1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/sched/rt.h> 19 #include <linux/sched/task.h> 20 #include <uapi/linux/sched/types.h> 21 #include <linux/task_work.h> 22 23 #include "internals.h" 24 25 #ifdef CONFIG_IRQ_FORCED_THREADING 26 __read_mostly bool force_irqthreads; 27 EXPORT_SYMBOL_GPL(force_irqthreads); 28 29 static int __init setup_forced_irqthreads(char *arg) 30 { 31 force_irqthreads = true; 32 return 0; 33 } 34 early_param("threadirqs", setup_forced_irqthreads); 35 #endif 36 37 static void __synchronize_hardirq(struct irq_desc *desc) 38 { 39 bool inprogress; 40 41 do { 42 unsigned long flags; 43 44 /* 45 * Wait until we're out of the critical section. This might 46 * give the wrong answer due to the lack of memory barriers. 47 */ 48 while (irqd_irq_inprogress(&desc->irq_data)) 49 cpu_relax(); 50 51 /* Ok, that indicated we're done: double-check carefully. */ 52 raw_spin_lock_irqsave(&desc->lock, flags); 53 inprogress = irqd_irq_inprogress(&desc->irq_data); 54 raw_spin_unlock_irqrestore(&desc->lock, flags); 55 56 /* Oops, that failed? */ 57 } while (inprogress); 58 } 59 60 /** 61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 62 * @irq: interrupt number to wait for 63 * 64 * This function waits for any pending hard IRQ handlers for this 65 * interrupt to complete before returning. If you use this 66 * function while holding a resource the IRQ handler may need you 67 * will deadlock. It does not take associated threaded handlers 68 * into account. 69 * 70 * Do not use this for shutdown scenarios where you must be sure 71 * that all parts (hardirq and threaded handler) have completed. 72 * 73 * Returns: false if a threaded handler is active. 74 * 75 * This function may be called - with care - from IRQ context. 76 */ 77 bool synchronize_hardirq(unsigned int irq) 78 { 79 struct irq_desc *desc = irq_to_desc(irq); 80 81 if (desc) { 82 __synchronize_hardirq(desc); 83 return !atomic_read(&desc->threads_active); 84 } 85 86 return true; 87 } 88 EXPORT_SYMBOL(synchronize_hardirq); 89 90 /** 91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 92 * @irq: interrupt number to wait for 93 * 94 * This function waits for any pending IRQ handlers for this interrupt 95 * to complete before returning. If you use this function while 96 * holding a resource the IRQ handler may need you will deadlock. 97 * 98 * This function may be called - with care - from IRQ context. 99 */ 100 void synchronize_irq(unsigned int irq) 101 { 102 struct irq_desc *desc = irq_to_desc(irq); 103 104 if (desc) { 105 __synchronize_hardirq(desc); 106 /* 107 * We made sure that no hardirq handler is 108 * running. Now verify that no threaded handlers are 109 * active. 110 */ 111 wait_event(desc->wait_for_threads, 112 !atomic_read(&desc->threads_active)); 113 } 114 } 115 EXPORT_SYMBOL(synchronize_irq); 116 117 #ifdef CONFIG_SMP 118 cpumask_var_t irq_default_affinity; 119 120 static bool __irq_can_set_affinity(struct irq_desc *desc) 121 { 122 if (!desc || !irqd_can_balance(&desc->irq_data) || 123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 124 return false; 125 return true; 126 } 127 128 /** 129 * irq_can_set_affinity - Check if the affinity of a given irq can be set 130 * @irq: Interrupt to check 131 * 132 */ 133 int irq_can_set_affinity(unsigned int irq) 134 { 135 return __irq_can_set_affinity(irq_to_desc(irq)); 136 } 137 138 /** 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 140 * @irq: Interrupt to check 141 * 142 * Like irq_can_set_affinity() above, but additionally checks for the 143 * AFFINITY_MANAGED flag. 144 */ 145 bool irq_can_set_affinity_usr(unsigned int irq) 146 { 147 struct irq_desc *desc = irq_to_desc(irq); 148 149 return __irq_can_set_affinity(desc) && 150 !irqd_affinity_is_managed(&desc->irq_data); 151 } 152 153 /** 154 * irq_set_thread_affinity - Notify irq threads to adjust affinity 155 * @desc: irq descriptor which has affitnity changed 156 * 157 * We just set IRQTF_AFFINITY and delegate the affinity setting 158 * to the interrupt thread itself. We can not call 159 * set_cpus_allowed_ptr() here as we hold desc->lock and this 160 * code can be called from hard interrupt context. 161 */ 162 void irq_set_thread_affinity(struct irq_desc *desc) 163 { 164 struct irqaction *action; 165 166 for_each_action_of_desc(desc, action) 167 if (action->thread) 168 set_bit(IRQTF_AFFINITY, &action->thread_flags); 169 } 170 171 static void irq_validate_effective_affinity(struct irq_data *data) 172 { 173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 175 struct irq_chip *chip = irq_data_get_irq_chip(data); 176 177 if (!cpumask_empty(m)) 178 return; 179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 180 chip->name, data->irq); 181 #endif 182 } 183 184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 185 bool force) 186 { 187 struct irq_desc *desc = irq_data_to_desc(data); 188 struct irq_chip *chip = irq_data_get_irq_chip(data); 189 int ret; 190 191 if (!chip || !chip->irq_set_affinity) 192 return -EINVAL; 193 194 ret = chip->irq_set_affinity(data, mask, force); 195 switch (ret) { 196 case IRQ_SET_MASK_OK: 197 case IRQ_SET_MASK_OK_DONE: 198 cpumask_copy(desc->irq_common_data.affinity, mask); 199 case IRQ_SET_MASK_OK_NOCOPY: 200 irq_validate_effective_affinity(data); 201 irq_set_thread_affinity(desc); 202 ret = 0; 203 } 204 205 return ret; 206 } 207 208 #ifdef CONFIG_GENERIC_PENDING_IRQ 209 static inline int irq_set_affinity_pending(struct irq_data *data, 210 const struct cpumask *dest) 211 { 212 struct irq_desc *desc = irq_data_to_desc(data); 213 214 irqd_set_move_pending(data); 215 irq_copy_pending(desc, dest); 216 return 0; 217 } 218 #else 219 static inline int irq_set_affinity_pending(struct irq_data *data, 220 const struct cpumask *dest) 221 { 222 return -EBUSY; 223 } 224 #endif 225 226 static int irq_try_set_affinity(struct irq_data *data, 227 const struct cpumask *dest, bool force) 228 { 229 int ret = irq_do_set_affinity(data, dest, force); 230 231 /* 232 * In case that the underlying vector management is busy and the 233 * architecture supports the generic pending mechanism then utilize 234 * this to avoid returning an error to user space. 235 */ 236 if (ret == -EBUSY && !force) 237 ret = irq_set_affinity_pending(data, dest); 238 return ret; 239 } 240 241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 242 bool force) 243 { 244 struct irq_chip *chip = irq_data_get_irq_chip(data); 245 struct irq_desc *desc = irq_data_to_desc(data); 246 int ret = 0; 247 248 if (!chip || !chip->irq_set_affinity) 249 return -EINVAL; 250 251 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 252 ret = irq_try_set_affinity(data, mask, force); 253 } else { 254 irqd_set_move_pending(data); 255 irq_copy_pending(desc, mask); 256 } 257 258 if (desc->affinity_notify) { 259 kref_get(&desc->affinity_notify->kref); 260 schedule_work(&desc->affinity_notify->work); 261 } 262 irqd_set(data, IRQD_AFFINITY_SET); 263 264 return ret; 265 } 266 267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 268 { 269 struct irq_desc *desc = irq_to_desc(irq); 270 unsigned long flags; 271 int ret; 272 273 if (!desc) 274 return -EINVAL; 275 276 raw_spin_lock_irqsave(&desc->lock, flags); 277 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 278 raw_spin_unlock_irqrestore(&desc->lock, flags); 279 return ret; 280 } 281 282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 283 { 284 unsigned long flags; 285 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 286 287 if (!desc) 288 return -EINVAL; 289 desc->affinity_hint = m; 290 irq_put_desc_unlock(desc, flags); 291 /* set the initial affinity to prevent every interrupt being on CPU0 */ 292 if (m) 293 __irq_set_affinity(irq, m, false); 294 return 0; 295 } 296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 297 298 static void irq_affinity_notify(struct work_struct *work) 299 { 300 struct irq_affinity_notify *notify = 301 container_of(work, struct irq_affinity_notify, work); 302 struct irq_desc *desc = irq_to_desc(notify->irq); 303 cpumask_var_t cpumask; 304 unsigned long flags; 305 306 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 307 goto out; 308 309 raw_spin_lock_irqsave(&desc->lock, flags); 310 if (irq_move_pending(&desc->irq_data)) 311 irq_get_pending(cpumask, desc); 312 else 313 cpumask_copy(cpumask, desc->irq_common_data.affinity); 314 raw_spin_unlock_irqrestore(&desc->lock, flags); 315 316 notify->notify(notify, cpumask); 317 318 free_cpumask_var(cpumask); 319 out: 320 kref_put(¬ify->kref, notify->release); 321 } 322 323 /** 324 * irq_set_affinity_notifier - control notification of IRQ affinity changes 325 * @irq: Interrupt for which to enable/disable notification 326 * @notify: Context for notification, or %NULL to disable 327 * notification. Function pointers must be initialised; 328 * the other fields will be initialised by this function. 329 * 330 * Must be called in process context. Notification may only be enabled 331 * after the IRQ is allocated and must be disabled before the IRQ is 332 * freed using free_irq(). 333 */ 334 int 335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 336 { 337 struct irq_desc *desc = irq_to_desc(irq); 338 struct irq_affinity_notify *old_notify; 339 unsigned long flags; 340 341 /* The release function is promised process context */ 342 might_sleep(); 343 344 if (!desc) 345 return -EINVAL; 346 347 /* Complete initialisation of *notify */ 348 if (notify) { 349 notify->irq = irq; 350 kref_init(¬ify->kref); 351 INIT_WORK(¬ify->work, irq_affinity_notify); 352 } 353 354 raw_spin_lock_irqsave(&desc->lock, flags); 355 old_notify = desc->affinity_notify; 356 desc->affinity_notify = notify; 357 raw_spin_unlock_irqrestore(&desc->lock, flags); 358 359 if (old_notify) 360 kref_put(&old_notify->kref, old_notify->release); 361 362 return 0; 363 } 364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 365 366 #ifndef CONFIG_AUTO_IRQ_AFFINITY 367 /* 368 * Generic version of the affinity autoselector. 369 */ 370 int irq_setup_affinity(struct irq_desc *desc) 371 { 372 struct cpumask *set = irq_default_affinity; 373 int ret, node = irq_desc_get_node(desc); 374 static DEFINE_RAW_SPINLOCK(mask_lock); 375 static struct cpumask mask; 376 377 /* Excludes PER_CPU and NO_BALANCE interrupts */ 378 if (!__irq_can_set_affinity(desc)) 379 return 0; 380 381 raw_spin_lock(&mask_lock); 382 /* 383 * Preserve the managed affinity setting and a userspace affinity 384 * setup, but make sure that one of the targets is online. 385 */ 386 if (irqd_affinity_is_managed(&desc->irq_data) || 387 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 388 if (cpumask_intersects(desc->irq_common_data.affinity, 389 cpu_online_mask)) 390 set = desc->irq_common_data.affinity; 391 else 392 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 393 } 394 395 cpumask_and(&mask, cpu_online_mask, set); 396 if (cpumask_empty(&mask)) 397 cpumask_copy(&mask, cpu_online_mask); 398 399 if (node != NUMA_NO_NODE) { 400 const struct cpumask *nodemask = cpumask_of_node(node); 401 402 /* make sure at least one of the cpus in nodemask is online */ 403 if (cpumask_intersects(&mask, nodemask)) 404 cpumask_and(&mask, &mask, nodemask); 405 } 406 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 407 raw_spin_unlock(&mask_lock); 408 return ret; 409 } 410 #else 411 /* Wrapper for ALPHA specific affinity selector magic */ 412 int irq_setup_affinity(struct irq_desc *desc) 413 { 414 return irq_select_affinity(irq_desc_get_irq(desc)); 415 } 416 #endif 417 418 /* 419 * Called when a bogus affinity is set via /proc/irq 420 */ 421 int irq_select_affinity_usr(unsigned int irq) 422 { 423 struct irq_desc *desc = irq_to_desc(irq); 424 unsigned long flags; 425 int ret; 426 427 raw_spin_lock_irqsave(&desc->lock, flags); 428 ret = irq_setup_affinity(desc); 429 raw_spin_unlock_irqrestore(&desc->lock, flags); 430 return ret; 431 } 432 #endif 433 434 /** 435 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 436 * @irq: interrupt number to set affinity 437 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 438 * specific data for percpu_devid interrupts 439 * 440 * This function uses the vCPU specific data to set the vCPU 441 * affinity for an irq. The vCPU specific data is passed from 442 * outside, such as KVM. One example code path is as below: 443 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 444 */ 445 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 446 { 447 unsigned long flags; 448 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 449 struct irq_data *data; 450 struct irq_chip *chip; 451 int ret = -ENOSYS; 452 453 if (!desc) 454 return -EINVAL; 455 456 data = irq_desc_get_irq_data(desc); 457 do { 458 chip = irq_data_get_irq_chip(data); 459 if (chip && chip->irq_set_vcpu_affinity) 460 break; 461 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 462 data = data->parent_data; 463 #else 464 data = NULL; 465 #endif 466 } while (data); 467 468 if (data) 469 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 470 irq_put_desc_unlock(desc, flags); 471 472 return ret; 473 } 474 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 475 476 void __disable_irq(struct irq_desc *desc) 477 { 478 if (!desc->depth++) 479 irq_disable(desc); 480 } 481 482 static int __disable_irq_nosync(unsigned int irq) 483 { 484 unsigned long flags; 485 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 486 487 if (!desc) 488 return -EINVAL; 489 __disable_irq(desc); 490 irq_put_desc_busunlock(desc, flags); 491 return 0; 492 } 493 494 /** 495 * disable_irq_nosync - disable an irq without waiting 496 * @irq: Interrupt to disable 497 * 498 * Disable the selected interrupt line. Disables and Enables are 499 * nested. 500 * Unlike disable_irq(), this function does not ensure existing 501 * instances of the IRQ handler have completed before returning. 502 * 503 * This function may be called from IRQ context. 504 */ 505 void disable_irq_nosync(unsigned int irq) 506 { 507 __disable_irq_nosync(irq); 508 } 509 EXPORT_SYMBOL(disable_irq_nosync); 510 511 /** 512 * disable_irq - disable an irq and wait for completion 513 * @irq: Interrupt to disable 514 * 515 * Disable the selected interrupt line. Enables and Disables are 516 * nested. 517 * This function waits for any pending IRQ handlers for this interrupt 518 * to complete before returning. If you use this function while 519 * holding a resource the IRQ handler may need you will deadlock. 520 * 521 * This function may be called - with care - from IRQ context. 522 */ 523 void disable_irq(unsigned int irq) 524 { 525 if (!__disable_irq_nosync(irq)) 526 synchronize_irq(irq); 527 } 528 EXPORT_SYMBOL(disable_irq); 529 530 /** 531 * disable_hardirq - disables an irq and waits for hardirq completion 532 * @irq: Interrupt to disable 533 * 534 * Disable the selected interrupt line. Enables and Disables are 535 * nested. 536 * This function waits for any pending hard IRQ handlers for this 537 * interrupt to complete before returning. If you use this function while 538 * holding a resource the hard IRQ handler may need you will deadlock. 539 * 540 * When used to optimistically disable an interrupt from atomic context 541 * the return value must be checked. 542 * 543 * Returns: false if a threaded handler is active. 544 * 545 * This function may be called - with care - from IRQ context. 546 */ 547 bool disable_hardirq(unsigned int irq) 548 { 549 if (!__disable_irq_nosync(irq)) 550 return synchronize_hardirq(irq); 551 552 return false; 553 } 554 EXPORT_SYMBOL_GPL(disable_hardirq); 555 556 void __enable_irq(struct irq_desc *desc) 557 { 558 switch (desc->depth) { 559 case 0: 560 err_out: 561 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 562 irq_desc_get_irq(desc)); 563 break; 564 case 1: { 565 if (desc->istate & IRQS_SUSPENDED) 566 goto err_out; 567 /* Prevent probing on this irq: */ 568 irq_settings_set_noprobe(desc); 569 /* 570 * Call irq_startup() not irq_enable() here because the 571 * interrupt might be marked NOAUTOEN. So irq_startup() 572 * needs to be invoked when it gets enabled the first 573 * time. If it was already started up, then irq_startup() 574 * will invoke irq_enable() under the hood. 575 */ 576 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 577 break; 578 } 579 default: 580 desc->depth--; 581 } 582 } 583 584 /** 585 * enable_irq - enable handling of an irq 586 * @irq: Interrupt to enable 587 * 588 * Undoes the effect of one call to disable_irq(). If this 589 * matches the last disable, processing of interrupts on this 590 * IRQ line is re-enabled. 591 * 592 * This function may be called from IRQ context only when 593 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 594 */ 595 void enable_irq(unsigned int irq) 596 { 597 unsigned long flags; 598 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 599 600 if (!desc) 601 return; 602 if (WARN(!desc->irq_data.chip, 603 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 604 goto out; 605 606 __enable_irq(desc); 607 out: 608 irq_put_desc_busunlock(desc, flags); 609 } 610 EXPORT_SYMBOL(enable_irq); 611 612 static int set_irq_wake_real(unsigned int irq, unsigned int on) 613 { 614 struct irq_desc *desc = irq_to_desc(irq); 615 int ret = -ENXIO; 616 617 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 618 return 0; 619 620 if (desc->irq_data.chip->irq_set_wake) 621 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 622 623 return ret; 624 } 625 626 /** 627 * irq_set_irq_wake - control irq power management wakeup 628 * @irq: interrupt to control 629 * @on: enable/disable power management wakeup 630 * 631 * Enable/disable power management wakeup mode, which is 632 * disabled by default. Enables and disables must match, 633 * just as they match for non-wakeup mode support. 634 * 635 * Wakeup mode lets this IRQ wake the system from sleep 636 * states like "suspend to RAM". 637 */ 638 int irq_set_irq_wake(unsigned int irq, unsigned int on) 639 { 640 unsigned long flags; 641 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 642 int ret = 0; 643 644 if (!desc) 645 return -EINVAL; 646 647 /* wakeup-capable irqs can be shared between drivers that 648 * don't need to have the same sleep mode behaviors. 649 */ 650 if (on) { 651 if (desc->wake_depth++ == 0) { 652 ret = set_irq_wake_real(irq, on); 653 if (ret) 654 desc->wake_depth = 0; 655 else 656 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 657 } 658 } else { 659 if (desc->wake_depth == 0) { 660 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 661 } else if (--desc->wake_depth == 0) { 662 ret = set_irq_wake_real(irq, on); 663 if (ret) 664 desc->wake_depth = 1; 665 else 666 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 667 } 668 } 669 irq_put_desc_busunlock(desc, flags); 670 return ret; 671 } 672 EXPORT_SYMBOL(irq_set_irq_wake); 673 674 /* 675 * Internal function that tells the architecture code whether a 676 * particular irq has been exclusively allocated or is available 677 * for driver use. 678 */ 679 int can_request_irq(unsigned int irq, unsigned long irqflags) 680 { 681 unsigned long flags; 682 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 683 int canrequest = 0; 684 685 if (!desc) 686 return 0; 687 688 if (irq_settings_can_request(desc)) { 689 if (!desc->action || 690 irqflags & desc->action->flags & IRQF_SHARED) 691 canrequest = 1; 692 } 693 irq_put_desc_unlock(desc, flags); 694 return canrequest; 695 } 696 697 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 698 { 699 struct irq_chip *chip = desc->irq_data.chip; 700 int ret, unmask = 0; 701 702 if (!chip || !chip->irq_set_type) { 703 /* 704 * IRQF_TRIGGER_* but the PIC does not support multiple 705 * flow-types? 706 */ 707 pr_debug("No set_type function for IRQ %d (%s)\n", 708 irq_desc_get_irq(desc), 709 chip ? (chip->name ? : "unknown") : "unknown"); 710 return 0; 711 } 712 713 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 714 if (!irqd_irq_masked(&desc->irq_data)) 715 mask_irq(desc); 716 if (!irqd_irq_disabled(&desc->irq_data)) 717 unmask = 1; 718 } 719 720 /* Mask all flags except trigger mode */ 721 flags &= IRQ_TYPE_SENSE_MASK; 722 ret = chip->irq_set_type(&desc->irq_data, flags); 723 724 switch (ret) { 725 case IRQ_SET_MASK_OK: 726 case IRQ_SET_MASK_OK_DONE: 727 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 728 irqd_set(&desc->irq_data, flags); 729 730 case IRQ_SET_MASK_OK_NOCOPY: 731 flags = irqd_get_trigger_type(&desc->irq_data); 732 irq_settings_set_trigger_mask(desc, flags); 733 irqd_clear(&desc->irq_data, IRQD_LEVEL); 734 irq_settings_clr_level(desc); 735 if (flags & IRQ_TYPE_LEVEL_MASK) { 736 irq_settings_set_level(desc); 737 irqd_set(&desc->irq_data, IRQD_LEVEL); 738 } 739 740 ret = 0; 741 break; 742 default: 743 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n", 744 flags, irq_desc_get_irq(desc), chip->irq_set_type); 745 } 746 if (unmask) 747 unmask_irq(desc); 748 return ret; 749 } 750 751 #ifdef CONFIG_HARDIRQS_SW_RESEND 752 int irq_set_parent(int irq, int parent_irq) 753 { 754 unsigned long flags; 755 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 756 757 if (!desc) 758 return -EINVAL; 759 760 desc->parent_irq = parent_irq; 761 762 irq_put_desc_unlock(desc, flags); 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(irq_set_parent); 766 #endif 767 768 /* 769 * Default primary interrupt handler for threaded interrupts. Is 770 * assigned as primary handler when request_threaded_irq is called 771 * with handler == NULL. Useful for oneshot interrupts. 772 */ 773 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 774 { 775 return IRQ_WAKE_THREAD; 776 } 777 778 /* 779 * Primary handler for nested threaded interrupts. Should never be 780 * called. 781 */ 782 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 783 { 784 WARN(1, "Primary handler called for nested irq %d\n", irq); 785 return IRQ_NONE; 786 } 787 788 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 789 { 790 WARN(1, "Secondary action handler called for irq %d\n", irq); 791 return IRQ_NONE; 792 } 793 794 static int irq_wait_for_interrupt(struct irqaction *action) 795 { 796 for (;;) { 797 set_current_state(TASK_INTERRUPTIBLE); 798 799 if (kthread_should_stop()) { 800 /* may need to run one last time */ 801 if (test_and_clear_bit(IRQTF_RUNTHREAD, 802 &action->thread_flags)) { 803 __set_current_state(TASK_RUNNING); 804 return 0; 805 } 806 __set_current_state(TASK_RUNNING); 807 return -1; 808 } 809 810 if (test_and_clear_bit(IRQTF_RUNTHREAD, 811 &action->thread_flags)) { 812 __set_current_state(TASK_RUNNING); 813 return 0; 814 } 815 schedule(); 816 } 817 } 818 819 /* 820 * Oneshot interrupts keep the irq line masked until the threaded 821 * handler finished. unmask if the interrupt has not been disabled and 822 * is marked MASKED. 823 */ 824 static void irq_finalize_oneshot(struct irq_desc *desc, 825 struct irqaction *action) 826 { 827 if (!(desc->istate & IRQS_ONESHOT) || 828 action->handler == irq_forced_secondary_handler) 829 return; 830 again: 831 chip_bus_lock(desc); 832 raw_spin_lock_irq(&desc->lock); 833 834 /* 835 * Implausible though it may be we need to protect us against 836 * the following scenario: 837 * 838 * The thread is faster done than the hard interrupt handler 839 * on the other CPU. If we unmask the irq line then the 840 * interrupt can come in again and masks the line, leaves due 841 * to IRQS_INPROGRESS and the irq line is masked forever. 842 * 843 * This also serializes the state of shared oneshot handlers 844 * versus "desc->threads_onehsot |= action->thread_mask;" in 845 * irq_wake_thread(). See the comment there which explains the 846 * serialization. 847 */ 848 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 849 raw_spin_unlock_irq(&desc->lock); 850 chip_bus_sync_unlock(desc); 851 cpu_relax(); 852 goto again; 853 } 854 855 /* 856 * Now check again, whether the thread should run. Otherwise 857 * we would clear the threads_oneshot bit of this thread which 858 * was just set. 859 */ 860 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 861 goto out_unlock; 862 863 desc->threads_oneshot &= ~action->thread_mask; 864 865 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 866 irqd_irq_masked(&desc->irq_data)) 867 unmask_threaded_irq(desc); 868 869 out_unlock: 870 raw_spin_unlock_irq(&desc->lock); 871 chip_bus_sync_unlock(desc); 872 } 873 874 #ifdef CONFIG_SMP 875 /* 876 * Check whether we need to change the affinity of the interrupt thread. 877 */ 878 static void 879 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 880 { 881 cpumask_var_t mask; 882 bool valid = true; 883 884 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 885 return; 886 887 /* 888 * In case we are out of memory we set IRQTF_AFFINITY again and 889 * try again next time 890 */ 891 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 892 set_bit(IRQTF_AFFINITY, &action->thread_flags); 893 return; 894 } 895 896 raw_spin_lock_irq(&desc->lock); 897 /* 898 * This code is triggered unconditionally. Check the affinity 899 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 900 */ 901 if (cpumask_available(desc->irq_common_data.affinity)) { 902 const struct cpumask *m; 903 904 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 905 cpumask_copy(mask, m); 906 } else { 907 valid = false; 908 } 909 raw_spin_unlock_irq(&desc->lock); 910 911 if (valid) 912 set_cpus_allowed_ptr(current, mask); 913 free_cpumask_var(mask); 914 } 915 #else 916 static inline void 917 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 918 #endif 919 920 /* 921 * Interrupts which are not explicitly requested as threaded 922 * interrupts rely on the implicit bh/preempt disable of the hard irq 923 * context. So we need to disable bh here to avoid deadlocks and other 924 * side effects. 925 */ 926 static irqreturn_t 927 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 928 { 929 irqreturn_t ret; 930 931 local_bh_disable(); 932 ret = action->thread_fn(action->irq, action->dev_id); 933 if (ret == IRQ_HANDLED) 934 atomic_inc(&desc->threads_handled); 935 936 irq_finalize_oneshot(desc, action); 937 local_bh_enable(); 938 return ret; 939 } 940 941 /* 942 * Interrupts explicitly requested as threaded interrupts want to be 943 * preemtible - many of them need to sleep and wait for slow busses to 944 * complete. 945 */ 946 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 947 struct irqaction *action) 948 { 949 irqreturn_t ret; 950 951 ret = action->thread_fn(action->irq, action->dev_id); 952 if (ret == IRQ_HANDLED) 953 atomic_inc(&desc->threads_handled); 954 955 irq_finalize_oneshot(desc, action); 956 return ret; 957 } 958 959 static void wake_threads_waitq(struct irq_desc *desc) 960 { 961 if (atomic_dec_and_test(&desc->threads_active)) 962 wake_up(&desc->wait_for_threads); 963 } 964 965 static void irq_thread_dtor(struct callback_head *unused) 966 { 967 struct task_struct *tsk = current; 968 struct irq_desc *desc; 969 struct irqaction *action; 970 971 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 972 return; 973 974 action = kthread_data(tsk); 975 976 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 977 tsk->comm, tsk->pid, action->irq); 978 979 980 desc = irq_to_desc(action->irq); 981 /* 982 * If IRQTF_RUNTHREAD is set, we need to decrement 983 * desc->threads_active and wake possible waiters. 984 */ 985 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 986 wake_threads_waitq(desc); 987 988 /* Prevent a stale desc->threads_oneshot */ 989 irq_finalize_oneshot(desc, action); 990 } 991 992 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 993 { 994 struct irqaction *secondary = action->secondary; 995 996 if (WARN_ON_ONCE(!secondary)) 997 return; 998 999 raw_spin_lock_irq(&desc->lock); 1000 __irq_wake_thread(desc, secondary); 1001 raw_spin_unlock_irq(&desc->lock); 1002 } 1003 1004 /* 1005 * Interrupt handler thread 1006 */ 1007 static int irq_thread(void *data) 1008 { 1009 struct callback_head on_exit_work; 1010 struct irqaction *action = data; 1011 struct irq_desc *desc = irq_to_desc(action->irq); 1012 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1013 struct irqaction *action); 1014 1015 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1016 &action->thread_flags)) 1017 handler_fn = irq_forced_thread_fn; 1018 else 1019 handler_fn = irq_thread_fn; 1020 1021 init_task_work(&on_exit_work, irq_thread_dtor); 1022 task_work_add(current, &on_exit_work, false); 1023 1024 irq_thread_check_affinity(desc, action); 1025 1026 while (!irq_wait_for_interrupt(action)) { 1027 irqreturn_t action_ret; 1028 1029 irq_thread_check_affinity(desc, action); 1030 1031 action_ret = handler_fn(desc, action); 1032 if (action_ret == IRQ_WAKE_THREAD) 1033 irq_wake_secondary(desc, action); 1034 1035 wake_threads_waitq(desc); 1036 } 1037 1038 /* 1039 * This is the regular exit path. __free_irq() is stopping the 1040 * thread via kthread_stop() after calling 1041 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1042 * oneshot mask bit can be set. 1043 */ 1044 task_work_cancel(current, irq_thread_dtor); 1045 return 0; 1046 } 1047 1048 /** 1049 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1050 * @irq: Interrupt line 1051 * @dev_id: Device identity for which the thread should be woken 1052 * 1053 */ 1054 void irq_wake_thread(unsigned int irq, void *dev_id) 1055 { 1056 struct irq_desc *desc = irq_to_desc(irq); 1057 struct irqaction *action; 1058 unsigned long flags; 1059 1060 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1061 return; 1062 1063 raw_spin_lock_irqsave(&desc->lock, flags); 1064 for_each_action_of_desc(desc, action) { 1065 if (action->dev_id == dev_id) { 1066 if (action->thread) 1067 __irq_wake_thread(desc, action); 1068 break; 1069 } 1070 } 1071 raw_spin_unlock_irqrestore(&desc->lock, flags); 1072 } 1073 EXPORT_SYMBOL_GPL(irq_wake_thread); 1074 1075 static int irq_setup_forced_threading(struct irqaction *new) 1076 { 1077 if (!force_irqthreads) 1078 return 0; 1079 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1080 return 0; 1081 1082 /* 1083 * No further action required for interrupts which are requested as 1084 * threaded interrupts already 1085 */ 1086 if (new->handler == irq_default_primary_handler) 1087 return 0; 1088 1089 new->flags |= IRQF_ONESHOT; 1090 1091 /* 1092 * Handle the case where we have a real primary handler and a 1093 * thread handler. We force thread them as well by creating a 1094 * secondary action. 1095 */ 1096 if (new->handler && new->thread_fn) { 1097 /* Allocate the secondary action */ 1098 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1099 if (!new->secondary) 1100 return -ENOMEM; 1101 new->secondary->handler = irq_forced_secondary_handler; 1102 new->secondary->thread_fn = new->thread_fn; 1103 new->secondary->dev_id = new->dev_id; 1104 new->secondary->irq = new->irq; 1105 new->secondary->name = new->name; 1106 } 1107 /* Deal with the primary handler */ 1108 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1109 new->thread_fn = new->handler; 1110 new->handler = irq_default_primary_handler; 1111 return 0; 1112 } 1113 1114 static int irq_request_resources(struct irq_desc *desc) 1115 { 1116 struct irq_data *d = &desc->irq_data; 1117 struct irq_chip *c = d->chip; 1118 1119 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1120 } 1121 1122 static void irq_release_resources(struct irq_desc *desc) 1123 { 1124 struct irq_data *d = &desc->irq_data; 1125 struct irq_chip *c = d->chip; 1126 1127 if (c->irq_release_resources) 1128 c->irq_release_resources(d); 1129 } 1130 1131 static int 1132 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1133 { 1134 struct task_struct *t; 1135 struct sched_param param = { 1136 .sched_priority = MAX_USER_RT_PRIO/2, 1137 }; 1138 1139 if (!secondary) { 1140 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1141 new->name); 1142 } else { 1143 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1144 new->name); 1145 param.sched_priority -= 1; 1146 } 1147 1148 if (IS_ERR(t)) 1149 return PTR_ERR(t); 1150 1151 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1152 1153 /* 1154 * We keep the reference to the task struct even if 1155 * the thread dies to avoid that the interrupt code 1156 * references an already freed task_struct. 1157 */ 1158 get_task_struct(t); 1159 new->thread = t; 1160 /* 1161 * Tell the thread to set its affinity. This is 1162 * important for shared interrupt handlers as we do 1163 * not invoke setup_affinity() for the secondary 1164 * handlers as everything is already set up. Even for 1165 * interrupts marked with IRQF_NO_BALANCE this is 1166 * correct as we want the thread to move to the cpu(s) 1167 * on which the requesting code placed the interrupt. 1168 */ 1169 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1170 return 0; 1171 } 1172 1173 /* 1174 * Internal function to register an irqaction - typically used to 1175 * allocate special interrupts that are part of the architecture. 1176 * 1177 * Locking rules: 1178 * 1179 * desc->request_mutex Provides serialization against a concurrent free_irq() 1180 * chip_bus_lock Provides serialization for slow bus operations 1181 * desc->lock Provides serialization against hard interrupts 1182 * 1183 * chip_bus_lock and desc->lock are sufficient for all other management and 1184 * interrupt related functions. desc->request_mutex solely serializes 1185 * request/free_irq(). 1186 */ 1187 static int 1188 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1189 { 1190 struct irqaction *old, **old_ptr; 1191 unsigned long flags, thread_mask = 0; 1192 int ret, nested, shared = 0; 1193 1194 if (!desc) 1195 return -EINVAL; 1196 1197 if (desc->irq_data.chip == &no_irq_chip) 1198 return -ENOSYS; 1199 if (!try_module_get(desc->owner)) 1200 return -ENODEV; 1201 1202 new->irq = irq; 1203 1204 /* 1205 * If the trigger type is not specified by the caller, 1206 * then use the default for this interrupt. 1207 */ 1208 if (!(new->flags & IRQF_TRIGGER_MASK)) 1209 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1210 1211 /* 1212 * Check whether the interrupt nests into another interrupt 1213 * thread. 1214 */ 1215 nested = irq_settings_is_nested_thread(desc); 1216 if (nested) { 1217 if (!new->thread_fn) { 1218 ret = -EINVAL; 1219 goto out_mput; 1220 } 1221 /* 1222 * Replace the primary handler which was provided from 1223 * the driver for non nested interrupt handling by the 1224 * dummy function which warns when called. 1225 */ 1226 new->handler = irq_nested_primary_handler; 1227 } else { 1228 if (irq_settings_can_thread(desc)) { 1229 ret = irq_setup_forced_threading(new); 1230 if (ret) 1231 goto out_mput; 1232 } 1233 } 1234 1235 /* 1236 * Create a handler thread when a thread function is supplied 1237 * and the interrupt does not nest into another interrupt 1238 * thread. 1239 */ 1240 if (new->thread_fn && !nested) { 1241 ret = setup_irq_thread(new, irq, false); 1242 if (ret) 1243 goto out_mput; 1244 if (new->secondary) { 1245 ret = setup_irq_thread(new->secondary, irq, true); 1246 if (ret) 1247 goto out_thread; 1248 } 1249 } 1250 1251 /* 1252 * Drivers are often written to work w/o knowledge about the 1253 * underlying irq chip implementation, so a request for a 1254 * threaded irq without a primary hard irq context handler 1255 * requires the ONESHOT flag to be set. Some irq chips like 1256 * MSI based interrupts are per se one shot safe. Check the 1257 * chip flags, so we can avoid the unmask dance at the end of 1258 * the threaded handler for those. 1259 */ 1260 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1261 new->flags &= ~IRQF_ONESHOT; 1262 1263 /* 1264 * Protects against a concurrent __free_irq() call which might wait 1265 * for synchronize_hardirq() to complete without holding the optional 1266 * chip bus lock and desc->lock. Also protects against handing out 1267 * a recycled oneshot thread_mask bit while it's still in use by 1268 * its previous owner. 1269 */ 1270 mutex_lock(&desc->request_mutex); 1271 1272 /* 1273 * Acquire bus lock as the irq_request_resources() callback below 1274 * might rely on the serialization or the magic power management 1275 * functions which are abusing the irq_bus_lock() callback, 1276 */ 1277 chip_bus_lock(desc); 1278 1279 /* First installed action requests resources. */ 1280 if (!desc->action) { 1281 ret = irq_request_resources(desc); 1282 if (ret) { 1283 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1284 new->name, irq, desc->irq_data.chip->name); 1285 goto out_bus_unlock; 1286 } 1287 } 1288 1289 /* 1290 * The following block of code has to be executed atomically 1291 * protected against a concurrent interrupt and any of the other 1292 * management calls which are not serialized via 1293 * desc->request_mutex or the optional bus lock. 1294 */ 1295 raw_spin_lock_irqsave(&desc->lock, flags); 1296 old_ptr = &desc->action; 1297 old = *old_ptr; 1298 if (old) { 1299 /* 1300 * Can't share interrupts unless both agree to and are 1301 * the same type (level, edge, polarity). So both flag 1302 * fields must have IRQF_SHARED set and the bits which 1303 * set the trigger type must match. Also all must 1304 * agree on ONESHOT. 1305 */ 1306 unsigned int oldtype; 1307 1308 /* 1309 * If nobody did set the configuration before, inherit 1310 * the one provided by the requester. 1311 */ 1312 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1313 oldtype = irqd_get_trigger_type(&desc->irq_data); 1314 } else { 1315 oldtype = new->flags & IRQF_TRIGGER_MASK; 1316 irqd_set_trigger_type(&desc->irq_data, oldtype); 1317 } 1318 1319 if (!((old->flags & new->flags) & IRQF_SHARED) || 1320 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1321 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1322 goto mismatch; 1323 1324 /* All handlers must agree on per-cpuness */ 1325 if ((old->flags & IRQF_PERCPU) != 1326 (new->flags & IRQF_PERCPU)) 1327 goto mismatch; 1328 1329 /* add new interrupt at end of irq queue */ 1330 do { 1331 /* 1332 * Or all existing action->thread_mask bits, 1333 * so we can find the next zero bit for this 1334 * new action. 1335 */ 1336 thread_mask |= old->thread_mask; 1337 old_ptr = &old->next; 1338 old = *old_ptr; 1339 } while (old); 1340 shared = 1; 1341 } 1342 1343 /* 1344 * Setup the thread mask for this irqaction for ONESHOT. For 1345 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1346 * conditional in irq_wake_thread(). 1347 */ 1348 if (new->flags & IRQF_ONESHOT) { 1349 /* 1350 * Unlikely to have 32 resp 64 irqs sharing one line, 1351 * but who knows. 1352 */ 1353 if (thread_mask == ~0UL) { 1354 ret = -EBUSY; 1355 goto out_unlock; 1356 } 1357 /* 1358 * The thread_mask for the action is or'ed to 1359 * desc->thread_active to indicate that the 1360 * IRQF_ONESHOT thread handler has been woken, but not 1361 * yet finished. The bit is cleared when a thread 1362 * completes. When all threads of a shared interrupt 1363 * line have completed desc->threads_active becomes 1364 * zero and the interrupt line is unmasked. See 1365 * handle.c:irq_wake_thread() for further information. 1366 * 1367 * If no thread is woken by primary (hard irq context) 1368 * interrupt handlers, then desc->threads_active is 1369 * also checked for zero to unmask the irq line in the 1370 * affected hard irq flow handlers 1371 * (handle_[fasteoi|level]_irq). 1372 * 1373 * The new action gets the first zero bit of 1374 * thread_mask assigned. See the loop above which or's 1375 * all existing action->thread_mask bits. 1376 */ 1377 new->thread_mask = 1UL << ffz(thread_mask); 1378 1379 } else if (new->handler == irq_default_primary_handler && 1380 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1381 /* 1382 * The interrupt was requested with handler = NULL, so 1383 * we use the default primary handler for it. But it 1384 * does not have the oneshot flag set. In combination 1385 * with level interrupts this is deadly, because the 1386 * default primary handler just wakes the thread, then 1387 * the irq lines is reenabled, but the device still 1388 * has the level irq asserted. Rinse and repeat.... 1389 * 1390 * While this works for edge type interrupts, we play 1391 * it safe and reject unconditionally because we can't 1392 * say for sure which type this interrupt really 1393 * has. The type flags are unreliable as the 1394 * underlying chip implementation can override them. 1395 */ 1396 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n", 1397 irq); 1398 ret = -EINVAL; 1399 goto out_unlock; 1400 } 1401 1402 if (!shared) { 1403 init_waitqueue_head(&desc->wait_for_threads); 1404 1405 /* Setup the type (level, edge polarity) if configured: */ 1406 if (new->flags & IRQF_TRIGGER_MASK) { 1407 ret = __irq_set_trigger(desc, 1408 new->flags & IRQF_TRIGGER_MASK); 1409 1410 if (ret) 1411 goto out_unlock; 1412 } 1413 1414 /* 1415 * Activate the interrupt. That activation must happen 1416 * independently of IRQ_NOAUTOEN. request_irq() can fail 1417 * and the callers are supposed to handle 1418 * that. enable_irq() of an interrupt requested with 1419 * IRQ_NOAUTOEN is not supposed to fail. The activation 1420 * keeps it in shutdown mode, it merily associates 1421 * resources if necessary and if that's not possible it 1422 * fails. Interrupts which are in managed shutdown mode 1423 * will simply ignore that activation request. 1424 */ 1425 ret = irq_activate(desc); 1426 if (ret) 1427 goto out_unlock; 1428 1429 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1430 IRQS_ONESHOT | IRQS_WAITING); 1431 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1432 1433 if (new->flags & IRQF_PERCPU) { 1434 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1435 irq_settings_set_per_cpu(desc); 1436 } 1437 1438 if (new->flags & IRQF_ONESHOT) 1439 desc->istate |= IRQS_ONESHOT; 1440 1441 /* Exclude IRQ from balancing if requested */ 1442 if (new->flags & IRQF_NOBALANCING) { 1443 irq_settings_set_no_balancing(desc); 1444 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1445 } 1446 1447 if (irq_settings_can_autoenable(desc)) { 1448 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1449 } else { 1450 /* 1451 * Shared interrupts do not go well with disabling 1452 * auto enable. The sharing interrupt might request 1453 * it while it's still disabled and then wait for 1454 * interrupts forever. 1455 */ 1456 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1457 /* Undo nested disables: */ 1458 desc->depth = 1; 1459 } 1460 1461 } else if (new->flags & IRQF_TRIGGER_MASK) { 1462 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1463 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1464 1465 if (nmsk != omsk) 1466 /* hope the handler works with current trigger mode */ 1467 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1468 irq, omsk, nmsk); 1469 } 1470 1471 *old_ptr = new; 1472 1473 irq_pm_install_action(desc, new); 1474 1475 /* Reset broken irq detection when installing new handler */ 1476 desc->irq_count = 0; 1477 desc->irqs_unhandled = 0; 1478 1479 /* 1480 * Check whether we disabled the irq via the spurious handler 1481 * before. Reenable it and give it another chance. 1482 */ 1483 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1484 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1485 __enable_irq(desc); 1486 } 1487 1488 raw_spin_unlock_irqrestore(&desc->lock, flags); 1489 chip_bus_sync_unlock(desc); 1490 mutex_unlock(&desc->request_mutex); 1491 1492 irq_setup_timings(desc, new); 1493 1494 /* 1495 * Strictly no need to wake it up, but hung_task complains 1496 * when no hard interrupt wakes the thread up. 1497 */ 1498 if (new->thread) 1499 wake_up_process(new->thread); 1500 if (new->secondary) 1501 wake_up_process(new->secondary->thread); 1502 1503 register_irq_proc(irq, desc); 1504 new->dir = NULL; 1505 register_handler_proc(irq, new); 1506 return 0; 1507 1508 mismatch: 1509 if (!(new->flags & IRQF_PROBE_SHARED)) { 1510 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1511 irq, new->flags, new->name, old->flags, old->name); 1512 #ifdef CONFIG_DEBUG_SHIRQ 1513 dump_stack(); 1514 #endif 1515 } 1516 ret = -EBUSY; 1517 1518 out_unlock: 1519 raw_spin_unlock_irqrestore(&desc->lock, flags); 1520 1521 if (!desc->action) 1522 irq_release_resources(desc); 1523 out_bus_unlock: 1524 chip_bus_sync_unlock(desc); 1525 mutex_unlock(&desc->request_mutex); 1526 1527 out_thread: 1528 if (new->thread) { 1529 struct task_struct *t = new->thread; 1530 1531 new->thread = NULL; 1532 kthread_stop(t); 1533 put_task_struct(t); 1534 } 1535 if (new->secondary && new->secondary->thread) { 1536 struct task_struct *t = new->secondary->thread; 1537 1538 new->secondary->thread = NULL; 1539 kthread_stop(t); 1540 put_task_struct(t); 1541 } 1542 out_mput: 1543 module_put(desc->owner); 1544 return ret; 1545 } 1546 1547 /** 1548 * setup_irq - setup an interrupt 1549 * @irq: Interrupt line to setup 1550 * @act: irqaction for the interrupt 1551 * 1552 * Used to statically setup interrupts in the early boot process. 1553 */ 1554 int setup_irq(unsigned int irq, struct irqaction *act) 1555 { 1556 int retval; 1557 struct irq_desc *desc = irq_to_desc(irq); 1558 1559 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1560 return -EINVAL; 1561 1562 retval = irq_chip_pm_get(&desc->irq_data); 1563 if (retval < 0) 1564 return retval; 1565 1566 retval = __setup_irq(irq, desc, act); 1567 1568 if (retval) 1569 irq_chip_pm_put(&desc->irq_data); 1570 1571 return retval; 1572 } 1573 EXPORT_SYMBOL_GPL(setup_irq); 1574 1575 /* 1576 * Internal function to unregister an irqaction - used to free 1577 * regular and special interrupts that are part of the architecture. 1578 */ 1579 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1580 { 1581 unsigned irq = desc->irq_data.irq; 1582 struct irqaction *action, **action_ptr; 1583 unsigned long flags; 1584 1585 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1586 1587 mutex_lock(&desc->request_mutex); 1588 chip_bus_lock(desc); 1589 raw_spin_lock_irqsave(&desc->lock, flags); 1590 1591 /* 1592 * There can be multiple actions per IRQ descriptor, find the right 1593 * one based on the dev_id: 1594 */ 1595 action_ptr = &desc->action; 1596 for (;;) { 1597 action = *action_ptr; 1598 1599 if (!action) { 1600 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1601 raw_spin_unlock_irqrestore(&desc->lock, flags); 1602 chip_bus_sync_unlock(desc); 1603 mutex_unlock(&desc->request_mutex); 1604 return NULL; 1605 } 1606 1607 if (action->dev_id == dev_id) 1608 break; 1609 action_ptr = &action->next; 1610 } 1611 1612 /* Found it - now remove it from the list of entries: */ 1613 *action_ptr = action->next; 1614 1615 irq_pm_remove_action(desc, action); 1616 1617 /* If this was the last handler, shut down the IRQ line: */ 1618 if (!desc->action) { 1619 irq_settings_clr_disable_unlazy(desc); 1620 irq_shutdown(desc); 1621 } 1622 1623 #ifdef CONFIG_SMP 1624 /* make sure affinity_hint is cleaned up */ 1625 if (WARN_ON_ONCE(desc->affinity_hint)) 1626 desc->affinity_hint = NULL; 1627 #endif 1628 1629 raw_spin_unlock_irqrestore(&desc->lock, flags); 1630 /* 1631 * Drop bus_lock here so the changes which were done in the chip 1632 * callbacks above are synced out to the irq chips which hang 1633 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1634 * 1635 * Aside of that the bus_lock can also be taken from the threaded 1636 * handler in irq_finalize_oneshot() which results in a deadlock 1637 * because kthread_stop() would wait forever for the thread to 1638 * complete, which is blocked on the bus lock. 1639 * 1640 * The still held desc->request_mutex() protects against a 1641 * concurrent request_irq() of this irq so the release of resources 1642 * and timing data is properly serialized. 1643 */ 1644 chip_bus_sync_unlock(desc); 1645 1646 unregister_handler_proc(irq, action); 1647 1648 /* Make sure it's not being used on another CPU: */ 1649 synchronize_hardirq(irq); 1650 1651 #ifdef CONFIG_DEBUG_SHIRQ 1652 /* 1653 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1654 * event to happen even now it's being freed, so let's make sure that 1655 * is so by doing an extra call to the handler .... 1656 * 1657 * ( We do this after actually deregistering it, to make sure that a 1658 * 'real' IRQ doesn't run in parallel with our fake. ) 1659 */ 1660 if (action->flags & IRQF_SHARED) { 1661 local_irq_save(flags); 1662 action->handler(irq, dev_id); 1663 local_irq_restore(flags); 1664 } 1665 #endif 1666 1667 /* 1668 * The action has already been removed above, but the thread writes 1669 * its oneshot mask bit when it completes. Though request_mutex is 1670 * held across this which prevents __setup_irq() from handing out 1671 * the same bit to a newly requested action. 1672 */ 1673 if (action->thread) { 1674 kthread_stop(action->thread); 1675 put_task_struct(action->thread); 1676 if (action->secondary && action->secondary->thread) { 1677 kthread_stop(action->secondary->thread); 1678 put_task_struct(action->secondary->thread); 1679 } 1680 } 1681 1682 /* Last action releases resources */ 1683 if (!desc->action) { 1684 /* 1685 * Reaquire bus lock as irq_release_resources() might 1686 * require it to deallocate resources over the slow bus. 1687 */ 1688 chip_bus_lock(desc); 1689 irq_release_resources(desc); 1690 chip_bus_sync_unlock(desc); 1691 irq_remove_timings(desc); 1692 } 1693 1694 mutex_unlock(&desc->request_mutex); 1695 1696 irq_chip_pm_put(&desc->irq_data); 1697 module_put(desc->owner); 1698 kfree(action->secondary); 1699 return action; 1700 } 1701 1702 /** 1703 * remove_irq - free an interrupt 1704 * @irq: Interrupt line to free 1705 * @act: irqaction for the interrupt 1706 * 1707 * Used to remove interrupts statically setup by the early boot process. 1708 */ 1709 void remove_irq(unsigned int irq, struct irqaction *act) 1710 { 1711 struct irq_desc *desc = irq_to_desc(irq); 1712 1713 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1714 __free_irq(desc, act->dev_id); 1715 } 1716 EXPORT_SYMBOL_GPL(remove_irq); 1717 1718 /** 1719 * free_irq - free an interrupt allocated with request_irq 1720 * @irq: Interrupt line to free 1721 * @dev_id: Device identity to free 1722 * 1723 * Remove an interrupt handler. The handler is removed and if the 1724 * interrupt line is no longer in use by any driver it is disabled. 1725 * On a shared IRQ the caller must ensure the interrupt is disabled 1726 * on the card it drives before calling this function. The function 1727 * does not return until any executing interrupts for this IRQ 1728 * have completed. 1729 * 1730 * This function must not be called from interrupt context. 1731 * 1732 * Returns the devname argument passed to request_irq. 1733 */ 1734 const void *free_irq(unsigned int irq, void *dev_id) 1735 { 1736 struct irq_desc *desc = irq_to_desc(irq); 1737 struct irqaction *action; 1738 const char *devname; 1739 1740 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1741 return NULL; 1742 1743 #ifdef CONFIG_SMP 1744 if (WARN_ON(desc->affinity_notify)) 1745 desc->affinity_notify = NULL; 1746 #endif 1747 1748 action = __free_irq(desc, dev_id); 1749 1750 if (!action) 1751 return NULL; 1752 1753 devname = action->name; 1754 kfree(action); 1755 return devname; 1756 } 1757 EXPORT_SYMBOL(free_irq); 1758 1759 /** 1760 * request_threaded_irq - allocate an interrupt line 1761 * @irq: Interrupt line to allocate 1762 * @handler: Function to be called when the IRQ occurs. 1763 * Primary handler for threaded interrupts 1764 * If NULL and thread_fn != NULL the default 1765 * primary handler is installed 1766 * @thread_fn: Function called from the irq handler thread 1767 * If NULL, no irq thread is created 1768 * @irqflags: Interrupt type flags 1769 * @devname: An ascii name for the claiming device 1770 * @dev_id: A cookie passed back to the handler function 1771 * 1772 * This call allocates interrupt resources and enables the 1773 * interrupt line and IRQ handling. From the point this 1774 * call is made your handler function may be invoked. Since 1775 * your handler function must clear any interrupt the board 1776 * raises, you must take care both to initialise your hardware 1777 * and to set up the interrupt handler in the right order. 1778 * 1779 * If you want to set up a threaded irq handler for your device 1780 * then you need to supply @handler and @thread_fn. @handler is 1781 * still called in hard interrupt context and has to check 1782 * whether the interrupt originates from the device. If yes it 1783 * needs to disable the interrupt on the device and return 1784 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1785 * @thread_fn. This split handler design is necessary to support 1786 * shared interrupts. 1787 * 1788 * Dev_id must be globally unique. Normally the address of the 1789 * device data structure is used as the cookie. Since the handler 1790 * receives this value it makes sense to use it. 1791 * 1792 * If your interrupt is shared you must pass a non NULL dev_id 1793 * as this is required when freeing the interrupt. 1794 * 1795 * Flags: 1796 * 1797 * IRQF_SHARED Interrupt is shared 1798 * IRQF_TRIGGER_* Specify active edge(s) or level 1799 * 1800 */ 1801 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 1802 irq_handler_t thread_fn, unsigned long irqflags, 1803 const char *devname, void *dev_id) 1804 { 1805 struct irqaction *action; 1806 struct irq_desc *desc; 1807 int retval; 1808 1809 if (irq == IRQ_NOTCONNECTED) 1810 return -ENOTCONN; 1811 1812 /* 1813 * Sanity-check: shared interrupts must pass in a real dev-ID, 1814 * otherwise we'll have trouble later trying to figure out 1815 * which interrupt is which (messes up the interrupt freeing 1816 * logic etc). 1817 * 1818 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 1819 * it cannot be set along with IRQF_NO_SUSPEND. 1820 */ 1821 if (((irqflags & IRQF_SHARED) && !dev_id) || 1822 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 1823 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 1824 return -EINVAL; 1825 1826 desc = irq_to_desc(irq); 1827 if (!desc) 1828 return -EINVAL; 1829 1830 if (!irq_settings_can_request(desc) || 1831 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1832 return -EINVAL; 1833 1834 if (!handler) { 1835 if (!thread_fn) 1836 return -EINVAL; 1837 handler = irq_default_primary_handler; 1838 } 1839 1840 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1841 if (!action) 1842 return -ENOMEM; 1843 1844 action->handler = handler; 1845 action->thread_fn = thread_fn; 1846 action->flags = irqflags; 1847 action->name = devname; 1848 action->dev_id = dev_id; 1849 1850 retval = irq_chip_pm_get(&desc->irq_data); 1851 if (retval < 0) { 1852 kfree(action); 1853 return retval; 1854 } 1855 1856 retval = __setup_irq(irq, desc, action); 1857 1858 if (retval) { 1859 irq_chip_pm_put(&desc->irq_data); 1860 kfree(action->secondary); 1861 kfree(action); 1862 } 1863 1864 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 1865 if (!retval && (irqflags & IRQF_SHARED)) { 1866 /* 1867 * It's a shared IRQ -- the driver ought to be prepared for it 1868 * to happen immediately, so let's make sure.... 1869 * We disable the irq to make sure that a 'real' IRQ doesn't 1870 * run in parallel with our fake. 1871 */ 1872 unsigned long flags; 1873 1874 disable_irq(irq); 1875 local_irq_save(flags); 1876 1877 handler(irq, dev_id); 1878 1879 local_irq_restore(flags); 1880 enable_irq(irq); 1881 } 1882 #endif 1883 return retval; 1884 } 1885 EXPORT_SYMBOL(request_threaded_irq); 1886 1887 /** 1888 * request_any_context_irq - allocate an interrupt line 1889 * @irq: Interrupt line to allocate 1890 * @handler: Function to be called when the IRQ occurs. 1891 * Threaded handler for threaded interrupts. 1892 * @flags: Interrupt type flags 1893 * @name: An ascii name for the claiming device 1894 * @dev_id: A cookie passed back to the handler function 1895 * 1896 * This call allocates interrupt resources and enables the 1897 * interrupt line and IRQ handling. It selects either a 1898 * hardirq or threaded handling method depending on the 1899 * context. 1900 * 1901 * On failure, it returns a negative value. On success, 1902 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 1903 */ 1904 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 1905 unsigned long flags, const char *name, void *dev_id) 1906 { 1907 struct irq_desc *desc; 1908 int ret; 1909 1910 if (irq == IRQ_NOTCONNECTED) 1911 return -ENOTCONN; 1912 1913 desc = irq_to_desc(irq); 1914 if (!desc) 1915 return -EINVAL; 1916 1917 if (irq_settings_is_nested_thread(desc)) { 1918 ret = request_threaded_irq(irq, NULL, handler, 1919 flags, name, dev_id); 1920 return !ret ? IRQC_IS_NESTED : ret; 1921 } 1922 1923 ret = request_irq(irq, handler, flags, name, dev_id); 1924 return !ret ? IRQC_IS_HARDIRQ : ret; 1925 } 1926 EXPORT_SYMBOL_GPL(request_any_context_irq); 1927 1928 void enable_percpu_irq(unsigned int irq, unsigned int type) 1929 { 1930 unsigned int cpu = smp_processor_id(); 1931 unsigned long flags; 1932 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1933 1934 if (!desc) 1935 return; 1936 1937 /* 1938 * If the trigger type is not specified by the caller, then 1939 * use the default for this interrupt. 1940 */ 1941 type &= IRQ_TYPE_SENSE_MASK; 1942 if (type == IRQ_TYPE_NONE) 1943 type = irqd_get_trigger_type(&desc->irq_data); 1944 1945 if (type != IRQ_TYPE_NONE) { 1946 int ret; 1947 1948 ret = __irq_set_trigger(desc, type); 1949 1950 if (ret) { 1951 WARN(1, "failed to set type for IRQ%d\n", irq); 1952 goto out; 1953 } 1954 } 1955 1956 irq_percpu_enable(desc, cpu); 1957 out: 1958 irq_put_desc_unlock(desc, flags); 1959 } 1960 EXPORT_SYMBOL_GPL(enable_percpu_irq); 1961 1962 /** 1963 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 1964 * @irq: Linux irq number to check for 1965 * 1966 * Must be called from a non migratable context. Returns the enable 1967 * state of a per cpu interrupt on the current cpu. 1968 */ 1969 bool irq_percpu_is_enabled(unsigned int irq) 1970 { 1971 unsigned int cpu = smp_processor_id(); 1972 struct irq_desc *desc; 1973 unsigned long flags; 1974 bool is_enabled; 1975 1976 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1977 if (!desc) 1978 return false; 1979 1980 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 1981 irq_put_desc_unlock(desc, flags); 1982 1983 return is_enabled; 1984 } 1985 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 1986 1987 void disable_percpu_irq(unsigned int irq) 1988 { 1989 unsigned int cpu = smp_processor_id(); 1990 unsigned long flags; 1991 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 1992 1993 if (!desc) 1994 return; 1995 1996 irq_percpu_disable(desc, cpu); 1997 irq_put_desc_unlock(desc, flags); 1998 } 1999 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2000 2001 /* 2002 * Internal function to unregister a percpu irqaction. 2003 */ 2004 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2005 { 2006 struct irq_desc *desc = irq_to_desc(irq); 2007 struct irqaction *action; 2008 unsigned long flags; 2009 2010 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2011 2012 if (!desc) 2013 return NULL; 2014 2015 raw_spin_lock_irqsave(&desc->lock, flags); 2016 2017 action = desc->action; 2018 if (!action || action->percpu_dev_id != dev_id) { 2019 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2020 goto bad; 2021 } 2022 2023 if (!cpumask_empty(desc->percpu_enabled)) { 2024 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2025 irq, cpumask_first(desc->percpu_enabled)); 2026 goto bad; 2027 } 2028 2029 /* Found it - now remove it from the list of entries: */ 2030 desc->action = NULL; 2031 2032 raw_spin_unlock_irqrestore(&desc->lock, flags); 2033 2034 unregister_handler_proc(irq, action); 2035 2036 irq_chip_pm_put(&desc->irq_data); 2037 module_put(desc->owner); 2038 return action; 2039 2040 bad: 2041 raw_spin_unlock_irqrestore(&desc->lock, flags); 2042 return NULL; 2043 } 2044 2045 /** 2046 * remove_percpu_irq - free a per-cpu interrupt 2047 * @irq: Interrupt line to free 2048 * @act: irqaction for the interrupt 2049 * 2050 * Used to remove interrupts statically setup by the early boot process. 2051 */ 2052 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2053 { 2054 struct irq_desc *desc = irq_to_desc(irq); 2055 2056 if (desc && irq_settings_is_per_cpu_devid(desc)) 2057 __free_percpu_irq(irq, act->percpu_dev_id); 2058 } 2059 2060 /** 2061 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2062 * @irq: Interrupt line to free 2063 * @dev_id: Device identity to free 2064 * 2065 * Remove a percpu interrupt handler. The handler is removed, but 2066 * the interrupt line is not disabled. This must be done on each 2067 * CPU before calling this function. The function does not return 2068 * until any executing interrupts for this IRQ have completed. 2069 * 2070 * This function must not be called from interrupt context. 2071 */ 2072 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2073 { 2074 struct irq_desc *desc = irq_to_desc(irq); 2075 2076 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2077 return; 2078 2079 chip_bus_lock(desc); 2080 kfree(__free_percpu_irq(irq, dev_id)); 2081 chip_bus_sync_unlock(desc); 2082 } 2083 EXPORT_SYMBOL_GPL(free_percpu_irq); 2084 2085 /** 2086 * setup_percpu_irq - setup a per-cpu interrupt 2087 * @irq: Interrupt line to setup 2088 * @act: irqaction for the interrupt 2089 * 2090 * Used to statically setup per-cpu interrupts in the early boot process. 2091 */ 2092 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2093 { 2094 struct irq_desc *desc = irq_to_desc(irq); 2095 int retval; 2096 2097 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2098 return -EINVAL; 2099 2100 retval = irq_chip_pm_get(&desc->irq_data); 2101 if (retval < 0) 2102 return retval; 2103 2104 retval = __setup_irq(irq, desc, act); 2105 2106 if (retval) 2107 irq_chip_pm_put(&desc->irq_data); 2108 2109 return retval; 2110 } 2111 2112 /** 2113 * __request_percpu_irq - allocate a percpu interrupt line 2114 * @irq: Interrupt line to allocate 2115 * @handler: Function to be called when the IRQ occurs. 2116 * @flags: Interrupt type flags (IRQF_TIMER only) 2117 * @devname: An ascii name for the claiming device 2118 * @dev_id: A percpu cookie passed back to the handler function 2119 * 2120 * This call allocates interrupt resources and enables the 2121 * interrupt on the local CPU. If the interrupt is supposed to be 2122 * enabled on other CPUs, it has to be done on each CPU using 2123 * enable_percpu_irq(). 2124 * 2125 * Dev_id must be globally unique. It is a per-cpu variable, and 2126 * the handler gets called with the interrupted CPU's instance of 2127 * that variable. 2128 */ 2129 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2130 unsigned long flags, const char *devname, 2131 void __percpu *dev_id) 2132 { 2133 struct irqaction *action; 2134 struct irq_desc *desc; 2135 int retval; 2136 2137 if (!dev_id) 2138 return -EINVAL; 2139 2140 desc = irq_to_desc(irq); 2141 if (!desc || !irq_settings_can_request(desc) || 2142 !irq_settings_is_per_cpu_devid(desc)) 2143 return -EINVAL; 2144 2145 if (flags && flags != IRQF_TIMER) 2146 return -EINVAL; 2147 2148 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2149 if (!action) 2150 return -ENOMEM; 2151 2152 action->handler = handler; 2153 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2154 action->name = devname; 2155 action->percpu_dev_id = dev_id; 2156 2157 retval = irq_chip_pm_get(&desc->irq_data); 2158 if (retval < 0) { 2159 kfree(action); 2160 return retval; 2161 } 2162 2163 retval = __setup_irq(irq, desc, action); 2164 2165 if (retval) { 2166 irq_chip_pm_put(&desc->irq_data); 2167 kfree(action); 2168 } 2169 2170 return retval; 2171 } 2172 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2173 2174 /** 2175 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2176 * @irq: Interrupt line that is forwarded to a VM 2177 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2178 * @state: a pointer to a boolean where the state is to be storeed 2179 * 2180 * This call snapshots the internal irqchip state of an 2181 * interrupt, returning into @state the bit corresponding to 2182 * stage @which 2183 * 2184 * This function should be called with preemption disabled if the 2185 * interrupt controller has per-cpu registers. 2186 */ 2187 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2188 bool *state) 2189 { 2190 struct irq_desc *desc; 2191 struct irq_data *data; 2192 struct irq_chip *chip; 2193 unsigned long flags; 2194 int err = -EINVAL; 2195 2196 desc = irq_get_desc_buslock(irq, &flags, 0); 2197 if (!desc) 2198 return err; 2199 2200 data = irq_desc_get_irq_data(desc); 2201 2202 do { 2203 chip = irq_data_get_irq_chip(data); 2204 if (chip->irq_get_irqchip_state) 2205 break; 2206 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2207 data = data->parent_data; 2208 #else 2209 data = NULL; 2210 #endif 2211 } while (data); 2212 2213 if (data) 2214 err = chip->irq_get_irqchip_state(data, which, state); 2215 2216 irq_put_desc_busunlock(desc, flags); 2217 return err; 2218 } 2219 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2220 2221 /** 2222 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2223 * @irq: Interrupt line that is forwarded to a VM 2224 * @which: State to be restored (one of IRQCHIP_STATE_*) 2225 * @val: Value corresponding to @which 2226 * 2227 * This call sets the internal irqchip state of an interrupt, 2228 * depending on the value of @which. 2229 * 2230 * This function should be called with preemption disabled if the 2231 * interrupt controller has per-cpu registers. 2232 */ 2233 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2234 bool val) 2235 { 2236 struct irq_desc *desc; 2237 struct irq_data *data; 2238 struct irq_chip *chip; 2239 unsigned long flags; 2240 int err = -EINVAL; 2241 2242 desc = irq_get_desc_buslock(irq, &flags, 0); 2243 if (!desc) 2244 return err; 2245 2246 data = irq_desc_get_irq_data(desc); 2247 2248 do { 2249 chip = irq_data_get_irq_chip(data); 2250 if (chip->irq_set_irqchip_state) 2251 break; 2252 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2253 data = data->parent_data; 2254 #else 2255 data = NULL; 2256 #endif 2257 } while (data); 2258 2259 if (data) 2260 err = chip->irq_set_irqchip_state(data, which, val); 2261 2262 irq_put_desc_busunlock(desc, flags); 2263 return err; 2264 } 2265 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2266