1570 * the irq lines is reenabled, but the device still 1571 * has the level irq asserted. Rinse and repeat.... 1572 * 1573 * While this works for edge type interrupts, we play 1574 * it safe and reject unconditionally because we can't 1575 * say for sure which type this interrupt really 1576 * has. The type flags are unreliable as the 1577 * underlying chip implementation can override them. 1578 */ 1579 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1580 new->name, irq); 1581 ret = -EINVAL; 1582 goto out_unlock; 1583 } 1584 1585 if (!shared) { 1586 init_waitqueue_head(&desc->wait_for_threads); 1587 1588 /* Setup the type (level, edge polarity) if configured: */ 1589 if (new->flags & IRQF_TRIGGER_MASK) { 1590 ret = __irq_set_trigger(desc, 1591 new->flags & IRQF_TRIGGER_MASK); 1592 1593 if (ret) 1594 goto out_unlock; 1595 } 1596 1597 /* 1598 * Activate the interrupt. That activation must happen 1599 * independently of IRQ_NOAUTOEN. request_irq() can fail 1600 * and the callers are supposed to handle 1601 * that. enable_irq() of an interrupt requested with 1602 * IRQ_NOAUTOEN is not supposed to fail. The activation 1603 * keeps it in shutdown mode, it merily associates 1604 * resources if necessary and if that's not possible it 1605 * fails. Interrupts which are in managed shutdown mode 1606 * will simply ignore that activation request. 1607 */ 1608 ret = irq_activate(desc); 1609 if (ret) 1610 goto out_unlock; 1611 1612 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1613 IRQS_ONESHOT | IRQS_WAITING); 1614 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1615 1616 if (new->flags & IRQF_PERCPU) { 1617 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1618 irq_settings_set_per_cpu(desc); 1619 } 1620 1621 if (new->flags & IRQF_ONESHOT) 1622 desc->istate |= IRQS_ONESHOT; 1623 1624 /* Exclude IRQ from balancing if requested */ 1625 if (new->flags & IRQF_NOBALANCING) { 1626 irq_settings_set_no_balancing(desc); 1627 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1628 } 1629 1630 if (irq_settings_can_autoenable(desc)) { 1631 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1632 } else { 1633 /* 1634 * Shared interrupts do not go well with disabling 1635 * auto enable. The sharing interrupt might request 1636 * it while it's still disabled and then wait for 1637 * interrupts forever. 1638 */ 1639 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1640 /* Undo nested disables: */ 1641 desc->depth = 1; 1642 } 1643 1644 } else if (new->flags & IRQF_TRIGGER_MASK) { 1645 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1646 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1647 1648 if (nmsk != omsk) 1649 /* hope the handler works with current trigger mode */ 1650 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1651 irq, omsk, nmsk); 1652 } 1653 1654 *old_ptr = new; 1655 1656 irq_pm_install_action(desc, new); 1657 1658 /* Reset broken irq detection when installing new handler */ 1659 desc->irq_count = 0; 1660 desc->irqs_unhandled = 0; 1661 1662 /* 1663 * Check whether we disabled the irq via the spurious handler 1664 * before. Reenable it and give it another chance. 1665 */ 1666 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1667 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1668 __enable_irq(desc); 1669 } 1670 1671 raw_spin_unlock_irqrestore(&desc->lock, flags); 1672 chip_bus_sync_unlock(desc); 1673 mutex_unlock(&desc->request_mutex); 1674 1675 irq_setup_timings(desc, new); 1676 1677 /* 1678 * Strictly no need to wake it up, but hung_task complains 1679 * when no hard interrupt wakes the thread up. 1680 */ 1681 if (new->thread) 1682 wake_up_process(new->thread); 1683 if (new->secondary) 1684 wake_up_process(new->secondary->thread); 1685 1686 register_irq_proc(irq, desc); 1687 new->dir = NULL; 1688 register_handler_proc(irq, new); 1689 return 0; 1690 1691 mismatch: 1692 if (!(new->flags & IRQF_PROBE_SHARED)) { 1693 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1694 irq, new->flags, new->name, old->flags, old->name); 1695 #ifdef CONFIG_DEBUG_SHIRQ 1696 dump_stack(); 1697 #endif 1698 } 1699 ret = -EBUSY; 1700 1701 out_unlock: 1702 raw_spin_unlock_irqrestore(&desc->lock, flags); 1703 1704 if (!desc->action) 1705 irq_release_resources(desc); 1706 out_bus_unlock: 1707 chip_bus_sync_unlock(desc); 1708 mutex_unlock(&desc->request_mutex); 1709 1710 out_thread: 1711 if (new->thread) { 1712 struct task_struct *t = new->thread; 1713 1714 new->thread = NULL; 1715 kthread_stop(t); 1716 put_task_struct(t); 1717 } 1718 if (new->secondary && new->secondary->thread) { 1719 struct task_struct *t = new->secondary->thread; 1720 1721 new->secondary->thread = NULL; 1722 kthread_stop(t); 1723 put_task_struct(t); 1724 } 1725 out_mput: 1726 module_put(desc->owner); 1727 return ret; 1728 } 1729 1730 /* 1731 * Internal function to unregister an irqaction - used to free 1732 * regular and special interrupts that are part of the architecture. 1733 */ 1734 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1735 { 1736 unsigned irq = desc->irq_data.irq; 1737 struct irqaction *action, **action_ptr; 1738 unsigned long flags; 1739 1740 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1741 1742 mutex_lock(&desc->request_mutex); 1743 chip_bus_lock(desc); 1744 raw_spin_lock_irqsave(&desc->lock, flags); 1745 1746 /* 1747 * There can be multiple actions per IRQ descriptor, find the right 1748 * one based on the dev_id: 1749 */ 1750 action_ptr = &desc->action; 1751 for (;;) { 1752 action = *action_ptr; 1753 1754 if (!action) { 1755 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1756 raw_spin_unlock_irqrestore(&desc->lock, flags); 1757 chip_bus_sync_unlock(desc); 1758 mutex_unlock(&desc->request_mutex); 1759 return NULL; 1760 } 1761 1762 if (action->dev_id == dev_id) 1763 break; 1764 action_ptr = &action->next; 1765 } 1766 1767 /* Found it - now remove it from the list of entries: */ 1768 *action_ptr = action->next; 1769 1770 irq_pm_remove_action(desc, action); 1771 1772 /* If this was the last handler, shut down the IRQ line: */ 1773 if (!desc->action) { 1774 irq_settings_clr_disable_unlazy(desc); 1775 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1776 irq_shutdown(desc); 1777 } 1778 1779 #ifdef CONFIG_SMP 1780 /* make sure affinity_hint is cleaned up */ 1781 if (WARN_ON_ONCE(desc->affinity_hint)) 1782 desc->affinity_hint = NULL; 1783 #endif 1784 1785 raw_spin_unlock_irqrestore(&desc->lock, flags); 1786 /* 1787 * Drop bus_lock here so the changes which were done in the chip 1788 * callbacks above are synced out to the irq chips which hang 1789 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1790 * 1791 * Aside of that the bus_lock can also be taken from the threaded 1792 * handler in irq_finalize_oneshot() which results in a deadlock 1793 * because kthread_stop() would wait forever for the thread to 1794 * complete, which is blocked on the bus lock. 1795 * 1796 * The still held desc->request_mutex() protects against a 1797 * concurrent request_irq() of this irq so the release of resources 1798 * and timing data is properly serialized. 1799 */ 1800 chip_bus_sync_unlock(desc); 1801 1802 unregister_handler_proc(irq, action); 1803 1804 /* 1805 * Make sure it's not being used on another CPU and if the chip 1806 * supports it also make sure that there is no (not yet serviced) 1807 * interrupt in flight at the hardware level. 1808 */ 1809 __synchronize_hardirq(desc, true); 1810 1811 #ifdef CONFIG_DEBUG_SHIRQ 1812 /* 1813 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1814 * event to happen even now it's being freed, so let's make sure that 1815 * is so by doing an extra call to the handler .... 1816 * 1817 * ( We do this after actually deregistering it, to make sure that a 1818 * 'real' IRQ doesn't run in parallel with our fake. ) 1819 */ 1820 if (action->flags & IRQF_SHARED) { 1821 local_irq_save(flags); 1822 action->handler(irq, dev_id); 1823 local_irq_restore(flags); 1824 } 1825 #endif 1826 1827 /* 1828 * The action has already been removed above, but the thread writes 1829 * its oneshot mask bit when it completes. Though request_mutex is 1830 * held across this which prevents __setup_irq() from handing out 1831 * the same bit to a newly requested action. 1832 */ 1833 if (action->thread) { 1834 kthread_stop(action->thread); 1835 put_task_struct(action->thread); 1836 if (action->secondary && action->secondary->thread) { 1837 kthread_stop(action->secondary->thread); 1838 put_task_struct(action->secondary->thread); 1839 } 1840 } 1841 1842 /* Last action releases resources */ 1843 if (!desc->action) { 1844 /* 1845 * Reaquire bus lock as irq_release_resources() might 1846 * require it to deallocate resources over the slow bus. 1847 */ 1848 chip_bus_lock(desc); 1849 /* 1850 * There is no interrupt on the fly anymore. Deactivate it 1851 * completely. 1852 */ 1853 raw_spin_lock_irqsave(&desc->lock, flags); 1854 irq_domain_deactivate_irq(&desc->irq_data); 1855 raw_spin_unlock_irqrestore(&desc->lock, flags); 1856 1857 irq_release_resources(desc); 1858 chip_bus_sync_unlock(desc); 1859 irq_remove_timings(desc); 1860 } 1861 1862 mutex_unlock(&desc->request_mutex); 1863 1864 irq_chip_pm_put(&desc->irq_data); 1865 module_put(desc->owner); 1866 kfree(action->secondary); 1867 return action; 1868 } 1869 1870 /** 1871 * free_irq - free an interrupt allocated with request_irq 1872 * @irq: Interrupt line to free 1873 * @dev_id: Device identity to free 1874 * 1875 * Remove an interrupt handler. The handler is removed and if the 1876 * interrupt line is no longer in use by any driver it is disabled. 1877 * On a shared IRQ the caller must ensure the interrupt is disabled 1878 * on the card it drives before calling this function. The function 1879 * does not return until any executing interrupts for this IRQ 1880 * have completed. 1881 * 1882 * This function must not be called from interrupt context. 1883 * 1884 * Returns the devname argument passed to request_irq. 1885 */ 1886 const void *free_irq(unsigned int irq, void *dev_id) 1887 { 1888 struct irq_desc *desc = irq_to_desc(irq); 1889 struct irqaction *action; 1890 const char *devname; 1891 1892 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1893 return NULL; 1894 1895 #ifdef CONFIG_SMP 1896 if (WARN_ON(desc->affinity_notify)) 1897 desc->affinity_notify = NULL; 1898 #endif 1899 1900 action = __free_irq(desc, dev_id); 1901 1902 if (!action) 1903 return NULL; 1904 1905 devname = action->name; 1906 kfree(action); 1907 return devname; 1908 } 1909 EXPORT_SYMBOL(free_irq); 1910 1911 /* This function must be called with desc->lock held */ 1912 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1913 { 1914 const char *devname = NULL; 1915 1916 desc->istate &= ~IRQS_NMI; 1917 1918 if (!WARN_ON(desc->action == NULL)) { 1919 irq_pm_remove_action(desc, desc->action); 1920 devname = desc->action->name; 1921 unregister_handler_proc(irq, desc->action); 1922 1923 kfree(desc->action); 1924 desc->action = NULL; 1925 } 1926 1927 irq_settings_clr_disable_unlazy(desc); 1928 irq_shutdown_and_deactivate(desc); 1929 1930 irq_release_resources(desc); 1931 1932 irq_chip_pm_put(&desc->irq_data); 1933 module_put(desc->owner); 1934 1935 return devname; 1936 } 1937 1938 const void *free_nmi(unsigned int irq, void *dev_id) 1939 { 1940 struct irq_desc *desc = irq_to_desc(irq); 1941 unsigned long flags; 1942 const void *devname; 1943 1944 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1945 return NULL; 1946 1947 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1948 return NULL; 1949 1950 /* NMI still enabled */ 1951 if (WARN_ON(desc->depth == 0)) 1952 disable_nmi_nosync(irq); 1953 1954 raw_spin_lock_irqsave(&desc->lock, flags); 1955 1956 irq_nmi_teardown(desc); 1957 devname = __cleanup_nmi(irq, desc); 1958 1959 raw_spin_unlock_irqrestore(&desc->lock, flags); 1960 1961 return devname; 1962 } 1963 1964 /** 1965 * request_threaded_irq - allocate an interrupt line 1966 * @irq: Interrupt line to allocate 1967 * @handler: Function to be called when the IRQ occurs. 1968 * Primary handler for threaded interrupts 1969 * If NULL and thread_fn != NULL the default 1970 * primary handler is installed 1971 * @thread_fn: Function called from the irq handler thread 1972 * If NULL, no irq thread is created 1973 * @irqflags: Interrupt type flags 1974 * @devname: An ascii name for the claiming device 1975 * @dev_id: A cookie passed back to the handler function 1976 * 1977 * This call allocates interrupt resources and enables the 1978 * interrupt line and IRQ handling. From the point this 1979 * call is made your handler function may be invoked. Since 1980 * your handler function must clear any interrupt the board 1981 * raises, you must take care both to initialise your hardware 1982 * and to set up the interrupt handler in the right order. 1983 * 1984 * If you want to set up a threaded irq handler for your device 1985 * then you need to supply @handler and @thread_fn. @handler is 1986 * still called in hard interrupt context and has to check 1987 * whether the interrupt originates from the device. If yes it 1988 * needs to disable the interrupt on the device and return 1989 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1990 * @thread_fn. This split handler design is necessary to support 1991 * shared interrupts. 1992 * 1993 * Dev_id must be globally unique. Normally the address of the 1994 * device data structure is used as the cookie. Since the handler 1995 * receives this value it makes sense to use it. 1996 * 1997 * If your interrupt is shared you must pass a non NULL dev_id 1998 * as this is required when freeing the interrupt. 1999 * 2000 * Flags: 2001 * 2002 * IRQF_SHARED Interrupt is shared 2003 * IRQF_TRIGGER_* Specify active edge(s) or level 2004 * 2005 */ 2006 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2007 irq_handler_t thread_fn, unsigned long irqflags, 2008 const char *devname, void *dev_id) 2009 { 2010 struct irqaction *action; 2011 struct irq_desc *desc; 2012 int retval; 2013 2014 if (irq == IRQ_NOTCONNECTED) 2015 return -ENOTCONN; 2016 2017 /* 2018 * Sanity-check: shared interrupts must pass in a real dev-ID, 2019 * otherwise we'll have trouble later trying to figure out 2020 * which interrupt is which (messes up the interrupt freeing 2021 * logic etc). 2022 * 2023 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2024 * it cannot be set along with IRQF_NO_SUSPEND. 2025 */ 2026 if (((irqflags & IRQF_SHARED) && !dev_id) || 2027 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2028 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2029 return -EINVAL; 2030 2031 desc = irq_to_desc(irq); 2032 if (!desc) 2033 return -EINVAL; 2034 2035 if (!irq_settings_can_request(desc) || 2036 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2037 return -EINVAL; 2038 2039 if (!handler) { 2040 if (!thread_fn) 2041 return -EINVAL; 2042 handler = irq_default_primary_handler; 2043 } 2044 2045 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2046 if (!action) 2047 return -ENOMEM; 2048 2049 action->handler = handler; 2050 action->thread_fn = thread_fn; 2051 action->flags = irqflags; 2052 action->name = devname; 2053 action->dev_id = dev_id; 2054 2055 retval = irq_chip_pm_get(&desc->irq_data); 2056 if (retval < 0) { 2057 kfree(action); 2058 return retval; 2059 } 2060 2061 retval = __setup_irq(irq, desc, action); 2062 2063 if (retval) { 2064 irq_chip_pm_put(&desc->irq_data); 2065 kfree(action->secondary); 2066 kfree(action); 2067 } 2068 2069 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2070 if (!retval && (irqflags & IRQF_SHARED)) { 2071 /* 2072 * It's a shared IRQ -- the driver ought to be prepared for it 2073 * to happen immediately, so let's make sure.... 2074 * We disable the irq to make sure that a 'real' IRQ doesn't 2075 * run in parallel with our fake. 2076 */ 2077 unsigned long flags; 2078 2079 disable_irq(irq); 2080 local_irq_save(flags); 2081 2082 handler(irq, dev_id); 2083 2084 local_irq_restore(flags); 2085 enable_irq(irq); 2086 } 2087 #endif 2088 return retval; 2089 } 2090 EXPORT_SYMBOL(request_threaded_irq); 2091 2092 /** 2093 * request_any_context_irq - allocate an interrupt line 2094 * @irq: Interrupt line to allocate 2095 * @handler: Function to be called when the IRQ occurs. 2096 * Threaded handler for threaded interrupts. 2097 * @flags: Interrupt type flags 2098 * @name: An ascii name for the claiming device 2099 * @dev_id: A cookie passed back to the handler function 2100 * 2101 * This call allocates interrupt resources and enables the 2102 * interrupt line and IRQ handling. It selects either a 2103 * hardirq or threaded handling method depending on the 2104 * context. 2105 * 2106 * On failure, it returns a negative value. On success, 2107 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2108 */ 2109 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2110 unsigned long flags, const char *name, void *dev_id) 2111 { 2112 struct irq_desc *desc; 2113 int ret; 2114 2115 if (irq == IRQ_NOTCONNECTED) 2116 return -ENOTCONN; 2117 2118 desc = irq_to_desc(irq); 2119 if (!desc) 2120 return -EINVAL; 2121 2122 if (irq_settings_is_nested_thread(desc)) { 2123 ret = request_threaded_irq(irq, NULL, handler, 2124 flags, name, dev_id); 2125 return !ret ? IRQC_IS_NESTED : ret; 2126 } 2127 2128 ret = request_irq(irq, handler, flags, name, dev_id); 2129 return !ret ? IRQC_IS_HARDIRQ : ret; 2130 } 2131 EXPORT_SYMBOL_GPL(request_any_context_irq); 2132 2133 /** 2134 * request_nmi - allocate an interrupt line for NMI delivery 2135 * @irq: Interrupt line to allocate 2136 * @handler: Function to be called when the IRQ occurs. 2137 * Threaded handler for threaded interrupts. 2138 * @irqflags: Interrupt type flags 2139 * @name: An ascii name for the claiming device 2140 * @dev_id: A cookie passed back to the handler function 2141 * 2142 * This call allocates interrupt resources and enables the 2143 * interrupt line and IRQ handling. It sets up the IRQ line 2144 * to be handled as an NMI. 2145 * 2146 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2147 * cannot be threaded. 2148 * 2149 * Interrupt lines requested for NMI delivering must produce per cpu 2150 * interrupts and have auto enabling setting disabled. 2151 * 2152 * Dev_id must be globally unique. Normally the address of the 2153 * device data structure is used as the cookie. Since the handler 2154 * receives this value it makes sense to use it. 2155 * 2156 * If the interrupt line cannot be used to deliver NMIs, function 2157 * will fail and return a negative value. 2158 */ 2159 int request_nmi(unsigned int irq, irq_handler_t handler, 2160 unsigned long irqflags, const char *name, void *dev_id) 2161 { 2162 struct irqaction *action; 2163 struct irq_desc *desc; 2164 unsigned long flags; 2165 int retval; 2166 2167 if (irq == IRQ_NOTCONNECTED) 2168 return -ENOTCONN; 2169 2170 /* NMI cannot be shared, used for Polling */ 2171 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2172 return -EINVAL; 2173 2174 if (!(irqflags & IRQF_PERCPU)) 2175 return -EINVAL; 2176 2177 if (!handler) 2178 return -EINVAL; 2179 2180 desc = irq_to_desc(irq); 2181 2182 if (!desc || irq_settings_can_autoenable(desc) || 2183 !irq_settings_can_request(desc) || 2184 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2185 !irq_supports_nmi(desc)) 2186 return -EINVAL; 2187 2188 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2189 if (!action) 2190 return -ENOMEM; 2191 2192 action->handler = handler; 2193 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2194 action->name = name; 2195 action->dev_id = dev_id; 2196 2197 retval = irq_chip_pm_get(&desc->irq_data); 2198 if (retval < 0) 2199 goto err_out; 2200 2201 retval = __setup_irq(irq, desc, action); 2202 if (retval) 2203 goto err_irq_setup; 2204 2205 raw_spin_lock_irqsave(&desc->lock, flags); 2206 2207 /* Setup NMI state */ 2208 desc->istate |= IRQS_NMI; 2209 retval = irq_nmi_setup(desc); 2210 if (retval) { 2211 __cleanup_nmi(irq, desc); 2212 raw_spin_unlock_irqrestore(&desc->lock, flags); 2213 return -EINVAL; 2214 } 2215 2216 raw_spin_unlock_irqrestore(&desc->lock, flags); 2217 2218 return 0; 2219 2220 err_irq_setup: 2221 irq_chip_pm_put(&desc->irq_data); 2222 err_out: 2223 kfree(action); 2224 2225 return retval; 2226 } 2227 2228 void enable_percpu_irq(unsigned int irq, unsigned int type) 2229 { 2230 unsigned int cpu = smp_processor_id(); 2231 unsigned long flags; 2232 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2233 2234 if (!desc) 2235 return; 2236 2237 /* 2238 * If the trigger type is not specified by the caller, then 2239 * use the default for this interrupt. 2240 */ 2241 type &= IRQ_TYPE_SENSE_MASK; 2242 if (type == IRQ_TYPE_NONE) 2243 type = irqd_get_trigger_type(&desc->irq_data); 2244 2245 if (type != IRQ_TYPE_NONE) { 2246 int ret; 2247 2248 ret = __irq_set_trigger(desc, type); 2249 2250 if (ret) { 2251 WARN(1, "failed to set type for IRQ%d\n", irq); 2252 goto out; 2253 } 2254 } 2255 2256 irq_percpu_enable(desc, cpu); 2257 out: 2258 irq_put_desc_unlock(desc, flags); 2259 } 2260 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2261 2262 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2263 { 2264 enable_percpu_irq(irq, type); 2265 } 2266 2267 /** 2268 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2269 * @irq: Linux irq number to check for 2270 * 2271 * Must be called from a non migratable context. Returns the enable 2272 * state of a per cpu interrupt on the current cpu. 2273 */ 2274 bool irq_percpu_is_enabled(unsigned int irq) 2275 { 2276 unsigned int cpu = smp_processor_id(); 2277 struct irq_desc *desc; 2278 unsigned long flags; 2279 bool is_enabled; 2280 2281 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2282 if (!desc) 2283 return false; 2284 2285 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2286 irq_put_desc_unlock(desc, flags); 2287 2288 return is_enabled; 2289 } 2290 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2291 2292 void disable_percpu_irq(unsigned int irq) 2293 { 2294 unsigned int cpu = smp_processor_id(); 2295 unsigned long flags; 2296 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2297 2298 if (!desc) 2299 return; 2300 2301 irq_percpu_disable(desc, cpu); 2302 irq_put_desc_unlock(desc, flags); 2303 } 2304 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2305 2306 void disable_percpu_nmi(unsigned int irq) 2307 { 2308 disable_percpu_irq(irq); 2309 } 2310 2311 /* 2312 * Internal function to unregister a percpu irqaction. 2313 */ 2314 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2315 { 2316 struct irq_desc *desc = irq_to_desc(irq); 2317 struct irqaction *action; 2318 unsigned long flags; 2319 2320 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2321 2322 if (!desc) 2323 return NULL; 2324 2325 raw_spin_lock_irqsave(&desc->lock, flags); 2326 2327 action = desc->action; 2328 if (!action || action->percpu_dev_id != dev_id) { 2329 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2330 goto bad; 2331 } 2332 2333 if (!cpumask_empty(desc->percpu_enabled)) { 2334 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2335 irq, cpumask_first(desc->percpu_enabled)); 2336 goto bad; 2337 } 2338 2339 /* Found it - now remove it from the list of entries: */ 2340 desc->action = NULL; 2341 2342 desc->istate &= ~IRQS_NMI; 2343 2344 raw_spin_unlock_irqrestore(&desc->lock, flags); 2345 2346 unregister_handler_proc(irq, action); 2347 2348 irq_chip_pm_put(&desc->irq_data); 2349 module_put(desc->owner); 2350 return action; 2351 2352 bad: 2353 raw_spin_unlock_irqrestore(&desc->lock, flags); 2354 return NULL; 2355 } 2356 2357 /** 2358 * remove_percpu_irq - free a per-cpu interrupt 2359 * @irq: Interrupt line to free 2360 * @act: irqaction for the interrupt 2361 * 2362 * Used to remove interrupts statically setup by the early boot process. 2363 */ 2364 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2365 { 2366 struct irq_desc *desc = irq_to_desc(irq); 2367 2368 if (desc && irq_settings_is_per_cpu_devid(desc)) 2369 __free_percpu_irq(irq, act->percpu_dev_id); 2370 } 2371 2372 /** 2373 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2374 * @irq: Interrupt line to free 2375 * @dev_id: Device identity to free 2376 * 2377 * Remove a percpu interrupt handler. The handler is removed, but 2378 * the interrupt line is not disabled. This must be done on each 2379 * CPU before calling this function. The function does not return 2380 * until any executing interrupts for this IRQ have completed. 2381 * 2382 * This function must not be called from interrupt context. 2383 */ 2384 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2385 { 2386 struct irq_desc *desc = irq_to_desc(irq); 2387 2388 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2389 return; 2390 2391 chip_bus_lock(desc); 2392 kfree(__free_percpu_irq(irq, dev_id)); 2393 chip_bus_sync_unlock(desc); 2394 } 2395 EXPORT_SYMBOL_GPL(free_percpu_irq); 2396 2397 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2398 { 2399 struct irq_desc *desc = irq_to_desc(irq); 2400 2401 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2402 return; 2403 2404 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2405 return; 2406 2407 kfree(__free_percpu_irq(irq, dev_id)); 2408 } 2409 2410 /** 2411 * setup_percpu_irq - setup a per-cpu interrupt 2412 * @irq: Interrupt line to setup 2413 * @act: irqaction for the interrupt 2414 * 2415 * Used to statically setup per-cpu interrupts in the early boot process. 2416 */ 2417 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2418 { 2419 struct irq_desc *desc = irq_to_desc(irq); 2420 int retval; 2421 2422 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2423 return -EINVAL; 2424 2425 retval = irq_chip_pm_get(&desc->irq_data); 2426 if (retval < 0) 2427 return retval; 2428 2429 retval = __setup_irq(irq, desc, act); 2430 2431 if (retval) 2432 irq_chip_pm_put(&desc->irq_data); 2433 2434 return retval; 2435 } 2436 2437 /** 2438 * __request_percpu_irq - allocate a percpu interrupt line 2439 * @irq: Interrupt line to allocate 2440 * @handler: Function to be called when the IRQ occurs. 2441 * @flags: Interrupt type flags (IRQF_TIMER only) 2442 * @devname: An ascii name for the claiming device 2443 * @dev_id: A percpu cookie passed back to the handler function 2444 * 2445 * This call allocates interrupt resources and enables the 2446 * interrupt on the local CPU. If the interrupt is supposed to be 2447 * enabled on other CPUs, it has to be done on each CPU using 2448 * enable_percpu_irq(). 2449 * 2450 * Dev_id must be globally unique. It is a per-cpu variable, and 2451 * the handler gets called with the interrupted CPU's instance of 2452 * that variable. 2453 */ 2454 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2455 unsigned long flags, const char *devname, 2456 void __percpu *dev_id) 2457 { 2458 struct irqaction *action; 2459 struct irq_desc *desc; 2460 int retval; 2461 2462 if (!dev_id) 2463 return -EINVAL; 2464 2465 desc = irq_to_desc(irq); 2466 if (!desc || !irq_settings_can_request(desc) || 2467 !irq_settings_is_per_cpu_devid(desc)) 2468 return -EINVAL; 2469 2470 if (flags && flags != IRQF_TIMER) 2471 return -EINVAL; 2472 2473 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2474 if (!action) 2475 return -ENOMEM; 2476 2477 action->handler = handler; 2478 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2479 action->name = devname; 2480 action->percpu_dev_id = dev_id; 2481 2482 retval = irq_chip_pm_get(&desc->irq_data); 2483 if (retval < 0) { 2484 kfree(action); 2485 return retval; 2486 } 2487 2488 retval = __setup_irq(irq, desc, action); 2489 2490 if (retval) { 2491 irq_chip_pm_put(&desc->irq_data); 2492 kfree(action); 2493 } 2494 2495 return retval; 2496 } 2497 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2498 2499 /** 2500 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2501 * @irq: Interrupt line to allocate 2502 * @handler: Function to be called when the IRQ occurs. 2503 * @name: An ascii name for the claiming device 2504 * @dev_id: A percpu cookie passed back to the handler function 2505 * 2506 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2507 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2508 * being enabled on the same CPU by using enable_percpu_nmi(). 2509 * 2510 * Dev_id must be globally unique. It is a per-cpu variable, and 2511 * the handler gets called with the interrupted CPU's instance of 2512 * that variable. 2513 * 2514 * Interrupt lines requested for NMI delivering should have auto enabling 2515 * setting disabled. 2516 * 2517 * If the interrupt line cannot be used to deliver NMIs, function 2518 * will fail returning a negative value. 2519 */ 2520 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2521 const char *name, void __percpu *dev_id) 2522 { 2523 struct irqaction *action; 2524 struct irq_desc *desc; 2525 unsigned long flags; 2526 int retval; 2527 2528 if (!handler) 2529 return -EINVAL; 2530 2531 desc = irq_to_desc(irq); 2532 2533 if (!desc || !irq_settings_can_request(desc) || 2534 !irq_settings_is_per_cpu_devid(desc) || 2535 irq_settings_can_autoenable(desc) || 2536 !irq_supports_nmi(desc)) 2537 return -EINVAL; 2538 2539 /* The line cannot already be NMI */ 2540 if (desc->istate & IRQS_NMI) 2541 return -EINVAL; 2542 2543 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2544 if (!action) 2545 return -ENOMEM; 2546 2547 action->handler = handler; 2548 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2549 | IRQF_NOBALANCING; 2550 action->name = name; 2551 action->percpu_dev_id = dev_id; 2552 2553 retval = irq_chip_pm_get(&desc->irq_data); 2554 if (retval < 0) 2555 goto err_out; 2556 2557 retval = __setup_irq(irq, desc, action); 2558 if (retval) 2559 goto err_irq_setup; 2560 2561 raw_spin_lock_irqsave(&desc->lock, flags); 2562 desc->istate |= IRQS_NMI; 2563 raw_spin_unlock_irqrestore(&desc->lock, flags); 2564 2565 return 0; 2566 2567 err_irq_setup: 2568 irq_chip_pm_put(&desc->irq_data); 2569 err_out: 2570 kfree(action); 2571 2572 return retval; 2573 } 2574 2575 /** 2576 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2577 * @irq: Interrupt line to prepare for NMI delivery 2578 * 2579 * This call prepares an interrupt line to deliver NMI on the current CPU, 2580 * before that interrupt line gets enabled with enable_percpu_nmi(). 2581 * 2582 * As a CPU local operation, this should be called from non-preemptible 2583 * context. 2584 * 2585 * If the interrupt line cannot be used to deliver NMIs, function 2586 * will fail returning a negative value. 2587 */ 2588 int prepare_percpu_nmi(unsigned int irq) 2589 { 2590 unsigned long flags; 2591 struct irq_desc *desc; 2592 int ret = 0; 2593 2594 WARN_ON(preemptible()); 2595 2596 desc = irq_get_desc_lock(irq, &flags, 2597 IRQ_GET_DESC_CHECK_PERCPU); 2598 if (!desc) 2599 return -EINVAL; 2600 2601 if (WARN(!(desc->istate & IRQS_NMI), 2602 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2603 irq)) { 2604 ret = -EINVAL; 2605 goto out; 2606 } 2607 2608 ret = irq_nmi_setup(desc); 2609 if (ret) { 2610 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2611 goto out; 2612 } 2613 2614 out: 2615 irq_put_desc_unlock(desc, flags); 2616 return ret; 2617 } 2618 2619 /** 2620 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2621 * @irq: Interrupt line from which CPU local NMI configuration should be 2622 * removed 2623 * 2624 * This call undoes the setup done by prepare_percpu_nmi(). 2625 * 2626 * IRQ line should not be enabled for the current CPU. 2627 * 2628 * As a CPU local operation, this should be called from non-preemptible 2629 * context. 2630 */ 2631 void teardown_percpu_nmi(unsigned int irq) 2632 { 2633 unsigned long flags; 2634 struct irq_desc *desc; 2635 2636 WARN_ON(preemptible()); 2637 2638 desc = irq_get_desc_lock(irq, &flags, 2639 IRQ_GET_DESC_CHECK_PERCPU); 2640 if (!desc) 2641 return; 2642 2643 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2644 goto out; 2645 2646 irq_nmi_teardown(desc); 2647 out: 2648 irq_put_desc_unlock(desc, flags); 2649 } 2650 2651 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2652 bool *state) 2653 { 2654 struct irq_chip *chip; 2655 int err = -EINVAL; 2656 2657 do { 2658 chip = irq_data_get_irq_chip(data); 2659 if (WARN_ON_ONCE(!chip)) 2660 return -ENODEV; 2661 if (chip->irq_get_irqchip_state) 2662 break; 2663 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2664 data = data->parent_data; 2665 #else 2666 data = NULL; 2667 #endif 2668 } while (data); 2669 2670 if (data) 2671 err = chip->irq_get_irqchip_state(data, which, state); 2672 return err; 2673 } 2674 2675 /** 2676 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2677 * @irq: Interrupt line that is forwarded to a VM 2678 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2679 * @state: a pointer to a boolean where the state is to be storeed 2680 * 2681 * This call snapshots the internal irqchip state of an 2682 * interrupt, returning into @state the bit corresponding to 2683 * stage @which 2684 * 2685 * This function should be called with preemption disabled if the 2686 * interrupt controller has per-cpu registers. 2687 */ 2688 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2689 bool *state) 2690 { 2691 struct irq_desc *desc; 2692 struct irq_data *data; 2693 unsigned long flags; 2694 int err = -EINVAL; 2695 2696 desc = irq_get_desc_buslock(irq, &flags, 0); 2697 if (!desc) 2698 return err; 2699 2700 data = irq_desc_get_irq_data(desc); 2701 2702 err = __irq_get_irqchip_state(data, which, state); 2703 2704 irq_put_desc_busunlock(desc, flags); 2705 return err; 2706 } 2707 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2708 2709 /** 2710 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2711 * @irq: Interrupt line that is forwarded to a VM 2712 * @which: State to be restored (one of IRQCHIP_STATE_*) 2713 * @val: Value corresponding to @which 2714 * 2715 * This call sets the internal irqchip state of an interrupt, 2716 * depending on the value of @which. 2717 * 2718 * This function should be called with preemption disabled if the 2719 * interrupt controller has per-cpu registers. 2720 */ 2721 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2722 bool val) 2723 { 2724 struct irq_desc *desc; 2725 struct irq_data *data; 2726 struct irq_chip *chip; 2727 unsigned long flags; 2728 int err = -EINVAL; 2729 2730 desc = irq_get_desc_buslock(irq, &flags, 0); 2731 if (!desc) 2732 return err; 2733 2734 data = irq_desc_get_irq_data(desc); 2735 2736 do { 2737 chip = irq_data_get_irq_chip(data); 2738 if (WARN_ON_ONCE(!chip)) 2739 return -ENODEV; 2740 if (chip->irq_set_irqchip_state) 2741 break; 2742 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2743 data = data->parent_data; 2744 #else 2745 data = NULL; 2746 #endif 2747 } while (data); 2748 2749 if (data) 2750 err = chip->irq_set_irqchip_state(data, which, val); 2751 2752 irq_put_desc_busunlock(desc, flags); 2753 return err; 2754 } 2755 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2756