xref: /linux/kernel/irq/manage.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 	__synchronize_hardirq(desc, true);
114 	/*
115 	 * We made sure that no hardirq handler is running. Now verify that no
116 	 * threaded handlers are active.
117 	 */
118 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120 
121 /**
122  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *	@irq: interrupt number to wait for
124  *
125  *	This function waits for any pending IRQ handlers for this interrupt
126  *	to complete before returning. If you use this function while
127  *	holding a resource the IRQ handler may need you will deadlock.
128  *
129  *	Can only be called from preemptible code as it might sleep when
130  *	an interrupt thread is associated to @irq.
131  *
132  *	It optionally makes sure (when the irq chip supports that method)
133  *	that the interrupt is not pending in any CPU and waiting for
134  *	service.
135  */
136 void synchronize_irq(unsigned int irq)
137 {
138 	struct irq_desc *desc = irq_to_desc(irq);
139 
140 	if (desc)
141 		__synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144 
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147 
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 		return false;
153 	return true;
154 }
155 
156 /**
157  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *	@irq:		Interrupt to check
159  *
160  */
161 int irq_can_set_affinity(unsigned int irq)
162 {
163 	return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165 
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:	Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 	struct irq_desc *desc = irq_to_desc(irq);
176 
177 	return __irq_can_set_affinity(desc) &&
178 		!irqd_affinity_is_managed(&desc->irq_data);
179 }
180 
181 /**
182  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *	@desc:		irq descriptor which has affinity changed
184  *
185  *	We just set IRQTF_AFFINITY and delegate the affinity setting
186  *	to the interrupt thread itself. We can not call
187  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *	code can be called from hard interrupt context.
189  */
190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 	struct irqaction *action;
193 
194 	for_each_action_of_desc(desc, action) {
195 		if (action->thread) {
196 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 			wake_up_process(action->thread);
198 		}
199 		if (action->secondary && action->secondary->thread) {
200 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201 			wake_up_process(action->secondary->thread);
202 		}
203 	}
204 }
205 
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207 static void irq_validate_effective_affinity(struct irq_data *data)
208 {
209 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210 	struct irq_chip *chip = irq_data_get_irq_chip(data);
211 
212 	if (!cpumask_empty(m))
213 		return;
214 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215 		     chip->name, data->irq);
216 }
217 #else
218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
220 
221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 	static struct cpumask tmp_mask;
231 
232 	if (!chip || !chip->irq_set_affinity)
233 		return -EINVAL;
234 
235 	raw_spin_lock(&tmp_mask_lock);
236 	/*
237 	 * If this is a managed interrupt and housekeeping is enabled on
238 	 * it check whether the requested affinity mask intersects with
239 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 	 * the mask and just keep the housekeeping CPU(s). This prevents
241 	 * the affinity setter from routing the interrupt to an isolated
242 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 	 * interrupts on an isolated one.
244 	 *
245 	 * If the masks do not intersect or include online CPU(s) then
246 	 * keep the requested mask. The isolated target CPUs are only
247 	 * receiving interrupts when the I/O operation was submitted
248 	 * directly from them.
249 	 *
250 	 * If all housekeeping CPUs in the affinity mask are offline, the
251 	 * interrupt will be migrated by the CPU hotplug code once a
252 	 * housekeeping CPU which belongs to the affinity mask comes
253 	 * online.
254 	 */
255 	if (irqd_affinity_is_managed(data) &&
256 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257 		const struct cpumask *hk_mask;
258 
259 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260 
261 		cpumask_and(&tmp_mask, mask, hk_mask);
262 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 			prog_mask = mask;
264 		else
265 			prog_mask = &tmp_mask;
266 	} else {
267 		prog_mask = mask;
268 	}
269 
270 	/*
271 	 * Make sure we only provide online CPUs to the irqchip,
272 	 * unless we are being asked to force the affinity (in which
273 	 * case we do as we are told).
274 	 */
275 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 	if (!force && !cpumask_empty(&tmp_mask))
277 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 	else if (force)
279 		ret = chip->irq_set_affinity(data, mask, force);
280 	else
281 		ret = -EINVAL;
282 
283 	raw_spin_unlock(&tmp_mask_lock);
284 
285 	switch (ret) {
286 	case IRQ_SET_MASK_OK:
287 	case IRQ_SET_MASK_OK_DONE:
288 		cpumask_copy(desc->irq_common_data.affinity, mask);
289 		fallthrough;
290 	case IRQ_SET_MASK_OK_NOCOPY:
291 		irq_validate_effective_affinity(data);
292 		irq_set_thread_affinity(desc);
293 		ret = 0;
294 	}
295 
296 	return ret;
297 }
298 
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
300 static inline int irq_set_affinity_pending(struct irq_data *data,
301 					   const struct cpumask *dest)
302 {
303 	struct irq_desc *desc = irq_data_to_desc(data);
304 
305 	irqd_set_move_pending(data);
306 	irq_copy_pending(desc, dest);
307 	return 0;
308 }
309 #else
310 static inline int irq_set_affinity_pending(struct irq_data *data,
311 					   const struct cpumask *dest)
312 {
313 	return -EBUSY;
314 }
315 #endif
316 
317 static int irq_try_set_affinity(struct irq_data *data,
318 				const struct cpumask *dest, bool force)
319 {
320 	int ret = irq_do_set_affinity(data, dest, force);
321 
322 	/*
323 	 * In case that the underlying vector management is busy and the
324 	 * architecture supports the generic pending mechanism then utilize
325 	 * this to avoid returning an error to user space.
326 	 */
327 	if (ret == -EBUSY && !force)
328 		ret = irq_set_affinity_pending(data, dest);
329 	return ret;
330 }
331 
332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333 					 const struct cpumask *mask)
334 {
335 	struct irq_desc *desc = irq_data_to_desc(data);
336 
337 	/*
338 	 * Handle irq chips which can handle affinity only in activated
339 	 * state correctly
340 	 *
341 	 * If the interrupt is not yet activated, just store the affinity
342 	 * mask and do not call the chip driver at all. On activation the
343 	 * driver has to make sure anyway that the interrupt is in a
344 	 * usable state so startup works.
345 	 */
346 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 		return false;
349 
350 	cpumask_copy(desc->irq_common_data.affinity, mask);
351 	irq_data_update_effective_affinity(data, mask);
352 	irqd_set(data, IRQD_AFFINITY_SET);
353 	return true;
354 }
355 
356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 			    bool force)
358 {
359 	struct irq_chip *chip = irq_data_get_irq_chip(data);
360 	struct irq_desc *desc = irq_data_to_desc(data);
361 	int ret = 0;
362 
363 	if (!chip || !chip->irq_set_affinity)
364 		return -EINVAL;
365 
366 	if (irq_set_affinity_deactivated(data, mask))
367 		return 0;
368 
369 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 		ret = irq_try_set_affinity(data, mask, force);
371 	} else {
372 		irqd_set_move_pending(data);
373 		irq_copy_pending(desc, mask);
374 	}
375 
376 	if (desc->affinity_notify) {
377 		kref_get(&desc->affinity_notify->kref);
378 		if (!schedule_work(&desc->affinity_notify->work)) {
379 			/* Work was already scheduled, drop our extra ref */
380 			kref_put(&desc->affinity_notify->kref,
381 				 desc->affinity_notify->release);
382 		}
383 	}
384 	irqd_set(data, IRQD_AFFINITY_SET);
385 
386 	return ret;
387 }
388 
389 /**
390  * irq_update_affinity_desc - Update affinity management for an interrupt
391  * @irq:	The interrupt number to update
392  * @affinity:	Pointer to the affinity descriptor
393  *
394  * This interface can be used to configure the affinity management of
395  * interrupts which have been allocated already.
396  *
397  * There are certain limitations on when it may be used - attempts to use it
398  * for when the kernel is configured for generic IRQ reservation mode (in
399  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400  * managed/non-managed interrupt accounting. In addition, attempts to use it on
401  * an interrupt which is already started or which has already been configured
402  * as managed will also fail, as these mean invalid init state or double init.
403  */
404 int irq_update_affinity_desc(unsigned int irq,
405 			     struct irq_affinity_desc *affinity)
406 {
407 	struct irq_desc *desc;
408 	unsigned long flags;
409 	bool activated;
410 	int ret = 0;
411 
412 	/*
413 	 * Supporting this with the reservation scheme used by x86 needs
414 	 * some more thought. Fail it for now.
415 	 */
416 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417 		return -EOPNOTSUPP;
418 
419 	desc = irq_get_desc_buslock(irq, &flags, 0);
420 	if (!desc)
421 		return -EINVAL;
422 
423 	/* Requires the interrupt to be shut down */
424 	if (irqd_is_started(&desc->irq_data)) {
425 		ret = -EBUSY;
426 		goto out_unlock;
427 	}
428 
429 	/* Interrupts which are already managed cannot be modified */
430 	if (irqd_affinity_is_managed(&desc->irq_data)) {
431 		ret = -EBUSY;
432 		goto out_unlock;
433 	}
434 
435 	/*
436 	 * Deactivate the interrupt. That's required to undo
437 	 * anything an earlier activation has established.
438 	 */
439 	activated = irqd_is_activated(&desc->irq_data);
440 	if (activated)
441 		irq_domain_deactivate_irq(&desc->irq_data);
442 
443 	if (affinity->is_managed) {
444 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446 	}
447 
448 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449 
450 	/* Restore the activation state */
451 	if (activated)
452 		irq_domain_activate_irq(&desc->irq_data, false);
453 
454 out_unlock:
455 	irq_put_desc_busunlock(desc, flags);
456 	return ret;
457 }
458 
459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460 			      bool force)
461 {
462 	struct irq_desc *desc = irq_to_desc(irq);
463 	unsigned long flags;
464 	int ret;
465 
466 	if (!desc)
467 		return -EINVAL;
468 
469 	raw_spin_lock_irqsave(&desc->lock, flags);
470 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471 	raw_spin_unlock_irqrestore(&desc->lock, flags);
472 	return ret;
473 }
474 
475 /**
476  * irq_set_affinity - Set the irq affinity of a given irq
477  * @irq:	Interrupt to set affinity
478  * @cpumask:	cpumask
479  *
480  * Fails if cpumask does not contain an online CPU
481  */
482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483 {
484 	return __irq_set_affinity(irq, cpumask, false);
485 }
486 EXPORT_SYMBOL_GPL(irq_set_affinity);
487 
488 /**
489  * irq_force_affinity - Force the irq affinity of a given irq
490  * @irq:	Interrupt to set affinity
491  * @cpumask:	cpumask
492  *
493  * Same as irq_set_affinity, but without checking the mask against
494  * online cpus.
495  *
496  * Solely for low level cpu hotplug code, where we need to make per
497  * cpu interrupts affine before the cpu becomes online.
498  */
499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500 {
501 	return __irq_set_affinity(irq, cpumask, true);
502 }
503 EXPORT_SYMBOL_GPL(irq_force_affinity);
504 
505 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506 			      bool setaffinity)
507 {
508 	unsigned long flags;
509 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510 
511 	if (!desc)
512 		return -EINVAL;
513 	desc->affinity_hint = m;
514 	irq_put_desc_unlock(desc, flags);
515 	if (m && setaffinity)
516 		__irq_set_affinity(irq, m, false);
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520 
521 static void irq_affinity_notify(struct work_struct *work)
522 {
523 	struct irq_affinity_notify *notify =
524 		container_of(work, struct irq_affinity_notify, work);
525 	struct irq_desc *desc = irq_to_desc(notify->irq);
526 	cpumask_var_t cpumask;
527 	unsigned long flags;
528 
529 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530 		goto out;
531 
532 	raw_spin_lock_irqsave(&desc->lock, flags);
533 	if (irq_move_pending(&desc->irq_data))
534 		irq_get_pending(cpumask, desc);
535 	else
536 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
537 	raw_spin_unlock_irqrestore(&desc->lock, flags);
538 
539 	notify->notify(notify, cpumask);
540 
541 	free_cpumask_var(cpumask);
542 out:
543 	kref_put(&notify->kref, notify->release);
544 }
545 
546 /**
547  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
548  *	@irq:		Interrupt for which to enable/disable notification
549  *	@notify:	Context for notification, or %NULL to disable
550  *			notification.  Function pointers must be initialised;
551  *			the other fields will be initialised by this function.
552  *
553  *	Must be called in process context.  Notification may only be enabled
554  *	after the IRQ is allocated and must be disabled before the IRQ is
555  *	freed using free_irq().
556  */
557 int
558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559 {
560 	struct irq_desc *desc = irq_to_desc(irq);
561 	struct irq_affinity_notify *old_notify;
562 	unsigned long flags;
563 
564 	/* The release function is promised process context */
565 	might_sleep();
566 
567 	if (!desc || irq_is_nmi(desc))
568 		return -EINVAL;
569 
570 	/* Complete initialisation of *notify */
571 	if (notify) {
572 		notify->irq = irq;
573 		kref_init(&notify->kref);
574 		INIT_WORK(&notify->work, irq_affinity_notify);
575 	}
576 
577 	raw_spin_lock_irqsave(&desc->lock, flags);
578 	old_notify = desc->affinity_notify;
579 	desc->affinity_notify = notify;
580 	raw_spin_unlock_irqrestore(&desc->lock, flags);
581 
582 	if (old_notify) {
583 		if (cancel_work_sync(&old_notify->work)) {
584 			/* Pending work had a ref, put that one too */
585 			kref_put(&old_notify->kref, old_notify->release);
586 		}
587 		kref_put(&old_notify->kref, old_notify->release);
588 	}
589 
590 	return 0;
591 }
592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593 
594 #ifndef CONFIG_AUTO_IRQ_AFFINITY
595 /*
596  * Generic version of the affinity autoselector.
597  */
598 int irq_setup_affinity(struct irq_desc *desc)
599 {
600 	struct cpumask *set = irq_default_affinity;
601 	int ret, node = irq_desc_get_node(desc);
602 	static DEFINE_RAW_SPINLOCK(mask_lock);
603 	static struct cpumask mask;
604 
605 	/* Excludes PER_CPU and NO_BALANCE interrupts */
606 	if (!__irq_can_set_affinity(desc))
607 		return 0;
608 
609 	raw_spin_lock(&mask_lock);
610 	/*
611 	 * Preserve the managed affinity setting and a userspace affinity
612 	 * setup, but make sure that one of the targets is online.
613 	 */
614 	if (irqd_affinity_is_managed(&desc->irq_data) ||
615 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616 		if (cpumask_intersects(desc->irq_common_data.affinity,
617 				       cpu_online_mask))
618 			set = desc->irq_common_data.affinity;
619 		else
620 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621 	}
622 
623 	cpumask_and(&mask, cpu_online_mask, set);
624 	if (cpumask_empty(&mask))
625 		cpumask_copy(&mask, cpu_online_mask);
626 
627 	if (node != NUMA_NO_NODE) {
628 		const struct cpumask *nodemask = cpumask_of_node(node);
629 
630 		/* make sure at least one of the cpus in nodemask is online */
631 		if (cpumask_intersects(&mask, nodemask))
632 			cpumask_and(&mask, &mask, nodemask);
633 	}
634 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635 	raw_spin_unlock(&mask_lock);
636 	return ret;
637 }
638 #else
639 /* Wrapper for ALPHA specific affinity selector magic */
640 int irq_setup_affinity(struct irq_desc *desc)
641 {
642 	return irq_select_affinity(irq_desc_get_irq(desc));
643 }
644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
645 #endif /* CONFIG_SMP */
646 
647 
648 /**
649  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650  *	@irq: interrupt number to set affinity
651  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652  *	            specific data for percpu_devid interrupts
653  *
654  *	This function uses the vCPU specific data to set the vCPU
655  *	affinity for an irq. The vCPU specific data is passed from
656  *	outside, such as KVM. One example code path is as below:
657  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
658  */
659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660 {
661 	unsigned long flags;
662 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663 	struct irq_data *data;
664 	struct irq_chip *chip;
665 	int ret = -ENOSYS;
666 
667 	if (!desc)
668 		return -EINVAL;
669 
670 	data = irq_desc_get_irq_data(desc);
671 	do {
672 		chip = irq_data_get_irq_chip(data);
673 		if (chip && chip->irq_set_vcpu_affinity)
674 			break;
675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676 		data = data->parent_data;
677 #else
678 		data = NULL;
679 #endif
680 	} while (data);
681 
682 	if (data)
683 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684 	irq_put_desc_unlock(desc, flags);
685 
686 	return ret;
687 }
688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689 
690 void __disable_irq(struct irq_desc *desc)
691 {
692 	if (!desc->depth++)
693 		irq_disable(desc);
694 }
695 
696 static int __disable_irq_nosync(unsigned int irq)
697 {
698 	unsigned long flags;
699 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700 
701 	if (!desc)
702 		return -EINVAL;
703 	__disable_irq(desc);
704 	irq_put_desc_busunlock(desc, flags);
705 	return 0;
706 }
707 
708 /**
709  *	disable_irq_nosync - disable an irq without waiting
710  *	@irq: Interrupt to disable
711  *
712  *	Disable the selected interrupt line.  Disables and Enables are
713  *	nested.
714  *	Unlike disable_irq(), this function does not ensure existing
715  *	instances of the IRQ handler have completed before returning.
716  *
717  *	This function may be called from IRQ context.
718  */
719 void disable_irq_nosync(unsigned int irq)
720 {
721 	__disable_irq_nosync(irq);
722 }
723 EXPORT_SYMBOL(disable_irq_nosync);
724 
725 /**
726  *	disable_irq - disable an irq and wait for completion
727  *	@irq: Interrupt to disable
728  *
729  *	Disable the selected interrupt line.  Enables and Disables are
730  *	nested.
731  *	This function waits for any pending IRQ handlers for this interrupt
732  *	to complete before returning. If you use this function while
733  *	holding a resource the IRQ handler may need you will deadlock.
734  *
735  *	Can only be called from preemptible code as it might sleep when
736  *	an interrupt thread is associated to @irq.
737  *
738  */
739 void disable_irq(unsigned int irq)
740 {
741 	might_sleep();
742 	if (!__disable_irq_nosync(irq))
743 		synchronize_irq(irq);
744 }
745 EXPORT_SYMBOL(disable_irq);
746 
747 /**
748  *	disable_hardirq - disables an irq and waits for hardirq completion
749  *	@irq: Interrupt to disable
750  *
751  *	Disable the selected interrupt line.  Enables and Disables are
752  *	nested.
753  *	This function waits for any pending hard IRQ handlers for this
754  *	interrupt to complete before returning. If you use this function while
755  *	holding a resource the hard IRQ handler may need you will deadlock.
756  *
757  *	When used to optimistically disable an interrupt from atomic context
758  *	the return value must be checked.
759  *
760  *	Returns: false if a threaded handler is active.
761  *
762  *	This function may be called - with care - from IRQ context.
763  */
764 bool disable_hardirq(unsigned int irq)
765 {
766 	if (!__disable_irq_nosync(irq))
767 		return synchronize_hardirq(irq);
768 
769 	return false;
770 }
771 EXPORT_SYMBOL_GPL(disable_hardirq);
772 
773 /**
774  *	disable_nmi_nosync - disable an nmi without waiting
775  *	@irq: Interrupt to disable
776  *
777  *	Disable the selected interrupt line. Disables and enables are
778  *	nested.
779  *	The interrupt to disable must have been requested through request_nmi.
780  *	Unlike disable_nmi(), this function does not ensure existing
781  *	instances of the IRQ handler have completed before returning.
782  */
783 void disable_nmi_nosync(unsigned int irq)
784 {
785 	disable_irq_nosync(irq);
786 }
787 
788 void __enable_irq(struct irq_desc *desc)
789 {
790 	switch (desc->depth) {
791 	case 0:
792  err_out:
793 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794 		     irq_desc_get_irq(desc));
795 		break;
796 	case 1: {
797 		if (desc->istate & IRQS_SUSPENDED)
798 			goto err_out;
799 		/* Prevent probing on this irq: */
800 		irq_settings_set_noprobe(desc);
801 		/*
802 		 * Call irq_startup() not irq_enable() here because the
803 		 * interrupt might be marked NOAUTOEN so irq_startup()
804 		 * needs to be invoked when it gets enabled the first time.
805 		 * This is also required when __enable_irq() is invoked for
806 		 * a managed and shutdown interrupt from the S3 resume
807 		 * path.
808 		 *
809 		 * If it was already started up, then irq_startup() will
810 		 * invoke irq_enable() under the hood.
811 		 */
812 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
813 		break;
814 	}
815 	default:
816 		desc->depth--;
817 	}
818 }
819 
820 /**
821  *	enable_irq - enable handling of an irq
822  *	@irq: Interrupt to enable
823  *
824  *	Undoes the effect of one call to disable_irq().  If this
825  *	matches the last disable, processing of interrupts on this
826  *	IRQ line is re-enabled.
827  *
828  *	This function may be called from IRQ context only when
829  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
830  */
831 void enable_irq(unsigned int irq)
832 {
833 	unsigned long flags;
834 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
835 
836 	if (!desc)
837 		return;
838 	if (WARN(!desc->irq_data.chip,
839 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
840 		goto out;
841 
842 	__enable_irq(desc);
843 out:
844 	irq_put_desc_busunlock(desc, flags);
845 }
846 EXPORT_SYMBOL(enable_irq);
847 
848 /**
849  *	enable_nmi - enable handling of an nmi
850  *	@irq: Interrupt to enable
851  *
852  *	The interrupt to enable must have been requested through request_nmi.
853  *	Undoes the effect of one call to disable_nmi(). If this
854  *	matches the last disable, processing of interrupts on this
855  *	IRQ line is re-enabled.
856  */
857 void enable_nmi(unsigned int irq)
858 {
859 	enable_irq(irq);
860 }
861 
862 static int set_irq_wake_real(unsigned int irq, unsigned int on)
863 {
864 	struct irq_desc *desc = irq_to_desc(irq);
865 	int ret = -ENXIO;
866 
867 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
868 		return 0;
869 
870 	if (desc->irq_data.chip->irq_set_wake)
871 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
872 
873 	return ret;
874 }
875 
876 /**
877  *	irq_set_irq_wake - control irq power management wakeup
878  *	@irq:	interrupt to control
879  *	@on:	enable/disable power management wakeup
880  *
881  *	Enable/disable power management wakeup mode, which is
882  *	disabled by default.  Enables and disables must match,
883  *	just as they match for non-wakeup mode support.
884  *
885  *	Wakeup mode lets this IRQ wake the system from sleep
886  *	states like "suspend to RAM".
887  *
888  *	Note: irq enable/disable state is completely orthogonal
889  *	to the enable/disable state of irq wake. An irq can be
890  *	disabled with disable_irq() and still wake the system as
891  *	long as the irq has wake enabled. If this does not hold,
892  *	then the underlying irq chip and the related driver need
893  *	to be investigated.
894  */
895 int irq_set_irq_wake(unsigned int irq, unsigned int on)
896 {
897 	unsigned long flags;
898 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
899 	int ret = 0;
900 
901 	if (!desc)
902 		return -EINVAL;
903 
904 	/* Don't use NMIs as wake up interrupts please */
905 	if (irq_is_nmi(desc)) {
906 		ret = -EINVAL;
907 		goto out_unlock;
908 	}
909 
910 	/* wakeup-capable irqs can be shared between drivers that
911 	 * don't need to have the same sleep mode behaviors.
912 	 */
913 	if (on) {
914 		if (desc->wake_depth++ == 0) {
915 			ret = set_irq_wake_real(irq, on);
916 			if (ret)
917 				desc->wake_depth = 0;
918 			else
919 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
920 		}
921 	} else {
922 		if (desc->wake_depth == 0) {
923 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
924 		} else if (--desc->wake_depth == 0) {
925 			ret = set_irq_wake_real(irq, on);
926 			if (ret)
927 				desc->wake_depth = 1;
928 			else
929 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
930 		}
931 	}
932 
933 out_unlock:
934 	irq_put_desc_busunlock(desc, flags);
935 	return ret;
936 }
937 EXPORT_SYMBOL(irq_set_irq_wake);
938 
939 /*
940  * Internal function that tells the architecture code whether a
941  * particular irq has been exclusively allocated or is available
942  * for driver use.
943  */
944 int can_request_irq(unsigned int irq, unsigned long irqflags)
945 {
946 	unsigned long flags;
947 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
948 	int canrequest = 0;
949 
950 	if (!desc)
951 		return 0;
952 
953 	if (irq_settings_can_request(desc)) {
954 		if (!desc->action ||
955 		    irqflags & desc->action->flags & IRQF_SHARED)
956 			canrequest = 1;
957 	}
958 	irq_put_desc_unlock(desc, flags);
959 	return canrequest;
960 }
961 
962 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
963 {
964 	struct irq_chip *chip = desc->irq_data.chip;
965 	int ret, unmask = 0;
966 
967 	if (!chip || !chip->irq_set_type) {
968 		/*
969 		 * IRQF_TRIGGER_* but the PIC does not support multiple
970 		 * flow-types?
971 		 */
972 		pr_debug("No set_type function for IRQ %d (%s)\n",
973 			 irq_desc_get_irq(desc),
974 			 chip ? (chip->name ? : "unknown") : "unknown");
975 		return 0;
976 	}
977 
978 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
979 		if (!irqd_irq_masked(&desc->irq_data))
980 			mask_irq(desc);
981 		if (!irqd_irq_disabled(&desc->irq_data))
982 			unmask = 1;
983 	}
984 
985 	/* Mask all flags except trigger mode */
986 	flags &= IRQ_TYPE_SENSE_MASK;
987 	ret = chip->irq_set_type(&desc->irq_data, flags);
988 
989 	switch (ret) {
990 	case IRQ_SET_MASK_OK:
991 	case IRQ_SET_MASK_OK_DONE:
992 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
993 		irqd_set(&desc->irq_data, flags);
994 		fallthrough;
995 
996 	case IRQ_SET_MASK_OK_NOCOPY:
997 		flags = irqd_get_trigger_type(&desc->irq_data);
998 		irq_settings_set_trigger_mask(desc, flags);
999 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
1000 		irq_settings_clr_level(desc);
1001 		if (flags & IRQ_TYPE_LEVEL_MASK) {
1002 			irq_settings_set_level(desc);
1003 			irqd_set(&desc->irq_data, IRQD_LEVEL);
1004 		}
1005 
1006 		ret = 0;
1007 		break;
1008 	default:
1009 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1010 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1011 	}
1012 	if (unmask)
1013 		unmask_irq(desc);
1014 	return ret;
1015 }
1016 
1017 #ifdef CONFIG_HARDIRQS_SW_RESEND
1018 int irq_set_parent(int irq, int parent_irq)
1019 {
1020 	unsigned long flags;
1021 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1022 
1023 	if (!desc)
1024 		return -EINVAL;
1025 
1026 	desc->parent_irq = parent_irq;
1027 
1028 	irq_put_desc_unlock(desc, flags);
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(irq_set_parent);
1032 #endif
1033 
1034 /*
1035  * Default primary interrupt handler for threaded interrupts. Is
1036  * assigned as primary handler when request_threaded_irq is called
1037  * with handler == NULL. Useful for oneshot interrupts.
1038  */
1039 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1040 {
1041 	return IRQ_WAKE_THREAD;
1042 }
1043 
1044 /*
1045  * Primary handler for nested threaded interrupts. Should never be
1046  * called.
1047  */
1048 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1049 {
1050 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1051 	return IRQ_NONE;
1052 }
1053 
1054 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1055 {
1056 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1057 	return IRQ_NONE;
1058 }
1059 
1060 #ifdef CONFIG_SMP
1061 /*
1062  * Check whether we need to change the affinity of the interrupt thread.
1063  */
1064 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1065 {
1066 	cpumask_var_t mask;
1067 	bool valid = false;
1068 
1069 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1070 		return;
1071 
1072 	__set_current_state(TASK_RUNNING);
1073 
1074 	/*
1075 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1076 	 * try again next time
1077 	 */
1078 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1079 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1080 		return;
1081 	}
1082 
1083 	raw_spin_lock_irq(&desc->lock);
1084 	/*
1085 	 * This code is triggered unconditionally. Check the affinity
1086 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1087 	 */
1088 	if (cpumask_available(desc->irq_common_data.affinity)) {
1089 		const struct cpumask *m;
1090 
1091 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1092 		cpumask_copy(mask, m);
1093 		valid = true;
1094 	}
1095 	raw_spin_unlock_irq(&desc->lock);
1096 
1097 	if (valid)
1098 		set_cpus_allowed_ptr(current, mask);
1099 	free_cpumask_var(mask);
1100 }
1101 #else
1102 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1103 #endif
1104 
1105 static int irq_wait_for_interrupt(struct irq_desc *desc,
1106 				  struct irqaction *action)
1107 {
1108 	for (;;) {
1109 		set_current_state(TASK_INTERRUPTIBLE);
1110 		irq_thread_check_affinity(desc, action);
1111 
1112 		if (kthread_should_stop()) {
1113 			/* may need to run one last time */
1114 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1115 					       &action->thread_flags)) {
1116 				__set_current_state(TASK_RUNNING);
1117 				return 0;
1118 			}
1119 			__set_current_state(TASK_RUNNING);
1120 			return -1;
1121 		}
1122 
1123 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1124 				       &action->thread_flags)) {
1125 			__set_current_state(TASK_RUNNING);
1126 			return 0;
1127 		}
1128 		schedule();
1129 	}
1130 }
1131 
1132 /*
1133  * Oneshot interrupts keep the irq line masked until the threaded
1134  * handler finished. unmask if the interrupt has not been disabled and
1135  * is marked MASKED.
1136  */
1137 static void irq_finalize_oneshot(struct irq_desc *desc,
1138 				 struct irqaction *action)
1139 {
1140 	if (!(desc->istate & IRQS_ONESHOT) ||
1141 	    action->handler == irq_forced_secondary_handler)
1142 		return;
1143 again:
1144 	chip_bus_lock(desc);
1145 	raw_spin_lock_irq(&desc->lock);
1146 
1147 	/*
1148 	 * Implausible though it may be we need to protect us against
1149 	 * the following scenario:
1150 	 *
1151 	 * The thread is faster done than the hard interrupt handler
1152 	 * on the other CPU. If we unmask the irq line then the
1153 	 * interrupt can come in again and masks the line, leaves due
1154 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1155 	 *
1156 	 * This also serializes the state of shared oneshot handlers
1157 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1158 	 * irq_wake_thread(). See the comment there which explains the
1159 	 * serialization.
1160 	 */
1161 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1162 		raw_spin_unlock_irq(&desc->lock);
1163 		chip_bus_sync_unlock(desc);
1164 		cpu_relax();
1165 		goto again;
1166 	}
1167 
1168 	/*
1169 	 * Now check again, whether the thread should run. Otherwise
1170 	 * we would clear the threads_oneshot bit of this thread which
1171 	 * was just set.
1172 	 */
1173 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1174 		goto out_unlock;
1175 
1176 	desc->threads_oneshot &= ~action->thread_mask;
1177 
1178 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1179 	    irqd_irq_masked(&desc->irq_data))
1180 		unmask_threaded_irq(desc);
1181 
1182 out_unlock:
1183 	raw_spin_unlock_irq(&desc->lock);
1184 	chip_bus_sync_unlock(desc);
1185 }
1186 
1187 /*
1188  * Interrupts which are not explicitly requested as threaded
1189  * interrupts rely on the implicit bh/preempt disable of the hard irq
1190  * context. So we need to disable bh here to avoid deadlocks and other
1191  * side effects.
1192  */
1193 static irqreturn_t
1194 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1195 {
1196 	irqreturn_t ret;
1197 
1198 	local_bh_disable();
1199 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1200 		local_irq_disable();
1201 	ret = action->thread_fn(action->irq, action->dev_id);
1202 	if (ret == IRQ_HANDLED)
1203 		atomic_inc(&desc->threads_handled);
1204 
1205 	irq_finalize_oneshot(desc, action);
1206 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1207 		local_irq_enable();
1208 	local_bh_enable();
1209 	return ret;
1210 }
1211 
1212 /*
1213  * Interrupts explicitly requested as threaded interrupts want to be
1214  * preemptible - many of them need to sleep and wait for slow busses to
1215  * complete.
1216  */
1217 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1218 		struct irqaction *action)
1219 {
1220 	irqreturn_t ret;
1221 
1222 	ret = action->thread_fn(action->irq, action->dev_id);
1223 	if (ret == IRQ_HANDLED)
1224 		atomic_inc(&desc->threads_handled);
1225 
1226 	irq_finalize_oneshot(desc, action);
1227 	return ret;
1228 }
1229 
1230 void wake_threads_waitq(struct irq_desc *desc)
1231 {
1232 	if (atomic_dec_and_test(&desc->threads_active))
1233 		wake_up(&desc->wait_for_threads);
1234 }
1235 
1236 static void irq_thread_dtor(struct callback_head *unused)
1237 {
1238 	struct task_struct *tsk = current;
1239 	struct irq_desc *desc;
1240 	struct irqaction *action;
1241 
1242 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1243 		return;
1244 
1245 	action = kthread_data(tsk);
1246 
1247 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1248 	       tsk->comm, tsk->pid, action->irq);
1249 
1250 
1251 	desc = irq_to_desc(action->irq);
1252 	/*
1253 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1254 	 * desc->threads_active and wake possible waiters.
1255 	 */
1256 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1257 		wake_threads_waitq(desc);
1258 
1259 	/* Prevent a stale desc->threads_oneshot */
1260 	irq_finalize_oneshot(desc, action);
1261 }
1262 
1263 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1264 {
1265 	struct irqaction *secondary = action->secondary;
1266 
1267 	if (WARN_ON_ONCE(!secondary))
1268 		return;
1269 
1270 	raw_spin_lock_irq(&desc->lock);
1271 	__irq_wake_thread(desc, secondary);
1272 	raw_spin_unlock_irq(&desc->lock);
1273 }
1274 
1275 /*
1276  * Internal function to notify that a interrupt thread is ready.
1277  */
1278 static void irq_thread_set_ready(struct irq_desc *desc,
1279 				 struct irqaction *action)
1280 {
1281 	set_bit(IRQTF_READY, &action->thread_flags);
1282 	wake_up(&desc->wait_for_threads);
1283 }
1284 
1285 /*
1286  * Internal function to wake up a interrupt thread and wait until it is
1287  * ready.
1288  */
1289 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1290 						  struct irqaction *action)
1291 {
1292 	if (!action || !action->thread)
1293 		return;
1294 
1295 	wake_up_process(action->thread);
1296 	wait_event(desc->wait_for_threads,
1297 		   test_bit(IRQTF_READY, &action->thread_flags));
1298 }
1299 
1300 /*
1301  * Interrupt handler thread
1302  */
1303 static int irq_thread(void *data)
1304 {
1305 	struct callback_head on_exit_work;
1306 	struct irqaction *action = data;
1307 	struct irq_desc *desc = irq_to_desc(action->irq);
1308 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1309 			struct irqaction *action);
1310 
1311 	irq_thread_set_ready(desc, action);
1312 
1313 	sched_set_fifo(current);
1314 
1315 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1316 					   &action->thread_flags))
1317 		handler_fn = irq_forced_thread_fn;
1318 	else
1319 		handler_fn = irq_thread_fn;
1320 
1321 	init_task_work(&on_exit_work, irq_thread_dtor);
1322 	task_work_add(current, &on_exit_work, TWA_NONE);
1323 
1324 	while (!irq_wait_for_interrupt(desc, action)) {
1325 		irqreturn_t action_ret;
1326 
1327 		action_ret = handler_fn(desc, action);
1328 		if (action_ret == IRQ_WAKE_THREAD)
1329 			irq_wake_secondary(desc, action);
1330 
1331 		wake_threads_waitq(desc);
1332 	}
1333 
1334 	/*
1335 	 * This is the regular exit path. __free_irq() is stopping the
1336 	 * thread via kthread_stop() after calling
1337 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1338 	 * oneshot mask bit can be set.
1339 	 */
1340 	task_work_cancel(current, irq_thread_dtor);
1341 	return 0;
1342 }
1343 
1344 /**
1345  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1346  *	@irq:		Interrupt line
1347  *	@dev_id:	Device identity for which the thread should be woken
1348  *
1349  */
1350 void irq_wake_thread(unsigned int irq, void *dev_id)
1351 {
1352 	struct irq_desc *desc = irq_to_desc(irq);
1353 	struct irqaction *action;
1354 	unsigned long flags;
1355 
1356 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1357 		return;
1358 
1359 	raw_spin_lock_irqsave(&desc->lock, flags);
1360 	for_each_action_of_desc(desc, action) {
1361 		if (action->dev_id == dev_id) {
1362 			if (action->thread)
1363 				__irq_wake_thread(desc, action);
1364 			break;
1365 		}
1366 	}
1367 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1368 }
1369 EXPORT_SYMBOL_GPL(irq_wake_thread);
1370 
1371 static int irq_setup_forced_threading(struct irqaction *new)
1372 {
1373 	if (!force_irqthreads())
1374 		return 0;
1375 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1376 		return 0;
1377 
1378 	/*
1379 	 * No further action required for interrupts which are requested as
1380 	 * threaded interrupts already
1381 	 */
1382 	if (new->handler == irq_default_primary_handler)
1383 		return 0;
1384 
1385 	new->flags |= IRQF_ONESHOT;
1386 
1387 	/*
1388 	 * Handle the case where we have a real primary handler and a
1389 	 * thread handler. We force thread them as well by creating a
1390 	 * secondary action.
1391 	 */
1392 	if (new->handler && new->thread_fn) {
1393 		/* Allocate the secondary action */
1394 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1395 		if (!new->secondary)
1396 			return -ENOMEM;
1397 		new->secondary->handler = irq_forced_secondary_handler;
1398 		new->secondary->thread_fn = new->thread_fn;
1399 		new->secondary->dev_id = new->dev_id;
1400 		new->secondary->irq = new->irq;
1401 		new->secondary->name = new->name;
1402 	}
1403 	/* Deal with the primary handler */
1404 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1405 	new->thread_fn = new->handler;
1406 	new->handler = irq_default_primary_handler;
1407 	return 0;
1408 }
1409 
1410 static int irq_request_resources(struct irq_desc *desc)
1411 {
1412 	struct irq_data *d = &desc->irq_data;
1413 	struct irq_chip *c = d->chip;
1414 
1415 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1416 }
1417 
1418 static void irq_release_resources(struct irq_desc *desc)
1419 {
1420 	struct irq_data *d = &desc->irq_data;
1421 	struct irq_chip *c = d->chip;
1422 
1423 	if (c->irq_release_resources)
1424 		c->irq_release_resources(d);
1425 }
1426 
1427 static bool irq_supports_nmi(struct irq_desc *desc)
1428 {
1429 	struct irq_data *d = irq_desc_get_irq_data(desc);
1430 
1431 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1432 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1433 	if (d->parent_data)
1434 		return false;
1435 #endif
1436 	/* Don't support NMIs for chips behind a slow bus */
1437 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1438 		return false;
1439 
1440 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1441 }
1442 
1443 static int irq_nmi_setup(struct irq_desc *desc)
1444 {
1445 	struct irq_data *d = irq_desc_get_irq_data(desc);
1446 	struct irq_chip *c = d->chip;
1447 
1448 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1449 }
1450 
1451 static void irq_nmi_teardown(struct irq_desc *desc)
1452 {
1453 	struct irq_data *d = irq_desc_get_irq_data(desc);
1454 	struct irq_chip *c = d->chip;
1455 
1456 	if (c->irq_nmi_teardown)
1457 		c->irq_nmi_teardown(d);
1458 }
1459 
1460 static int
1461 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1462 {
1463 	struct task_struct *t;
1464 
1465 	if (!secondary) {
1466 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1467 				   new->name);
1468 	} else {
1469 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1470 				   new->name);
1471 	}
1472 
1473 	if (IS_ERR(t))
1474 		return PTR_ERR(t);
1475 
1476 	/*
1477 	 * We keep the reference to the task struct even if
1478 	 * the thread dies to avoid that the interrupt code
1479 	 * references an already freed task_struct.
1480 	 */
1481 	new->thread = get_task_struct(t);
1482 	/*
1483 	 * Tell the thread to set its affinity. This is
1484 	 * important for shared interrupt handlers as we do
1485 	 * not invoke setup_affinity() for the secondary
1486 	 * handlers as everything is already set up. Even for
1487 	 * interrupts marked with IRQF_NO_BALANCE this is
1488 	 * correct as we want the thread to move to the cpu(s)
1489 	 * on which the requesting code placed the interrupt.
1490 	 */
1491 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Internal function to register an irqaction - typically used to
1497  * allocate special interrupts that are part of the architecture.
1498  *
1499  * Locking rules:
1500  *
1501  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1502  *   chip_bus_lock	Provides serialization for slow bus operations
1503  *     desc->lock	Provides serialization against hard interrupts
1504  *
1505  * chip_bus_lock and desc->lock are sufficient for all other management and
1506  * interrupt related functions. desc->request_mutex solely serializes
1507  * request/free_irq().
1508  */
1509 static int
1510 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1511 {
1512 	struct irqaction *old, **old_ptr;
1513 	unsigned long flags, thread_mask = 0;
1514 	int ret, nested, shared = 0;
1515 
1516 	if (!desc)
1517 		return -EINVAL;
1518 
1519 	if (desc->irq_data.chip == &no_irq_chip)
1520 		return -ENOSYS;
1521 	if (!try_module_get(desc->owner))
1522 		return -ENODEV;
1523 
1524 	new->irq = irq;
1525 
1526 	/*
1527 	 * If the trigger type is not specified by the caller,
1528 	 * then use the default for this interrupt.
1529 	 */
1530 	if (!(new->flags & IRQF_TRIGGER_MASK))
1531 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1532 
1533 	/*
1534 	 * Check whether the interrupt nests into another interrupt
1535 	 * thread.
1536 	 */
1537 	nested = irq_settings_is_nested_thread(desc);
1538 	if (nested) {
1539 		if (!new->thread_fn) {
1540 			ret = -EINVAL;
1541 			goto out_mput;
1542 		}
1543 		/*
1544 		 * Replace the primary handler which was provided from
1545 		 * the driver for non nested interrupt handling by the
1546 		 * dummy function which warns when called.
1547 		 */
1548 		new->handler = irq_nested_primary_handler;
1549 	} else {
1550 		if (irq_settings_can_thread(desc)) {
1551 			ret = irq_setup_forced_threading(new);
1552 			if (ret)
1553 				goto out_mput;
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Create a handler thread when a thread function is supplied
1559 	 * and the interrupt does not nest into another interrupt
1560 	 * thread.
1561 	 */
1562 	if (new->thread_fn && !nested) {
1563 		ret = setup_irq_thread(new, irq, false);
1564 		if (ret)
1565 			goto out_mput;
1566 		if (new->secondary) {
1567 			ret = setup_irq_thread(new->secondary, irq, true);
1568 			if (ret)
1569 				goto out_thread;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Drivers are often written to work w/o knowledge about the
1575 	 * underlying irq chip implementation, so a request for a
1576 	 * threaded irq without a primary hard irq context handler
1577 	 * requires the ONESHOT flag to be set. Some irq chips like
1578 	 * MSI based interrupts are per se one shot safe. Check the
1579 	 * chip flags, so we can avoid the unmask dance at the end of
1580 	 * the threaded handler for those.
1581 	 */
1582 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1583 		new->flags &= ~IRQF_ONESHOT;
1584 
1585 	/*
1586 	 * Protects against a concurrent __free_irq() call which might wait
1587 	 * for synchronize_hardirq() to complete without holding the optional
1588 	 * chip bus lock and desc->lock. Also protects against handing out
1589 	 * a recycled oneshot thread_mask bit while it's still in use by
1590 	 * its previous owner.
1591 	 */
1592 	mutex_lock(&desc->request_mutex);
1593 
1594 	/*
1595 	 * Acquire bus lock as the irq_request_resources() callback below
1596 	 * might rely on the serialization or the magic power management
1597 	 * functions which are abusing the irq_bus_lock() callback,
1598 	 */
1599 	chip_bus_lock(desc);
1600 
1601 	/* First installed action requests resources. */
1602 	if (!desc->action) {
1603 		ret = irq_request_resources(desc);
1604 		if (ret) {
1605 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1606 			       new->name, irq, desc->irq_data.chip->name);
1607 			goto out_bus_unlock;
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * The following block of code has to be executed atomically
1613 	 * protected against a concurrent interrupt and any of the other
1614 	 * management calls which are not serialized via
1615 	 * desc->request_mutex or the optional bus lock.
1616 	 */
1617 	raw_spin_lock_irqsave(&desc->lock, flags);
1618 	old_ptr = &desc->action;
1619 	old = *old_ptr;
1620 	if (old) {
1621 		/*
1622 		 * Can't share interrupts unless both agree to and are
1623 		 * the same type (level, edge, polarity). So both flag
1624 		 * fields must have IRQF_SHARED set and the bits which
1625 		 * set the trigger type must match. Also all must
1626 		 * agree on ONESHOT.
1627 		 * Interrupt lines used for NMIs cannot be shared.
1628 		 */
1629 		unsigned int oldtype;
1630 
1631 		if (irq_is_nmi(desc)) {
1632 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1633 				new->name, irq, desc->irq_data.chip->name);
1634 			ret = -EINVAL;
1635 			goto out_unlock;
1636 		}
1637 
1638 		/*
1639 		 * If nobody did set the configuration before, inherit
1640 		 * the one provided by the requester.
1641 		 */
1642 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1643 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1644 		} else {
1645 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1646 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1647 		}
1648 
1649 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1650 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1651 			goto mismatch;
1652 
1653 		if ((old->flags & IRQF_ONESHOT) &&
1654 		    (new->flags & IRQF_COND_ONESHOT))
1655 			new->flags |= IRQF_ONESHOT;
1656 		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1657 			goto mismatch;
1658 
1659 		/* All handlers must agree on per-cpuness */
1660 		if ((old->flags & IRQF_PERCPU) !=
1661 		    (new->flags & IRQF_PERCPU))
1662 			goto mismatch;
1663 
1664 		/* add new interrupt at end of irq queue */
1665 		do {
1666 			/*
1667 			 * Or all existing action->thread_mask bits,
1668 			 * so we can find the next zero bit for this
1669 			 * new action.
1670 			 */
1671 			thread_mask |= old->thread_mask;
1672 			old_ptr = &old->next;
1673 			old = *old_ptr;
1674 		} while (old);
1675 		shared = 1;
1676 	}
1677 
1678 	/*
1679 	 * Setup the thread mask for this irqaction for ONESHOT. For
1680 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1681 	 * conditional in irq_wake_thread().
1682 	 */
1683 	if (new->flags & IRQF_ONESHOT) {
1684 		/*
1685 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1686 		 * but who knows.
1687 		 */
1688 		if (thread_mask == ~0UL) {
1689 			ret = -EBUSY;
1690 			goto out_unlock;
1691 		}
1692 		/*
1693 		 * The thread_mask for the action is or'ed to
1694 		 * desc->thread_active to indicate that the
1695 		 * IRQF_ONESHOT thread handler has been woken, but not
1696 		 * yet finished. The bit is cleared when a thread
1697 		 * completes. When all threads of a shared interrupt
1698 		 * line have completed desc->threads_active becomes
1699 		 * zero and the interrupt line is unmasked. See
1700 		 * handle.c:irq_wake_thread() for further information.
1701 		 *
1702 		 * If no thread is woken by primary (hard irq context)
1703 		 * interrupt handlers, then desc->threads_active is
1704 		 * also checked for zero to unmask the irq line in the
1705 		 * affected hard irq flow handlers
1706 		 * (handle_[fasteoi|level]_irq).
1707 		 *
1708 		 * The new action gets the first zero bit of
1709 		 * thread_mask assigned. See the loop above which or's
1710 		 * all existing action->thread_mask bits.
1711 		 */
1712 		new->thread_mask = 1UL << ffz(thread_mask);
1713 
1714 	} else if (new->handler == irq_default_primary_handler &&
1715 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1716 		/*
1717 		 * The interrupt was requested with handler = NULL, so
1718 		 * we use the default primary handler for it. But it
1719 		 * does not have the oneshot flag set. In combination
1720 		 * with level interrupts this is deadly, because the
1721 		 * default primary handler just wakes the thread, then
1722 		 * the irq lines is reenabled, but the device still
1723 		 * has the level irq asserted. Rinse and repeat....
1724 		 *
1725 		 * While this works for edge type interrupts, we play
1726 		 * it safe and reject unconditionally because we can't
1727 		 * say for sure which type this interrupt really
1728 		 * has. The type flags are unreliable as the
1729 		 * underlying chip implementation can override them.
1730 		 */
1731 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1732 		       new->name, irq);
1733 		ret = -EINVAL;
1734 		goto out_unlock;
1735 	}
1736 
1737 	if (!shared) {
1738 		/* Setup the type (level, edge polarity) if configured: */
1739 		if (new->flags & IRQF_TRIGGER_MASK) {
1740 			ret = __irq_set_trigger(desc,
1741 						new->flags & IRQF_TRIGGER_MASK);
1742 
1743 			if (ret)
1744 				goto out_unlock;
1745 		}
1746 
1747 		/*
1748 		 * Activate the interrupt. That activation must happen
1749 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1750 		 * and the callers are supposed to handle
1751 		 * that. enable_irq() of an interrupt requested with
1752 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1753 		 * keeps it in shutdown mode, it merily associates
1754 		 * resources if necessary and if that's not possible it
1755 		 * fails. Interrupts which are in managed shutdown mode
1756 		 * will simply ignore that activation request.
1757 		 */
1758 		ret = irq_activate(desc);
1759 		if (ret)
1760 			goto out_unlock;
1761 
1762 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1763 				  IRQS_ONESHOT | IRQS_WAITING);
1764 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1765 
1766 		if (new->flags & IRQF_PERCPU) {
1767 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1768 			irq_settings_set_per_cpu(desc);
1769 			if (new->flags & IRQF_NO_DEBUG)
1770 				irq_settings_set_no_debug(desc);
1771 		}
1772 
1773 		if (noirqdebug)
1774 			irq_settings_set_no_debug(desc);
1775 
1776 		if (new->flags & IRQF_ONESHOT)
1777 			desc->istate |= IRQS_ONESHOT;
1778 
1779 		/* Exclude IRQ from balancing if requested */
1780 		if (new->flags & IRQF_NOBALANCING) {
1781 			irq_settings_set_no_balancing(desc);
1782 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1783 		}
1784 
1785 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1786 		    irq_settings_can_autoenable(desc)) {
1787 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1788 		} else {
1789 			/*
1790 			 * Shared interrupts do not go well with disabling
1791 			 * auto enable. The sharing interrupt might request
1792 			 * it while it's still disabled and then wait for
1793 			 * interrupts forever.
1794 			 */
1795 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1796 			/* Undo nested disables: */
1797 			desc->depth = 1;
1798 		}
1799 
1800 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1801 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1802 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1803 
1804 		if (nmsk != omsk)
1805 			/* hope the handler works with current  trigger mode */
1806 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1807 				irq, omsk, nmsk);
1808 	}
1809 
1810 	*old_ptr = new;
1811 
1812 	irq_pm_install_action(desc, new);
1813 
1814 	/* Reset broken irq detection when installing new handler */
1815 	desc->irq_count = 0;
1816 	desc->irqs_unhandled = 0;
1817 
1818 	/*
1819 	 * Check whether we disabled the irq via the spurious handler
1820 	 * before. Reenable it and give it another chance.
1821 	 */
1822 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1823 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1824 		__enable_irq(desc);
1825 	}
1826 
1827 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1828 	chip_bus_sync_unlock(desc);
1829 	mutex_unlock(&desc->request_mutex);
1830 
1831 	irq_setup_timings(desc, new);
1832 
1833 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1834 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1835 
1836 	register_irq_proc(irq, desc);
1837 	new->dir = NULL;
1838 	register_handler_proc(irq, new);
1839 	return 0;
1840 
1841 mismatch:
1842 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1843 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1844 		       irq, new->flags, new->name, old->flags, old->name);
1845 #ifdef CONFIG_DEBUG_SHIRQ
1846 		dump_stack();
1847 #endif
1848 	}
1849 	ret = -EBUSY;
1850 
1851 out_unlock:
1852 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1853 
1854 	if (!desc->action)
1855 		irq_release_resources(desc);
1856 out_bus_unlock:
1857 	chip_bus_sync_unlock(desc);
1858 	mutex_unlock(&desc->request_mutex);
1859 
1860 out_thread:
1861 	if (new->thread) {
1862 		struct task_struct *t = new->thread;
1863 
1864 		new->thread = NULL;
1865 		kthread_stop_put(t);
1866 	}
1867 	if (new->secondary && new->secondary->thread) {
1868 		struct task_struct *t = new->secondary->thread;
1869 
1870 		new->secondary->thread = NULL;
1871 		kthread_stop_put(t);
1872 	}
1873 out_mput:
1874 	module_put(desc->owner);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Internal function to unregister an irqaction - used to free
1880  * regular and special interrupts that are part of the architecture.
1881  */
1882 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1883 {
1884 	unsigned irq = desc->irq_data.irq;
1885 	struct irqaction *action, **action_ptr;
1886 	unsigned long flags;
1887 
1888 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1889 
1890 	mutex_lock(&desc->request_mutex);
1891 	chip_bus_lock(desc);
1892 	raw_spin_lock_irqsave(&desc->lock, flags);
1893 
1894 	/*
1895 	 * There can be multiple actions per IRQ descriptor, find the right
1896 	 * one based on the dev_id:
1897 	 */
1898 	action_ptr = &desc->action;
1899 	for (;;) {
1900 		action = *action_ptr;
1901 
1902 		if (!action) {
1903 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1904 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1905 			chip_bus_sync_unlock(desc);
1906 			mutex_unlock(&desc->request_mutex);
1907 			return NULL;
1908 		}
1909 
1910 		if (action->dev_id == dev_id)
1911 			break;
1912 		action_ptr = &action->next;
1913 	}
1914 
1915 	/* Found it - now remove it from the list of entries: */
1916 	*action_ptr = action->next;
1917 
1918 	irq_pm_remove_action(desc, action);
1919 
1920 	/* If this was the last handler, shut down the IRQ line: */
1921 	if (!desc->action) {
1922 		irq_settings_clr_disable_unlazy(desc);
1923 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1924 		irq_shutdown(desc);
1925 	}
1926 
1927 #ifdef CONFIG_SMP
1928 	/* make sure affinity_hint is cleaned up */
1929 	if (WARN_ON_ONCE(desc->affinity_hint))
1930 		desc->affinity_hint = NULL;
1931 #endif
1932 
1933 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1934 	/*
1935 	 * Drop bus_lock here so the changes which were done in the chip
1936 	 * callbacks above are synced out to the irq chips which hang
1937 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1938 	 *
1939 	 * Aside of that the bus_lock can also be taken from the threaded
1940 	 * handler in irq_finalize_oneshot() which results in a deadlock
1941 	 * because kthread_stop() would wait forever for the thread to
1942 	 * complete, which is blocked on the bus lock.
1943 	 *
1944 	 * The still held desc->request_mutex() protects against a
1945 	 * concurrent request_irq() of this irq so the release of resources
1946 	 * and timing data is properly serialized.
1947 	 */
1948 	chip_bus_sync_unlock(desc);
1949 
1950 	unregister_handler_proc(irq, action);
1951 
1952 	/*
1953 	 * Make sure it's not being used on another CPU and if the chip
1954 	 * supports it also make sure that there is no (not yet serviced)
1955 	 * interrupt in flight at the hardware level.
1956 	 */
1957 	__synchronize_irq(desc);
1958 
1959 #ifdef CONFIG_DEBUG_SHIRQ
1960 	/*
1961 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1962 	 * event to happen even now it's being freed, so let's make sure that
1963 	 * is so by doing an extra call to the handler ....
1964 	 *
1965 	 * ( We do this after actually deregistering it, to make sure that a
1966 	 *   'real' IRQ doesn't run in parallel with our fake. )
1967 	 */
1968 	if (action->flags & IRQF_SHARED) {
1969 		local_irq_save(flags);
1970 		action->handler(irq, dev_id);
1971 		local_irq_restore(flags);
1972 	}
1973 #endif
1974 
1975 	/*
1976 	 * The action has already been removed above, but the thread writes
1977 	 * its oneshot mask bit when it completes. Though request_mutex is
1978 	 * held across this which prevents __setup_irq() from handing out
1979 	 * the same bit to a newly requested action.
1980 	 */
1981 	if (action->thread) {
1982 		kthread_stop_put(action->thread);
1983 		if (action->secondary && action->secondary->thread)
1984 			kthread_stop_put(action->secondary->thread);
1985 	}
1986 
1987 	/* Last action releases resources */
1988 	if (!desc->action) {
1989 		/*
1990 		 * Reacquire bus lock as irq_release_resources() might
1991 		 * require it to deallocate resources over the slow bus.
1992 		 */
1993 		chip_bus_lock(desc);
1994 		/*
1995 		 * There is no interrupt on the fly anymore. Deactivate it
1996 		 * completely.
1997 		 */
1998 		raw_spin_lock_irqsave(&desc->lock, flags);
1999 		irq_domain_deactivate_irq(&desc->irq_data);
2000 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2001 
2002 		irq_release_resources(desc);
2003 		chip_bus_sync_unlock(desc);
2004 		irq_remove_timings(desc);
2005 	}
2006 
2007 	mutex_unlock(&desc->request_mutex);
2008 
2009 	irq_chip_pm_put(&desc->irq_data);
2010 	module_put(desc->owner);
2011 	kfree(action->secondary);
2012 	return action;
2013 }
2014 
2015 /**
2016  *	free_irq - free an interrupt allocated with request_irq
2017  *	@irq: Interrupt line to free
2018  *	@dev_id: Device identity to free
2019  *
2020  *	Remove an interrupt handler. The handler is removed and if the
2021  *	interrupt line is no longer in use by any driver it is disabled.
2022  *	On a shared IRQ the caller must ensure the interrupt is disabled
2023  *	on the card it drives before calling this function. The function
2024  *	does not return until any executing interrupts for this IRQ
2025  *	have completed.
2026  *
2027  *	This function must not be called from interrupt context.
2028  *
2029  *	Returns the devname argument passed to request_irq.
2030  */
2031 const void *free_irq(unsigned int irq, void *dev_id)
2032 {
2033 	struct irq_desc *desc = irq_to_desc(irq);
2034 	struct irqaction *action;
2035 	const char *devname;
2036 
2037 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2038 		return NULL;
2039 
2040 #ifdef CONFIG_SMP
2041 	if (WARN_ON(desc->affinity_notify))
2042 		desc->affinity_notify = NULL;
2043 #endif
2044 
2045 	action = __free_irq(desc, dev_id);
2046 
2047 	if (!action)
2048 		return NULL;
2049 
2050 	devname = action->name;
2051 	kfree(action);
2052 	return devname;
2053 }
2054 EXPORT_SYMBOL(free_irq);
2055 
2056 /* This function must be called with desc->lock held */
2057 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2058 {
2059 	const char *devname = NULL;
2060 
2061 	desc->istate &= ~IRQS_NMI;
2062 
2063 	if (!WARN_ON(desc->action == NULL)) {
2064 		irq_pm_remove_action(desc, desc->action);
2065 		devname = desc->action->name;
2066 		unregister_handler_proc(irq, desc->action);
2067 
2068 		kfree(desc->action);
2069 		desc->action = NULL;
2070 	}
2071 
2072 	irq_settings_clr_disable_unlazy(desc);
2073 	irq_shutdown_and_deactivate(desc);
2074 
2075 	irq_release_resources(desc);
2076 
2077 	irq_chip_pm_put(&desc->irq_data);
2078 	module_put(desc->owner);
2079 
2080 	return devname;
2081 }
2082 
2083 const void *free_nmi(unsigned int irq, void *dev_id)
2084 {
2085 	struct irq_desc *desc = irq_to_desc(irq);
2086 	unsigned long flags;
2087 	const void *devname;
2088 
2089 	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2090 		return NULL;
2091 
2092 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2093 		return NULL;
2094 
2095 	/* NMI still enabled */
2096 	if (WARN_ON(desc->depth == 0))
2097 		disable_nmi_nosync(irq);
2098 
2099 	raw_spin_lock_irqsave(&desc->lock, flags);
2100 
2101 	irq_nmi_teardown(desc);
2102 	devname = __cleanup_nmi(irq, desc);
2103 
2104 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2105 
2106 	return devname;
2107 }
2108 
2109 /**
2110  *	request_threaded_irq - allocate an interrupt line
2111  *	@irq: Interrupt line to allocate
2112  *	@handler: Function to be called when the IRQ occurs.
2113  *		  Primary handler for threaded interrupts.
2114  *		  If handler is NULL and thread_fn != NULL
2115  *		  the default primary handler is installed.
2116  *	@thread_fn: Function called from the irq handler thread
2117  *		    If NULL, no irq thread is created
2118  *	@irqflags: Interrupt type flags
2119  *	@devname: An ascii name for the claiming device
2120  *	@dev_id: A cookie passed back to the handler function
2121  *
2122  *	This call allocates interrupt resources and enables the
2123  *	interrupt line and IRQ handling. From the point this
2124  *	call is made your handler function may be invoked. Since
2125  *	your handler function must clear any interrupt the board
2126  *	raises, you must take care both to initialise your hardware
2127  *	and to set up the interrupt handler in the right order.
2128  *
2129  *	If you want to set up a threaded irq handler for your device
2130  *	then you need to supply @handler and @thread_fn. @handler is
2131  *	still called in hard interrupt context and has to check
2132  *	whether the interrupt originates from the device. If yes it
2133  *	needs to disable the interrupt on the device and return
2134  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2135  *	@thread_fn. This split handler design is necessary to support
2136  *	shared interrupts.
2137  *
2138  *	Dev_id must be globally unique. Normally the address of the
2139  *	device data structure is used as the cookie. Since the handler
2140  *	receives this value it makes sense to use it.
2141  *
2142  *	If your interrupt is shared you must pass a non NULL dev_id
2143  *	as this is required when freeing the interrupt.
2144  *
2145  *	Flags:
2146  *
2147  *	IRQF_SHARED		Interrupt is shared
2148  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2149  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2150  */
2151 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2152 			 irq_handler_t thread_fn, unsigned long irqflags,
2153 			 const char *devname, void *dev_id)
2154 {
2155 	struct irqaction *action;
2156 	struct irq_desc *desc;
2157 	int retval;
2158 
2159 	if (irq == IRQ_NOTCONNECTED)
2160 		return -ENOTCONN;
2161 
2162 	/*
2163 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2164 	 * otherwise we'll have trouble later trying to figure out
2165 	 * which interrupt is which (messes up the interrupt freeing
2166 	 * logic etc).
2167 	 *
2168 	 * Also shared interrupts do not go well with disabling auto enable.
2169 	 * The sharing interrupt might request it while it's still disabled
2170 	 * and then wait for interrupts forever.
2171 	 *
2172 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2173 	 * it cannot be set along with IRQF_NO_SUSPEND.
2174 	 */
2175 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2176 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2177 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2178 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2179 		return -EINVAL;
2180 
2181 	desc = irq_to_desc(irq);
2182 	if (!desc)
2183 		return -EINVAL;
2184 
2185 	if (!irq_settings_can_request(desc) ||
2186 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2187 		return -EINVAL;
2188 
2189 	if (!handler) {
2190 		if (!thread_fn)
2191 			return -EINVAL;
2192 		handler = irq_default_primary_handler;
2193 	}
2194 
2195 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2196 	if (!action)
2197 		return -ENOMEM;
2198 
2199 	action->handler = handler;
2200 	action->thread_fn = thread_fn;
2201 	action->flags = irqflags;
2202 	action->name = devname;
2203 	action->dev_id = dev_id;
2204 
2205 	retval = irq_chip_pm_get(&desc->irq_data);
2206 	if (retval < 0) {
2207 		kfree(action);
2208 		return retval;
2209 	}
2210 
2211 	retval = __setup_irq(irq, desc, action);
2212 
2213 	if (retval) {
2214 		irq_chip_pm_put(&desc->irq_data);
2215 		kfree(action->secondary);
2216 		kfree(action);
2217 	}
2218 
2219 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2220 	if (!retval && (irqflags & IRQF_SHARED)) {
2221 		/*
2222 		 * It's a shared IRQ -- the driver ought to be prepared for it
2223 		 * to happen immediately, so let's make sure....
2224 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2225 		 * run in parallel with our fake.
2226 		 */
2227 		unsigned long flags;
2228 
2229 		disable_irq(irq);
2230 		local_irq_save(flags);
2231 
2232 		handler(irq, dev_id);
2233 
2234 		local_irq_restore(flags);
2235 		enable_irq(irq);
2236 	}
2237 #endif
2238 	return retval;
2239 }
2240 EXPORT_SYMBOL(request_threaded_irq);
2241 
2242 /**
2243  *	request_any_context_irq - allocate an interrupt line
2244  *	@irq: Interrupt line to allocate
2245  *	@handler: Function to be called when the IRQ occurs.
2246  *		  Threaded handler for threaded interrupts.
2247  *	@flags: Interrupt type flags
2248  *	@name: An ascii name for the claiming device
2249  *	@dev_id: A cookie passed back to the handler function
2250  *
2251  *	This call allocates interrupt resources and enables the
2252  *	interrupt line and IRQ handling. It selects either a
2253  *	hardirq or threaded handling method depending on the
2254  *	context.
2255  *
2256  *	On failure, it returns a negative value. On success,
2257  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2258  */
2259 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2260 			    unsigned long flags, const char *name, void *dev_id)
2261 {
2262 	struct irq_desc *desc;
2263 	int ret;
2264 
2265 	if (irq == IRQ_NOTCONNECTED)
2266 		return -ENOTCONN;
2267 
2268 	desc = irq_to_desc(irq);
2269 	if (!desc)
2270 		return -EINVAL;
2271 
2272 	if (irq_settings_is_nested_thread(desc)) {
2273 		ret = request_threaded_irq(irq, NULL, handler,
2274 					   flags, name, dev_id);
2275 		return !ret ? IRQC_IS_NESTED : ret;
2276 	}
2277 
2278 	ret = request_irq(irq, handler, flags, name, dev_id);
2279 	return !ret ? IRQC_IS_HARDIRQ : ret;
2280 }
2281 EXPORT_SYMBOL_GPL(request_any_context_irq);
2282 
2283 /**
2284  *	request_nmi - allocate an interrupt line for NMI delivery
2285  *	@irq: Interrupt line to allocate
2286  *	@handler: Function to be called when the IRQ occurs.
2287  *		  Threaded handler for threaded interrupts.
2288  *	@irqflags: Interrupt type flags
2289  *	@name: An ascii name for the claiming device
2290  *	@dev_id: A cookie passed back to the handler function
2291  *
2292  *	This call allocates interrupt resources and enables the
2293  *	interrupt line and IRQ handling. It sets up the IRQ line
2294  *	to be handled as an NMI.
2295  *
2296  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2297  *	cannot be threaded.
2298  *
2299  *	Interrupt lines requested for NMI delivering must produce per cpu
2300  *	interrupts and have auto enabling setting disabled.
2301  *
2302  *	Dev_id must be globally unique. Normally the address of the
2303  *	device data structure is used as the cookie. Since the handler
2304  *	receives this value it makes sense to use it.
2305  *
2306  *	If the interrupt line cannot be used to deliver NMIs, function
2307  *	will fail and return a negative value.
2308  */
2309 int request_nmi(unsigned int irq, irq_handler_t handler,
2310 		unsigned long irqflags, const char *name, void *dev_id)
2311 {
2312 	struct irqaction *action;
2313 	struct irq_desc *desc;
2314 	unsigned long flags;
2315 	int retval;
2316 
2317 	if (irq == IRQ_NOTCONNECTED)
2318 		return -ENOTCONN;
2319 
2320 	/* NMI cannot be shared, used for Polling */
2321 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2322 		return -EINVAL;
2323 
2324 	if (!(irqflags & IRQF_PERCPU))
2325 		return -EINVAL;
2326 
2327 	if (!handler)
2328 		return -EINVAL;
2329 
2330 	desc = irq_to_desc(irq);
2331 
2332 	if (!desc || (irq_settings_can_autoenable(desc) &&
2333 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2334 	    !irq_settings_can_request(desc) ||
2335 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2336 	    !irq_supports_nmi(desc))
2337 		return -EINVAL;
2338 
2339 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2340 	if (!action)
2341 		return -ENOMEM;
2342 
2343 	action->handler = handler;
2344 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2345 	action->name = name;
2346 	action->dev_id = dev_id;
2347 
2348 	retval = irq_chip_pm_get(&desc->irq_data);
2349 	if (retval < 0)
2350 		goto err_out;
2351 
2352 	retval = __setup_irq(irq, desc, action);
2353 	if (retval)
2354 		goto err_irq_setup;
2355 
2356 	raw_spin_lock_irqsave(&desc->lock, flags);
2357 
2358 	/* Setup NMI state */
2359 	desc->istate |= IRQS_NMI;
2360 	retval = irq_nmi_setup(desc);
2361 	if (retval) {
2362 		__cleanup_nmi(irq, desc);
2363 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2364 		return -EINVAL;
2365 	}
2366 
2367 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2368 
2369 	return 0;
2370 
2371 err_irq_setup:
2372 	irq_chip_pm_put(&desc->irq_data);
2373 err_out:
2374 	kfree(action);
2375 
2376 	return retval;
2377 }
2378 
2379 void enable_percpu_irq(unsigned int irq, unsigned int type)
2380 {
2381 	unsigned int cpu = smp_processor_id();
2382 	unsigned long flags;
2383 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2384 
2385 	if (!desc)
2386 		return;
2387 
2388 	/*
2389 	 * If the trigger type is not specified by the caller, then
2390 	 * use the default for this interrupt.
2391 	 */
2392 	type &= IRQ_TYPE_SENSE_MASK;
2393 	if (type == IRQ_TYPE_NONE)
2394 		type = irqd_get_trigger_type(&desc->irq_data);
2395 
2396 	if (type != IRQ_TYPE_NONE) {
2397 		int ret;
2398 
2399 		ret = __irq_set_trigger(desc, type);
2400 
2401 		if (ret) {
2402 			WARN(1, "failed to set type for IRQ%d\n", irq);
2403 			goto out;
2404 		}
2405 	}
2406 
2407 	irq_percpu_enable(desc, cpu);
2408 out:
2409 	irq_put_desc_unlock(desc, flags);
2410 }
2411 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2412 
2413 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2414 {
2415 	enable_percpu_irq(irq, type);
2416 }
2417 
2418 /**
2419  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2420  * @irq:	Linux irq number to check for
2421  *
2422  * Must be called from a non migratable context. Returns the enable
2423  * state of a per cpu interrupt on the current cpu.
2424  */
2425 bool irq_percpu_is_enabled(unsigned int irq)
2426 {
2427 	unsigned int cpu = smp_processor_id();
2428 	struct irq_desc *desc;
2429 	unsigned long flags;
2430 	bool is_enabled;
2431 
2432 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2433 	if (!desc)
2434 		return false;
2435 
2436 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2437 	irq_put_desc_unlock(desc, flags);
2438 
2439 	return is_enabled;
2440 }
2441 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2442 
2443 void disable_percpu_irq(unsigned int irq)
2444 {
2445 	unsigned int cpu = smp_processor_id();
2446 	unsigned long flags;
2447 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2448 
2449 	if (!desc)
2450 		return;
2451 
2452 	irq_percpu_disable(desc, cpu);
2453 	irq_put_desc_unlock(desc, flags);
2454 }
2455 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2456 
2457 void disable_percpu_nmi(unsigned int irq)
2458 {
2459 	disable_percpu_irq(irq);
2460 }
2461 
2462 /*
2463  * Internal function to unregister a percpu irqaction.
2464  */
2465 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2466 {
2467 	struct irq_desc *desc = irq_to_desc(irq);
2468 	struct irqaction *action;
2469 	unsigned long flags;
2470 
2471 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2472 
2473 	if (!desc)
2474 		return NULL;
2475 
2476 	raw_spin_lock_irqsave(&desc->lock, flags);
2477 
2478 	action = desc->action;
2479 	if (!action || action->percpu_dev_id != dev_id) {
2480 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2481 		goto bad;
2482 	}
2483 
2484 	if (!cpumask_empty(desc->percpu_enabled)) {
2485 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2486 		     irq, cpumask_first(desc->percpu_enabled));
2487 		goto bad;
2488 	}
2489 
2490 	/* Found it - now remove it from the list of entries: */
2491 	desc->action = NULL;
2492 
2493 	desc->istate &= ~IRQS_NMI;
2494 
2495 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2496 
2497 	unregister_handler_proc(irq, action);
2498 
2499 	irq_chip_pm_put(&desc->irq_data);
2500 	module_put(desc->owner);
2501 	return action;
2502 
2503 bad:
2504 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2505 	return NULL;
2506 }
2507 
2508 /**
2509  *	remove_percpu_irq - free a per-cpu interrupt
2510  *	@irq: Interrupt line to free
2511  *	@act: irqaction for the interrupt
2512  *
2513  * Used to remove interrupts statically setup by the early boot process.
2514  */
2515 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2516 {
2517 	struct irq_desc *desc = irq_to_desc(irq);
2518 
2519 	if (desc && irq_settings_is_per_cpu_devid(desc))
2520 	    __free_percpu_irq(irq, act->percpu_dev_id);
2521 }
2522 
2523 /**
2524  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2525  *	@irq: Interrupt line to free
2526  *	@dev_id: Device identity to free
2527  *
2528  *	Remove a percpu interrupt handler. The handler is removed, but
2529  *	the interrupt line is not disabled. This must be done on each
2530  *	CPU before calling this function. The function does not return
2531  *	until any executing interrupts for this IRQ have completed.
2532  *
2533  *	This function must not be called from interrupt context.
2534  */
2535 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2536 {
2537 	struct irq_desc *desc = irq_to_desc(irq);
2538 
2539 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2540 		return;
2541 
2542 	chip_bus_lock(desc);
2543 	kfree(__free_percpu_irq(irq, dev_id));
2544 	chip_bus_sync_unlock(desc);
2545 }
2546 EXPORT_SYMBOL_GPL(free_percpu_irq);
2547 
2548 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2549 {
2550 	struct irq_desc *desc = irq_to_desc(irq);
2551 
2552 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2553 		return;
2554 
2555 	if (WARN_ON(!irq_is_nmi(desc)))
2556 		return;
2557 
2558 	kfree(__free_percpu_irq(irq, dev_id));
2559 }
2560 
2561 /**
2562  *	setup_percpu_irq - setup a per-cpu interrupt
2563  *	@irq: Interrupt line to setup
2564  *	@act: irqaction for the interrupt
2565  *
2566  * Used to statically setup per-cpu interrupts in the early boot process.
2567  */
2568 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2569 {
2570 	struct irq_desc *desc = irq_to_desc(irq);
2571 	int retval;
2572 
2573 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2574 		return -EINVAL;
2575 
2576 	retval = irq_chip_pm_get(&desc->irq_data);
2577 	if (retval < 0)
2578 		return retval;
2579 
2580 	retval = __setup_irq(irq, desc, act);
2581 
2582 	if (retval)
2583 		irq_chip_pm_put(&desc->irq_data);
2584 
2585 	return retval;
2586 }
2587 
2588 /**
2589  *	__request_percpu_irq - allocate a percpu interrupt line
2590  *	@irq: Interrupt line to allocate
2591  *	@handler: Function to be called when the IRQ occurs.
2592  *	@flags: Interrupt type flags (IRQF_TIMER only)
2593  *	@devname: An ascii name for the claiming device
2594  *	@dev_id: A percpu cookie passed back to the handler function
2595  *
2596  *	This call allocates interrupt resources and enables the
2597  *	interrupt on the local CPU. If the interrupt is supposed to be
2598  *	enabled on other CPUs, it has to be done on each CPU using
2599  *	enable_percpu_irq().
2600  *
2601  *	Dev_id must be globally unique. It is a per-cpu variable, and
2602  *	the handler gets called with the interrupted CPU's instance of
2603  *	that variable.
2604  */
2605 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2606 			 unsigned long flags, const char *devname,
2607 			 void __percpu *dev_id)
2608 {
2609 	struct irqaction *action;
2610 	struct irq_desc *desc;
2611 	int retval;
2612 
2613 	if (!dev_id)
2614 		return -EINVAL;
2615 
2616 	desc = irq_to_desc(irq);
2617 	if (!desc || !irq_settings_can_request(desc) ||
2618 	    !irq_settings_is_per_cpu_devid(desc))
2619 		return -EINVAL;
2620 
2621 	if (flags && flags != IRQF_TIMER)
2622 		return -EINVAL;
2623 
2624 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2625 	if (!action)
2626 		return -ENOMEM;
2627 
2628 	action->handler = handler;
2629 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2630 	action->name = devname;
2631 	action->percpu_dev_id = dev_id;
2632 
2633 	retval = irq_chip_pm_get(&desc->irq_data);
2634 	if (retval < 0) {
2635 		kfree(action);
2636 		return retval;
2637 	}
2638 
2639 	retval = __setup_irq(irq, desc, action);
2640 
2641 	if (retval) {
2642 		irq_chip_pm_put(&desc->irq_data);
2643 		kfree(action);
2644 	}
2645 
2646 	return retval;
2647 }
2648 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2649 
2650 /**
2651  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2652  *	@irq: Interrupt line to allocate
2653  *	@handler: Function to be called when the IRQ occurs.
2654  *	@name: An ascii name for the claiming device
2655  *	@dev_id: A percpu cookie passed back to the handler function
2656  *
2657  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2658  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2659  *	being enabled on the same CPU by using enable_percpu_nmi().
2660  *
2661  *	Dev_id must be globally unique. It is a per-cpu variable, and
2662  *	the handler gets called with the interrupted CPU's instance of
2663  *	that variable.
2664  *
2665  *	Interrupt lines requested for NMI delivering should have auto enabling
2666  *	setting disabled.
2667  *
2668  *	If the interrupt line cannot be used to deliver NMIs, function
2669  *	will fail returning a negative value.
2670  */
2671 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2672 		       const char *name, void __percpu *dev_id)
2673 {
2674 	struct irqaction *action;
2675 	struct irq_desc *desc;
2676 	unsigned long flags;
2677 	int retval;
2678 
2679 	if (!handler)
2680 		return -EINVAL;
2681 
2682 	desc = irq_to_desc(irq);
2683 
2684 	if (!desc || !irq_settings_can_request(desc) ||
2685 	    !irq_settings_is_per_cpu_devid(desc) ||
2686 	    irq_settings_can_autoenable(desc) ||
2687 	    !irq_supports_nmi(desc))
2688 		return -EINVAL;
2689 
2690 	/* The line cannot already be NMI */
2691 	if (irq_is_nmi(desc))
2692 		return -EINVAL;
2693 
2694 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2695 	if (!action)
2696 		return -ENOMEM;
2697 
2698 	action->handler = handler;
2699 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2700 		| IRQF_NOBALANCING;
2701 	action->name = name;
2702 	action->percpu_dev_id = dev_id;
2703 
2704 	retval = irq_chip_pm_get(&desc->irq_data);
2705 	if (retval < 0)
2706 		goto err_out;
2707 
2708 	retval = __setup_irq(irq, desc, action);
2709 	if (retval)
2710 		goto err_irq_setup;
2711 
2712 	raw_spin_lock_irqsave(&desc->lock, flags);
2713 	desc->istate |= IRQS_NMI;
2714 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2715 
2716 	return 0;
2717 
2718 err_irq_setup:
2719 	irq_chip_pm_put(&desc->irq_data);
2720 err_out:
2721 	kfree(action);
2722 
2723 	return retval;
2724 }
2725 
2726 /**
2727  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2728  *	@irq: Interrupt line to prepare for NMI delivery
2729  *
2730  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2731  *	before that interrupt line gets enabled with enable_percpu_nmi().
2732  *
2733  *	As a CPU local operation, this should be called from non-preemptible
2734  *	context.
2735  *
2736  *	If the interrupt line cannot be used to deliver NMIs, function
2737  *	will fail returning a negative value.
2738  */
2739 int prepare_percpu_nmi(unsigned int irq)
2740 {
2741 	unsigned long flags;
2742 	struct irq_desc *desc;
2743 	int ret = 0;
2744 
2745 	WARN_ON(preemptible());
2746 
2747 	desc = irq_get_desc_lock(irq, &flags,
2748 				 IRQ_GET_DESC_CHECK_PERCPU);
2749 	if (!desc)
2750 		return -EINVAL;
2751 
2752 	if (WARN(!irq_is_nmi(desc),
2753 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2754 		 irq)) {
2755 		ret = -EINVAL;
2756 		goto out;
2757 	}
2758 
2759 	ret = irq_nmi_setup(desc);
2760 	if (ret) {
2761 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2762 		goto out;
2763 	}
2764 
2765 out:
2766 	irq_put_desc_unlock(desc, flags);
2767 	return ret;
2768 }
2769 
2770 /**
2771  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2772  *	@irq: Interrupt line from which CPU local NMI configuration should be
2773  *	      removed
2774  *
2775  *	This call undoes the setup done by prepare_percpu_nmi().
2776  *
2777  *	IRQ line should not be enabled for the current CPU.
2778  *
2779  *	As a CPU local operation, this should be called from non-preemptible
2780  *	context.
2781  */
2782 void teardown_percpu_nmi(unsigned int irq)
2783 {
2784 	unsigned long flags;
2785 	struct irq_desc *desc;
2786 
2787 	WARN_ON(preemptible());
2788 
2789 	desc = irq_get_desc_lock(irq, &flags,
2790 				 IRQ_GET_DESC_CHECK_PERCPU);
2791 	if (!desc)
2792 		return;
2793 
2794 	if (WARN_ON(!irq_is_nmi(desc)))
2795 		goto out;
2796 
2797 	irq_nmi_teardown(desc);
2798 out:
2799 	irq_put_desc_unlock(desc, flags);
2800 }
2801 
2802 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2803 			    bool *state)
2804 {
2805 	struct irq_chip *chip;
2806 	int err = -EINVAL;
2807 
2808 	do {
2809 		chip = irq_data_get_irq_chip(data);
2810 		if (WARN_ON_ONCE(!chip))
2811 			return -ENODEV;
2812 		if (chip->irq_get_irqchip_state)
2813 			break;
2814 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2815 		data = data->parent_data;
2816 #else
2817 		data = NULL;
2818 #endif
2819 	} while (data);
2820 
2821 	if (data)
2822 		err = chip->irq_get_irqchip_state(data, which, state);
2823 	return err;
2824 }
2825 
2826 /**
2827  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2828  *	@irq: Interrupt line that is forwarded to a VM
2829  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2830  *	@state: a pointer to a boolean where the state is to be stored
2831  *
2832  *	This call snapshots the internal irqchip state of an
2833  *	interrupt, returning into @state the bit corresponding to
2834  *	stage @which
2835  *
2836  *	This function should be called with preemption disabled if the
2837  *	interrupt controller has per-cpu registers.
2838  */
2839 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2840 			  bool *state)
2841 {
2842 	struct irq_desc *desc;
2843 	struct irq_data *data;
2844 	unsigned long flags;
2845 	int err = -EINVAL;
2846 
2847 	desc = irq_get_desc_buslock(irq, &flags, 0);
2848 	if (!desc)
2849 		return err;
2850 
2851 	data = irq_desc_get_irq_data(desc);
2852 
2853 	err = __irq_get_irqchip_state(data, which, state);
2854 
2855 	irq_put_desc_busunlock(desc, flags);
2856 	return err;
2857 }
2858 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2859 
2860 /**
2861  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2862  *	@irq: Interrupt line that is forwarded to a VM
2863  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2864  *	@val: Value corresponding to @which
2865  *
2866  *	This call sets the internal irqchip state of an interrupt,
2867  *	depending on the value of @which.
2868  *
2869  *	This function should be called with migration disabled if the
2870  *	interrupt controller has per-cpu registers.
2871  */
2872 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2873 			  bool val)
2874 {
2875 	struct irq_desc *desc;
2876 	struct irq_data *data;
2877 	struct irq_chip *chip;
2878 	unsigned long flags;
2879 	int err = -EINVAL;
2880 
2881 	desc = irq_get_desc_buslock(irq, &flags, 0);
2882 	if (!desc)
2883 		return err;
2884 
2885 	data = irq_desc_get_irq_data(desc);
2886 
2887 	do {
2888 		chip = irq_data_get_irq_chip(data);
2889 		if (WARN_ON_ONCE(!chip)) {
2890 			err = -ENODEV;
2891 			goto out_unlock;
2892 		}
2893 		if (chip->irq_set_irqchip_state)
2894 			break;
2895 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2896 		data = data->parent_data;
2897 #else
2898 		data = NULL;
2899 #endif
2900 	} while (data);
2901 
2902 	if (data)
2903 		err = chip->irq_set_irqchip_state(data, which, val);
2904 
2905 out_unlock:
2906 	irq_put_desc_busunlock(desc, flags);
2907 	return err;
2908 }
2909 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2910 
2911 /**
2912  * irq_has_action - Check whether an interrupt is requested
2913  * @irq:	The linux irq number
2914  *
2915  * Returns: A snapshot of the current state
2916  */
2917 bool irq_has_action(unsigned int irq)
2918 {
2919 	bool res;
2920 
2921 	rcu_read_lock();
2922 	res = irq_desc_has_action(irq_to_desc(irq));
2923 	rcu_read_unlock();
2924 	return res;
2925 }
2926 EXPORT_SYMBOL_GPL(irq_has_action);
2927 
2928 /**
2929  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2930  * @irq:	The linux irq number
2931  * @bitmask:	The bitmask to evaluate
2932  *
2933  * Returns: True if one of the bits in @bitmask is set
2934  */
2935 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2936 {
2937 	struct irq_desc *desc;
2938 	bool res = false;
2939 
2940 	rcu_read_lock();
2941 	desc = irq_to_desc(irq);
2942 	if (desc)
2943 		res = !!(desc->status_use_accessors & bitmask);
2944 	rcu_read_unlock();
2945 	return res;
2946 }
2947 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2948