xref: /linux/kernel/irq/manage.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22 
23 #include "internals.h"
24 
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28 
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 	force_irqthreads = true;
32 	return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36 
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 	bool inprogress;
40 
41 	do {
42 		unsigned long flags;
43 
44 		/*
45 		 * Wait until we're out of the critical section.  This might
46 		 * give the wrong answer due to the lack of memory barriers.
47 		 */
48 		while (irqd_irq_inprogress(&desc->irq_data))
49 			cpu_relax();
50 
51 		/* Ok, that indicated we're done: double-check carefully. */
52 		raw_spin_lock_irqsave(&desc->lock, flags);
53 		inprogress = irqd_irq_inprogress(&desc->irq_data);
54 		raw_spin_unlock_irqrestore(&desc->lock, flags);
55 
56 		/* Oops, that failed? */
57 	} while (inprogress);
58 }
59 
60 /**
61  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *	@irq: interrupt number to wait for
63  *
64  *	This function waits for any pending hard IRQ handlers for this
65  *	interrupt to complete before returning. If you use this
66  *	function while holding a resource the IRQ handler may need you
67  *	will deadlock. It does not take associated threaded handlers
68  *	into account.
69  *
70  *	Do not use this for shutdown scenarios where you must be sure
71  *	that all parts (hardirq and threaded handler) have completed.
72  *
73  *	Returns: false if a threaded handler is active.
74  *
75  *	This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 	struct irq_desc *desc = irq_to_desc(irq);
80 
81 	if (desc) {
82 		__synchronize_hardirq(desc);
83 		return !atomic_read(&desc->threads_active);
84 	}
85 
86 	return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89 
90 /**
91  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *	@irq: interrupt number to wait for
93  *
94  *	This function waits for any pending IRQ handlers for this interrupt
95  *	to complete before returning. If you use this function while
96  *	holding a resource the IRQ handler may need you will deadlock.
97  *
98  *	This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102 	struct irq_desc *desc = irq_to_desc(irq);
103 
104 	if (desc) {
105 		__synchronize_hardirq(desc);
106 		/*
107 		 * We made sure that no hardirq handler is
108 		 * running. Now verify that no threaded handlers are
109 		 * active.
110 		 */
111 		wait_event(desc->wait_for_threads,
112 			   !atomic_read(&desc->threads_active));
113 	}
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116 
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119 
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 		return false;
125 	return true;
126 }
127 
128 /**
129  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *	@irq:		Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 	return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137 
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:	Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 	struct irq_desc *desc = irq_to_desc(irq);
148 
149 	return __irq_can_set_affinity(desc) &&
150 		!irqd_affinity_is_managed(&desc->irq_data);
151 }
152 
153 /**
154  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *	@desc:		irq descriptor which has affitnity changed
156  *
157  *	We just set IRQTF_AFFINITY and delegate the affinity setting
158  *	to the interrupt thread itself. We can not call
159  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *	code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 	struct irqaction *action;
165 
166 	for_each_action_of_desc(desc, action)
167 		if (action->thread)
168 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170 
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 	struct irq_chip *chip = irq_data_get_irq_chip(data);
176 
177 	if (!cpumask_empty(m))
178 		return;
179 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 		     chip->name, data->irq);
181 #endif
182 }
183 
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 			bool force)
186 {
187 	struct irq_desc *desc = irq_data_to_desc(data);
188 	struct irq_chip *chip = irq_data_get_irq_chip(data);
189 	int ret;
190 
191 	if (!chip || !chip->irq_set_affinity)
192 		return -EINVAL;
193 
194 	ret = chip->irq_set_affinity(data, mask, force);
195 	switch (ret) {
196 	case IRQ_SET_MASK_OK:
197 	case IRQ_SET_MASK_OK_DONE:
198 		cpumask_copy(desc->irq_common_data.affinity, mask);
199 	case IRQ_SET_MASK_OK_NOCOPY:
200 		irq_validate_effective_affinity(data);
201 		irq_set_thread_affinity(desc);
202 		ret = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 					   const struct cpumask *dest)
211 {
212 	struct irq_desc *desc = irq_data_to_desc(data);
213 
214 	irqd_set_move_pending(data);
215 	irq_copy_pending(desc, dest);
216 	return 0;
217 }
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 					   const struct cpumask *dest)
221 {
222 	return -EBUSY;
223 }
224 #endif
225 
226 static int irq_try_set_affinity(struct irq_data *data,
227 				const struct cpumask *dest, bool force)
228 {
229 	int ret = irq_do_set_affinity(data, dest, force);
230 
231 	/*
232 	 * In case that the underlying vector management is busy and the
233 	 * architecture supports the generic pending mechanism then utilize
234 	 * this to avoid returning an error to user space.
235 	 */
236 	if (ret == -EBUSY && !force)
237 		ret = irq_set_affinity_pending(data, dest);
238 	return ret;
239 }
240 
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 			    bool force)
243 {
244 	struct irq_chip *chip = irq_data_get_irq_chip(data);
245 	struct irq_desc *desc = irq_data_to_desc(data);
246 	int ret = 0;
247 
248 	if (!chip || !chip->irq_set_affinity)
249 		return -EINVAL;
250 
251 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 		ret = irq_try_set_affinity(data, mask, force);
253 	} else {
254 		irqd_set_move_pending(data);
255 		irq_copy_pending(desc, mask);
256 	}
257 
258 	if (desc->affinity_notify) {
259 		kref_get(&desc->affinity_notify->kref);
260 		schedule_work(&desc->affinity_notify->work);
261 	}
262 	irqd_set(data, IRQD_AFFINITY_SET);
263 
264 	return ret;
265 }
266 
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
268 {
269 	struct irq_desc *desc = irq_to_desc(irq);
270 	unsigned long flags;
271 	int ret;
272 
273 	if (!desc)
274 		return -EINVAL;
275 
276 	raw_spin_lock_irqsave(&desc->lock, flags);
277 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 	raw_spin_unlock_irqrestore(&desc->lock, flags);
279 	return ret;
280 }
281 
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
283 {
284 	unsigned long flags;
285 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
286 
287 	if (!desc)
288 		return -EINVAL;
289 	desc->affinity_hint = m;
290 	irq_put_desc_unlock(desc, flags);
291 	/* set the initial affinity to prevent every interrupt being on CPU0 */
292 	if (m)
293 		__irq_set_affinity(irq, m, false);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
297 
298 static void irq_affinity_notify(struct work_struct *work)
299 {
300 	struct irq_affinity_notify *notify =
301 		container_of(work, struct irq_affinity_notify, work);
302 	struct irq_desc *desc = irq_to_desc(notify->irq);
303 	cpumask_var_t cpumask;
304 	unsigned long flags;
305 
306 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 		goto out;
308 
309 	raw_spin_lock_irqsave(&desc->lock, flags);
310 	if (irq_move_pending(&desc->irq_data))
311 		irq_get_pending(cpumask, desc);
312 	else
313 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 	raw_spin_unlock_irqrestore(&desc->lock, flags);
315 
316 	notify->notify(notify, cpumask);
317 
318 	free_cpumask_var(cpumask);
319 out:
320 	kref_put(&notify->kref, notify->release);
321 }
322 
323 /**
324  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
325  *	@irq:		Interrupt for which to enable/disable notification
326  *	@notify:	Context for notification, or %NULL to disable
327  *			notification.  Function pointers must be initialised;
328  *			the other fields will be initialised by this function.
329  *
330  *	Must be called in process context.  Notification may only be enabled
331  *	after the IRQ is allocated and must be disabled before the IRQ is
332  *	freed using free_irq().
333  */
334 int
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	struct irq_affinity_notify *old_notify;
339 	unsigned long flags;
340 
341 	/* The release function is promised process context */
342 	might_sleep();
343 
344 	if (!desc)
345 		return -EINVAL;
346 
347 	/* Complete initialisation of *notify */
348 	if (notify) {
349 		notify->irq = irq;
350 		kref_init(&notify->kref);
351 		INIT_WORK(&notify->work, irq_affinity_notify);
352 	}
353 
354 	raw_spin_lock_irqsave(&desc->lock, flags);
355 	old_notify = desc->affinity_notify;
356 	desc->affinity_notify = notify;
357 	raw_spin_unlock_irqrestore(&desc->lock, flags);
358 
359 	if (old_notify)
360 		kref_put(&old_notify->kref, old_notify->release);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
365 
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
367 /*
368  * Generic version of the affinity autoselector.
369  */
370 int irq_setup_affinity(struct irq_desc *desc)
371 {
372 	struct cpumask *set = irq_default_affinity;
373 	int ret, node = irq_desc_get_node(desc);
374 	static DEFINE_RAW_SPINLOCK(mask_lock);
375 	static struct cpumask mask;
376 
377 	/* Excludes PER_CPU and NO_BALANCE interrupts */
378 	if (!__irq_can_set_affinity(desc))
379 		return 0;
380 
381 	raw_spin_lock(&mask_lock);
382 	/*
383 	 * Preserve the managed affinity setting and a userspace affinity
384 	 * setup, but make sure that one of the targets is online.
385 	 */
386 	if (irqd_affinity_is_managed(&desc->irq_data) ||
387 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 		if (cpumask_intersects(desc->irq_common_data.affinity,
389 				       cpu_online_mask))
390 			set = desc->irq_common_data.affinity;
391 		else
392 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
393 	}
394 
395 	cpumask_and(&mask, cpu_online_mask, set);
396 	if (cpumask_empty(&mask))
397 		cpumask_copy(&mask, cpu_online_mask);
398 
399 	if (node != NUMA_NO_NODE) {
400 		const struct cpumask *nodemask = cpumask_of_node(node);
401 
402 		/* make sure at least one of the cpus in nodemask is online */
403 		if (cpumask_intersects(&mask, nodemask))
404 			cpumask_and(&mask, &mask, nodemask);
405 	}
406 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
407 	raw_spin_unlock(&mask_lock);
408 	return ret;
409 }
410 #else
411 /* Wrapper for ALPHA specific affinity selector magic */
412 int irq_setup_affinity(struct irq_desc *desc)
413 {
414 	return irq_select_affinity(irq_desc_get_irq(desc));
415 }
416 #endif
417 
418 /*
419  * Called when a bogus affinity is set via /proc/irq
420  */
421 int irq_select_affinity_usr(unsigned int irq)
422 {
423 	struct irq_desc *desc = irq_to_desc(irq);
424 	unsigned long flags;
425 	int ret;
426 
427 	raw_spin_lock_irqsave(&desc->lock, flags);
428 	ret = irq_setup_affinity(desc);
429 	raw_spin_unlock_irqrestore(&desc->lock, flags);
430 	return ret;
431 }
432 #endif
433 
434 /**
435  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
436  *	@irq: interrupt number to set affinity
437  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
438  *	            specific data for percpu_devid interrupts
439  *
440  *	This function uses the vCPU specific data to set the vCPU
441  *	affinity for an irq. The vCPU specific data is passed from
442  *	outside, such as KVM. One example code path is as below:
443  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
444  */
445 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
446 {
447 	unsigned long flags;
448 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
449 	struct irq_data *data;
450 	struct irq_chip *chip;
451 	int ret = -ENOSYS;
452 
453 	if (!desc)
454 		return -EINVAL;
455 
456 	data = irq_desc_get_irq_data(desc);
457 	do {
458 		chip = irq_data_get_irq_chip(data);
459 		if (chip && chip->irq_set_vcpu_affinity)
460 			break;
461 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
462 		data = data->parent_data;
463 #else
464 		data = NULL;
465 #endif
466 	} while (data);
467 
468 	if (data)
469 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
470 	irq_put_desc_unlock(desc, flags);
471 
472 	return ret;
473 }
474 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
475 
476 void __disable_irq(struct irq_desc *desc)
477 {
478 	if (!desc->depth++)
479 		irq_disable(desc);
480 }
481 
482 static int __disable_irq_nosync(unsigned int irq)
483 {
484 	unsigned long flags;
485 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
486 
487 	if (!desc)
488 		return -EINVAL;
489 	__disable_irq(desc);
490 	irq_put_desc_busunlock(desc, flags);
491 	return 0;
492 }
493 
494 /**
495  *	disable_irq_nosync - disable an irq without waiting
496  *	@irq: Interrupt to disable
497  *
498  *	Disable the selected interrupt line.  Disables and Enables are
499  *	nested.
500  *	Unlike disable_irq(), this function does not ensure existing
501  *	instances of the IRQ handler have completed before returning.
502  *
503  *	This function may be called from IRQ context.
504  */
505 void disable_irq_nosync(unsigned int irq)
506 {
507 	__disable_irq_nosync(irq);
508 }
509 EXPORT_SYMBOL(disable_irq_nosync);
510 
511 /**
512  *	disable_irq - disable an irq and wait for completion
513  *	@irq: Interrupt to disable
514  *
515  *	Disable the selected interrupt line.  Enables and Disables are
516  *	nested.
517  *	This function waits for any pending IRQ handlers for this interrupt
518  *	to complete before returning. If you use this function while
519  *	holding a resource the IRQ handler may need you will deadlock.
520  *
521  *	This function may be called - with care - from IRQ context.
522  */
523 void disable_irq(unsigned int irq)
524 {
525 	if (!__disable_irq_nosync(irq))
526 		synchronize_irq(irq);
527 }
528 EXPORT_SYMBOL(disable_irq);
529 
530 /**
531  *	disable_hardirq - disables an irq and waits for hardirq completion
532  *	@irq: Interrupt to disable
533  *
534  *	Disable the selected interrupt line.  Enables and Disables are
535  *	nested.
536  *	This function waits for any pending hard IRQ handlers for this
537  *	interrupt to complete before returning. If you use this function while
538  *	holding a resource the hard IRQ handler may need you will deadlock.
539  *
540  *	When used to optimistically disable an interrupt from atomic context
541  *	the return value must be checked.
542  *
543  *	Returns: false if a threaded handler is active.
544  *
545  *	This function may be called - with care - from IRQ context.
546  */
547 bool disable_hardirq(unsigned int irq)
548 {
549 	if (!__disable_irq_nosync(irq))
550 		return synchronize_hardirq(irq);
551 
552 	return false;
553 }
554 EXPORT_SYMBOL_GPL(disable_hardirq);
555 
556 void __enable_irq(struct irq_desc *desc)
557 {
558 	switch (desc->depth) {
559 	case 0:
560  err_out:
561 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
562 		     irq_desc_get_irq(desc));
563 		break;
564 	case 1: {
565 		if (desc->istate & IRQS_SUSPENDED)
566 			goto err_out;
567 		/* Prevent probing on this irq: */
568 		irq_settings_set_noprobe(desc);
569 		/*
570 		 * Call irq_startup() not irq_enable() here because the
571 		 * interrupt might be marked NOAUTOEN. So irq_startup()
572 		 * needs to be invoked when it gets enabled the first
573 		 * time. If it was already started up, then irq_startup()
574 		 * will invoke irq_enable() under the hood.
575 		 */
576 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
577 		break;
578 	}
579 	default:
580 		desc->depth--;
581 	}
582 }
583 
584 /**
585  *	enable_irq - enable handling of an irq
586  *	@irq: Interrupt to enable
587  *
588  *	Undoes the effect of one call to disable_irq().  If this
589  *	matches the last disable, processing of interrupts on this
590  *	IRQ line is re-enabled.
591  *
592  *	This function may be called from IRQ context only when
593  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
594  */
595 void enable_irq(unsigned int irq)
596 {
597 	unsigned long flags;
598 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
599 
600 	if (!desc)
601 		return;
602 	if (WARN(!desc->irq_data.chip,
603 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
604 		goto out;
605 
606 	__enable_irq(desc);
607 out:
608 	irq_put_desc_busunlock(desc, flags);
609 }
610 EXPORT_SYMBOL(enable_irq);
611 
612 static int set_irq_wake_real(unsigned int irq, unsigned int on)
613 {
614 	struct irq_desc *desc = irq_to_desc(irq);
615 	int ret = -ENXIO;
616 
617 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
618 		return 0;
619 
620 	if (desc->irq_data.chip->irq_set_wake)
621 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
622 
623 	return ret;
624 }
625 
626 /**
627  *	irq_set_irq_wake - control irq power management wakeup
628  *	@irq:	interrupt to control
629  *	@on:	enable/disable power management wakeup
630  *
631  *	Enable/disable power management wakeup mode, which is
632  *	disabled by default.  Enables and disables must match,
633  *	just as they match for non-wakeup mode support.
634  *
635  *	Wakeup mode lets this IRQ wake the system from sleep
636  *	states like "suspend to RAM".
637  */
638 int irq_set_irq_wake(unsigned int irq, unsigned int on)
639 {
640 	unsigned long flags;
641 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
642 	int ret = 0;
643 
644 	if (!desc)
645 		return -EINVAL;
646 
647 	/* wakeup-capable irqs can be shared between drivers that
648 	 * don't need to have the same sleep mode behaviors.
649 	 */
650 	if (on) {
651 		if (desc->wake_depth++ == 0) {
652 			ret = set_irq_wake_real(irq, on);
653 			if (ret)
654 				desc->wake_depth = 0;
655 			else
656 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
657 		}
658 	} else {
659 		if (desc->wake_depth == 0) {
660 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
661 		} else if (--desc->wake_depth == 0) {
662 			ret = set_irq_wake_real(irq, on);
663 			if (ret)
664 				desc->wake_depth = 1;
665 			else
666 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
667 		}
668 	}
669 	irq_put_desc_busunlock(desc, flags);
670 	return ret;
671 }
672 EXPORT_SYMBOL(irq_set_irq_wake);
673 
674 /*
675  * Internal function that tells the architecture code whether a
676  * particular irq has been exclusively allocated or is available
677  * for driver use.
678  */
679 int can_request_irq(unsigned int irq, unsigned long irqflags)
680 {
681 	unsigned long flags;
682 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
683 	int canrequest = 0;
684 
685 	if (!desc)
686 		return 0;
687 
688 	if (irq_settings_can_request(desc)) {
689 		if (!desc->action ||
690 		    irqflags & desc->action->flags & IRQF_SHARED)
691 			canrequest = 1;
692 	}
693 	irq_put_desc_unlock(desc, flags);
694 	return canrequest;
695 }
696 
697 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
698 {
699 	struct irq_chip *chip = desc->irq_data.chip;
700 	int ret, unmask = 0;
701 
702 	if (!chip || !chip->irq_set_type) {
703 		/*
704 		 * IRQF_TRIGGER_* but the PIC does not support multiple
705 		 * flow-types?
706 		 */
707 		pr_debug("No set_type function for IRQ %d (%s)\n",
708 			 irq_desc_get_irq(desc),
709 			 chip ? (chip->name ? : "unknown") : "unknown");
710 		return 0;
711 	}
712 
713 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
714 		if (!irqd_irq_masked(&desc->irq_data))
715 			mask_irq(desc);
716 		if (!irqd_irq_disabled(&desc->irq_data))
717 			unmask = 1;
718 	}
719 
720 	/* Mask all flags except trigger mode */
721 	flags &= IRQ_TYPE_SENSE_MASK;
722 	ret = chip->irq_set_type(&desc->irq_data, flags);
723 
724 	switch (ret) {
725 	case IRQ_SET_MASK_OK:
726 	case IRQ_SET_MASK_OK_DONE:
727 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
728 		irqd_set(&desc->irq_data, flags);
729 
730 	case IRQ_SET_MASK_OK_NOCOPY:
731 		flags = irqd_get_trigger_type(&desc->irq_data);
732 		irq_settings_set_trigger_mask(desc, flags);
733 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
734 		irq_settings_clr_level(desc);
735 		if (flags & IRQ_TYPE_LEVEL_MASK) {
736 			irq_settings_set_level(desc);
737 			irqd_set(&desc->irq_data, IRQD_LEVEL);
738 		}
739 
740 		ret = 0;
741 		break;
742 	default:
743 		pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
744 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
745 	}
746 	if (unmask)
747 		unmask_irq(desc);
748 	return ret;
749 }
750 
751 #ifdef CONFIG_HARDIRQS_SW_RESEND
752 int irq_set_parent(int irq, int parent_irq)
753 {
754 	unsigned long flags;
755 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
756 
757 	if (!desc)
758 		return -EINVAL;
759 
760 	desc->parent_irq = parent_irq;
761 
762 	irq_put_desc_unlock(desc, flags);
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(irq_set_parent);
766 #endif
767 
768 /*
769  * Default primary interrupt handler for threaded interrupts. Is
770  * assigned as primary handler when request_threaded_irq is called
771  * with handler == NULL. Useful for oneshot interrupts.
772  */
773 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
774 {
775 	return IRQ_WAKE_THREAD;
776 }
777 
778 /*
779  * Primary handler for nested threaded interrupts. Should never be
780  * called.
781  */
782 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
783 {
784 	WARN(1, "Primary handler called for nested irq %d\n", irq);
785 	return IRQ_NONE;
786 }
787 
788 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
789 {
790 	WARN(1, "Secondary action handler called for irq %d\n", irq);
791 	return IRQ_NONE;
792 }
793 
794 static int irq_wait_for_interrupt(struct irqaction *action)
795 {
796 	for (;;) {
797 		set_current_state(TASK_INTERRUPTIBLE);
798 
799 		if (kthread_should_stop()) {
800 			/* may need to run one last time */
801 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
802 					       &action->thread_flags)) {
803 				__set_current_state(TASK_RUNNING);
804 				return 0;
805 			}
806 			__set_current_state(TASK_RUNNING);
807 			return -1;
808 		}
809 
810 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
811 				       &action->thread_flags)) {
812 			__set_current_state(TASK_RUNNING);
813 			return 0;
814 		}
815 		schedule();
816 	}
817 }
818 
819 /*
820  * Oneshot interrupts keep the irq line masked until the threaded
821  * handler finished. unmask if the interrupt has not been disabled and
822  * is marked MASKED.
823  */
824 static void irq_finalize_oneshot(struct irq_desc *desc,
825 				 struct irqaction *action)
826 {
827 	if (!(desc->istate & IRQS_ONESHOT) ||
828 	    action->handler == irq_forced_secondary_handler)
829 		return;
830 again:
831 	chip_bus_lock(desc);
832 	raw_spin_lock_irq(&desc->lock);
833 
834 	/*
835 	 * Implausible though it may be we need to protect us against
836 	 * the following scenario:
837 	 *
838 	 * The thread is faster done than the hard interrupt handler
839 	 * on the other CPU. If we unmask the irq line then the
840 	 * interrupt can come in again and masks the line, leaves due
841 	 * to IRQS_INPROGRESS and the irq line is masked forever.
842 	 *
843 	 * This also serializes the state of shared oneshot handlers
844 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
845 	 * irq_wake_thread(). See the comment there which explains the
846 	 * serialization.
847 	 */
848 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
849 		raw_spin_unlock_irq(&desc->lock);
850 		chip_bus_sync_unlock(desc);
851 		cpu_relax();
852 		goto again;
853 	}
854 
855 	/*
856 	 * Now check again, whether the thread should run. Otherwise
857 	 * we would clear the threads_oneshot bit of this thread which
858 	 * was just set.
859 	 */
860 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
861 		goto out_unlock;
862 
863 	desc->threads_oneshot &= ~action->thread_mask;
864 
865 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
866 	    irqd_irq_masked(&desc->irq_data))
867 		unmask_threaded_irq(desc);
868 
869 out_unlock:
870 	raw_spin_unlock_irq(&desc->lock);
871 	chip_bus_sync_unlock(desc);
872 }
873 
874 #ifdef CONFIG_SMP
875 /*
876  * Check whether we need to change the affinity of the interrupt thread.
877  */
878 static void
879 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
880 {
881 	cpumask_var_t mask;
882 	bool valid = true;
883 
884 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
885 		return;
886 
887 	/*
888 	 * In case we are out of memory we set IRQTF_AFFINITY again and
889 	 * try again next time
890 	 */
891 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
892 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
893 		return;
894 	}
895 
896 	raw_spin_lock_irq(&desc->lock);
897 	/*
898 	 * This code is triggered unconditionally. Check the affinity
899 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
900 	 */
901 	if (cpumask_available(desc->irq_common_data.affinity)) {
902 		const struct cpumask *m;
903 
904 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
905 		cpumask_copy(mask, m);
906 	} else {
907 		valid = false;
908 	}
909 	raw_spin_unlock_irq(&desc->lock);
910 
911 	if (valid)
912 		set_cpus_allowed_ptr(current, mask);
913 	free_cpumask_var(mask);
914 }
915 #else
916 static inline void
917 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
918 #endif
919 
920 /*
921  * Interrupts which are not explicitly requested as threaded
922  * interrupts rely on the implicit bh/preempt disable of the hard irq
923  * context. So we need to disable bh here to avoid deadlocks and other
924  * side effects.
925  */
926 static irqreturn_t
927 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
928 {
929 	irqreturn_t ret;
930 
931 	local_bh_disable();
932 	ret = action->thread_fn(action->irq, action->dev_id);
933 	if (ret == IRQ_HANDLED)
934 		atomic_inc(&desc->threads_handled);
935 
936 	irq_finalize_oneshot(desc, action);
937 	local_bh_enable();
938 	return ret;
939 }
940 
941 /*
942  * Interrupts explicitly requested as threaded interrupts want to be
943  * preemtible - many of them need to sleep and wait for slow busses to
944  * complete.
945  */
946 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
947 		struct irqaction *action)
948 {
949 	irqreturn_t ret;
950 
951 	ret = action->thread_fn(action->irq, action->dev_id);
952 	if (ret == IRQ_HANDLED)
953 		atomic_inc(&desc->threads_handled);
954 
955 	irq_finalize_oneshot(desc, action);
956 	return ret;
957 }
958 
959 static void wake_threads_waitq(struct irq_desc *desc)
960 {
961 	if (atomic_dec_and_test(&desc->threads_active))
962 		wake_up(&desc->wait_for_threads);
963 }
964 
965 static void irq_thread_dtor(struct callback_head *unused)
966 {
967 	struct task_struct *tsk = current;
968 	struct irq_desc *desc;
969 	struct irqaction *action;
970 
971 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
972 		return;
973 
974 	action = kthread_data(tsk);
975 
976 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
977 	       tsk->comm, tsk->pid, action->irq);
978 
979 
980 	desc = irq_to_desc(action->irq);
981 	/*
982 	 * If IRQTF_RUNTHREAD is set, we need to decrement
983 	 * desc->threads_active and wake possible waiters.
984 	 */
985 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
986 		wake_threads_waitq(desc);
987 
988 	/* Prevent a stale desc->threads_oneshot */
989 	irq_finalize_oneshot(desc, action);
990 }
991 
992 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
993 {
994 	struct irqaction *secondary = action->secondary;
995 
996 	if (WARN_ON_ONCE(!secondary))
997 		return;
998 
999 	raw_spin_lock_irq(&desc->lock);
1000 	__irq_wake_thread(desc, secondary);
1001 	raw_spin_unlock_irq(&desc->lock);
1002 }
1003 
1004 /*
1005  * Interrupt handler thread
1006  */
1007 static int irq_thread(void *data)
1008 {
1009 	struct callback_head on_exit_work;
1010 	struct irqaction *action = data;
1011 	struct irq_desc *desc = irq_to_desc(action->irq);
1012 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1013 			struct irqaction *action);
1014 
1015 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1016 					&action->thread_flags))
1017 		handler_fn = irq_forced_thread_fn;
1018 	else
1019 		handler_fn = irq_thread_fn;
1020 
1021 	init_task_work(&on_exit_work, irq_thread_dtor);
1022 	task_work_add(current, &on_exit_work, false);
1023 
1024 	irq_thread_check_affinity(desc, action);
1025 
1026 	while (!irq_wait_for_interrupt(action)) {
1027 		irqreturn_t action_ret;
1028 
1029 		irq_thread_check_affinity(desc, action);
1030 
1031 		action_ret = handler_fn(desc, action);
1032 		if (action_ret == IRQ_WAKE_THREAD)
1033 			irq_wake_secondary(desc, action);
1034 
1035 		wake_threads_waitq(desc);
1036 	}
1037 
1038 	/*
1039 	 * This is the regular exit path. __free_irq() is stopping the
1040 	 * thread via kthread_stop() after calling
1041 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1042 	 * oneshot mask bit can be set.
1043 	 */
1044 	task_work_cancel(current, irq_thread_dtor);
1045 	return 0;
1046 }
1047 
1048 /**
1049  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1050  *	@irq:		Interrupt line
1051  *	@dev_id:	Device identity for which the thread should be woken
1052  *
1053  */
1054 void irq_wake_thread(unsigned int irq, void *dev_id)
1055 {
1056 	struct irq_desc *desc = irq_to_desc(irq);
1057 	struct irqaction *action;
1058 	unsigned long flags;
1059 
1060 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1061 		return;
1062 
1063 	raw_spin_lock_irqsave(&desc->lock, flags);
1064 	for_each_action_of_desc(desc, action) {
1065 		if (action->dev_id == dev_id) {
1066 			if (action->thread)
1067 				__irq_wake_thread(desc, action);
1068 			break;
1069 		}
1070 	}
1071 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1072 }
1073 EXPORT_SYMBOL_GPL(irq_wake_thread);
1074 
1075 static int irq_setup_forced_threading(struct irqaction *new)
1076 {
1077 	if (!force_irqthreads)
1078 		return 0;
1079 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1080 		return 0;
1081 
1082 	/*
1083 	 * No further action required for interrupts which are requested as
1084 	 * threaded interrupts already
1085 	 */
1086 	if (new->handler == irq_default_primary_handler)
1087 		return 0;
1088 
1089 	new->flags |= IRQF_ONESHOT;
1090 
1091 	/*
1092 	 * Handle the case where we have a real primary handler and a
1093 	 * thread handler. We force thread them as well by creating a
1094 	 * secondary action.
1095 	 */
1096 	if (new->handler && new->thread_fn) {
1097 		/* Allocate the secondary action */
1098 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1099 		if (!new->secondary)
1100 			return -ENOMEM;
1101 		new->secondary->handler = irq_forced_secondary_handler;
1102 		new->secondary->thread_fn = new->thread_fn;
1103 		new->secondary->dev_id = new->dev_id;
1104 		new->secondary->irq = new->irq;
1105 		new->secondary->name = new->name;
1106 	}
1107 	/* Deal with the primary handler */
1108 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1109 	new->thread_fn = new->handler;
1110 	new->handler = irq_default_primary_handler;
1111 	return 0;
1112 }
1113 
1114 static int irq_request_resources(struct irq_desc *desc)
1115 {
1116 	struct irq_data *d = &desc->irq_data;
1117 	struct irq_chip *c = d->chip;
1118 
1119 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1120 }
1121 
1122 static void irq_release_resources(struct irq_desc *desc)
1123 {
1124 	struct irq_data *d = &desc->irq_data;
1125 	struct irq_chip *c = d->chip;
1126 
1127 	if (c->irq_release_resources)
1128 		c->irq_release_resources(d);
1129 }
1130 
1131 static int
1132 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1133 {
1134 	struct task_struct *t;
1135 	struct sched_param param = {
1136 		.sched_priority = MAX_USER_RT_PRIO/2,
1137 	};
1138 
1139 	if (!secondary) {
1140 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1141 				   new->name);
1142 	} else {
1143 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1144 				   new->name);
1145 		param.sched_priority -= 1;
1146 	}
1147 
1148 	if (IS_ERR(t))
1149 		return PTR_ERR(t);
1150 
1151 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1152 
1153 	/*
1154 	 * We keep the reference to the task struct even if
1155 	 * the thread dies to avoid that the interrupt code
1156 	 * references an already freed task_struct.
1157 	 */
1158 	get_task_struct(t);
1159 	new->thread = t;
1160 	/*
1161 	 * Tell the thread to set its affinity. This is
1162 	 * important for shared interrupt handlers as we do
1163 	 * not invoke setup_affinity() for the secondary
1164 	 * handlers as everything is already set up. Even for
1165 	 * interrupts marked with IRQF_NO_BALANCE this is
1166 	 * correct as we want the thread to move to the cpu(s)
1167 	 * on which the requesting code placed the interrupt.
1168 	 */
1169 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Internal function to register an irqaction - typically used to
1175  * allocate special interrupts that are part of the architecture.
1176  *
1177  * Locking rules:
1178  *
1179  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1180  *   chip_bus_lock	Provides serialization for slow bus operations
1181  *     desc->lock	Provides serialization against hard interrupts
1182  *
1183  * chip_bus_lock and desc->lock are sufficient for all other management and
1184  * interrupt related functions. desc->request_mutex solely serializes
1185  * request/free_irq().
1186  */
1187 static int
1188 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1189 {
1190 	struct irqaction *old, **old_ptr;
1191 	unsigned long flags, thread_mask = 0;
1192 	int ret, nested, shared = 0;
1193 
1194 	if (!desc)
1195 		return -EINVAL;
1196 
1197 	if (desc->irq_data.chip == &no_irq_chip)
1198 		return -ENOSYS;
1199 	if (!try_module_get(desc->owner))
1200 		return -ENODEV;
1201 
1202 	new->irq = irq;
1203 
1204 	/*
1205 	 * If the trigger type is not specified by the caller,
1206 	 * then use the default for this interrupt.
1207 	 */
1208 	if (!(new->flags & IRQF_TRIGGER_MASK))
1209 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1210 
1211 	/*
1212 	 * Check whether the interrupt nests into another interrupt
1213 	 * thread.
1214 	 */
1215 	nested = irq_settings_is_nested_thread(desc);
1216 	if (nested) {
1217 		if (!new->thread_fn) {
1218 			ret = -EINVAL;
1219 			goto out_mput;
1220 		}
1221 		/*
1222 		 * Replace the primary handler which was provided from
1223 		 * the driver for non nested interrupt handling by the
1224 		 * dummy function which warns when called.
1225 		 */
1226 		new->handler = irq_nested_primary_handler;
1227 	} else {
1228 		if (irq_settings_can_thread(desc)) {
1229 			ret = irq_setup_forced_threading(new);
1230 			if (ret)
1231 				goto out_mput;
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * Create a handler thread when a thread function is supplied
1237 	 * and the interrupt does not nest into another interrupt
1238 	 * thread.
1239 	 */
1240 	if (new->thread_fn && !nested) {
1241 		ret = setup_irq_thread(new, irq, false);
1242 		if (ret)
1243 			goto out_mput;
1244 		if (new->secondary) {
1245 			ret = setup_irq_thread(new->secondary, irq, true);
1246 			if (ret)
1247 				goto out_thread;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * Drivers are often written to work w/o knowledge about the
1253 	 * underlying irq chip implementation, so a request for a
1254 	 * threaded irq without a primary hard irq context handler
1255 	 * requires the ONESHOT flag to be set. Some irq chips like
1256 	 * MSI based interrupts are per se one shot safe. Check the
1257 	 * chip flags, so we can avoid the unmask dance at the end of
1258 	 * the threaded handler for those.
1259 	 */
1260 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1261 		new->flags &= ~IRQF_ONESHOT;
1262 
1263 	/*
1264 	 * Protects against a concurrent __free_irq() call which might wait
1265 	 * for synchronize_hardirq() to complete without holding the optional
1266 	 * chip bus lock and desc->lock. Also protects against handing out
1267 	 * a recycled oneshot thread_mask bit while it's still in use by
1268 	 * its previous owner.
1269 	 */
1270 	mutex_lock(&desc->request_mutex);
1271 
1272 	/*
1273 	 * Acquire bus lock as the irq_request_resources() callback below
1274 	 * might rely on the serialization or the magic power management
1275 	 * functions which are abusing the irq_bus_lock() callback,
1276 	 */
1277 	chip_bus_lock(desc);
1278 
1279 	/* First installed action requests resources. */
1280 	if (!desc->action) {
1281 		ret = irq_request_resources(desc);
1282 		if (ret) {
1283 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1284 			       new->name, irq, desc->irq_data.chip->name);
1285 			goto out_bus_unlock;
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * The following block of code has to be executed atomically
1291 	 * protected against a concurrent interrupt and any of the other
1292 	 * management calls which are not serialized via
1293 	 * desc->request_mutex or the optional bus lock.
1294 	 */
1295 	raw_spin_lock_irqsave(&desc->lock, flags);
1296 	old_ptr = &desc->action;
1297 	old = *old_ptr;
1298 	if (old) {
1299 		/*
1300 		 * Can't share interrupts unless both agree to and are
1301 		 * the same type (level, edge, polarity). So both flag
1302 		 * fields must have IRQF_SHARED set and the bits which
1303 		 * set the trigger type must match. Also all must
1304 		 * agree on ONESHOT.
1305 		 */
1306 		unsigned int oldtype;
1307 
1308 		/*
1309 		 * If nobody did set the configuration before, inherit
1310 		 * the one provided by the requester.
1311 		 */
1312 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1313 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1314 		} else {
1315 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1316 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1317 		}
1318 
1319 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1320 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1321 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1322 			goto mismatch;
1323 
1324 		/* All handlers must agree on per-cpuness */
1325 		if ((old->flags & IRQF_PERCPU) !=
1326 		    (new->flags & IRQF_PERCPU))
1327 			goto mismatch;
1328 
1329 		/* add new interrupt at end of irq queue */
1330 		do {
1331 			/*
1332 			 * Or all existing action->thread_mask bits,
1333 			 * so we can find the next zero bit for this
1334 			 * new action.
1335 			 */
1336 			thread_mask |= old->thread_mask;
1337 			old_ptr = &old->next;
1338 			old = *old_ptr;
1339 		} while (old);
1340 		shared = 1;
1341 	}
1342 
1343 	/*
1344 	 * Setup the thread mask for this irqaction for ONESHOT. For
1345 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1346 	 * conditional in irq_wake_thread().
1347 	 */
1348 	if (new->flags & IRQF_ONESHOT) {
1349 		/*
1350 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1351 		 * but who knows.
1352 		 */
1353 		if (thread_mask == ~0UL) {
1354 			ret = -EBUSY;
1355 			goto out_unlock;
1356 		}
1357 		/*
1358 		 * The thread_mask for the action is or'ed to
1359 		 * desc->thread_active to indicate that the
1360 		 * IRQF_ONESHOT thread handler has been woken, but not
1361 		 * yet finished. The bit is cleared when a thread
1362 		 * completes. When all threads of a shared interrupt
1363 		 * line have completed desc->threads_active becomes
1364 		 * zero and the interrupt line is unmasked. See
1365 		 * handle.c:irq_wake_thread() for further information.
1366 		 *
1367 		 * If no thread is woken by primary (hard irq context)
1368 		 * interrupt handlers, then desc->threads_active is
1369 		 * also checked for zero to unmask the irq line in the
1370 		 * affected hard irq flow handlers
1371 		 * (handle_[fasteoi|level]_irq).
1372 		 *
1373 		 * The new action gets the first zero bit of
1374 		 * thread_mask assigned. See the loop above which or's
1375 		 * all existing action->thread_mask bits.
1376 		 */
1377 		new->thread_mask = 1UL << ffz(thread_mask);
1378 
1379 	} else if (new->handler == irq_default_primary_handler &&
1380 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1381 		/*
1382 		 * The interrupt was requested with handler = NULL, so
1383 		 * we use the default primary handler for it. But it
1384 		 * does not have the oneshot flag set. In combination
1385 		 * with level interrupts this is deadly, because the
1386 		 * default primary handler just wakes the thread, then
1387 		 * the irq lines is reenabled, but the device still
1388 		 * has the level irq asserted. Rinse and repeat....
1389 		 *
1390 		 * While this works for edge type interrupts, we play
1391 		 * it safe and reject unconditionally because we can't
1392 		 * say for sure which type this interrupt really
1393 		 * has. The type flags are unreliable as the
1394 		 * underlying chip implementation can override them.
1395 		 */
1396 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1397 		       irq);
1398 		ret = -EINVAL;
1399 		goto out_unlock;
1400 	}
1401 
1402 	if (!shared) {
1403 		init_waitqueue_head(&desc->wait_for_threads);
1404 
1405 		/* Setup the type (level, edge polarity) if configured: */
1406 		if (new->flags & IRQF_TRIGGER_MASK) {
1407 			ret = __irq_set_trigger(desc,
1408 						new->flags & IRQF_TRIGGER_MASK);
1409 
1410 			if (ret)
1411 				goto out_unlock;
1412 		}
1413 
1414 		/*
1415 		 * Activate the interrupt. That activation must happen
1416 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1417 		 * and the callers are supposed to handle
1418 		 * that. enable_irq() of an interrupt requested with
1419 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1420 		 * keeps it in shutdown mode, it merily associates
1421 		 * resources if necessary and if that's not possible it
1422 		 * fails. Interrupts which are in managed shutdown mode
1423 		 * will simply ignore that activation request.
1424 		 */
1425 		ret = irq_activate(desc);
1426 		if (ret)
1427 			goto out_unlock;
1428 
1429 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1430 				  IRQS_ONESHOT | IRQS_WAITING);
1431 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1432 
1433 		if (new->flags & IRQF_PERCPU) {
1434 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1435 			irq_settings_set_per_cpu(desc);
1436 		}
1437 
1438 		if (new->flags & IRQF_ONESHOT)
1439 			desc->istate |= IRQS_ONESHOT;
1440 
1441 		/* Exclude IRQ from balancing if requested */
1442 		if (new->flags & IRQF_NOBALANCING) {
1443 			irq_settings_set_no_balancing(desc);
1444 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1445 		}
1446 
1447 		if (irq_settings_can_autoenable(desc)) {
1448 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1449 		} else {
1450 			/*
1451 			 * Shared interrupts do not go well with disabling
1452 			 * auto enable. The sharing interrupt might request
1453 			 * it while it's still disabled and then wait for
1454 			 * interrupts forever.
1455 			 */
1456 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1457 			/* Undo nested disables: */
1458 			desc->depth = 1;
1459 		}
1460 
1461 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1462 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1463 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1464 
1465 		if (nmsk != omsk)
1466 			/* hope the handler works with current  trigger mode */
1467 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1468 				irq, omsk, nmsk);
1469 	}
1470 
1471 	*old_ptr = new;
1472 
1473 	irq_pm_install_action(desc, new);
1474 
1475 	/* Reset broken irq detection when installing new handler */
1476 	desc->irq_count = 0;
1477 	desc->irqs_unhandled = 0;
1478 
1479 	/*
1480 	 * Check whether we disabled the irq via the spurious handler
1481 	 * before. Reenable it and give it another chance.
1482 	 */
1483 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1484 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1485 		__enable_irq(desc);
1486 	}
1487 
1488 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1489 	chip_bus_sync_unlock(desc);
1490 	mutex_unlock(&desc->request_mutex);
1491 
1492 	irq_setup_timings(desc, new);
1493 
1494 	/*
1495 	 * Strictly no need to wake it up, but hung_task complains
1496 	 * when no hard interrupt wakes the thread up.
1497 	 */
1498 	if (new->thread)
1499 		wake_up_process(new->thread);
1500 	if (new->secondary)
1501 		wake_up_process(new->secondary->thread);
1502 
1503 	register_irq_proc(irq, desc);
1504 	new->dir = NULL;
1505 	register_handler_proc(irq, new);
1506 	return 0;
1507 
1508 mismatch:
1509 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1510 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1511 		       irq, new->flags, new->name, old->flags, old->name);
1512 #ifdef CONFIG_DEBUG_SHIRQ
1513 		dump_stack();
1514 #endif
1515 	}
1516 	ret = -EBUSY;
1517 
1518 out_unlock:
1519 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1520 
1521 	if (!desc->action)
1522 		irq_release_resources(desc);
1523 out_bus_unlock:
1524 	chip_bus_sync_unlock(desc);
1525 	mutex_unlock(&desc->request_mutex);
1526 
1527 out_thread:
1528 	if (new->thread) {
1529 		struct task_struct *t = new->thread;
1530 
1531 		new->thread = NULL;
1532 		kthread_stop(t);
1533 		put_task_struct(t);
1534 	}
1535 	if (new->secondary && new->secondary->thread) {
1536 		struct task_struct *t = new->secondary->thread;
1537 
1538 		new->secondary->thread = NULL;
1539 		kthread_stop(t);
1540 		put_task_struct(t);
1541 	}
1542 out_mput:
1543 	module_put(desc->owner);
1544 	return ret;
1545 }
1546 
1547 /**
1548  *	setup_irq - setup an interrupt
1549  *	@irq: Interrupt line to setup
1550  *	@act: irqaction for the interrupt
1551  *
1552  * Used to statically setup interrupts in the early boot process.
1553  */
1554 int setup_irq(unsigned int irq, struct irqaction *act)
1555 {
1556 	int retval;
1557 	struct irq_desc *desc = irq_to_desc(irq);
1558 
1559 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1560 		return -EINVAL;
1561 
1562 	retval = irq_chip_pm_get(&desc->irq_data);
1563 	if (retval < 0)
1564 		return retval;
1565 
1566 	retval = __setup_irq(irq, desc, act);
1567 
1568 	if (retval)
1569 		irq_chip_pm_put(&desc->irq_data);
1570 
1571 	return retval;
1572 }
1573 EXPORT_SYMBOL_GPL(setup_irq);
1574 
1575 /*
1576  * Internal function to unregister an irqaction - used to free
1577  * regular and special interrupts that are part of the architecture.
1578  */
1579 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1580 {
1581 	unsigned irq = desc->irq_data.irq;
1582 	struct irqaction *action, **action_ptr;
1583 	unsigned long flags;
1584 
1585 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1586 
1587 	mutex_lock(&desc->request_mutex);
1588 	chip_bus_lock(desc);
1589 	raw_spin_lock_irqsave(&desc->lock, flags);
1590 
1591 	/*
1592 	 * There can be multiple actions per IRQ descriptor, find the right
1593 	 * one based on the dev_id:
1594 	 */
1595 	action_ptr = &desc->action;
1596 	for (;;) {
1597 		action = *action_ptr;
1598 
1599 		if (!action) {
1600 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1601 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1602 			chip_bus_sync_unlock(desc);
1603 			mutex_unlock(&desc->request_mutex);
1604 			return NULL;
1605 		}
1606 
1607 		if (action->dev_id == dev_id)
1608 			break;
1609 		action_ptr = &action->next;
1610 	}
1611 
1612 	/* Found it - now remove it from the list of entries: */
1613 	*action_ptr = action->next;
1614 
1615 	irq_pm_remove_action(desc, action);
1616 
1617 	/* If this was the last handler, shut down the IRQ line: */
1618 	if (!desc->action) {
1619 		irq_settings_clr_disable_unlazy(desc);
1620 		irq_shutdown(desc);
1621 	}
1622 
1623 #ifdef CONFIG_SMP
1624 	/* make sure affinity_hint is cleaned up */
1625 	if (WARN_ON_ONCE(desc->affinity_hint))
1626 		desc->affinity_hint = NULL;
1627 #endif
1628 
1629 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1630 	/*
1631 	 * Drop bus_lock here so the changes which were done in the chip
1632 	 * callbacks above are synced out to the irq chips which hang
1633 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1634 	 *
1635 	 * Aside of that the bus_lock can also be taken from the threaded
1636 	 * handler in irq_finalize_oneshot() which results in a deadlock
1637 	 * because kthread_stop() would wait forever for the thread to
1638 	 * complete, which is blocked on the bus lock.
1639 	 *
1640 	 * The still held desc->request_mutex() protects against a
1641 	 * concurrent request_irq() of this irq so the release of resources
1642 	 * and timing data is properly serialized.
1643 	 */
1644 	chip_bus_sync_unlock(desc);
1645 
1646 	unregister_handler_proc(irq, action);
1647 
1648 	/* Make sure it's not being used on another CPU: */
1649 	synchronize_hardirq(irq);
1650 
1651 #ifdef CONFIG_DEBUG_SHIRQ
1652 	/*
1653 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1654 	 * event to happen even now it's being freed, so let's make sure that
1655 	 * is so by doing an extra call to the handler ....
1656 	 *
1657 	 * ( We do this after actually deregistering it, to make sure that a
1658 	 *   'real' IRQ doesn't run in parallel with our fake. )
1659 	 */
1660 	if (action->flags & IRQF_SHARED) {
1661 		local_irq_save(flags);
1662 		action->handler(irq, dev_id);
1663 		local_irq_restore(flags);
1664 	}
1665 #endif
1666 
1667 	/*
1668 	 * The action has already been removed above, but the thread writes
1669 	 * its oneshot mask bit when it completes. Though request_mutex is
1670 	 * held across this which prevents __setup_irq() from handing out
1671 	 * the same bit to a newly requested action.
1672 	 */
1673 	if (action->thread) {
1674 		kthread_stop(action->thread);
1675 		put_task_struct(action->thread);
1676 		if (action->secondary && action->secondary->thread) {
1677 			kthread_stop(action->secondary->thread);
1678 			put_task_struct(action->secondary->thread);
1679 		}
1680 	}
1681 
1682 	/* Last action releases resources */
1683 	if (!desc->action) {
1684 		/*
1685 		 * Reaquire bus lock as irq_release_resources() might
1686 		 * require it to deallocate resources over the slow bus.
1687 		 */
1688 		chip_bus_lock(desc);
1689 		irq_release_resources(desc);
1690 		chip_bus_sync_unlock(desc);
1691 		irq_remove_timings(desc);
1692 	}
1693 
1694 	mutex_unlock(&desc->request_mutex);
1695 
1696 	irq_chip_pm_put(&desc->irq_data);
1697 	module_put(desc->owner);
1698 	kfree(action->secondary);
1699 	return action;
1700 }
1701 
1702 /**
1703  *	remove_irq - free an interrupt
1704  *	@irq: Interrupt line to free
1705  *	@act: irqaction for the interrupt
1706  *
1707  * Used to remove interrupts statically setup by the early boot process.
1708  */
1709 void remove_irq(unsigned int irq, struct irqaction *act)
1710 {
1711 	struct irq_desc *desc = irq_to_desc(irq);
1712 
1713 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1714 		__free_irq(desc, act->dev_id);
1715 }
1716 EXPORT_SYMBOL_GPL(remove_irq);
1717 
1718 /**
1719  *	free_irq - free an interrupt allocated with request_irq
1720  *	@irq: Interrupt line to free
1721  *	@dev_id: Device identity to free
1722  *
1723  *	Remove an interrupt handler. The handler is removed and if the
1724  *	interrupt line is no longer in use by any driver it is disabled.
1725  *	On a shared IRQ the caller must ensure the interrupt is disabled
1726  *	on the card it drives before calling this function. The function
1727  *	does not return until any executing interrupts for this IRQ
1728  *	have completed.
1729  *
1730  *	This function must not be called from interrupt context.
1731  *
1732  *	Returns the devname argument passed to request_irq.
1733  */
1734 const void *free_irq(unsigned int irq, void *dev_id)
1735 {
1736 	struct irq_desc *desc = irq_to_desc(irq);
1737 	struct irqaction *action;
1738 	const char *devname;
1739 
1740 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1741 		return NULL;
1742 
1743 #ifdef CONFIG_SMP
1744 	if (WARN_ON(desc->affinity_notify))
1745 		desc->affinity_notify = NULL;
1746 #endif
1747 
1748 	action = __free_irq(desc, dev_id);
1749 
1750 	if (!action)
1751 		return NULL;
1752 
1753 	devname = action->name;
1754 	kfree(action);
1755 	return devname;
1756 }
1757 EXPORT_SYMBOL(free_irq);
1758 
1759 /**
1760  *	request_threaded_irq - allocate an interrupt line
1761  *	@irq: Interrupt line to allocate
1762  *	@handler: Function to be called when the IRQ occurs.
1763  *		  Primary handler for threaded interrupts
1764  *		  If NULL and thread_fn != NULL the default
1765  *		  primary handler is installed
1766  *	@thread_fn: Function called from the irq handler thread
1767  *		    If NULL, no irq thread is created
1768  *	@irqflags: Interrupt type flags
1769  *	@devname: An ascii name for the claiming device
1770  *	@dev_id: A cookie passed back to the handler function
1771  *
1772  *	This call allocates interrupt resources and enables the
1773  *	interrupt line and IRQ handling. From the point this
1774  *	call is made your handler function may be invoked. Since
1775  *	your handler function must clear any interrupt the board
1776  *	raises, you must take care both to initialise your hardware
1777  *	and to set up the interrupt handler in the right order.
1778  *
1779  *	If you want to set up a threaded irq handler for your device
1780  *	then you need to supply @handler and @thread_fn. @handler is
1781  *	still called in hard interrupt context and has to check
1782  *	whether the interrupt originates from the device. If yes it
1783  *	needs to disable the interrupt on the device and return
1784  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1785  *	@thread_fn. This split handler design is necessary to support
1786  *	shared interrupts.
1787  *
1788  *	Dev_id must be globally unique. Normally the address of the
1789  *	device data structure is used as the cookie. Since the handler
1790  *	receives this value it makes sense to use it.
1791  *
1792  *	If your interrupt is shared you must pass a non NULL dev_id
1793  *	as this is required when freeing the interrupt.
1794  *
1795  *	Flags:
1796  *
1797  *	IRQF_SHARED		Interrupt is shared
1798  *	IRQF_TRIGGER_*		Specify active edge(s) or level
1799  *
1800  */
1801 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1802 			 irq_handler_t thread_fn, unsigned long irqflags,
1803 			 const char *devname, void *dev_id)
1804 {
1805 	struct irqaction *action;
1806 	struct irq_desc *desc;
1807 	int retval;
1808 
1809 	if (irq == IRQ_NOTCONNECTED)
1810 		return -ENOTCONN;
1811 
1812 	/*
1813 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
1814 	 * otherwise we'll have trouble later trying to figure out
1815 	 * which interrupt is which (messes up the interrupt freeing
1816 	 * logic etc).
1817 	 *
1818 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1819 	 * it cannot be set along with IRQF_NO_SUSPEND.
1820 	 */
1821 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
1822 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1823 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1824 		return -EINVAL;
1825 
1826 	desc = irq_to_desc(irq);
1827 	if (!desc)
1828 		return -EINVAL;
1829 
1830 	if (!irq_settings_can_request(desc) ||
1831 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1832 		return -EINVAL;
1833 
1834 	if (!handler) {
1835 		if (!thread_fn)
1836 			return -EINVAL;
1837 		handler = irq_default_primary_handler;
1838 	}
1839 
1840 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1841 	if (!action)
1842 		return -ENOMEM;
1843 
1844 	action->handler = handler;
1845 	action->thread_fn = thread_fn;
1846 	action->flags = irqflags;
1847 	action->name = devname;
1848 	action->dev_id = dev_id;
1849 
1850 	retval = irq_chip_pm_get(&desc->irq_data);
1851 	if (retval < 0) {
1852 		kfree(action);
1853 		return retval;
1854 	}
1855 
1856 	retval = __setup_irq(irq, desc, action);
1857 
1858 	if (retval) {
1859 		irq_chip_pm_put(&desc->irq_data);
1860 		kfree(action->secondary);
1861 		kfree(action);
1862 	}
1863 
1864 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1865 	if (!retval && (irqflags & IRQF_SHARED)) {
1866 		/*
1867 		 * It's a shared IRQ -- the driver ought to be prepared for it
1868 		 * to happen immediately, so let's make sure....
1869 		 * We disable the irq to make sure that a 'real' IRQ doesn't
1870 		 * run in parallel with our fake.
1871 		 */
1872 		unsigned long flags;
1873 
1874 		disable_irq(irq);
1875 		local_irq_save(flags);
1876 
1877 		handler(irq, dev_id);
1878 
1879 		local_irq_restore(flags);
1880 		enable_irq(irq);
1881 	}
1882 #endif
1883 	return retval;
1884 }
1885 EXPORT_SYMBOL(request_threaded_irq);
1886 
1887 /**
1888  *	request_any_context_irq - allocate an interrupt line
1889  *	@irq: Interrupt line to allocate
1890  *	@handler: Function to be called when the IRQ occurs.
1891  *		  Threaded handler for threaded interrupts.
1892  *	@flags: Interrupt type flags
1893  *	@name: An ascii name for the claiming device
1894  *	@dev_id: A cookie passed back to the handler function
1895  *
1896  *	This call allocates interrupt resources and enables the
1897  *	interrupt line and IRQ handling. It selects either a
1898  *	hardirq or threaded handling method depending on the
1899  *	context.
1900  *
1901  *	On failure, it returns a negative value. On success,
1902  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1903  */
1904 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1905 			    unsigned long flags, const char *name, void *dev_id)
1906 {
1907 	struct irq_desc *desc;
1908 	int ret;
1909 
1910 	if (irq == IRQ_NOTCONNECTED)
1911 		return -ENOTCONN;
1912 
1913 	desc = irq_to_desc(irq);
1914 	if (!desc)
1915 		return -EINVAL;
1916 
1917 	if (irq_settings_is_nested_thread(desc)) {
1918 		ret = request_threaded_irq(irq, NULL, handler,
1919 					   flags, name, dev_id);
1920 		return !ret ? IRQC_IS_NESTED : ret;
1921 	}
1922 
1923 	ret = request_irq(irq, handler, flags, name, dev_id);
1924 	return !ret ? IRQC_IS_HARDIRQ : ret;
1925 }
1926 EXPORT_SYMBOL_GPL(request_any_context_irq);
1927 
1928 void enable_percpu_irq(unsigned int irq, unsigned int type)
1929 {
1930 	unsigned int cpu = smp_processor_id();
1931 	unsigned long flags;
1932 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1933 
1934 	if (!desc)
1935 		return;
1936 
1937 	/*
1938 	 * If the trigger type is not specified by the caller, then
1939 	 * use the default for this interrupt.
1940 	 */
1941 	type &= IRQ_TYPE_SENSE_MASK;
1942 	if (type == IRQ_TYPE_NONE)
1943 		type = irqd_get_trigger_type(&desc->irq_data);
1944 
1945 	if (type != IRQ_TYPE_NONE) {
1946 		int ret;
1947 
1948 		ret = __irq_set_trigger(desc, type);
1949 
1950 		if (ret) {
1951 			WARN(1, "failed to set type for IRQ%d\n", irq);
1952 			goto out;
1953 		}
1954 	}
1955 
1956 	irq_percpu_enable(desc, cpu);
1957 out:
1958 	irq_put_desc_unlock(desc, flags);
1959 }
1960 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1961 
1962 /**
1963  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1964  * @irq:	Linux irq number to check for
1965  *
1966  * Must be called from a non migratable context. Returns the enable
1967  * state of a per cpu interrupt on the current cpu.
1968  */
1969 bool irq_percpu_is_enabled(unsigned int irq)
1970 {
1971 	unsigned int cpu = smp_processor_id();
1972 	struct irq_desc *desc;
1973 	unsigned long flags;
1974 	bool is_enabled;
1975 
1976 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1977 	if (!desc)
1978 		return false;
1979 
1980 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1981 	irq_put_desc_unlock(desc, flags);
1982 
1983 	return is_enabled;
1984 }
1985 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1986 
1987 void disable_percpu_irq(unsigned int irq)
1988 {
1989 	unsigned int cpu = smp_processor_id();
1990 	unsigned long flags;
1991 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1992 
1993 	if (!desc)
1994 		return;
1995 
1996 	irq_percpu_disable(desc, cpu);
1997 	irq_put_desc_unlock(desc, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2000 
2001 /*
2002  * Internal function to unregister a percpu irqaction.
2003  */
2004 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2005 {
2006 	struct irq_desc *desc = irq_to_desc(irq);
2007 	struct irqaction *action;
2008 	unsigned long flags;
2009 
2010 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2011 
2012 	if (!desc)
2013 		return NULL;
2014 
2015 	raw_spin_lock_irqsave(&desc->lock, flags);
2016 
2017 	action = desc->action;
2018 	if (!action || action->percpu_dev_id != dev_id) {
2019 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2020 		goto bad;
2021 	}
2022 
2023 	if (!cpumask_empty(desc->percpu_enabled)) {
2024 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2025 		     irq, cpumask_first(desc->percpu_enabled));
2026 		goto bad;
2027 	}
2028 
2029 	/* Found it - now remove it from the list of entries: */
2030 	desc->action = NULL;
2031 
2032 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2033 
2034 	unregister_handler_proc(irq, action);
2035 
2036 	irq_chip_pm_put(&desc->irq_data);
2037 	module_put(desc->owner);
2038 	return action;
2039 
2040 bad:
2041 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2042 	return NULL;
2043 }
2044 
2045 /**
2046  *	remove_percpu_irq - free a per-cpu interrupt
2047  *	@irq: Interrupt line to free
2048  *	@act: irqaction for the interrupt
2049  *
2050  * Used to remove interrupts statically setup by the early boot process.
2051  */
2052 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2053 {
2054 	struct irq_desc *desc = irq_to_desc(irq);
2055 
2056 	if (desc && irq_settings_is_per_cpu_devid(desc))
2057 	    __free_percpu_irq(irq, act->percpu_dev_id);
2058 }
2059 
2060 /**
2061  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2062  *	@irq: Interrupt line to free
2063  *	@dev_id: Device identity to free
2064  *
2065  *	Remove a percpu interrupt handler. The handler is removed, but
2066  *	the interrupt line is not disabled. This must be done on each
2067  *	CPU before calling this function. The function does not return
2068  *	until any executing interrupts for this IRQ have completed.
2069  *
2070  *	This function must not be called from interrupt context.
2071  */
2072 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2073 {
2074 	struct irq_desc *desc = irq_to_desc(irq);
2075 
2076 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2077 		return;
2078 
2079 	chip_bus_lock(desc);
2080 	kfree(__free_percpu_irq(irq, dev_id));
2081 	chip_bus_sync_unlock(desc);
2082 }
2083 EXPORT_SYMBOL_GPL(free_percpu_irq);
2084 
2085 /**
2086  *	setup_percpu_irq - setup a per-cpu interrupt
2087  *	@irq: Interrupt line to setup
2088  *	@act: irqaction for the interrupt
2089  *
2090  * Used to statically setup per-cpu interrupts in the early boot process.
2091  */
2092 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2093 {
2094 	struct irq_desc *desc = irq_to_desc(irq);
2095 	int retval;
2096 
2097 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2098 		return -EINVAL;
2099 
2100 	retval = irq_chip_pm_get(&desc->irq_data);
2101 	if (retval < 0)
2102 		return retval;
2103 
2104 	retval = __setup_irq(irq, desc, act);
2105 
2106 	if (retval)
2107 		irq_chip_pm_put(&desc->irq_data);
2108 
2109 	return retval;
2110 }
2111 
2112 /**
2113  *	__request_percpu_irq - allocate a percpu interrupt line
2114  *	@irq: Interrupt line to allocate
2115  *	@handler: Function to be called when the IRQ occurs.
2116  *	@flags: Interrupt type flags (IRQF_TIMER only)
2117  *	@devname: An ascii name for the claiming device
2118  *	@dev_id: A percpu cookie passed back to the handler function
2119  *
2120  *	This call allocates interrupt resources and enables the
2121  *	interrupt on the local CPU. If the interrupt is supposed to be
2122  *	enabled on other CPUs, it has to be done on each CPU using
2123  *	enable_percpu_irq().
2124  *
2125  *	Dev_id must be globally unique. It is a per-cpu variable, and
2126  *	the handler gets called with the interrupted CPU's instance of
2127  *	that variable.
2128  */
2129 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2130 			 unsigned long flags, const char *devname,
2131 			 void __percpu *dev_id)
2132 {
2133 	struct irqaction *action;
2134 	struct irq_desc *desc;
2135 	int retval;
2136 
2137 	if (!dev_id)
2138 		return -EINVAL;
2139 
2140 	desc = irq_to_desc(irq);
2141 	if (!desc || !irq_settings_can_request(desc) ||
2142 	    !irq_settings_is_per_cpu_devid(desc))
2143 		return -EINVAL;
2144 
2145 	if (flags && flags != IRQF_TIMER)
2146 		return -EINVAL;
2147 
2148 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2149 	if (!action)
2150 		return -ENOMEM;
2151 
2152 	action->handler = handler;
2153 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2154 	action->name = devname;
2155 	action->percpu_dev_id = dev_id;
2156 
2157 	retval = irq_chip_pm_get(&desc->irq_data);
2158 	if (retval < 0) {
2159 		kfree(action);
2160 		return retval;
2161 	}
2162 
2163 	retval = __setup_irq(irq, desc, action);
2164 
2165 	if (retval) {
2166 		irq_chip_pm_put(&desc->irq_data);
2167 		kfree(action);
2168 	}
2169 
2170 	return retval;
2171 }
2172 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2173 
2174 /**
2175  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2176  *	@irq: Interrupt line that is forwarded to a VM
2177  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2178  *	@state: a pointer to a boolean where the state is to be storeed
2179  *
2180  *	This call snapshots the internal irqchip state of an
2181  *	interrupt, returning into @state the bit corresponding to
2182  *	stage @which
2183  *
2184  *	This function should be called with preemption disabled if the
2185  *	interrupt controller has per-cpu registers.
2186  */
2187 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2188 			  bool *state)
2189 {
2190 	struct irq_desc *desc;
2191 	struct irq_data *data;
2192 	struct irq_chip *chip;
2193 	unsigned long flags;
2194 	int err = -EINVAL;
2195 
2196 	desc = irq_get_desc_buslock(irq, &flags, 0);
2197 	if (!desc)
2198 		return err;
2199 
2200 	data = irq_desc_get_irq_data(desc);
2201 
2202 	do {
2203 		chip = irq_data_get_irq_chip(data);
2204 		if (chip->irq_get_irqchip_state)
2205 			break;
2206 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2207 		data = data->parent_data;
2208 #else
2209 		data = NULL;
2210 #endif
2211 	} while (data);
2212 
2213 	if (data)
2214 		err = chip->irq_get_irqchip_state(data, which, state);
2215 
2216 	irq_put_desc_busunlock(desc, flags);
2217 	return err;
2218 }
2219 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2220 
2221 /**
2222  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2223  *	@irq: Interrupt line that is forwarded to a VM
2224  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2225  *	@val: Value corresponding to @which
2226  *
2227  *	This call sets the internal irqchip state of an interrupt,
2228  *	depending on the value of @which.
2229  *
2230  *	This function should be called with preemption disabled if the
2231  *	interrupt controller has per-cpu registers.
2232  */
2233 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2234 			  bool val)
2235 {
2236 	struct irq_desc *desc;
2237 	struct irq_data *data;
2238 	struct irq_chip *chip;
2239 	unsigned long flags;
2240 	int err = -EINVAL;
2241 
2242 	desc = irq_get_desc_buslock(irq, &flags, 0);
2243 	if (!desc)
2244 		return err;
2245 
2246 	data = irq_desc_get_irq_data(desc);
2247 
2248 	do {
2249 		chip = irq_data_get_irq_chip(data);
2250 		if (chip->irq_set_irqchip_state)
2251 			break;
2252 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2253 		data = data->parent_data;
2254 #else
2255 		data = NULL;
2256 #endif
2257 	} while (data);
2258 
2259 	if (data)
2260 		err = chip->irq_set_irqchip_state(data, which, val);
2261 
2262 	irq_put_desc_busunlock(desc, flags);
2263 	return err;
2264 }
2265 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2266