1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key); 29 30 static int __init setup_forced_irqthreads(char *arg) 31 { 32 static_branch_enable(&force_irqthreads_key); 33 return 0; 34 } 35 early_param("threadirqs", setup_forced_irqthreads); 36 #endif 37 38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 39 { 40 struct irq_data *irqd = irq_desc_get_irq_data(desc); 41 bool inprogress; 42 43 do { 44 unsigned long flags; 45 46 /* 47 * Wait until we're out of the critical section. This might 48 * give the wrong answer due to the lack of memory barriers. 49 */ 50 while (irqd_irq_inprogress(&desc->irq_data)) 51 cpu_relax(); 52 53 /* Ok, that indicated we're done: double-check carefully. */ 54 raw_spin_lock_irqsave(&desc->lock, flags); 55 inprogress = irqd_irq_inprogress(&desc->irq_data); 56 57 /* 58 * If requested and supported, check at the chip whether it 59 * is in flight at the hardware level, i.e. already pending 60 * in a CPU and waiting for service and acknowledge. 61 */ 62 if (!inprogress && sync_chip) { 63 /* 64 * Ignore the return code. inprogress is only updated 65 * when the chip supports it. 66 */ 67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 68 &inprogress); 69 } 70 raw_spin_unlock_irqrestore(&desc->lock, flags); 71 72 /* Oops, that failed? */ 73 } while (inprogress); 74 } 75 76 /** 77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 78 * @irq: interrupt number to wait for 79 * 80 * This function waits for any pending hard IRQ handlers for this 81 * interrupt to complete before returning. If you use this 82 * function while holding a resource the IRQ handler may need you 83 * will deadlock. It does not take associated threaded handlers 84 * into account. 85 * 86 * Do not use this for shutdown scenarios where you must be sure 87 * that all parts (hardirq and threaded handler) have completed. 88 * 89 * Returns: false if a threaded handler is active. 90 * 91 * This function may be called - with care - from IRQ context. 92 * 93 * It does not check whether there is an interrupt in flight at the 94 * hardware level, but not serviced yet, as this might deadlock when 95 * called with interrupts disabled and the target CPU of the interrupt 96 * is the current CPU. 97 */ 98 bool synchronize_hardirq(unsigned int irq) 99 { 100 struct irq_desc *desc = irq_to_desc(irq); 101 102 if (desc) { 103 __synchronize_hardirq(desc, false); 104 return !atomic_read(&desc->threads_active); 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(synchronize_hardirq); 110 111 /** 112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 113 * @irq: interrupt number to wait for 114 * 115 * This function waits for any pending IRQ handlers for this interrupt 116 * to complete before returning. If you use this function while 117 * holding a resource the IRQ handler may need you will deadlock. 118 * 119 * Can only be called from preemptible code as it might sleep when 120 * an interrupt thread is associated to @irq. 121 * 122 * It optionally makes sure (when the irq chip supports that method) 123 * that the interrupt is not pending in any CPU and waiting for 124 * service. 125 */ 126 void synchronize_irq(unsigned int irq) 127 { 128 struct irq_desc *desc = irq_to_desc(irq); 129 130 if (desc) { 131 __synchronize_hardirq(desc, true); 132 /* 133 * We made sure that no hardirq handler is 134 * running. Now verify that no threaded handlers are 135 * active. 136 */ 137 wait_event(desc->wait_for_threads, 138 !atomic_read(&desc->threads_active)); 139 } 140 } 141 EXPORT_SYMBOL(synchronize_irq); 142 143 #ifdef CONFIG_SMP 144 cpumask_var_t irq_default_affinity; 145 146 static bool __irq_can_set_affinity(struct irq_desc *desc) 147 { 148 if (!desc || !irqd_can_balance(&desc->irq_data) || 149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 150 return false; 151 return true; 152 } 153 154 /** 155 * irq_can_set_affinity - Check if the affinity of a given irq can be set 156 * @irq: Interrupt to check 157 * 158 */ 159 int irq_can_set_affinity(unsigned int irq) 160 { 161 return __irq_can_set_affinity(irq_to_desc(irq)); 162 } 163 164 /** 165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 166 * @irq: Interrupt to check 167 * 168 * Like irq_can_set_affinity() above, but additionally checks for the 169 * AFFINITY_MANAGED flag. 170 */ 171 bool irq_can_set_affinity_usr(unsigned int irq) 172 { 173 struct irq_desc *desc = irq_to_desc(irq); 174 175 return __irq_can_set_affinity(desc) && 176 !irqd_affinity_is_managed(&desc->irq_data); 177 } 178 179 /** 180 * irq_set_thread_affinity - Notify irq threads to adjust affinity 181 * @desc: irq descriptor which has affinity changed 182 * 183 * We just set IRQTF_AFFINITY and delegate the affinity setting 184 * to the interrupt thread itself. We can not call 185 * set_cpus_allowed_ptr() here as we hold desc->lock and this 186 * code can be called from hard interrupt context. 187 */ 188 void irq_set_thread_affinity(struct irq_desc *desc) 189 { 190 struct irqaction *action; 191 192 for_each_action_of_desc(desc, action) { 193 if (action->thread) 194 set_bit(IRQTF_AFFINITY, &action->thread_flags); 195 if (action->secondary && action->secondary->thread) 196 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags); 197 } 198 } 199 200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 201 static void irq_validate_effective_affinity(struct irq_data *data) 202 { 203 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 204 struct irq_chip *chip = irq_data_get_irq_chip(data); 205 206 if (!cpumask_empty(m)) 207 return; 208 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 209 chip->name, data->irq); 210 } 211 #else 212 static inline void irq_validate_effective_affinity(struct irq_data *data) { } 213 #endif 214 215 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 216 bool force) 217 { 218 struct irq_desc *desc = irq_data_to_desc(data); 219 struct irq_chip *chip = irq_data_get_irq_chip(data); 220 const struct cpumask *prog_mask; 221 int ret; 222 223 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 224 static struct cpumask tmp_mask; 225 226 if (!chip || !chip->irq_set_affinity) 227 return -EINVAL; 228 229 raw_spin_lock(&tmp_mask_lock); 230 /* 231 * If this is a managed interrupt and housekeeping is enabled on 232 * it check whether the requested affinity mask intersects with 233 * a housekeeping CPU. If so, then remove the isolated CPUs from 234 * the mask and just keep the housekeeping CPU(s). This prevents 235 * the affinity setter from routing the interrupt to an isolated 236 * CPU to avoid that I/O submitted from a housekeeping CPU causes 237 * interrupts on an isolated one. 238 * 239 * If the masks do not intersect or include online CPU(s) then 240 * keep the requested mask. The isolated target CPUs are only 241 * receiving interrupts when the I/O operation was submitted 242 * directly from them. 243 * 244 * If all housekeeping CPUs in the affinity mask are offline, the 245 * interrupt will be migrated by the CPU hotplug code once a 246 * housekeeping CPU which belongs to the affinity mask comes 247 * online. 248 */ 249 if (irqd_affinity_is_managed(data) && 250 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) { 251 const struct cpumask *hk_mask; 252 253 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 254 255 cpumask_and(&tmp_mask, mask, hk_mask); 256 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 257 prog_mask = mask; 258 else 259 prog_mask = &tmp_mask; 260 } else { 261 prog_mask = mask; 262 } 263 264 /* 265 * Make sure we only provide online CPUs to the irqchip, 266 * unless we are being asked to force the affinity (in which 267 * case we do as we are told). 268 */ 269 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask); 270 if (!force && !cpumask_empty(&tmp_mask)) 271 ret = chip->irq_set_affinity(data, &tmp_mask, force); 272 else if (force) 273 ret = chip->irq_set_affinity(data, mask, force); 274 else 275 ret = -EINVAL; 276 277 raw_spin_unlock(&tmp_mask_lock); 278 279 switch (ret) { 280 case IRQ_SET_MASK_OK: 281 case IRQ_SET_MASK_OK_DONE: 282 cpumask_copy(desc->irq_common_data.affinity, mask); 283 fallthrough; 284 case IRQ_SET_MASK_OK_NOCOPY: 285 irq_validate_effective_affinity(data); 286 irq_set_thread_affinity(desc); 287 ret = 0; 288 } 289 290 return ret; 291 } 292 293 #ifdef CONFIG_GENERIC_PENDING_IRQ 294 static inline int irq_set_affinity_pending(struct irq_data *data, 295 const struct cpumask *dest) 296 { 297 struct irq_desc *desc = irq_data_to_desc(data); 298 299 irqd_set_move_pending(data); 300 irq_copy_pending(desc, dest); 301 return 0; 302 } 303 #else 304 static inline int irq_set_affinity_pending(struct irq_data *data, 305 const struct cpumask *dest) 306 { 307 return -EBUSY; 308 } 309 #endif 310 311 static int irq_try_set_affinity(struct irq_data *data, 312 const struct cpumask *dest, bool force) 313 { 314 int ret = irq_do_set_affinity(data, dest, force); 315 316 /* 317 * In case that the underlying vector management is busy and the 318 * architecture supports the generic pending mechanism then utilize 319 * this to avoid returning an error to user space. 320 */ 321 if (ret == -EBUSY && !force) 322 ret = irq_set_affinity_pending(data, dest); 323 return ret; 324 } 325 326 static bool irq_set_affinity_deactivated(struct irq_data *data, 327 const struct cpumask *mask) 328 { 329 struct irq_desc *desc = irq_data_to_desc(data); 330 331 /* 332 * Handle irq chips which can handle affinity only in activated 333 * state correctly 334 * 335 * If the interrupt is not yet activated, just store the affinity 336 * mask and do not call the chip driver at all. On activation the 337 * driver has to make sure anyway that the interrupt is in a 338 * usable state so startup works. 339 */ 340 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) || 341 irqd_is_activated(data) || !irqd_affinity_on_activate(data)) 342 return false; 343 344 cpumask_copy(desc->irq_common_data.affinity, mask); 345 irq_data_update_effective_affinity(data, mask); 346 irqd_set(data, IRQD_AFFINITY_SET); 347 return true; 348 } 349 350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 351 bool force) 352 { 353 struct irq_chip *chip = irq_data_get_irq_chip(data); 354 struct irq_desc *desc = irq_data_to_desc(data); 355 int ret = 0; 356 357 if (!chip || !chip->irq_set_affinity) 358 return -EINVAL; 359 360 if (irq_set_affinity_deactivated(data, mask)) 361 return 0; 362 363 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 364 ret = irq_try_set_affinity(data, mask, force); 365 } else { 366 irqd_set_move_pending(data); 367 irq_copy_pending(desc, mask); 368 } 369 370 if (desc->affinity_notify) { 371 kref_get(&desc->affinity_notify->kref); 372 if (!schedule_work(&desc->affinity_notify->work)) { 373 /* Work was already scheduled, drop our extra ref */ 374 kref_put(&desc->affinity_notify->kref, 375 desc->affinity_notify->release); 376 } 377 } 378 irqd_set(data, IRQD_AFFINITY_SET); 379 380 return ret; 381 } 382 383 /** 384 * irq_update_affinity_desc - Update affinity management for an interrupt 385 * @irq: The interrupt number to update 386 * @affinity: Pointer to the affinity descriptor 387 * 388 * This interface can be used to configure the affinity management of 389 * interrupts which have been allocated already. 390 * 391 * There are certain limitations on when it may be used - attempts to use it 392 * for when the kernel is configured for generic IRQ reservation mode (in 393 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with 394 * managed/non-managed interrupt accounting. In addition, attempts to use it on 395 * an interrupt which is already started or which has already been configured 396 * as managed will also fail, as these mean invalid init state or double init. 397 */ 398 int irq_update_affinity_desc(unsigned int irq, 399 struct irq_affinity_desc *affinity) 400 { 401 struct irq_desc *desc; 402 unsigned long flags; 403 bool activated; 404 int ret = 0; 405 406 /* 407 * Supporting this with the reservation scheme used by x86 needs 408 * some more thought. Fail it for now. 409 */ 410 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE)) 411 return -EOPNOTSUPP; 412 413 desc = irq_get_desc_buslock(irq, &flags, 0); 414 if (!desc) 415 return -EINVAL; 416 417 /* Requires the interrupt to be shut down */ 418 if (irqd_is_started(&desc->irq_data)) { 419 ret = -EBUSY; 420 goto out_unlock; 421 } 422 423 /* Interrupts which are already managed cannot be modified */ 424 if (irqd_affinity_is_managed(&desc->irq_data)) { 425 ret = -EBUSY; 426 goto out_unlock; 427 } 428 429 /* 430 * Deactivate the interrupt. That's required to undo 431 * anything an earlier activation has established. 432 */ 433 activated = irqd_is_activated(&desc->irq_data); 434 if (activated) 435 irq_domain_deactivate_irq(&desc->irq_data); 436 437 if (affinity->is_managed) { 438 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED); 439 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN); 440 } 441 442 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask); 443 444 /* Restore the activation state */ 445 if (activated) 446 irq_domain_activate_irq(&desc->irq_data, false); 447 448 out_unlock: 449 irq_put_desc_busunlock(desc, flags); 450 return ret; 451 } 452 453 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, 454 bool force) 455 { 456 struct irq_desc *desc = irq_to_desc(irq); 457 unsigned long flags; 458 int ret; 459 460 if (!desc) 461 return -EINVAL; 462 463 raw_spin_lock_irqsave(&desc->lock, flags); 464 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 465 raw_spin_unlock_irqrestore(&desc->lock, flags); 466 return ret; 467 } 468 469 /** 470 * irq_set_affinity - Set the irq affinity of a given irq 471 * @irq: Interrupt to set affinity 472 * @cpumask: cpumask 473 * 474 * Fails if cpumask does not contain an online CPU 475 */ 476 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) 477 { 478 return __irq_set_affinity(irq, cpumask, false); 479 } 480 EXPORT_SYMBOL_GPL(irq_set_affinity); 481 482 /** 483 * irq_force_affinity - Force the irq affinity of a given irq 484 * @irq: Interrupt to set affinity 485 * @cpumask: cpumask 486 * 487 * Same as irq_set_affinity, but without checking the mask against 488 * online cpus. 489 * 490 * Solely for low level cpu hotplug code, where we need to make per 491 * cpu interrupts affine before the cpu becomes online. 492 */ 493 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) 494 { 495 return __irq_set_affinity(irq, cpumask, true); 496 } 497 EXPORT_SYMBOL_GPL(irq_force_affinity); 498 499 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, 500 bool setaffinity) 501 { 502 unsigned long flags; 503 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 504 505 if (!desc) 506 return -EINVAL; 507 desc->affinity_hint = m; 508 irq_put_desc_unlock(desc, flags); 509 if (m && setaffinity) 510 __irq_set_affinity(irq, m, false); 511 return 0; 512 } 513 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint); 514 515 static void irq_affinity_notify(struct work_struct *work) 516 { 517 struct irq_affinity_notify *notify = 518 container_of(work, struct irq_affinity_notify, work); 519 struct irq_desc *desc = irq_to_desc(notify->irq); 520 cpumask_var_t cpumask; 521 unsigned long flags; 522 523 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 524 goto out; 525 526 raw_spin_lock_irqsave(&desc->lock, flags); 527 if (irq_move_pending(&desc->irq_data)) 528 irq_get_pending(cpumask, desc); 529 else 530 cpumask_copy(cpumask, desc->irq_common_data.affinity); 531 raw_spin_unlock_irqrestore(&desc->lock, flags); 532 533 notify->notify(notify, cpumask); 534 535 free_cpumask_var(cpumask); 536 out: 537 kref_put(¬ify->kref, notify->release); 538 } 539 540 /** 541 * irq_set_affinity_notifier - control notification of IRQ affinity changes 542 * @irq: Interrupt for which to enable/disable notification 543 * @notify: Context for notification, or %NULL to disable 544 * notification. Function pointers must be initialised; 545 * the other fields will be initialised by this function. 546 * 547 * Must be called in process context. Notification may only be enabled 548 * after the IRQ is allocated and must be disabled before the IRQ is 549 * freed using free_irq(). 550 */ 551 int 552 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 553 { 554 struct irq_desc *desc = irq_to_desc(irq); 555 struct irq_affinity_notify *old_notify; 556 unsigned long flags; 557 558 /* The release function is promised process context */ 559 might_sleep(); 560 561 if (!desc || desc->istate & IRQS_NMI) 562 return -EINVAL; 563 564 /* Complete initialisation of *notify */ 565 if (notify) { 566 notify->irq = irq; 567 kref_init(¬ify->kref); 568 INIT_WORK(¬ify->work, irq_affinity_notify); 569 } 570 571 raw_spin_lock_irqsave(&desc->lock, flags); 572 old_notify = desc->affinity_notify; 573 desc->affinity_notify = notify; 574 raw_spin_unlock_irqrestore(&desc->lock, flags); 575 576 if (old_notify) { 577 if (cancel_work_sync(&old_notify->work)) { 578 /* Pending work had a ref, put that one too */ 579 kref_put(&old_notify->kref, old_notify->release); 580 } 581 kref_put(&old_notify->kref, old_notify->release); 582 } 583 584 return 0; 585 } 586 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 587 588 #ifndef CONFIG_AUTO_IRQ_AFFINITY 589 /* 590 * Generic version of the affinity autoselector. 591 */ 592 int irq_setup_affinity(struct irq_desc *desc) 593 { 594 struct cpumask *set = irq_default_affinity; 595 int ret, node = irq_desc_get_node(desc); 596 static DEFINE_RAW_SPINLOCK(mask_lock); 597 static struct cpumask mask; 598 599 /* Excludes PER_CPU and NO_BALANCE interrupts */ 600 if (!__irq_can_set_affinity(desc)) 601 return 0; 602 603 raw_spin_lock(&mask_lock); 604 /* 605 * Preserve the managed affinity setting and a userspace affinity 606 * setup, but make sure that one of the targets is online. 607 */ 608 if (irqd_affinity_is_managed(&desc->irq_data) || 609 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 610 if (cpumask_intersects(desc->irq_common_data.affinity, 611 cpu_online_mask)) 612 set = desc->irq_common_data.affinity; 613 else 614 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 615 } 616 617 cpumask_and(&mask, cpu_online_mask, set); 618 if (cpumask_empty(&mask)) 619 cpumask_copy(&mask, cpu_online_mask); 620 621 if (node != NUMA_NO_NODE) { 622 const struct cpumask *nodemask = cpumask_of_node(node); 623 624 /* make sure at least one of the cpus in nodemask is online */ 625 if (cpumask_intersects(&mask, nodemask)) 626 cpumask_and(&mask, &mask, nodemask); 627 } 628 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 629 raw_spin_unlock(&mask_lock); 630 return ret; 631 } 632 #else 633 /* Wrapper for ALPHA specific affinity selector magic */ 634 int irq_setup_affinity(struct irq_desc *desc) 635 { 636 return irq_select_affinity(irq_desc_get_irq(desc)); 637 } 638 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 639 #endif /* CONFIG_SMP */ 640 641 642 /** 643 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 644 * @irq: interrupt number to set affinity 645 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 646 * specific data for percpu_devid interrupts 647 * 648 * This function uses the vCPU specific data to set the vCPU 649 * affinity for an irq. The vCPU specific data is passed from 650 * outside, such as KVM. One example code path is as below: 651 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 652 */ 653 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 654 { 655 unsigned long flags; 656 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 657 struct irq_data *data; 658 struct irq_chip *chip; 659 int ret = -ENOSYS; 660 661 if (!desc) 662 return -EINVAL; 663 664 data = irq_desc_get_irq_data(desc); 665 do { 666 chip = irq_data_get_irq_chip(data); 667 if (chip && chip->irq_set_vcpu_affinity) 668 break; 669 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 670 data = data->parent_data; 671 #else 672 data = NULL; 673 #endif 674 } while (data); 675 676 if (data) 677 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 678 irq_put_desc_unlock(desc, flags); 679 680 return ret; 681 } 682 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 683 684 void __disable_irq(struct irq_desc *desc) 685 { 686 if (!desc->depth++) 687 irq_disable(desc); 688 } 689 690 static int __disable_irq_nosync(unsigned int irq) 691 { 692 unsigned long flags; 693 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 694 695 if (!desc) 696 return -EINVAL; 697 __disable_irq(desc); 698 irq_put_desc_busunlock(desc, flags); 699 return 0; 700 } 701 702 /** 703 * disable_irq_nosync - disable an irq without waiting 704 * @irq: Interrupt to disable 705 * 706 * Disable the selected interrupt line. Disables and Enables are 707 * nested. 708 * Unlike disable_irq(), this function does not ensure existing 709 * instances of the IRQ handler have completed before returning. 710 * 711 * This function may be called from IRQ context. 712 */ 713 void disable_irq_nosync(unsigned int irq) 714 { 715 __disable_irq_nosync(irq); 716 } 717 EXPORT_SYMBOL(disable_irq_nosync); 718 719 /** 720 * disable_irq - disable an irq and wait for completion 721 * @irq: Interrupt to disable 722 * 723 * Disable the selected interrupt line. Enables and Disables are 724 * nested. 725 * This function waits for any pending IRQ handlers for this interrupt 726 * to complete before returning. If you use this function while 727 * holding a resource the IRQ handler may need you will deadlock. 728 * 729 * Can only be called from preemptible code as it might sleep when 730 * an interrupt thread is associated to @irq. 731 * 732 */ 733 void disable_irq(unsigned int irq) 734 { 735 might_sleep(); 736 if (!__disable_irq_nosync(irq)) 737 synchronize_irq(irq); 738 } 739 EXPORT_SYMBOL(disable_irq); 740 741 /** 742 * disable_hardirq - disables an irq and waits for hardirq completion 743 * @irq: Interrupt to disable 744 * 745 * Disable the selected interrupt line. Enables and Disables are 746 * nested. 747 * This function waits for any pending hard IRQ handlers for this 748 * interrupt to complete before returning. If you use this function while 749 * holding a resource the hard IRQ handler may need you will deadlock. 750 * 751 * When used to optimistically disable an interrupt from atomic context 752 * the return value must be checked. 753 * 754 * Returns: false if a threaded handler is active. 755 * 756 * This function may be called - with care - from IRQ context. 757 */ 758 bool disable_hardirq(unsigned int irq) 759 { 760 if (!__disable_irq_nosync(irq)) 761 return synchronize_hardirq(irq); 762 763 return false; 764 } 765 EXPORT_SYMBOL_GPL(disable_hardirq); 766 767 /** 768 * disable_nmi_nosync - disable an nmi without waiting 769 * @irq: Interrupt to disable 770 * 771 * Disable the selected interrupt line. Disables and enables are 772 * nested. 773 * The interrupt to disable must have been requested through request_nmi. 774 * Unlike disable_nmi(), this function does not ensure existing 775 * instances of the IRQ handler have completed before returning. 776 */ 777 void disable_nmi_nosync(unsigned int irq) 778 { 779 disable_irq_nosync(irq); 780 } 781 782 void __enable_irq(struct irq_desc *desc) 783 { 784 switch (desc->depth) { 785 case 0: 786 err_out: 787 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 788 irq_desc_get_irq(desc)); 789 break; 790 case 1: { 791 if (desc->istate & IRQS_SUSPENDED) 792 goto err_out; 793 /* Prevent probing on this irq: */ 794 irq_settings_set_noprobe(desc); 795 /* 796 * Call irq_startup() not irq_enable() here because the 797 * interrupt might be marked NOAUTOEN. So irq_startup() 798 * needs to be invoked when it gets enabled the first 799 * time. If it was already started up, then irq_startup() 800 * will invoke irq_enable() under the hood. 801 */ 802 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 803 break; 804 } 805 default: 806 desc->depth--; 807 } 808 } 809 810 /** 811 * enable_irq - enable handling of an irq 812 * @irq: Interrupt to enable 813 * 814 * Undoes the effect of one call to disable_irq(). If this 815 * matches the last disable, processing of interrupts on this 816 * IRQ line is re-enabled. 817 * 818 * This function may be called from IRQ context only when 819 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 820 */ 821 void enable_irq(unsigned int irq) 822 { 823 unsigned long flags; 824 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 825 826 if (!desc) 827 return; 828 if (WARN(!desc->irq_data.chip, 829 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 830 goto out; 831 832 __enable_irq(desc); 833 out: 834 irq_put_desc_busunlock(desc, flags); 835 } 836 EXPORT_SYMBOL(enable_irq); 837 838 /** 839 * enable_nmi - enable handling of an nmi 840 * @irq: Interrupt to enable 841 * 842 * The interrupt to enable must have been requested through request_nmi. 843 * Undoes the effect of one call to disable_nmi(). If this 844 * matches the last disable, processing of interrupts on this 845 * IRQ line is re-enabled. 846 */ 847 void enable_nmi(unsigned int irq) 848 { 849 enable_irq(irq); 850 } 851 852 static int set_irq_wake_real(unsigned int irq, unsigned int on) 853 { 854 struct irq_desc *desc = irq_to_desc(irq); 855 int ret = -ENXIO; 856 857 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 858 return 0; 859 860 if (desc->irq_data.chip->irq_set_wake) 861 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 862 863 return ret; 864 } 865 866 /** 867 * irq_set_irq_wake - control irq power management wakeup 868 * @irq: interrupt to control 869 * @on: enable/disable power management wakeup 870 * 871 * Enable/disable power management wakeup mode, which is 872 * disabled by default. Enables and disables must match, 873 * just as they match for non-wakeup mode support. 874 * 875 * Wakeup mode lets this IRQ wake the system from sleep 876 * states like "suspend to RAM". 877 * 878 * Note: irq enable/disable state is completely orthogonal 879 * to the enable/disable state of irq wake. An irq can be 880 * disabled with disable_irq() and still wake the system as 881 * long as the irq has wake enabled. If this does not hold, 882 * then the underlying irq chip and the related driver need 883 * to be investigated. 884 */ 885 int irq_set_irq_wake(unsigned int irq, unsigned int on) 886 { 887 unsigned long flags; 888 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 889 int ret = 0; 890 891 if (!desc) 892 return -EINVAL; 893 894 /* Don't use NMIs as wake up interrupts please */ 895 if (desc->istate & IRQS_NMI) { 896 ret = -EINVAL; 897 goto out_unlock; 898 } 899 900 /* wakeup-capable irqs can be shared between drivers that 901 * don't need to have the same sleep mode behaviors. 902 */ 903 if (on) { 904 if (desc->wake_depth++ == 0) { 905 ret = set_irq_wake_real(irq, on); 906 if (ret) 907 desc->wake_depth = 0; 908 else 909 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 910 } 911 } else { 912 if (desc->wake_depth == 0) { 913 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 914 } else if (--desc->wake_depth == 0) { 915 ret = set_irq_wake_real(irq, on); 916 if (ret) 917 desc->wake_depth = 1; 918 else 919 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 920 } 921 } 922 923 out_unlock: 924 irq_put_desc_busunlock(desc, flags); 925 return ret; 926 } 927 EXPORT_SYMBOL(irq_set_irq_wake); 928 929 /* 930 * Internal function that tells the architecture code whether a 931 * particular irq has been exclusively allocated or is available 932 * for driver use. 933 */ 934 int can_request_irq(unsigned int irq, unsigned long irqflags) 935 { 936 unsigned long flags; 937 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 938 int canrequest = 0; 939 940 if (!desc) 941 return 0; 942 943 if (irq_settings_can_request(desc)) { 944 if (!desc->action || 945 irqflags & desc->action->flags & IRQF_SHARED) 946 canrequest = 1; 947 } 948 irq_put_desc_unlock(desc, flags); 949 return canrequest; 950 } 951 952 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 953 { 954 struct irq_chip *chip = desc->irq_data.chip; 955 int ret, unmask = 0; 956 957 if (!chip || !chip->irq_set_type) { 958 /* 959 * IRQF_TRIGGER_* but the PIC does not support multiple 960 * flow-types? 961 */ 962 pr_debug("No set_type function for IRQ %d (%s)\n", 963 irq_desc_get_irq(desc), 964 chip ? (chip->name ? : "unknown") : "unknown"); 965 return 0; 966 } 967 968 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 969 if (!irqd_irq_masked(&desc->irq_data)) 970 mask_irq(desc); 971 if (!irqd_irq_disabled(&desc->irq_data)) 972 unmask = 1; 973 } 974 975 /* Mask all flags except trigger mode */ 976 flags &= IRQ_TYPE_SENSE_MASK; 977 ret = chip->irq_set_type(&desc->irq_data, flags); 978 979 switch (ret) { 980 case IRQ_SET_MASK_OK: 981 case IRQ_SET_MASK_OK_DONE: 982 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 983 irqd_set(&desc->irq_data, flags); 984 fallthrough; 985 986 case IRQ_SET_MASK_OK_NOCOPY: 987 flags = irqd_get_trigger_type(&desc->irq_data); 988 irq_settings_set_trigger_mask(desc, flags); 989 irqd_clear(&desc->irq_data, IRQD_LEVEL); 990 irq_settings_clr_level(desc); 991 if (flags & IRQ_TYPE_LEVEL_MASK) { 992 irq_settings_set_level(desc); 993 irqd_set(&desc->irq_data, IRQD_LEVEL); 994 } 995 996 ret = 0; 997 break; 998 default: 999 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 1000 flags, irq_desc_get_irq(desc), chip->irq_set_type); 1001 } 1002 if (unmask) 1003 unmask_irq(desc); 1004 return ret; 1005 } 1006 1007 #ifdef CONFIG_HARDIRQS_SW_RESEND 1008 int irq_set_parent(int irq, int parent_irq) 1009 { 1010 unsigned long flags; 1011 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 1012 1013 if (!desc) 1014 return -EINVAL; 1015 1016 desc->parent_irq = parent_irq; 1017 1018 irq_put_desc_unlock(desc, flags); 1019 return 0; 1020 } 1021 EXPORT_SYMBOL_GPL(irq_set_parent); 1022 #endif 1023 1024 /* 1025 * Default primary interrupt handler for threaded interrupts. Is 1026 * assigned as primary handler when request_threaded_irq is called 1027 * with handler == NULL. Useful for oneshot interrupts. 1028 */ 1029 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 1030 { 1031 return IRQ_WAKE_THREAD; 1032 } 1033 1034 /* 1035 * Primary handler for nested threaded interrupts. Should never be 1036 * called. 1037 */ 1038 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 1039 { 1040 WARN(1, "Primary handler called for nested irq %d\n", irq); 1041 return IRQ_NONE; 1042 } 1043 1044 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 1045 { 1046 WARN(1, "Secondary action handler called for irq %d\n", irq); 1047 return IRQ_NONE; 1048 } 1049 1050 static int irq_wait_for_interrupt(struct irqaction *action) 1051 { 1052 for (;;) { 1053 set_current_state(TASK_INTERRUPTIBLE); 1054 1055 if (kthread_should_stop()) { 1056 /* may need to run one last time */ 1057 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1058 &action->thread_flags)) { 1059 __set_current_state(TASK_RUNNING); 1060 return 0; 1061 } 1062 __set_current_state(TASK_RUNNING); 1063 return -1; 1064 } 1065 1066 if (test_and_clear_bit(IRQTF_RUNTHREAD, 1067 &action->thread_flags)) { 1068 __set_current_state(TASK_RUNNING); 1069 return 0; 1070 } 1071 schedule(); 1072 } 1073 } 1074 1075 /* 1076 * Oneshot interrupts keep the irq line masked until the threaded 1077 * handler finished. unmask if the interrupt has not been disabled and 1078 * is marked MASKED. 1079 */ 1080 static void irq_finalize_oneshot(struct irq_desc *desc, 1081 struct irqaction *action) 1082 { 1083 if (!(desc->istate & IRQS_ONESHOT) || 1084 action->handler == irq_forced_secondary_handler) 1085 return; 1086 again: 1087 chip_bus_lock(desc); 1088 raw_spin_lock_irq(&desc->lock); 1089 1090 /* 1091 * Implausible though it may be we need to protect us against 1092 * the following scenario: 1093 * 1094 * The thread is faster done than the hard interrupt handler 1095 * on the other CPU. If we unmask the irq line then the 1096 * interrupt can come in again and masks the line, leaves due 1097 * to IRQS_INPROGRESS and the irq line is masked forever. 1098 * 1099 * This also serializes the state of shared oneshot handlers 1100 * versus "desc->threads_oneshot |= action->thread_mask;" in 1101 * irq_wake_thread(). See the comment there which explains the 1102 * serialization. 1103 */ 1104 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 1105 raw_spin_unlock_irq(&desc->lock); 1106 chip_bus_sync_unlock(desc); 1107 cpu_relax(); 1108 goto again; 1109 } 1110 1111 /* 1112 * Now check again, whether the thread should run. Otherwise 1113 * we would clear the threads_oneshot bit of this thread which 1114 * was just set. 1115 */ 1116 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1117 goto out_unlock; 1118 1119 desc->threads_oneshot &= ~action->thread_mask; 1120 1121 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 1122 irqd_irq_masked(&desc->irq_data)) 1123 unmask_threaded_irq(desc); 1124 1125 out_unlock: 1126 raw_spin_unlock_irq(&desc->lock); 1127 chip_bus_sync_unlock(desc); 1128 } 1129 1130 #ifdef CONFIG_SMP 1131 /* 1132 * Check whether we need to change the affinity of the interrupt thread. 1133 */ 1134 static void 1135 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 1136 { 1137 cpumask_var_t mask; 1138 bool valid = true; 1139 1140 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 1141 return; 1142 1143 /* 1144 * In case we are out of memory we set IRQTF_AFFINITY again and 1145 * try again next time 1146 */ 1147 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 1148 set_bit(IRQTF_AFFINITY, &action->thread_flags); 1149 return; 1150 } 1151 1152 raw_spin_lock_irq(&desc->lock); 1153 /* 1154 * This code is triggered unconditionally. Check the affinity 1155 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 1156 */ 1157 if (cpumask_available(desc->irq_common_data.affinity)) { 1158 const struct cpumask *m; 1159 1160 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1161 cpumask_copy(mask, m); 1162 } else { 1163 valid = false; 1164 } 1165 raw_spin_unlock_irq(&desc->lock); 1166 1167 if (valid) 1168 set_cpus_allowed_ptr(current, mask); 1169 free_cpumask_var(mask); 1170 } 1171 #else 1172 static inline void 1173 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1174 #endif 1175 1176 /* 1177 * Interrupts which are not explicitly requested as threaded 1178 * interrupts rely on the implicit bh/preempt disable of the hard irq 1179 * context. So we need to disable bh here to avoid deadlocks and other 1180 * side effects. 1181 */ 1182 static irqreturn_t 1183 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1184 { 1185 irqreturn_t ret; 1186 1187 local_bh_disable(); 1188 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1189 local_irq_disable(); 1190 ret = action->thread_fn(action->irq, action->dev_id); 1191 if (ret == IRQ_HANDLED) 1192 atomic_inc(&desc->threads_handled); 1193 1194 irq_finalize_oneshot(desc, action); 1195 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1196 local_irq_enable(); 1197 local_bh_enable(); 1198 return ret; 1199 } 1200 1201 /* 1202 * Interrupts explicitly requested as threaded interrupts want to be 1203 * preemptible - many of them need to sleep and wait for slow busses to 1204 * complete. 1205 */ 1206 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1207 struct irqaction *action) 1208 { 1209 irqreturn_t ret; 1210 1211 ret = action->thread_fn(action->irq, action->dev_id); 1212 if (ret == IRQ_HANDLED) 1213 atomic_inc(&desc->threads_handled); 1214 1215 irq_finalize_oneshot(desc, action); 1216 return ret; 1217 } 1218 1219 static void wake_threads_waitq(struct irq_desc *desc) 1220 { 1221 if (atomic_dec_and_test(&desc->threads_active)) 1222 wake_up(&desc->wait_for_threads); 1223 } 1224 1225 static void irq_thread_dtor(struct callback_head *unused) 1226 { 1227 struct task_struct *tsk = current; 1228 struct irq_desc *desc; 1229 struct irqaction *action; 1230 1231 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1232 return; 1233 1234 action = kthread_data(tsk); 1235 1236 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1237 tsk->comm, tsk->pid, action->irq); 1238 1239 1240 desc = irq_to_desc(action->irq); 1241 /* 1242 * If IRQTF_RUNTHREAD is set, we need to decrement 1243 * desc->threads_active and wake possible waiters. 1244 */ 1245 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1246 wake_threads_waitq(desc); 1247 1248 /* Prevent a stale desc->threads_oneshot */ 1249 irq_finalize_oneshot(desc, action); 1250 } 1251 1252 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1253 { 1254 struct irqaction *secondary = action->secondary; 1255 1256 if (WARN_ON_ONCE(!secondary)) 1257 return; 1258 1259 raw_spin_lock_irq(&desc->lock); 1260 __irq_wake_thread(desc, secondary); 1261 raw_spin_unlock_irq(&desc->lock); 1262 } 1263 1264 /* 1265 * Internal function to notify that a interrupt thread is ready. 1266 */ 1267 static void irq_thread_set_ready(struct irq_desc *desc, 1268 struct irqaction *action) 1269 { 1270 set_bit(IRQTF_READY, &action->thread_flags); 1271 wake_up(&desc->wait_for_threads); 1272 } 1273 1274 /* 1275 * Internal function to wake up a interrupt thread and wait until it is 1276 * ready. 1277 */ 1278 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc, 1279 struct irqaction *action) 1280 { 1281 if (!action || !action->thread) 1282 return; 1283 1284 wake_up_process(action->thread); 1285 wait_event(desc->wait_for_threads, 1286 test_bit(IRQTF_READY, &action->thread_flags)); 1287 } 1288 1289 /* 1290 * Interrupt handler thread 1291 */ 1292 static int irq_thread(void *data) 1293 { 1294 struct callback_head on_exit_work; 1295 struct irqaction *action = data; 1296 struct irq_desc *desc = irq_to_desc(action->irq); 1297 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1298 struct irqaction *action); 1299 1300 irq_thread_set_ready(desc, action); 1301 1302 sched_set_fifo(current); 1303 1304 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD, 1305 &action->thread_flags)) 1306 handler_fn = irq_forced_thread_fn; 1307 else 1308 handler_fn = irq_thread_fn; 1309 1310 init_task_work(&on_exit_work, irq_thread_dtor); 1311 task_work_add(current, &on_exit_work, TWA_NONE); 1312 1313 irq_thread_check_affinity(desc, action); 1314 1315 while (!irq_wait_for_interrupt(action)) { 1316 irqreturn_t action_ret; 1317 1318 irq_thread_check_affinity(desc, action); 1319 1320 action_ret = handler_fn(desc, action); 1321 if (action_ret == IRQ_WAKE_THREAD) 1322 irq_wake_secondary(desc, action); 1323 1324 wake_threads_waitq(desc); 1325 } 1326 1327 /* 1328 * This is the regular exit path. __free_irq() is stopping the 1329 * thread via kthread_stop() after calling 1330 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1331 * oneshot mask bit can be set. 1332 */ 1333 task_work_cancel(current, irq_thread_dtor); 1334 return 0; 1335 } 1336 1337 /** 1338 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1339 * @irq: Interrupt line 1340 * @dev_id: Device identity for which the thread should be woken 1341 * 1342 */ 1343 void irq_wake_thread(unsigned int irq, void *dev_id) 1344 { 1345 struct irq_desc *desc = irq_to_desc(irq); 1346 struct irqaction *action; 1347 unsigned long flags; 1348 1349 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1350 return; 1351 1352 raw_spin_lock_irqsave(&desc->lock, flags); 1353 for_each_action_of_desc(desc, action) { 1354 if (action->dev_id == dev_id) { 1355 if (action->thread) 1356 __irq_wake_thread(desc, action); 1357 break; 1358 } 1359 } 1360 raw_spin_unlock_irqrestore(&desc->lock, flags); 1361 } 1362 EXPORT_SYMBOL_GPL(irq_wake_thread); 1363 1364 static int irq_setup_forced_threading(struct irqaction *new) 1365 { 1366 if (!force_irqthreads()) 1367 return 0; 1368 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1369 return 0; 1370 1371 /* 1372 * No further action required for interrupts which are requested as 1373 * threaded interrupts already 1374 */ 1375 if (new->handler == irq_default_primary_handler) 1376 return 0; 1377 1378 new->flags |= IRQF_ONESHOT; 1379 1380 /* 1381 * Handle the case where we have a real primary handler and a 1382 * thread handler. We force thread them as well by creating a 1383 * secondary action. 1384 */ 1385 if (new->handler && new->thread_fn) { 1386 /* Allocate the secondary action */ 1387 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1388 if (!new->secondary) 1389 return -ENOMEM; 1390 new->secondary->handler = irq_forced_secondary_handler; 1391 new->secondary->thread_fn = new->thread_fn; 1392 new->secondary->dev_id = new->dev_id; 1393 new->secondary->irq = new->irq; 1394 new->secondary->name = new->name; 1395 } 1396 /* Deal with the primary handler */ 1397 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1398 new->thread_fn = new->handler; 1399 new->handler = irq_default_primary_handler; 1400 return 0; 1401 } 1402 1403 static int irq_request_resources(struct irq_desc *desc) 1404 { 1405 struct irq_data *d = &desc->irq_data; 1406 struct irq_chip *c = d->chip; 1407 1408 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1409 } 1410 1411 static void irq_release_resources(struct irq_desc *desc) 1412 { 1413 struct irq_data *d = &desc->irq_data; 1414 struct irq_chip *c = d->chip; 1415 1416 if (c->irq_release_resources) 1417 c->irq_release_resources(d); 1418 } 1419 1420 static bool irq_supports_nmi(struct irq_desc *desc) 1421 { 1422 struct irq_data *d = irq_desc_get_irq_data(desc); 1423 1424 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1425 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1426 if (d->parent_data) 1427 return false; 1428 #endif 1429 /* Don't support NMIs for chips behind a slow bus */ 1430 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1431 return false; 1432 1433 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1434 } 1435 1436 static int irq_nmi_setup(struct irq_desc *desc) 1437 { 1438 struct irq_data *d = irq_desc_get_irq_data(desc); 1439 struct irq_chip *c = d->chip; 1440 1441 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1442 } 1443 1444 static void irq_nmi_teardown(struct irq_desc *desc) 1445 { 1446 struct irq_data *d = irq_desc_get_irq_data(desc); 1447 struct irq_chip *c = d->chip; 1448 1449 if (c->irq_nmi_teardown) 1450 c->irq_nmi_teardown(d); 1451 } 1452 1453 static int 1454 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1455 { 1456 struct task_struct *t; 1457 1458 if (!secondary) { 1459 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1460 new->name); 1461 } else { 1462 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1463 new->name); 1464 } 1465 1466 if (IS_ERR(t)) 1467 return PTR_ERR(t); 1468 1469 /* 1470 * We keep the reference to the task struct even if 1471 * the thread dies to avoid that the interrupt code 1472 * references an already freed task_struct. 1473 */ 1474 new->thread = get_task_struct(t); 1475 /* 1476 * Tell the thread to set its affinity. This is 1477 * important for shared interrupt handlers as we do 1478 * not invoke setup_affinity() for the secondary 1479 * handlers as everything is already set up. Even for 1480 * interrupts marked with IRQF_NO_BALANCE this is 1481 * correct as we want the thread to move to the cpu(s) 1482 * on which the requesting code placed the interrupt. 1483 */ 1484 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1485 return 0; 1486 } 1487 1488 /* 1489 * Internal function to register an irqaction - typically used to 1490 * allocate special interrupts that are part of the architecture. 1491 * 1492 * Locking rules: 1493 * 1494 * desc->request_mutex Provides serialization against a concurrent free_irq() 1495 * chip_bus_lock Provides serialization for slow bus operations 1496 * desc->lock Provides serialization against hard interrupts 1497 * 1498 * chip_bus_lock and desc->lock are sufficient for all other management and 1499 * interrupt related functions. desc->request_mutex solely serializes 1500 * request/free_irq(). 1501 */ 1502 static int 1503 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1504 { 1505 struct irqaction *old, **old_ptr; 1506 unsigned long flags, thread_mask = 0; 1507 int ret, nested, shared = 0; 1508 1509 if (!desc) 1510 return -EINVAL; 1511 1512 if (desc->irq_data.chip == &no_irq_chip) 1513 return -ENOSYS; 1514 if (!try_module_get(desc->owner)) 1515 return -ENODEV; 1516 1517 new->irq = irq; 1518 1519 /* 1520 * If the trigger type is not specified by the caller, 1521 * then use the default for this interrupt. 1522 */ 1523 if (!(new->flags & IRQF_TRIGGER_MASK)) 1524 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1525 1526 /* 1527 * Check whether the interrupt nests into another interrupt 1528 * thread. 1529 */ 1530 nested = irq_settings_is_nested_thread(desc); 1531 if (nested) { 1532 if (!new->thread_fn) { 1533 ret = -EINVAL; 1534 goto out_mput; 1535 } 1536 /* 1537 * Replace the primary handler which was provided from 1538 * the driver for non nested interrupt handling by the 1539 * dummy function which warns when called. 1540 */ 1541 new->handler = irq_nested_primary_handler; 1542 } else { 1543 if (irq_settings_can_thread(desc)) { 1544 ret = irq_setup_forced_threading(new); 1545 if (ret) 1546 goto out_mput; 1547 } 1548 } 1549 1550 /* 1551 * Create a handler thread when a thread function is supplied 1552 * and the interrupt does not nest into another interrupt 1553 * thread. 1554 */ 1555 if (new->thread_fn && !nested) { 1556 ret = setup_irq_thread(new, irq, false); 1557 if (ret) 1558 goto out_mput; 1559 if (new->secondary) { 1560 ret = setup_irq_thread(new->secondary, irq, true); 1561 if (ret) 1562 goto out_thread; 1563 } 1564 } 1565 1566 /* 1567 * Drivers are often written to work w/o knowledge about the 1568 * underlying irq chip implementation, so a request for a 1569 * threaded irq without a primary hard irq context handler 1570 * requires the ONESHOT flag to be set. Some irq chips like 1571 * MSI based interrupts are per se one shot safe. Check the 1572 * chip flags, so we can avoid the unmask dance at the end of 1573 * the threaded handler for those. 1574 */ 1575 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1576 new->flags &= ~IRQF_ONESHOT; 1577 1578 /* 1579 * Protects against a concurrent __free_irq() call which might wait 1580 * for synchronize_hardirq() to complete without holding the optional 1581 * chip bus lock and desc->lock. Also protects against handing out 1582 * a recycled oneshot thread_mask bit while it's still in use by 1583 * its previous owner. 1584 */ 1585 mutex_lock(&desc->request_mutex); 1586 1587 /* 1588 * Acquire bus lock as the irq_request_resources() callback below 1589 * might rely on the serialization or the magic power management 1590 * functions which are abusing the irq_bus_lock() callback, 1591 */ 1592 chip_bus_lock(desc); 1593 1594 /* First installed action requests resources. */ 1595 if (!desc->action) { 1596 ret = irq_request_resources(desc); 1597 if (ret) { 1598 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1599 new->name, irq, desc->irq_data.chip->name); 1600 goto out_bus_unlock; 1601 } 1602 } 1603 1604 /* 1605 * The following block of code has to be executed atomically 1606 * protected against a concurrent interrupt and any of the other 1607 * management calls which are not serialized via 1608 * desc->request_mutex or the optional bus lock. 1609 */ 1610 raw_spin_lock_irqsave(&desc->lock, flags); 1611 old_ptr = &desc->action; 1612 old = *old_ptr; 1613 if (old) { 1614 /* 1615 * Can't share interrupts unless both agree to and are 1616 * the same type (level, edge, polarity). So both flag 1617 * fields must have IRQF_SHARED set and the bits which 1618 * set the trigger type must match. Also all must 1619 * agree on ONESHOT. 1620 * Interrupt lines used for NMIs cannot be shared. 1621 */ 1622 unsigned int oldtype; 1623 1624 if (desc->istate & IRQS_NMI) { 1625 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1626 new->name, irq, desc->irq_data.chip->name); 1627 ret = -EINVAL; 1628 goto out_unlock; 1629 } 1630 1631 /* 1632 * If nobody did set the configuration before, inherit 1633 * the one provided by the requester. 1634 */ 1635 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1636 oldtype = irqd_get_trigger_type(&desc->irq_data); 1637 } else { 1638 oldtype = new->flags & IRQF_TRIGGER_MASK; 1639 irqd_set_trigger_type(&desc->irq_data, oldtype); 1640 } 1641 1642 if (!((old->flags & new->flags) & IRQF_SHARED) || 1643 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1644 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1645 goto mismatch; 1646 1647 /* All handlers must agree on per-cpuness */ 1648 if ((old->flags & IRQF_PERCPU) != 1649 (new->flags & IRQF_PERCPU)) 1650 goto mismatch; 1651 1652 /* add new interrupt at end of irq queue */ 1653 do { 1654 /* 1655 * Or all existing action->thread_mask bits, 1656 * so we can find the next zero bit for this 1657 * new action. 1658 */ 1659 thread_mask |= old->thread_mask; 1660 old_ptr = &old->next; 1661 old = *old_ptr; 1662 } while (old); 1663 shared = 1; 1664 } 1665 1666 /* 1667 * Setup the thread mask for this irqaction for ONESHOT. For 1668 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1669 * conditional in irq_wake_thread(). 1670 */ 1671 if (new->flags & IRQF_ONESHOT) { 1672 /* 1673 * Unlikely to have 32 resp 64 irqs sharing one line, 1674 * but who knows. 1675 */ 1676 if (thread_mask == ~0UL) { 1677 ret = -EBUSY; 1678 goto out_unlock; 1679 } 1680 /* 1681 * The thread_mask for the action is or'ed to 1682 * desc->thread_active to indicate that the 1683 * IRQF_ONESHOT thread handler has been woken, but not 1684 * yet finished. The bit is cleared when a thread 1685 * completes. When all threads of a shared interrupt 1686 * line have completed desc->threads_active becomes 1687 * zero and the interrupt line is unmasked. See 1688 * handle.c:irq_wake_thread() for further information. 1689 * 1690 * If no thread is woken by primary (hard irq context) 1691 * interrupt handlers, then desc->threads_active is 1692 * also checked for zero to unmask the irq line in the 1693 * affected hard irq flow handlers 1694 * (handle_[fasteoi|level]_irq). 1695 * 1696 * The new action gets the first zero bit of 1697 * thread_mask assigned. See the loop above which or's 1698 * all existing action->thread_mask bits. 1699 */ 1700 new->thread_mask = 1UL << ffz(thread_mask); 1701 1702 } else if (new->handler == irq_default_primary_handler && 1703 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1704 /* 1705 * The interrupt was requested with handler = NULL, so 1706 * we use the default primary handler for it. But it 1707 * does not have the oneshot flag set. In combination 1708 * with level interrupts this is deadly, because the 1709 * default primary handler just wakes the thread, then 1710 * the irq lines is reenabled, but the device still 1711 * has the level irq asserted. Rinse and repeat.... 1712 * 1713 * While this works for edge type interrupts, we play 1714 * it safe and reject unconditionally because we can't 1715 * say for sure which type this interrupt really 1716 * has. The type flags are unreliable as the 1717 * underlying chip implementation can override them. 1718 */ 1719 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1720 new->name, irq); 1721 ret = -EINVAL; 1722 goto out_unlock; 1723 } 1724 1725 if (!shared) { 1726 /* Setup the type (level, edge polarity) if configured: */ 1727 if (new->flags & IRQF_TRIGGER_MASK) { 1728 ret = __irq_set_trigger(desc, 1729 new->flags & IRQF_TRIGGER_MASK); 1730 1731 if (ret) 1732 goto out_unlock; 1733 } 1734 1735 /* 1736 * Activate the interrupt. That activation must happen 1737 * independently of IRQ_NOAUTOEN. request_irq() can fail 1738 * and the callers are supposed to handle 1739 * that. enable_irq() of an interrupt requested with 1740 * IRQ_NOAUTOEN is not supposed to fail. The activation 1741 * keeps it in shutdown mode, it merily associates 1742 * resources if necessary and if that's not possible it 1743 * fails. Interrupts which are in managed shutdown mode 1744 * will simply ignore that activation request. 1745 */ 1746 ret = irq_activate(desc); 1747 if (ret) 1748 goto out_unlock; 1749 1750 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1751 IRQS_ONESHOT | IRQS_WAITING); 1752 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1753 1754 if (new->flags & IRQF_PERCPU) { 1755 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1756 irq_settings_set_per_cpu(desc); 1757 if (new->flags & IRQF_NO_DEBUG) 1758 irq_settings_set_no_debug(desc); 1759 } 1760 1761 if (noirqdebug) 1762 irq_settings_set_no_debug(desc); 1763 1764 if (new->flags & IRQF_ONESHOT) 1765 desc->istate |= IRQS_ONESHOT; 1766 1767 /* Exclude IRQ from balancing if requested */ 1768 if (new->flags & IRQF_NOBALANCING) { 1769 irq_settings_set_no_balancing(desc); 1770 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1771 } 1772 1773 if (!(new->flags & IRQF_NO_AUTOEN) && 1774 irq_settings_can_autoenable(desc)) { 1775 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1776 } else { 1777 /* 1778 * Shared interrupts do not go well with disabling 1779 * auto enable. The sharing interrupt might request 1780 * it while it's still disabled and then wait for 1781 * interrupts forever. 1782 */ 1783 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1784 /* Undo nested disables: */ 1785 desc->depth = 1; 1786 } 1787 1788 } else if (new->flags & IRQF_TRIGGER_MASK) { 1789 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1790 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1791 1792 if (nmsk != omsk) 1793 /* hope the handler works with current trigger mode */ 1794 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1795 irq, omsk, nmsk); 1796 } 1797 1798 *old_ptr = new; 1799 1800 irq_pm_install_action(desc, new); 1801 1802 /* Reset broken irq detection when installing new handler */ 1803 desc->irq_count = 0; 1804 desc->irqs_unhandled = 0; 1805 1806 /* 1807 * Check whether we disabled the irq via the spurious handler 1808 * before. Reenable it and give it another chance. 1809 */ 1810 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1811 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1812 __enable_irq(desc); 1813 } 1814 1815 raw_spin_unlock_irqrestore(&desc->lock, flags); 1816 chip_bus_sync_unlock(desc); 1817 mutex_unlock(&desc->request_mutex); 1818 1819 irq_setup_timings(desc, new); 1820 1821 wake_up_and_wait_for_irq_thread_ready(desc, new); 1822 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary); 1823 1824 register_irq_proc(irq, desc); 1825 new->dir = NULL; 1826 register_handler_proc(irq, new); 1827 return 0; 1828 1829 mismatch: 1830 if (!(new->flags & IRQF_PROBE_SHARED)) { 1831 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1832 irq, new->flags, new->name, old->flags, old->name); 1833 #ifdef CONFIG_DEBUG_SHIRQ 1834 dump_stack(); 1835 #endif 1836 } 1837 ret = -EBUSY; 1838 1839 out_unlock: 1840 raw_spin_unlock_irqrestore(&desc->lock, flags); 1841 1842 if (!desc->action) 1843 irq_release_resources(desc); 1844 out_bus_unlock: 1845 chip_bus_sync_unlock(desc); 1846 mutex_unlock(&desc->request_mutex); 1847 1848 out_thread: 1849 if (new->thread) { 1850 struct task_struct *t = new->thread; 1851 1852 new->thread = NULL; 1853 kthread_stop(t); 1854 put_task_struct(t); 1855 } 1856 if (new->secondary && new->secondary->thread) { 1857 struct task_struct *t = new->secondary->thread; 1858 1859 new->secondary->thread = NULL; 1860 kthread_stop(t); 1861 put_task_struct(t); 1862 } 1863 out_mput: 1864 module_put(desc->owner); 1865 return ret; 1866 } 1867 1868 /* 1869 * Internal function to unregister an irqaction - used to free 1870 * regular and special interrupts that are part of the architecture. 1871 */ 1872 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1873 { 1874 unsigned irq = desc->irq_data.irq; 1875 struct irqaction *action, **action_ptr; 1876 unsigned long flags; 1877 1878 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1879 1880 mutex_lock(&desc->request_mutex); 1881 chip_bus_lock(desc); 1882 raw_spin_lock_irqsave(&desc->lock, flags); 1883 1884 /* 1885 * There can be multiple actions per IRQ descriptor, find the right 1886 * one based on the dev_id: 1887 */ 1888 action_ptr = &desc->action; 1889 for (;;) { 1890 action = *action_ptr; 1891 1892 if (!action) { 1893 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1894 raw_spin_unlock_irqrestore(&desc->lock, flags); 1895 chip_bus_sync_unlock(desc); 1896 mutex_unlock(&desc->request_mutex); 1897 return NULL; 1898 } 1899 1900 if (action->dev_id == dev_id) 1901 break; 1902 action_ptr = &action->next; 1903 } 1904 1905 /* Found it - now remove it from the list of entries: */ 1906 *action_ptr = action->next; 1907 1908 irq_pm_remove_action(desc, action); 1909 1910 /* If this was the last handler, shut down the IRQ line: */ 1911 if (!desc->action) { 1912 irq_settings_clr_disable_unlazy(desc); 1913 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1914 irq_shutdown(desc); 1915 } 1916 1917 #ifdef CONFIG_SMP 1918 /* make sure affinity_hint is cleaned up */ 1919 if (WARN_ON_ONCE(desc->affinity_hint)) 1920 desc->affinity_hint = NULL; 1921 #endif 1922 1923 raw_spin_unlock_irqrestore(&desc->lock, flags); 1924 /* 1925 * Drop bus_lock here so the changes which were done in the chip 1926 * callbacks above are synced out to the irq chips which hang 1927 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1928 * 1929 * Aside of that the bus_lock can also be taken from the threaded 1930 * handler in irq_finalize_oneshot() which results in a deadlock 1931 * because kthread_stop() would wait forever for the thread to 1932 * complete, which is blocked on the bus lock. 1933 * 1934 * The still held desc->request_mutex() protects against a 1935 * concurrent request_irq() of this irq so the release of resources 1936 * and timing data is properly serialized. 1937 */ 1938 chip_bus_sync_unlock(desc); 1939 1940 unregister_handler_proc(irq, action); 1941 1942 /* 1943 * Make sure it's not being used on another CPU and if the chip 1944 * supports it also make sure that there is no (not yet serviced) 1945 * interrupt in flight at the hardware level. 1946 */ 1947 __synchronize_hardirq(desc, true); 1948 1949 #ifdef CONFIG_DEBUG_SHIRQ 1950 /* 1951 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1952 * event to happen even now it's being freed, so let's make sure that 1953 * is so by doing an extra call to the handler .... 1954 * 1955 * ( We do this after actually deregistering it, to make sure that a 1956 * 'real' IRQ doesn't run in parallel with our fake. ) 1957 */ 1958 if (action->flags & IRQF_SHARED) { 1959 local_irq_save(flags); 1960 action->handler(irq, dev_id); 1961 local_irq_restore(flags); 1962 } 1963 #endif 1964 1965 /* 1966 * The action has already been removed above, but the thread writes 1967 * its oneshot mask bit when it completes. Though request_mutex is 1968 * held across this which prevents __setup_irq() from handing out 1969 * the same bit to a newly requested action. 1970 */ 1971 if (action->thread) { 1972 kthread_stop(action->thread); 1973 put_task_struct(action->thread); 1974 if (action->secondary && action->secondary->thread) { 1975 kthread_stop(action->secondary->thread); 1976 put_task_struct(action->secondary->thread); 1977 } 1978 } 1979 1980 /* Last action releases resources */ 1981 if (!desc->action) { 1982 /* 1983 * Reacquire bus lock as irq_release_resources() might 1984 * require it to deallocate resources over the slow bus. 1985 */ 1986 chip_bus_lock(desc); 1987 /* 1988 * There is no interrupt on the fly anymore. Deactivate it 1989 * completely. 1990 */ 1991 raw_spin_lock_irqsave(&desc->lock, flags); 1992 irq_domain_deactivate_irq(&desc->irq_data); 1993 raw_spin_unlock_irqrestore(&desc->lock, flags); 1994 1995 irq_release_resources(desc); 1996 chip_bus_sync_unlock(desc); 1997 irq_remove_timings(desc); 1998 } 1999 2000 mutex_unlock(&desc->request_mutex); 2001 2002 irq_chip_pm_put(&desc->irq_data); 2003 module_put(desc->owner); 2004 kfree(action->secondary); 2005 return action; 2006 } 2007 2008 /** 2009 * free_irq - free an interrupt allocated with request_irq 2010 * @irq: Interrupt line to free 2011 * @dev_id: Device identity to free 2012 * 2013 * Remove an interrupt handler. The handler is removed and if the 2014 * interrupt line is no longer in use by any driver it is disabled. 2015 * On a shared IRQ the caller must ensure the interrupt is disabled 2016 * on the card it drives before calling this function. The function 2017 * does not return until any executing interrupts for this IRQ 2018 * have completed. 2019 * 2020 * This function must not be called from interrupt context. 2021 * 2022 * Returns the devname argument passed to request_irq. 2023 */ 2024 const void *free_irq(unsigned int irq, void *dev_id) 2025 { 2026 struct irq_desc *desc = irq_to_desc(irq); 2027 struct irqaction *action; 2028 const char *devname; 2029 2030 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2031 return NULL; 2032 2033 #ifdef CONFIG_SMP 2034 if (WARN_ON(desc->affinity_notify)) 2035 desc->affinity_notify = NULL; 2036 #endif 2037 2038 action = __free_irq(desc, dev_id); 2039 2040 if (!action) 2041 return NULL; 2042 2043 devname = action->name; 2044 kfree(action); 2045 return devname; 2046 } 2047 EXPORT_SYMBOL(free_irq); 2048 2049 /* This function must be called with desc->lock held */ 2050 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 2051 { 2052 const char *devname = NULL; 2053 2054 desc->istate &= ~IRQS_NMI; 2055 2056 if (!WARN_ON(desc->action == NULL)) { 2057 irq_pm_remove_action(desc, desc->action); 2058 devname = desc->action->name; 2059 unregister_handler_proc(irq, desc->action); 2060 2061 kfree(desc->action); 2062 desc->action = NULL; 2063 } 2064 2065 irq_settings_clr_disable_unlazy(desc); 2066 irq_shutdown_and_deactivate(desc); 2067 2068 irq_release_resources(desc); 2069 2070 irq_chip_pm_put(&desc->irq_data); 2071 module_put(desc->owner); 2072 2073 return devname; 2074 } 2075 2076 const void *free_nmi(unsigned int irq, void *dev_id) 2077 { 2078 struct irq_desc *desc = irq_to_desc(irq); 2079 unsigned long flags; 2080 const void *devname; 2081 2082 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 2083 return NULL; 2084 2085 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2086 return NULL; 2087 2088 /* NMI still enabled */ 2089 if (WARN_ON(desc->depth == 0)) 2090 disable_nmi_nosync(irq); 2091 2092 raw_spin_lock_irqsave(&desc->lock, flags); 2093 2094 irq_nmi_teardown(desc); 2095 devname = __cleanup_nmi(irq, desc); 2096 2097 raw_spin_unlock_irqrestore(&desc->lock, flags); 2098 2099 return devname; 2100 } 2101 2102 /** 2103 * request_threaded_irq - allocate an interrupt line 2104 * @irq: Interrupt line to allocate 2105 * @handler: Function to be called when the IRQ occurs. 2106 * Primary handler for threaded interrupts. 2107 * If handler is NULL and thread_fn != NULL 2108 * the default primary handler is installed. 2109 * @thread_fn: Function called from the irq handler thread 2110 * If NULL, no irq thread is created 2111 * @irqflags: Interrupt type flags 2112 * @devname: An ascii name for the claiming device 2113 * @dev_id: A cookie passed back to the handler function 2114 * 2115 * This call allocates interrupt resources and enables the 2116 * interrupt line and IRQ handling. From the point this 2117 * call is made your handler function may be invoked. Since 2118 * your handler function must clear any interrupt the board 2119 * raises, you must take care both to initialise your hardware 2120 * and to set up the interrupt handler in the right order. 2121 * 2122 * If you want to set up a threaded irq handler for your device 2123 * then you need to supply @handler and @thread_fn. @handler is 2124 * still called in hard interrupt context and has to check 2125 * whether the interrupt originates from the device. If yes it 2126 * needs to disable the interrupt on the device and return 2127 * IRQ_WAKE_THREAD which will wake up the handler thread and run 2128 * @thread_fn. This split handler design is necessary to support 2129 * shared interrupts. 2130 * 2131 * Dev_id must be globally unique. Normally the address of the 2132 * device data structure is used as the cookie. Since the handler 2133 * receives this value it makes sense to use it. 2134 * 2135 * If your interrupt is shared you must pass a non NULL dev_id 2136 * as this is required when freeing the interrupt. 2137 * 2138 * Flags: 2139 * 2140 * IRQF_SHARED Interrupt is shared 2141 * IRQF_TRIGGER_* Specify active edge(s) or level 2142 * IRQF_ONESHOT Run thread_fn with interrupt line masked 2143 */ 2144 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2145 irq_handler_t thread_fn, unsigned long irqflags, 2146 const char *devname, void *dev_id) 2147 { 2148 struct irqaction *action; 2149 struct irq_desc *desc; 2150 int retval; 2151 2152 if (irq == IRQ_NOTCONNECTED) 2153 return -ENOTCONN; 2154 2155 /* 2156 * Sanity-check: shared interrupts must pass in a real dev-ID, 2157 * otherwise we'll have trouble later trying to figure out 2158 * which interrupt is which (messes up the interrupt freeing 2159 * logic etc). 2160 * 2161 * Also shared interrupts do not go well with disabling auto enable. 2162 * The sharing interrupt might request it while it's still disabled 2163 * and then wait for interrupts forever. 2164 * 2165 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2166 * it cannot be set along with IRQF_NO_SUSPEND. 2167 */ 2168 if (((irqflags & IRQF_SHARED) && !dev_id) || 2169 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) || 2170 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2171 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2172 return -EINVAL; 2173 2174 desc = irq_to_desc(irq); 2175 if (!desc) 2176 return -EINVAL; 2177 2178 if (!irq_settings_can_request(desc) || 2179 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2180 return -EINVAL; 2181 2182 if (!handler) { 2183 if (!thread_fn) 2184 return -EINVAL; 2185 handler = irq_default_primary_handler; 2186 } 2187 2188 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2189 if (!action) 2190 return -ENOMEM; 2191 2192 action->handler = handler; 2193 action->thread_fn = thread_fn; 2194 action->flags = irqflags; 2195 action->name = devname; 2196 action->dev_id = dev_id; 2197 2198 retval = irq_chip_pm_get(&desc->irq_data); 2199 if (retval < 0) { 2200 kfree(action); 2201 return retval; 2202 } 2203 2204 retval = __setup_irq(irq, desc, action); 2205 2206 if (retval) { 2207 irq_chip_pm_put(&desc->irq_data); 2208 kfree(action->secondary); 2209 kfree(action); 2210 } 2211 2212 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2213 if (!retval && (irqflags & IRQF_SHARED)) { 2214 /* 2215 * It's a shared IRQ -- the driver ought to be prepared for it 2216 * to happen immediately, so let's make sure.... 2217 * We disable the irq to make sure that a 'real' IRQ doesn't 2218 * run in parallel with our fake. 2219 */ 2220 unsigned long flags; 2221 2222 disable_irq(irq); 2223 local_irq_save(flags); 2224 2225 handler(irq, dev_id); 2226 2227 local_irq_restore(flags); 2228 enable_irq(irq); 2229 } 2230 #endif 2231 return retval; 2232 } 2233 EXPORT_SYMBOL(request_threaded_irq); 2234 2235 /** 2236 * request_any_context_irq - allocate an interrupt line 2237 * @irq: Interrupt line to allocate 2238 * @handler: Function to be called when the IRQ occurs. 2239 * Threaded handler for threaded interrupts. 2240 * @flags: Interrupt type flags 2241 * @name: An ascii name for the claiming device 2242 * @dev_id: A cookie passed back to the handler function 2243 * 2244 * This call allocates interrupt resources and enables the 2245 * interrupt line and IRQ handling. It selects either a 2246 * hardirq or threaded handling method depending on the 2247 * context. 2248 * 2249 * On failure, it returns a negative value. On success, 2250 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2251 */ 2252 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2253 unsigned long flags, const char *name, void *dev_id) 2254 { 2255 struct irq_desc *desc; 2256 int ret; 2257 2258 if (irq == IRQ_NOTCONNECTED) 2259 return -ENOTCONN; 2260 2261 desc = irq_to_desc(irq); 2262 if (!desc) 2263 return -EINVAL; 2264 2265 if (irq_settings_is_nested_thread(desc)) { 2266 ret = request_threaded_irq(irq, NULL, handler, 2267 flags, name, dev_id); 2268 return !ret ? IRQC_IS_NESTED : ret; 2269 } 2270 2271 ret = request_irq(irq, handler, flags, name, dev_id); 2272 return !ret ? IRQC_IS_HARDIRQ : ret; 2273 } 2274 EXPORT_SYMBOL_GPL(request_any_context_irq); 2275 2276 /** 2277 * request_nmi - allocate an interrupt line for NMI delivery 2278 * @irq: Interrupt line to allocate 2279 * @handler: Function to be called when the IRQ occurs. 2280 * Threaded handler for threaded interrupts. 2281 * @irqflags: Interrupt type flags 2282 * @name: An ascii name for the claiming device 2283 * @dev_id: A cookie passed back to the handler function 2284 * 2285 * This call allocates interrupt resources and enables the 2286 * interrupt line and IRQ handling. It sets up the IRQ line 2287 * to be handled as an NMI. 2288 * 2289 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2290 * cannot be threaded. 2291 * 2292 * Interrupt lines requested for NMI delivering must produce per cpu 2293 * interrupts and have auto enabling setting disabled. 2294 * 2295 * Dev_id must be globally unique. Normally the address of the 2296 * device data structure is used as the cookie. Since the handler 2297 * receives this value it makes sense to use it. 2298 * 2299 * If the interrupt line cannot be used to deliver NMIs, function 2300 * will fail and return a negative value. 2301 */ 2302 int request_nmi(unsigned int irq, irq_handler_t handler, 2303 unsigned long irqflags, const char *name, void *dev_id) 2304 { 2305 struct irqaction *action; 2306 struct irq_desc *desc; 2307 unsigned long flags; 2308 int retval; 2309 2310 if (irq == IRQ_NOTCONNECTED) 2311 return -ENOTCONN; 2312 2313 /* NMI cannot be shared, used for Polling */ 2314 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2315 return -EINVAL; 2316 2317 if (!(irqflags & IRQF_PERCPU)) 2318 return -EINVAL; 2319 2320 if (!handler) 2321 return -EINVAL; 2322 2323 desc = irq_to_desc(irq); 2324 2325 if (!desc || (irq_settings_can_autoenable(desc) && 2326 !(irqflags & IRQF_NO_AUTOEN)) || 2327 !irq_settings_can_request(desc) || 2328 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2329 !irq_supports_nmi(desc)) 2330 return -EINVAL; 2331 2332 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2333 if (!action) 2334 return -ENOMEM; 2335 2336 action->handler = handler; 2337 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2338 action->name = name; 2339 action->dev_id = dev_id; 2340 2341 retval = irq_chip_pm_get(&desc->irq_data); 2342 if (retval < 0) 2343 goto err_out; 2344 2345 retval = __setup_irq(irq, desc, action); 2346 if (retval) 2347 goto err_irq_setup; 2348 2349 raw_spin_lock_irqsave(&desc->lock, flags); 2350 2351 /* Setup NMI state */ 2352 desc->istate |= IRQS_NMI; 2353 retval = irq_nmi_setup(desc); 2354 if (retval) { 2355 __cleanup_nmi(irq, desc); 2356 raw_spin_unlock_irqrestore(&desc->lock, flags); 2357 return -EINVAL; 2358 } 2359 2360 raw_spin_unlock_irqrestore(&desc->lock, flags); 2361 2362 return 0; 2363 2364 err_irq_setup: 2365 irq_chip_pm_put(&desc->irq_data); 2366 err_out: 2367 kfree(action); 2368 2369 return retval; 2370 } 2371 2372 void enable_percpu_irq(unsigned int irq, unsigned int type) 2373 { 2374 unsigned int cpu = smp_processor_id(); 2375 unsigned long flags; 2376 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2377 2378 if (!desc) 2379 return; 2380 2381 /* 2382 * If the trigger type is not specified by the caller, then 2383 * use the default for this interrupt. 2384 */ 2385 type &= IRQ_TYPE_SENSE_MASK; 2386 if (type == IRQ_TYPE_NONE) 2387 type = irqd_get_trigger_type(&desc->irq_data); 2388 2389 if (type != IRQ_TYPE_NONE) { 2390 int ret; 2391 2392 ret = __irq_set_trigger(desc, type); 2393 2394 if (ret) { 2395 WARN(1, "failed to set type for IRQ%d\n", irq); 2396 goto out; 2397 } 2398 } 2399 2400 irq_percpu_enable(desc, cpu); 2401 out: 2402 irq_put_desc_unlock(desc, flags); 2403 } 2404 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2405 2406 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2407 { 2408 enable_percpu_irq(irq, type); 2409 } 2410 2411 /** 2412 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2413 * @irq: Linux irq number to check for 2414 * 2415 * Must be called from a non migratable context. Returns the enable 2416 * state of a per cpu interrupt on the current cpu. 2417 */ 2418 bool irq_percpu_is_enabled(unsigned int irq) 2419 { 2420 unsigned int cpu = smp_processor_id(); 2421 struct irq_desc *desc; 2422 unsigned long flags; 2423 bool is_enabled; 2424 2425 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2426 if (!desc) 2427 return false; 2428 2429 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2430 irq_put_desc_unlock(desc, flags); 2431 2432 return is_enabled; 2433 } 2434 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2435 2436 void disable_percpu_irq(unsigned int irq) 2437 { 2438 unsigned int cpu = smp_processor_id(); 2439 unsigned long flags; 2440 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2441 2442 if (!desc) 2443 return; 2444 2445 irq_percpu_disable(desc, cpu); 2446 irq_put_desc_unlock(desc, flags); 2447 } 2448 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2449 2450 void disable_percpu_nmi(unsigned int irq) 2451 { 2452 disable_percpu_irq(irq); 2453 } 2454 2455 /* 2456 * Internal function to unregister a percpu irqaction. 2457 */ 2458 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2459 { 2460 struct irq_desc *desc = irq_to_desc(irq); 2461 struct irqaction *action; 2462 unsigned long flags; 2463 2464 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2465 2466 if (!desc) 2467 return NULL; 2468 2469 raw_spin_lock_irqsave(&desc->lock, flags); 2470 2471 action = desc->action; 2472 if (!action || action->percpu_dev_id != dev_id) { 2473 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2474 goto bad; 2475 } 2476 2477 if (!cpumask_empty(desc->percpu_enabled)) { 2478 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2479 irq, cpumask_first(desc->percpu_enabled)); 2480 goto bad; 2481 } 2482 2483 /* Found it - now remove it from the list of entries: */ 2484 desc->action = NULL; 2485 2486 desc->istate &= ~IRQS_NMI; 2487 2488 raw_spin_unlock_irqrestore(&desc->lock, flags); 2489 2490 unregister_handler_proc(irq, action); 2491 2492 irq_chip_pm_put(&desc->irq_data); 2493 module_put(desc->owner); 2494 return action; 2495 2496 bad: 2497 raw_spin_unlock_irqrestore(&desc->lock, flags); 2498 return NULL; 2499 } 2500 2501 /** 2502 * remove_percpu_irq - free a per-cpu interrupt 2503 * @irq: Interrupt line to free 2504 * @act: irqaction for the interrupt 2505 * 2506 * Used to remove interrupts statically setup by the early boot process. 2507 */ 2508 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2509 { 2510 struct irq_desc *desc = irq_to_desc(irq); 2511 2512 if (desc && irq_settings_is_per_cpu_devid(desc)) 2513 __free_percpu_irq(irq, act->percpu_dev_id); 2514 } 2515 2516 /** 2517 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2518 * @irq: Interrupt line to free 2519 * @dev_id: Device identity to free 2520 * 2521 * Remove a percpu interrupt handler. The handler is removed, but 2522 * the interrupt line is not disabled. This must be done on each 2523 * CPU before calling this function. The function does not return 2524 * until any executing interrupts for this IRQ have completed. 2525 * 2526 * This function must not be called from interrupt context. 2527 */ 2528 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2529 { 2530 struct irq_desc *desc = irq_to_desc(irq); 2531 2532 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2533 return; 2534 2535 chip_bus_lock(desc); 2536 kfree(__free_percpu_irq(irq, dev_id)); 2537 chip_bus_sync_unlock(desc); 2538 } 2539 EXPORT_SYMBOL_GPL(free_percpu_irq); 2540 2541 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2542 { 2543 struct irq_desc *desc = irq_to_desc(irq); 2544 2545 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2546 return; 2547 2548 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2549 return; 2550 2551 kfree(__free_percpu_irq(irq, dev_id)); 2552 } 2553 2554 /** 2555 * setup_percpu_irq - setup a per-cpu interrupt 2556 * @irq: Interrupt line to setup 2557 * @act: irqaction for the interrupt 2558 * 2559 * Used to statically setup per-cpu interrupts in the early boot process. 2560 */ 2561 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2562 { 2563 struct irq_desc *desc = irq_to_desc(irq); 2564 int retval; 2565 2566 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2567 return -EINVAL; 2568 2569 retval = irq_chip_pm_get(&desc->irq_data); 2570 if (retval < 0) 2571 return retval; 2572 2573 retval = __setup_irq(irq, desc, act); 2574 2575 if (retval) 2576 irq_chip_pm_put(&desc->irq_data); 2577 2578 return retval; 2579 } 2580 2581 /** 2582 * __request_percpu_irq - allocate a percpu interrupt line 2583 * @irq: Interrupt line to allocate 2584 * @handler: Function to be called when the IRQ occurs. 2585 * @flags: Interrupt type flags (IRQF_TIMER only) 2586 * @devname: An ascii name for the claiming device 2587 * @dev_id: A percpu cookie passed back to the handler function 2588 * 2589 * This call allocates interrupt resources and enables the 2590 * interrupt on the local CPU. If the interrupt is supposed to be 2591 * enabled on other CPUs, it has to be done on each CPU using 2592 * enable_percpu_irq(). 2593 * 2594 * Dev_id must be globally unique. It is a per-cpu variable, and 2595 * the handler gets called with the interrupted CPU's instance of 2596 * that variable. 2597 */ 2598 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2599 unsigned long flags, const char *devname, 2600 void __percpu *dev_id) 2601 { 2602 struct irqaction *action; 2603 struct irq_desc *desc; 2604 int retval; 2605 2606 if (!dev_id) 2607 return -EINVAL; 2608 2609 desc = irq_to_desc(irq); 2610 if (!desc || !irq_settings_can_request(desc) || 2611 !irq_settings_is_per_cpu_devid(desc)) 2612 return -EINVAL; 2613 2614 if (flags && flags != IRQF_TIMER) 2615 return -EINVAL; 2616 2617 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2618 if (!action) 2619 return -ENOMEM; 2620 2621 action->handler = handler; 2622 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2623 action->name = devname; 2624 action->percpu_dev_id = dev_id; 2625 2626 retval = irq_chip_pm_get(&desc->irq_data); 2627 if (retval < 0) { 2628 kfree(action); 2629 return retval; 2630 } 2631 2632 retval = __setup_irq(irq, desc, action); 2633 2634 if (retval) { 2635 irq_chip_pm_put(&desc->irq_data); 2636 kfree(action); 2637 } 2638 2639 return retval; 2640 } 2641 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2642 2643 /** 2644 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2645 * @irq: Interrupt line to allocate 2646 * @handler: Function to be called when the IRQ occurs. 2647 * @name: An ascii name for the claiming device 2648 * @dev_id: A percpu cookie passed back to the handler function 2649 * 2650 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2651 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2652 * being enabled on the same CPU by using enable_percpu_nmi(). 2653 * 2654 * Dev_id must be globally unique. It is a per-cpu variable, and 2655 * the handler gets called with the interrupted CPU's instance of 2656 * that variable. 2657 * 2658 * Interrupt lines requested for NMI delivering should have auto enabling 2659 * setting disabled. 2660 * 2661 * If the interrupt line cannot be used to deliver NMIs, function 2662 * will fail returning a negative value. 2663 */ 2664 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2665 const char *name, void __percpu *dev_id) 2666 { 2667 struct irqaction *action; 2668 struct irq_desc *desc; 2669 unsigned long flags; 2670 int retval; 2671 2672 if (!handler) 2673 return -EINVAL; 2674 2675 desc = irq_to_desc(irq); 2676 2677 if (!desc || !irq_settings_can_request(desc) || 2678 !irq_settings_is_per_cpu_devid(desc) || 2679 irq_settings_can_autoenable(desc) || 2680 !irq_supports_nmi(desc)) 2681 return -EINVAL; 2682 2683 /* The line cannot already be NMI */ 2684 if (desc->istate & IRQS_NMI) 2685 return -EINVAL; 2686 2687 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2688 if (!action) 2689 return -ENOMEM; 2690 2691 action->handler = handler; 2692 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2693 | IRQF_NOBALANCING; 2694 action->name = name; 2695 action->percpu_dev_id = dev_id; 2696 2697 retval = irq_chip_pm_get(&desc->irq_data); 2698 if (retval < 0) 2699 goto err_out; 2700 2701 retval = __setup_irq(irq, desc, action); 2702 if (retval) 2703 goto err_irq_setup; 2704 2705 raw_spin_lock_irqsave(&desc->lock, flags); 2706 desc->istate |= IRQS_NMI; 2707 raw_spin_unlock_irqrestore(&desc->lock, flags); 2708 2709 return 0; 2710 2711 err_irq_setup: 2712 irq_chip_pm_put(&desc->irq_data); 2713 err_out: 2714 kfree(action); 2715 2716 return retval; 2717 } 2718 2719 /** 2720 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2721 * @irq: Interrupt line to prepare for NMI delivery 2722 * 2723 * This call prepares an interrupt line to deliver NMI on the current CPU, 2724 * before that interrupt line gets enabled with enable_percpu_nmi(). 2725 * 2726 * As a CPU local operation, this should be called from non-preemptible 2727 * context. 2728 * 2729 * If the interrupt line cannot be used to deliver NMIs, function 2730 * will fail returning a negative value. 2731 */ 2732 int prepare_percpu_nmi(unsigned int irq) 2733 { 2734 unsigned long flags; 2735 struct irq_desc *desc; 2736 int ret = 0; 2737 2738 WARN_ON(preemptible()); 2739 2740 desc = irq_get_desc_lock(irq, &flags, 2741 IRQ_GET_DESC_CHECK_PERCPU); 2742 if (!desc) 2743 return -EINVAL; 2744 2745 if (WARN(!(desc->istate & IRQS_NMI), 2746 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2747 irq)) { 2748 ret = -EINVAL; 2749 goto out; 2750 } 2751 2752 ret = irq_nmi_setup(desc); 2753 if (ret) { 2754 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2755 goto out; 2756 } 2757 2758 out: 2759 irq_put_desc_unlock(desc, flags); 2760 return ret; 2761 } 2762 2763 /** 2764 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2765 * @irq: Interrupt line from which CPU local NMI configuration should be 2766 * removed 2767 * 2768 * This call undoes the setup done by prepare_percpu_nmi(). 2769 * 2770 * IRQ line should not be enabled for the current CPU. 2771 * 2772 * As a CPU local operation, this should be called from non-preemptible 2773 * context. 2774 */ 2775 void teardown_percpu_nmi(unsigned int irq) 2776 { 2777 unsigned long flags; 2778 struct irq_desc *desc; 2779 2780 WARN_ON(preemptible()); 2781 2782 desc = irq_get_desc_lock(irq, &flags, 2783 IRQ_GET_DESC_CHECK_PERCPU); 2784 if (!desc) 2785 return; 2786 2787 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2788 goto out; 2789 2790 irq_nmi_teardown(desc); 2791 out: 2792 irq_put_desc_unlock(desc, flags); 2793 } 2794 2795 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2796 bool *state) 2797 { 2798 struct irq_chip *chip; 2799 int err = -EINVAL; 2800 2801 do { 2802 chip = irq_data_get_irq_chip(data); 2803 if (WARN_ON_ONCE(!chip)) 2804 return -ENODEV; 2805 if (chip->irq_get_irqchip_state) 2806 break; 2807 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2808 data = data->parent_data; 2809 #else 2810 data = NULL; 2811 #endif 2812 } while (data); 2813 2814 if (data) 2815 err = chip->irq_get_irqchip_state(data, which, state); 2816 return err; 2817 } 2818 2819 /** 2820 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2821 * @irq: Interrupt line that is forwarded to a VM 2822 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2823 * @state: a pointer to a boolean where the state is to be stored 2824 * 2825 * This call snapshots the internal irqchip state of an 2826 * interrupt, returning into @state the bit corresponding to 2827 * stage @which 2828 * 2829 * This function should be called with preemption disabled if the 2830 * interrupt controller has per-cpu registers. 2831 */ 2832 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2833 bool *state) 2834 { 2835 struct irq_desc *desc; 2836 struct irq_data *data; 2837 unsigned long flags; 2838 int err = -EINVAL; 2839 2840 desc = irq_get_desc_buslock(irq, &flags, 0); 2841 if (!desc) 2842 return err; 2843 2844 data = irq_desc_get_irq_data(desc); 2845 2846 err = __irq_get_irqchip_state(data, which, state); 2847 2848 irq_put_desc_busunlock(desc, flags); 2849 return err; 2850 } 2851 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2852 2853 /** 2854 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2855 * @irq: Interrupt line that is forwarded to a VM 2856 * @which: State to be restored (one of IRQCHIP_STATE_*) 2857 * @val: Value corresponding to @which 2858 * 2859 * This call sets the internal irqchip state of an interrupt, 2860 * depending on the value of @which. 2861 * 2862 * This function should be called with migration disabled if the 2863 * interrupt controller has per-cpu registers. 2864 */ 2865 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2866 bool val) 2867 { 2868 struct irq_desc *desc; 2869 struct irq_data *data; 2870 struct irq_chip *chip; 2871 unsigned long flags; 2872 int err = -EINVAL; 2873 2874 desc = irq_get_desc_buslock(irq, &flags, 0); 2875 if (!desc) 2876 return err; 2877 2878 data = irq_desc_get_irq_data(desc); 2879 2880 do { 2881 chip = irq_data_get_irq_chip(data); 2882 if (WARN_ON_ONCE(!chip)) { 2883 err = -ENODEV; 2884 goto out_unlock; 2885 } 2886 if (chip->irq_set_irqchip_state) 2887 break; 2888 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2889 data = data->parent_data; 2890 #else 2891 data = NULL; 2892 #endif 2893 } while (data); 2894 2895 if (data) 2896 err = chip->irq_set_irqchip_state(data, which, val); 2897 2898 out_unlock: 2899 irq_put_desc_busunlock(desc, flags); 2900 return err; 2901 } 2902 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2903 2904 /** 2905 * irq_has_action - Check whether an interrupt is requested 2906 * @irq: The linux irq number 2907 * 2908 * Returns: A snapshot of the current state 2909 */ 2910 bool irq_has_action(unsigned int irq) 2911 { 2912 bool res; 2913 2914 rcu_read_lock(); 2915 res = irq_desc_has_action(irq_to_desc(irq)); 2916 rcu_read_unlock(); 2917 return res; 2918 } 2919 EXPORT_SYMBOL_GPL(irq_has_action); 2920 2921 /** 2922 * irq_check_status_bit - Check whether bits in the irq descriptor status are set 2923 * @irq: The linux irq number 2924 * @bitmask: The bitmask to evaluate 2925 * 2926 * Returns: True if one of the bits in @bitmask is set 2927 */ 2928 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask) 2929 { 2930 struct irq_desc *desc; 2931 bool res = false; 2932 2933 rcu_read_lock(); 2934 desc = irq_to_desc(irq); 2935 if (desc) 2936 res = !!(desc->status_use_accessors & bitmask); 2937 rcu_read_unlock(); 2938 return res; 2939 } 2940 EXPORT_SYMBOL_GPL(irq_check_status_bit); 2941