xref: /linux/kernel/irq/manage.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 #endif
209 }
210 
211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
212 			bool force)
213 {
214 	struct irq_desc *desc = irq_data_to_desc(data);
215 	struct irq_chip *chip = irq_data_get_irq_chip(data);
216 	int ret;
217 
218 	if (!chip || !chip->irq_set_affinity)
219 		return -EINVAL;
220 
221 	/*
222 	 * If this is a managed interrupt and housekeeping is enabled on
223 	 * it check whether the requested affinity mask intersects with
224 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
225 	 * the mask and just keep the housekeeping CPU(s). This prevents
226 	 * the affinity setter from routing the interrupt to an isolated
227 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
228 	 * interrupts on an isolated one.
229 	 *
230 	 * If the masks do not intersect or include online CPU(s) then
231 	 * keep the requested mask. The isolated target CPUs are only
232 	 * receiving interrupts when the I/O operation was submitted
233 	 * directly from them.
234 	 *
235 	 * If all housekeeping CPUs in the affinity mask are offline, the
236 	 * interrupt will be migrated by the CPU hotplug code once a
237 	 * housekeeping CPU which belongs to the affinity mask comes
238 	 * online.
239 	 */
240 	if (irqd_affinity_is_managed(data) &&
241 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
242 		const struct cpumask *hk_mask, *prog_mask;
243 
244 		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
245 		static struct cpumask tmp_mask;
246 
247 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
248 
249 		raw_spin_lock(&tmp_mask_lock);
250 		cpumask_and(&tmp_mask, mask, hk_mask);
251 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
252 			prog_mask = mask;
253 		else
254 			prog_mask = &tmp_mask;
255 		ret = chip->irq_set_affinity(data, prog_mask, force);
256 		raw_spin_unlock(&tmp_mask_lock);
257 	} else {
258 		ret = chip->irq_set_affinity(data, mask, force);
259 	}
260 	switch (ret) {
261 	case IRQ_SET_MASK_OK:
262 	case IRQ_SET_MASK_OK_DONE:
263 		cpumask_copy(desc->irq_common_data.affinity, mask);
264 		/* fall through */
265 	case IRQ_SET_MASK_OK_NOCOPY:
266 		irq_validate_effective_affinity(data);
267 		irq_set_thread_affinity(desc);
268 		ret = 0;
269 	}
270 
271 	return ret;
272 }
273 
274 #ifdef CONFIG_GENERIC_PENDING_IRQ
275 static inline int irq_set_affinity_pending(struct irq_data *data,
276 					   const struct cpumask *dest)
277 {
278 	struct irq_desc *desc = irq_data_to_desc(data);
279 
280 	irqd_set_move_pending(data);
281 	irq_copy_pending(desc, dest);
282 	return 0;
283 }
284 #else
285 static inline int irq_set_affinity_pending(struct irq_data *data,
286 					   const struct cpumask *dest)
287 {
288 	return -EBUSY;
289 }
290 #endif
291 
292 static int irq_try_set_affinity(struct irq_data *data,
293 				const struct cpumask *dest, bool force)
294 {
295 	int ret = irq_do_set_affinity(data, dest, force);
296 
297 	/*
298 	 * In case that the underlying vector management is busy and the
299 	 * architecture supports the generic pending mechanism then utilize
300 	 * this to avoid returning an error to user space.
301 	 */
302 	if (ret == -EBUSY && !force)
303 		ret = irq_set_affinity_pending(data, dest);
304 	return ret;
305 }
306 
307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
308 			    bool force)
309 {
310 	struct irq_chip *chip = irq_data_get_irq_chip(data);
311 	struct irq_desc *desc = irq_data_to_desc(data);
312 	int ret = 0;
313 
314 	if (!chip || !chip->irq_set_affinity)
315 		return -EINVAL;
316 
317 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
318 		ret = irq_try_set_affinity(data, mask, force);
319 	} else {
320 		irqd_set_move_pending(data);
321 		irq_copy_pending(desc, mask);
322 	}
323 
324 	if (desc->affinity_notify) {
325 		kref_get(&desc->affinity_notify->kref);
326 		schedule_work(&desc->affinity_notify->work);
327 	}
328 	irqd_set(data, IRQD_AFFINITY_SET);
329 
330 	return ret;
331 }
332 
333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
334 {
335 	struct irq_desc *desc = irq_to_desc(irq);
336 	unsigned long flags;
337 	int ret;
338 
339 	if (!desc)
340 		return -EINVAL;
341 
342 	raw_spin_lock_irqsave(&desc->lock, flags);
343 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
344 	raw_spin_unlock_irqrestore(&desc->lock, flags);
345 	return ret;
346 }
347 
348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
349 {
350 	unsigned long flags;
351 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
352 
353 	if (!desc)
354 		return -EINVAL;
355 	desc->affinity_hint = m;
356 	irq_put_desc_unlock(desc, flags);
357 	/* set the initial affinity to prevent every interrupt being on CPU0 */
358 	if (m)
359 		__irq_set_affinity(irq, m, false);
360 	return 0;
361 }
362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
363 
364 static void irq_affinity_notify(struct work_struct *work)
365 {
366 	struct irq_affinity_notify *notify =
367 		container_of(work, struct irq_affinity_notify, work);
368 	struct irq_desc *desc = irq_to_desc(notify->irq);
369 	cpumask_var_t cpumask;
370 	unsigned long flags;
371 
372 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
373 		goto out;
374 
375 	raw_spin_lock_irqsave(&desc->lock, flags);
376 	if (irq_move_pending(&desc->irq_data))
377 		irq_get_pending(cpumask, desc);
378 	else
379 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
380 	raw_spin_unlock_irqrestore(&desc->lock, flags);
381 
382 	notify->notify(notify, cpumask);
383 
384 	free_cpumask_var(cpumask);
385 out:
386 	kref_put(&notify->kref, notify->release);
387 }
388 
389 /**
390  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
391  *	@irq:		Interrupt for which to enable/disable notification
392  *	@notify:	Context for notification, or %NULL to disable
393  *			notification.  Function pointers must be initialised;
394  *			the other fields will be initialised by this function.
395  *
396  *	Must be called in process context.  Notification may only be enabled
397  *	after the IRQ is allocated and must be disabled before the IRQ is
398  *	freed using free_irq().
399  */
400 int
401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
402 {
403 	struct irq_desc *desc = irq_to_desc(irq);
404 	struct irq_affinity_notify *old_notify;
405 	unsigned long flags;
406 
407 	/* The release function is promised process context */
408 	might_sleep();
409 
410 	if (!desc || desc->istate & IRQS_NMI)
411 		return -EINVAL;
412 
413 	/* Complete initialisation of *notify */
414 	if (notify) {
415 		notify->irq = irq;
416 		kref_init(&notify->kref);
417 		INIT_WORK(&notify->work, irq_affinity_notify);
418 	}
419 
420 	raw_spin_lock_irqsave(&desc->lock, flags);
421 	old_notify = desc->affinity_notify;
422 	desc->affinity_notify = notify;
423 	raw_spin_unlock_irqrestore(&desc->lock, flags);
424 
425 	if (old_notify) {
426 		cancel_work_sync(&old_notify->work);
427 		kref_put(&old_notify->kref, old_notify->release);
428 	}
429 
430 	return 0;
431 }
432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
433 
434 #ifndef CONFIG_AUTO_IRQ_AFFINITY
435 /*
436  * Generic version of the affinity autoselector.
437  */
438 int irq_setup_affinity(struct irq_desc *desc)
439 {
440 	struct cpumask *set = irq_default_affinity;
441 	int ret, node = irq_desc_get_node(desc);
442 	static DEFINE_RAW_SPINLOCK(mask_lock);
443 	static struct cpumask mask;
444 
445 	/* Excludes PER_CPU and NO_BALANCE interrupts */
446 	if (!__irq_can_set_affinity(desc))
447 		return 0;
448 
449 	raw_spin_lock(&mask_lock);
450 	/*
451 	 * Preserve the managed affinity setting and a userspace affinity
452 	 * setup, but make sure that one of the targets is online.
453 	 */
454 	if (irqd_affinity_is_managed(&desc->irq_data) ||
455 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
456 		if (cpumask_intersects(desc->irq_common_data.affinity,
457 				       cpu_online_mask))
458 			set = desc->irq_common_data.affinity;
459 		else
460 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
461 	}
462 
463 	cpumask_and(&mask, cpu_online_mask, set);
464 	if (cpumask_empty(&mask))
465 		cpumask_copy(&mask, cpu_online_mask);
466 
467 	if (node != NUMA_NO_NODE) {
468 		const struct cpumask *nodemask = cpumask_of_node(node);
469 
470 		/* make sure at least one of the cpus in nodemask is online */
471 		if (cpumask_intersects(&mask, nodemask))
472 			cpumask_and(&mask, &mask, nodemask);
473 	}
474 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
475 	raw_spin_unlock(&mask_lock);
476 	return ret;
477 }
478 #else
479 /* Wrapper for ALPHA specific affinity selector magic */
480 int irq_setup_affinity(struct irq_desc *desc)
481 {
482 	return irq_select_affinity(irq_desc_get_irq(desc));
483 }
484 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
485 #endif /* CONFIG_SMP */
486 
487 
488 /**
489  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
490  *	@irq: interrupt number to set affinity
491  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
492  *	            specific data for percpu_devid interrupts
493  *
494  *	This function uses the vCPU specific data to set the vCPU
495  *	affinity for an irq. The vCPU specific data is passed from
496  *	outside, such as KVM. One example code path is as below:
497  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
498  */
499 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
500 {
501 	unsigned long flags;
502 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
503 	struct irq_data *data;
504 	struct irq_chip *chip;
505 	int ret = -ENOSYS;
506 
507 	if (!desc)
508 		return -EINVAL;
509 
510 	data = irq_desc_get_irq_data(desc);
511 	do {
512 		chip = irq_data_get_irq_chip(data);
513 		if (chip && chip->irq_set_vcpu_affinity)
514 			break;
515 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
516 		data = data->parent_data;
517 #else
518 		data = NULL;
519 #endif
520 	} while (data);
521 
522 	if (data)
523 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
524 	irq_put_desc_unlock(desc, flags);
525 
526 	return ret;
527 }
528 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
529 
530 void __disable_irq(struct irq_desc *desc)
531 {
532 	if (!desc->depth++)
533 		irq_disable(desc);
534 }
535 
536 static int __disable_irq_nosync(unsigned int irq)
537 {
538 	unsigned long flags;
539 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
540 
541 	if (!desc)
542 		return -EINVAL;
543 	__disable_irq(desc);
544 	irq_put_desc_busunlock(desc, flags);
545 	return 0;
546 }
547 
548 /**
549  *	disable_irq_nosync - disable an irq without waiting
550  *	@irq: Interrupt to disable
551  *
552  *	Disable the selected interrupt line.  Disables and Enables are
553  *	nested.
554  *	Unlike disable_irq(), this function does not ensure existing
555  *	instances of the IRQ handler have completed before returning.
556  *
557  *	This function may be called from IRQ context.
558  */
559 void disable_irq_nosync(unsigned int irq)
560 {
561 	__disable_irq_nosync(irq);
562 }
563 EXPORT_SYMBOL(disable_irq_nosync);
564 
565 /**
566  *	disable_irq - disable an irq and wait for completion
567  *	@irq: Interrupt to disable
568  *
569  *	Disable the selected interrupt line.  Enables and Disables are
570  *	nested.
571  *	This function waits for any pending IRQ handlers for this interrupt
572  *	to complete before returning. If you use this function while
573  *	holding a resource the IRQ handler may need you will deadlock.
574  *
575  *	This function may be called - with care - from IRQ context.
576  */
577 void disable_irq(unsigned int irq)
578 {
579 	if (!__disable_irq_nosync(irq))
580 		synchronize_irq(irq);
581 }
582 EXPORT_SYMBOL(disable_irq);
583 
584 /**
585  *	disable_hardirq - disables an irq and waits for hardirq completion
586  *	@irq: Interrupt to disable
587  *
588  *	Disable the selected interrupt line.  Enables and Disables are
589  *	nested.
590  *	This function waits for any pending hard IRQ handlers for this
591  *	interrupt to complete before returning. If you use this function while
592  *	holding a resource the hard IRQ handler may need you will deadlock.
593  *
594  *	When used to optimistically disable an interrupt from atomic context
595  *	the return value must be checked.
596  *
597  *	Returns: false if a threaded handler is active.
598  *
599  *	This function may be called - with care - from IRQ context.
600  */
601 bool disable_hardirq(unsigned int irq)
602 {
603 	if (!__disable_irq_nosync(irq))
604 		return synchronize_hardirq(irq);
605 
606 	return false;
607 }
608 EXPORT_SYMBOL_GPL(disable_hardirq);
609 
610 /**
611  *	disable_nmi_nosync - disable an nmi without waiting
612  *	@irq: Interrupt to disable
613  *
614  *	Disable the selected interrupt line. Disables and enables are
615  *	nested.
616  *	The interrupt to disable must have been requested through request_nmi.
617  *	Unlike disable_nmi(), this function does not ensure existing
618  *	instances of the IRQ handler have completed before returning.
619  */
620 void disable_nmi_nosync(unsigned int irq)
621 {
622 	disable_irq_nosync(irq);
623 }
624 
625 void __enable_irq(struct irq_desc *desc)
626 {
627 	switch (desc->depth) {
628 	case 0:
629  err_out:
630 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
631 		     irq_desc_get_irq(desc));
632 		break;
633 	case 1: {
634 		if (desc->istate & IRQS_SUSPENDED)
635 			goto err_out;
636 		/* Prevent probing on this irq: */
637 		irq_settings_set_noprobe(desc);
638 		/*
639 		 * Call irq_startup() not irq_enable() here because the
640 		 * interrupt might be marked NOAUTOEN. So irq_startup()
641 		 * needs to be invoked when it gets enabled the first
642 		 * time. If it was already started up, then irq_startup()
643 		 * will invoke irq_enable() under the hood.
644 		 */
645 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
646 		break;
647 	}
648 	default:
649 		desc->depth--;
650 	}
651 }
652 
653 /**
654  *	enable_irq - enable handling of an irq
655  *	@irq: Interrupt to enable
656  *
657  *	Undoes the effect of one call to disable_irq().  If this
658  *	matches the last disable, processing of interrupts on this
659  *	IRQ line is re-enabled.
660  *
661  *	This function may be called from IRQ context only when
662  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
663  */
664 void enable_irq(unsigned int irq)
665 {
666 	unsigned long flags;
667 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
668 
669 	if (!desc)
670 		return;
671 	if (WARN(!desc->irq_data.chip,
672 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
673 		goto out;
674 
675 	__enable_irq(desc);
676 out:
677 	irq_put_desc_busunlock(desc, flags);
678 }
679 EXPORT_SYMBOL(enable_irq);
680 
681 /**
682  *	enable_nmi - enable handling of an nmi
683  *	@irq: Interrupt to enable
684  *
685  *	The interrupt to enable must have been requested through request_nmi.
686  *	Undoes the effect of one call to disable_nmi(). If this
687  *	matches the last disable, processing of interrupts on this
688  *	IRQ line is re-enabled.
689  */
690 void enable_nmi(unsigned int irq)
691 {
692 	enable_irq(irq);
693 }
694 
695 static int set_irq_wake_real(unsigned int irq, unsigned int on)
696 {
697 	struct irq_desc *desc = irq_to_desc(irq);
698 	int ret = -ENXIO;
699 
700 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
701 		return 0;
702 
703 	if (desc->irq_data.chip->irq_set_wake)
704 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
705 
706 	return ret;
707 }
708 
709 /**
710  *	irq_set_irq_wake - control irq power management wakeup
711  *	@irq:	interrupt to control
712  *	@on:	enable/disable power management wakeup
713  *
714  *	Enable/disable power management wakeup mode, which is
715  *	disabled by default.  Enables and disables must match,
716  *	just as they match for non-wakeup mode support.
717  *
718  *	Wakeup mode lets this IRQ wake the system from sleep
719  *	states like "suspend to RAM".
720  *
721  *	Note: irq enable/disable state is completely orthogonal
722  *	to the enable/disable state of irq wake. An irq can be
723  *	disabled with disable_irq() and still wake the system as
724  *	long as the irq has wake enabled. If this does not hold,
725  *	then the underlying irq chip and the related driver need
726  *	to be investigated.
727  */
728 int irq_set_irq_wake(unsigned int irq, unsigned int on)
729 {
730 	unsigned long flags;
731 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
732 	int ret = 0;
733 
734 	if (!desc)
735 		return -EINVAL;
736 
737 	/* Don't use NMIs as wake up interrupts please */
738 	if (desc->istate & IRQS_NMI) {
739 		ret = -EINVAL;
740 		goto out_unlock;
741 	}
742 
743 	/* wakeup-capable irqs can be shared between drivers that
744 	 * don't need to have the same sleep mode behaviors.
745 	 */
746 	if (on) {
747 		if (desc->wake_depth++ == 0) {
748 			ret = set_irq_wake_real(irq, on);
749 			if (ret)
750 				desc->wake_depth = 0;
751 			else
752 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
753 		}
754 	} else {
755 		if (desc->wake_depth == 0) {
756 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
757 		} else if (--desc->wake_depth == 0) {
758 			ret = set_irq_wake_real(irq, on);
759 			if (ret)
760 				desc->wake_depth = 1;
761 			else
762 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
763 		}
764 	}
765 
766 out_unlock:
767 	irq_put_desc_busunlock(desc, flags);
768 	return ret;
769 }
770 EXPORT_SYMBOL(irq_set_irq_wake);
771 
772 /*
773  * Internal function that tells the architecture code whether a
774  * particular irq has been exclusively allocated or is available
775  * for driver use.
776  */
777 int can_request_irq(unsigned int irq, unsigned long irqflags)
778 {
779 	unsigned long flags;
780 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
781 	int canrequest = 0;
782 
783 	if (!desc)
784 		return 0;
785 
786 	if (irq_settings_can_request(desc)) {
787 		if (!desc->action ||
788 		    irqflags & desc->action->flags & IRQF_SHARED)
789 			canrequest = 1;
790 	}
791 	irq_put_desc_unlock(desc, flags);
792 	return canrequest;
793 }
794 
795 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
796 {
797 	struct irq_chip *chip = desc->irq_data.chip;
798 	int ret, unmask = 0;
799 
800 	if (!chip || !chip->irq_set_type) {
801 		/*
802 		 * IRQF_TRIGGER_* but the PIC does not support multiple
803 		 * flow-types?
804 		 */
805 		pr_debug("No set_type function for IRQ %d (%s)\n",
806 			 irq_desc_get_irq(desc),
807 			 chip ? (chip->name ? : "unknown") : "unknown");
808 		return 0;
809 	}
810 
811 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
812 		if (!irqd_irq_masked(&desc->irq_data))
813 			mask_irq(desc);
814 		if (!irqd_irq_disabled(&desc->irq_data))
815 			unmask = 1;
816 	}
817 
818 	/* Mask all flags except trigger mode */
819 	flags &= IRQ_TYPE_SENSE_MASK;
820 	ret = chip->irq_set_type(&desc->irq_data, flags);
821 
822 	switch (ret) {
823 	case IRQ_SET_MASK_OK:
824 	case IRQ_SET_MASK_OK_DONE:
825 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
826 		irqd_set(&desc->irq_data, flags);
827 		/* fall through */
828 
829 	case IRQ_SET_MASK_OK_NOCOPY:
830 		flags = irqd_get_trigger_type(&desc->irq_data);
831 		irq_settings_set_trigger_mask(desc, flags);
832 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
833 		irq_settings_clr_level(desc);
834 		if (flags & IRQ_TYPE_LEVEL_MASK) {
835 			irq_settings_set_level(desc);
836 			irqd_set(&desc->irq_data, IRQD_LEVEL);
837 		}
838 
839 		ret = 0;
840 		break;
841 	default:
842 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
843 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
844 	}
845 	if (unmask)
846 		unmask_irq(desc);
847 	return ret;
848 }
849 
850 #ifdef CONFIG_HARDIRQS_SW_RESEND
851 int irq_set_parent(int irq, int parent_irq)
852 {
853 	unsigned long flags;
854 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
855 
856 	if (!desc)
857 		return -EINVAL;
858 
859 	desc->parent_irq = parent_irq;
860 
861 	irq_put_desc_unlock(desc, flags);
862 	return 0;
863 }
864 EXPORT_SYMBOL_GPL(irq_set_parent);
865 #endif
866 
867 /*
868  * Default primary interrupt handler for threaded interrupts. Is
869  * assigned as primary handler when request_threaded_irq is called
870  * with handler == NULL. Useful for oneshot interrupts.
871  */
872 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
873 {
874 	return IRQ_WAKE_THREAD;
875 }
876 
877 /*
878  * Primary handler for nested threaded interrupts. Should never be
879  * called.
880  */
881 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
882 {
883 	WARN(1, "Primary handler called for nested irq %d\n", irq);
884 	return IRQ_NONE;
885 }
886 
887 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
888 {
889 	WARN(1, "Secondary action handler called for irq %d\n", irq);
890 	return IRQ_NONE;
891 }
892 
893 static int irq_wait_for_interrupt(struct irqaction *action)
894 {
895 	for (;;) {
896 		set_current_state(TASK_INTERRUPTIBLE);
897 
898 		if (kthread_should_stop()) {
899 			/* may need to run one last time */
900 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
901 					       &action->thread_flags)) {
902 				__set_current_state(TASK_RUNNING);
903 				return 0;
904 			}
905 			__set_current_state(TASK_RUNNING);
906 			return -1;
907 		}
908 
909 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
910 				       &action->thread_flags)) {
911 			__set_current_state(TASK_RUNNING);
912 			return 0;
913 		}
914 		schedule();
915 	}
916 }
917 
918 /*
919  * Oneshot interrupts keep the irq line masked until the threaded
920  * handler finished. unmask if the interrupt has not been disabled and
921  * is marked MASKED.
922  */
923 static void irq_finalize_oneshot(struct irq_desc *desc,
924 				 struct irqaction *action)
925 {
926 	if (!(desc->istate & IRQS_ONESHOT) ||
927 	    action->handler == irq_forced_secondary_handler)
928 		return;
929 again:
930 	chip_bus_lock(desc);
931 	raw_spin_lock_irq(&desc->lock);
932 
933 	/*
934 	 * Implausible though it may be we need to protect us against
935 	 * the following scenario:
936 	 *
937 	 * The thread is faster done than the hard interrupt handler
938 	 * on the other CPU. If we unmask the irq line then the
939 	 * interrupt can come in again and masks the line, leaves due
940 	 * to IRQS_INPROGRESS and the irq line is masked forever.
941 	 *
942 	 * This also serializes the state of shared oneshot handlers
943 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
944 	 * irq_wake_thread(). See the comment there which explains the
945 	 * serialization.
946 	 */
947 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
948 		raw_spin_unlock_irq(&desc->lock);
949 		chip_bus_sync_unlock(desc);
950 		cpu_relax();
951 		goto again;
952 	}
953 
954 	/*
955 	 * Now check again, whether the thread should run. Otherwise
956 	 * we would clear the threads_oneshot bit of this thread which
957 	 * was just set.
958 	 */
959 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
960 		goto out_unlock;
961 
962 	desc->threads_oneshot &= ~action->thread_mask;
963 
964 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
965 	    irqd_irq_masked(&desc->irq_data))
966 		unmask_threaded_irq(desc);
967 
968 out_unlock:
969 	raw_spin_unlock_irq(&desc->lock);
970 	chip_bus_sync_unlock(desc);
971 }
972 
973 #ifdef CONFIG_SMP
974 /*
975  * Check whether we need to change the affinity of the interrupt thread.
976  */
977 static void
978 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
979 {
980 	cpumask_var_t mask;
981 	bool valid = true;
982 
983 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
984 		return;
985 
986 	/*
987 	 * In case we are out of memory we set IRQTF_AFFINITY again and
988 	 * try again next time
989 	 */
990 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
991 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
992 		return;
993 	}
994 
995 	raw_spin_lock_irq(&desc->lock);
996 	/*
997 	 * This code is triggered unconditionally. Check the affinity
998 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
999 	 */
1000 	if (cpumask_available(desc->irq_common_data.affinity)) {
1001 		const struct cpumask *m;
1002 
1003 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1004 		cpumask_copy(mask, m);
1005 	} else {
1006 		valid = false;
1007 	}
1008 	raw_spin_unlock_irq(&desc->lock);
1009 
1010 	if (valid)
1011 		set_cpus_allowed_ptr(current, mask);
1012 	free_cpumask_var(mask);
1013 }
1014 #else
1015 static inline void
1016 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1017 #endif
1018 
1019 /*
1020  * Interrupts which are not explicitly requested as threaded
1021  * interrupts rely on the implicit bh/preempt disable of the hard irq
1022  * context. So we need to disable bh here to avoid deadlocks and other
1023  * side effects.
1024  */
1025 static irqreturn_t
1026 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1027 {
1028 	irqreturn_t ret;
1029 
1030 	local_bh_disable();
1031 	ret = action->thread_fn(action->irq, action->dev_id);
1032 	if (ret == IRQ_HANDLED)
1033 		atomic_inc(&desc->threads_handled);
1034 
1035 	irq_finalize_oneshot(desc, action);
1036 	local_bh_enable();
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Interrupts explicitly requested as threaded interrupts want to be
1042  * preemtible - many of them need to sleep and wait for slow busses to
1043  * complete.
1044  */
1045 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1046 		struct irqaction *action)
1047 {
1048 	irqreturn_t ret;
1049 
1050 	ret = action->thread_fn(action->irq, action->dev_id);
1051 	if (ret == IRQ_HANDLED)
1052 		atomic_inc(&desc->threads_handled);
1053 
1054 	irq_finalize_oneshot(desc, action);
1055 	return ret;
1056 }
1057 
1058 static void wake_threads_waitq(struct irq_desc *desc)
1059 {
1060 	if (atomic_dec_and_test(&desc->threads_active))
1061 		wake_up(&desc->wait_for_threads);
1062 }
1063 
1064 static void irq_thread_dtor(struct callback_head *unused)
1065 {
1066 	struct task_struct *tsk = current;
1067 	struct irq_desc *desc;
1068 	struct irqaction *action;
1069 
1070 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1071 		return;
1072 
1073 	action = kthread_data(tsk);
1074 
1075 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1076 	       tsk->comm, tsk->pid, action->irq);
1077 
1078 
1079 	desc = irq_to_desc(action->irq);
1080 	/*
1081 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1082 	 * desc->threads_active and wake possible waiters.
1083 	 */
1084 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1085 		wake_threads_waitq(desc);
1086 
1087 	/* Prevent a stale desc->threads_oneshot */
1088 	irq_finalize_oneshot(desc, action);
1089 }
1090 
1091 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1092 {
1093 	struct irqaction *secondary = action->secondary;
1094 
1095 	if (WARN_ON_ONCE(!secondary))
1096 		return;
1097 
1098 	raw_spin_lock_irq(&desc->lock);
1099 	__irq_wake_thread(desc, secondary);
1100 	raw_spin_unlock_irq(&desc->lock);
1101 }
1102 
1103 /*
1104  * Interrupt handler thread
1105  */
1106 static int irq_thread(void *data)
1107 {
1108 	struct callback_head on_exit_work;
1109 	struct irqaction *action = data;
1110 	struct irq_desc *desc = irq_to_desc(action->irq);
1111 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1112 			struct irqaction *action);
1113 
1114 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1115 					&action->thread_flags))
1116 		handler_fn = irq_forced_thread_fn;
1117 	else
1118 		handler_fn = irq_thread_fn;
1119 
1120 	init_task_work(&on_exit_work, irq_thread_dtor);
1121 	task_work_add(current, &on_exit_work, false);
1122 
1123 	irq_thread_check_affinity(desc, action);
1124 
1125 	while (!irq_wait_for_interrupt(action)) {
1126 		irqreturn_t action_ret;
1127 
1128 		irq_thread_check_affinity(desc, action);
1129 
1130 		action_ret = handler_fn(desc, action);
1131 		if (action_ret == IRQ_WAKE_THREAD)
1132 			irq_wake_secondary(desc, action);
1133 
1134 		wake_threads_waitq(desc);
1135 	}
1136 
1137 	/*
1138 	 * This is the regular exit path. __free_irq() is stopping the
1139 	 * thread via kthread_stop() after calling
1140 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1141 	 * oneshot mask bit can be set.
1142 	 */
1143 	task_work_cancel(current, irq_thread_dtor);
1144 	return 0;
1145 }
1146 
1147 /**
1148  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1149  *	@irq:		Interrupt line
1150  *	@dev_id:	Device identity for which the thread should be woken
1151  *
1152  */
1153 void irq_wake_thread(unsigned int irq, void *dev_id)
1154 {
1155 	struct irq_desc *desc = irq_to_desc(irq);
1156 	struct irqaction *action;
1157 	unsigned long flags;
1158 
1159 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1160 		return;
1161 
1162 	raw_spin_lock_irqsave(&desc->lock, flags);
1163 	for_each_action_of_desc(desc, action) {
1164 		if (action->dev_id == dev_id) {
1165 			if (action->thread)
1166 				__irq_wake_thread(desc, action);
1167 			break;
1168 		}
1169 	}
1170 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1171 }
1172 EXPORT_SYMBOL_GPL(irq_wake_thread);
1173 
1174 static int irq_setup_forced_threading(struct irqaction *new)
1175 {
1176 	if (!force_irqthreads)
1177 		return 0;
1178 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1179 		return 0;
1180 
1181 	/*
1182 	 * No further action required for interrupts which are requested as
1183 	 * threaded interrupts already
1184 	 */
1185 	if (new->handler == irq_default_primary_handler)
1186 		return 0;
1187 
1188 	new->flags |= IRQF_ONESHOT;
1189 
1190 	/*
1191 	 * Handle the case where we have a real primary handler and a
1192 	 * thread handler. We force thread them as well by creating a
1193 	 * secondary action.
1194 	 */
1195 	if (new->handler && new->thread_fn) {
1196 		/* Allocate the secondary action */
1197 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1198 		if (!new->secondary)
1199 			return -ENOMEM;
1200 		new->secondary->handler = irq_forced_secondary_handler;
1201 		new->secondary->thread_fn = new->thread_fn;
1202 		new->secondary->dev_id = new->dev_id;
1203 		new->secondary->irq = new->irq;
1204 		new->secondary->name = new->name;
1205 	}
1206 	/* Deal with the primary handler */
1207 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1208 	new->thread_fn = new->handler;
1209 	new->handler = irq_default_primary_handler;
1210 	return 0;
1211 }
1212 
1213 static int irq_request_resources(struct irq_desc *desc)
1214 {
1215 	struct irq_data *d = &desc->irq_data;
1216 	struct irq_chip *c = d->chip;
1217 
1218 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1219 }
1220 
1221 static void irq_release_resources(struct irq_desc *desc)
1222 {
1223 	struct irq_data *d = &desc->irq_data;
1224 	struct irq_chip *c = d->chip;
1225 
1226 	if (c->irq_release_resources)
1227 		c->irq_release_resources(d);
1228 }
1229 
1230 static bool irq_supports_nmi(struct irq_desc *desc)
1231 {
1232 	struct irq_data *d = irq_desc_get_irq_data(desc);
1233 
1234 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1235 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1236 	if (d->parent_data)
1237 		return false;
1238 #endif
1239 	/* Don't support NMIs for chips behind a slow bus */
1240 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1241 		return false;
1242 
1243 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1244 }
1245 
1246 static int irq_nmi_setup(struct irq_desc *desc)
1247 {
1248 	struct irq_data *d = irq_desc_get_irq_data(desc);
1249 	struct irq_chip *c = d->chip;
1250 
1251 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1252 }
1253 
1254 static void irq_nmi_teardown(struct irq_desc *desc)
1255 {
1256 	struct irq_data *d = irq_desc_get_irq_data(desc);
1257 	struct irq_chip *c = d->chip;
1258 
1259 	if (c->irq_nmi_teardown)
1260 		c->irq_nmi_teardown(d);
1261 }
1262 
1263 static int
1264 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1265 {
1266 	struct task_struct *t;
1267 	struct sched_param param = {
1268 		.sched_priority = MAX_USER_RT_PRIO/2,
1269 	};
1270 
1271 	if (!secondary) {
1272 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1273 				   new->name);
1274 	} else {
1275 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1276 				   new->name);
1277 		param.sched_priority -= 1;
1278 	}
1279 
1280 	if (IS_ERR(t))
1281 		return PTR_ERR(t);
1282 
1283 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1284 
1285 	/*
1286 	 * We keep the reference to the task struct even if
1287 	 * the thread dies to avoid that the interrupt code
1288 	 * references an already freed task_struct.
1289 	 */
1290 	new->thread = get_task_struct(t);
1291 	/*
1292 	 * Tell the thread to set its affinity. This is
1293 	 * important for shared interrupt handlers as we do
1294 	 * not invoke setup_affinity() for the secondary
1295 	 * handlers as everything is already set up. Even for
1296 	 * interrupts marked with IRQF_NO_BALANCE this is
1297 	 * correct as we want the thread to move to the cpu(s)
1298 	 * on which the requesting code placed the interrupt.
1299 	 */
1300 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * Internal function to register an irqaction - typically used to
1306  * allocate special interrupts that are part of the architecture.
1307  *
1308  * Locking rules:
1309  *
1310  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1311  *   chip_bus_lock	Provides serialization for slow bus operations
1312  *     desc->lock	Provides serialization against hard interrupts
1313  *
1314  * chip_bus_lock and desc->lock are sufficient for all other management and
1315  * interrupt related functions. desc->request_mutex solely serializes
1316  * request/free_irq().
1317  */
1318 static int
1319 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1320 {
1321 	struct irqaction *old, **old_ptr;
1322 	unsigned long flags, thread_mask = 0;
1323 	int ret, nested, shared = 0;
1324 
1325 	if (!desc)
1326 		return -EINVAL;
1327 
1328 	if (desc->irq_data.chip == &no_irq_chip)
1329 		return -ENOSYS;
1330 	if (!try_module_get(desc->owner))
1331 		return -ENODEV;
1332 
1333 	new->irq = irq;
1334 
1335 	/*
1336 	 * If the trigger type is not specified by the caller,
1337 	 * then use the default for this interrupt.
1338 	 */
1339 	if (!(new->flags & IRQF_TRIGGER_MASK))
1340 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1341 
1342 	/*
1343 	 * Check whether the interrupt nests into another interrupt
1344 	 * thread.
1345 	 */
1346 	nested = irq_settings_is_nested_thread(desc);
1347 	if (nested) {
1348 		if (!new->thread_fn) {
1349 			ret = -EINVAL;
1350 			goto out_mput;
1351 		}
1352 		/*
1353 		 * Replace the primary handler which was provided from
1354 		 * the driver for non nested interrupt handling by the
1355 		 * dummy function which warns when called.
1356 		 */
1357 		new->handler = irq_nested_primary_handler;
1358 	} else {
1359 		if (irq_settings_can_thread(desc)) {
1360 			ret = irq_setup_forced_threading(new);
1361 			if (ret)
1362 				goto out_mput;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Create a handler thread when a thread function is supplied
1368 	 * and the interrupt does not nest into another interrupt
1369 	 * thread.
1370 	 */
1371 	if (new->thread_fn && !nested) {
1372 		ret = setup_irq_thread(new, irq, false);
1373 		if (ret)
1374 			goto out_mput;
1375 		if (new->secondary) {
1376 			ret = setup_irq_thread(new->secondary, irq, true);
1377 			if (ret)
1378 				goto out_thread;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Drivers are often written to work w/o knowledge about the
1384 	 * underlying irq chip implementation, so a request for a
1385 	 * threaded irq without a primary hard irq context handler
1386 	 * requires the ONESHOT flag to be set. Some irq chips like
1387 	 * MSI based interrupts are per se one shot safe. Check the
1388 	 * chip flags, so we can avoid the unmask dance at the end of
1389 	 * the threaded handler for those.
1390 	 */
1391 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1392 		new->flags &= ~IRQF_ONESHOT;
1393 
1394 	/*
1395 	 * Protects against a concurrent __free_irq() call which might wait
1396 	 * for synchronize_hardirq() to complete without holding the optional
1397 	 * chip bus lock and desc->lock. Also protects against handing out
1398 	 * a recycled oneshot thread_mask bit while it's still in use by
1399 	 * its previous owner.
1400 	 */
1401 	mutex_lock(&desc->request_mutex);
1402 
1403 	/*
1404 	 * Acquire bus lock as the irq_request_resources() callback below
1405 	 * might rely on the serialization or the magic power management
1406 	 * functions which are abusing the irq_bus_lock() callback,
1407 	 */
1408 	chip_bus_lock(desc);
1409 
1410 	/* First installed action requests resources. */
1411 	if (!desc->action) {
1412 		ret = irq_request_resources(desc);
1413 		if (ret) {
1414 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1415 			       new->name, irq, desc->irq_data.chip->name);
1416 			goto out_bus_unlock;
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * The following block of code has to be executed atomically
1422 	 * protected against a concurrent interrupt and any of the other
1423 	 * management calls which are not serialized via
1424 	 * desc->request_mutex or the optional bus lock.
1425 	 */
1426 	raw_spin_lock_irqsave(&desc->lock, flags);
1427 	old_ptr = &desc->action;
1428 	old = *old_ptr;
1429 	if (old) {
1430 		/*
1431 		 * Can't share interrupts unless both agree to and are
1432 		 * the same type (level, edge, polarity). So both flag
1433 		 * fields must have IRQF_SHARED set and the bits which
1434 		 * set the trigger type must match. Also all must
1435 		 * agree on ONESHOT.
1436 		 * Interrupt lines used for NMIs cannot be shared.
1437 		 */
1438 		unsigned int oldtype;
1439 
1440 		if (desc->istate & IRQS_NMI) {
1441 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1442 				new->name, irq, desc->irq_data.chip->name);
1443 			ret = -EINVAL;
1444 			goto out_unlock;
1445 		}
1446 
1447 		/*
1448 		 * If nobody did set the configuration before, inherit
1449 		 * the one provided by the requester.
1450 		 */
1451 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1452 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1453 		} else {
1454 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1455 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1456 		}
1457 
1458 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1459 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1460 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1461 			goto mismatch;
1462 
1463 		/* All handlers must agree on per-cpuness */
1464 		if ((old->flags & IRQF_PERCPU) !=
1465 		    (new->flags & IRQF_PERCPU))
1466 			goto mismatch;
1467 
1468 		/* add new interrupt at end of irq queue */
1469 		do {
1470 			/*
1471 			 * Or all existing action->thread_mask bits,
1472 			 * so we can find the next zero bit for this
1473 			 * new action.
1474 			 */
1475 			thread_mask |= old->thread_mask;
1476 			old_ptr = &old->next;
1477 			old = *old_ptr;
1478 		} while (old);
1479 		shared = 1;
1480 	}
1481 
1482 	/*
1483 	 * Setup the thread mask for this irqaction for ONESHOT. For
1484 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1485 	 * conditional in irq_wake_thread().
1486 	 */
1487 	if (new->flags & IRQF_ONESHOT) {
1488 		/*
1489 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1490 		 * but who knows.
1491 		 */
1492 		if (thread_mask == ~0UL) {
1493 			ret = -EBUSY;
1494 			goto out_unlock;
1495 		}
1496 		/*
1497 		 * The thread_mask for the action is or'ed to
1498 		 * desc->thread_active to indicate that the
1499 		 * IRQF_ONESHOT thread handler has been woken, but not
1500 		 * yet finished. The bit is cleared when a thread
1501 		 * completes. When all threads of a shared interrupt
1502 		 * line have completed desc->threads_active becomes
1503 		 * zero and the interrupt line is unmasked. See
1504 		 * handle.c:irq_wake_thread() for further information.
1505 		 *
1506 		 * If no thread is woken by primary (hard irq context)
1507 		 * interrupt handlers, then desc->threads_active is
1508 		 * also checked for zero to unmask the irq line in the
1509 		 * affected hard irq flow handlers
1510 		 * (handle_[fasteoi|level]_irq).
1511 		 *
1512 		 * The new action gets the first zero bit of
1513 		 * thread_mask assigned. See the loop above which or's
1514 		 * all existing action->thread_mask bits.
1515 		 */
1516 		new->thread_mask = 1UL << ffz(thread_mask);
1517 
1518 	} else if (new->handler == irq_default_primary_handler &&
1519 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1520 		/*
1521 		 * The interrupt was requested with handler = NULL, so
1522 		 * we use the default primary handler for it. But it
1523 		 * does not have the oneshot flag set. In combination
1524 		 * with level interrupts this is deadly, because the
1525 		 * default primary handler just wakes the thread, then
1526 		 * the irq lines is reenabled, but the device still
1527 		 * has the level irq asserted. Rinse and repeat....
1528 		 *
1529 		 * While this works for edge type interrupts, we play
1530 		 * it safe and reject unconditionally because we can't
1531 		 * say for sure which type this interrupt really
1532 		 * has. The type flags are unreliable as the
1533 		 * underlying chip implementation can override them.
1534 		 */
1535 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1536 		       new->name, irq);
1537 		ret = -EINVAL;
1538 		goto out_unlock;
1539 	}
1540 
1541 	if (!shared) {
1542 		init_waitqueue_head(&desc->wait_for_threads);
1543 
1544 		/* Setup the type (level, edge polarity) if configured: */
1545 		if (new->flags & IRQF_TRIGGER_MASK) {
1546 			ret = __irq_set_trigger(desc,
1547 						new->flags & IRQF_TRIGGER_MASK);
1548 
1549 			if (ret)
1550 				goto out_unlock;
1551 		}
1552 
1553 		/*
1554 		 * Activate the interrupt. That activation must happen
1555 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1556 		 * and the callers are supposed to handle
1557 		 * that. enable_irq() of an interrupt requested with
1558 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1559 		 * keeps it in shutdown mode, it merily associates
1560 		 * resources if necessary and if that's not possible it
1561 		 * fails. Interrupts which are in managed shutdown mode
1562 		 * will simply ignore that activation request.
1563 		 */
1564 		ret = irq_activate(desc);
1565 		if (ret)
1566 			goto out_unlock;
1567 
1568 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1569 				  IRQS_ONESHOT | IRQS_WAITING);
1570 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1571 
1572 		if (new->flags & IRQF_PERCPU) {
1573 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1574 			irq_settings_set_per_cpu(desc);
1575 		}
1576 
1577 		if (new->flags & IRQF_ONESHOT)
1578 			desc->istate |= IRQS_ONESHOT;
1579 
1580 		/* Exclude IRQ from balancing if requested */
1581 		if (new->flags & IRQF_NOBALANCING) {
1582 			irq_settings_set_no_balancing(desc);
1583 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1584 		}
1585 
1586 		if (irq_settings_can_autoenable(desc)) {
1587 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1588 		} else {
1589 			/*
1590 			 * Shared interrupts do not go well with disabling
1591 			 * auto enable. The sharing interrupt might request
1592 			 * it while it's still disabled and then wait for
1593 			 * interrupts forever.
1594 			 */
1595 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1596 			/* Undo nested disables: */
1597 			desc->depth = 1;
1598 		}
1599 
1600 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1601 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1602 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1603 
1604 		if (nmsk != omsk)
1605 			/* hope the handler works with current  trigger mode */
1606 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1607 				irq, omsk, nmsk);
1608 	}
1609 
1610 	*old_ptr = new;
1611 
1612 	irq_pm_install_action(desc, new);
1613 
1614 	/* Reset broken irq detection when installing new handler */
1615 	desc->irq_count = 0;
1616 	desc->irqs_unhandled = 0;
1617 
1618 	/*
1619 	 * Check whether we disabled the irq via the spurious handler
1620 	 * before. Reenable it and give it another chance.
1621 	 */
1622 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1623 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1624 		__enable_irq(desc);
1625 	}
1626 
1627 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1628 	chip_bus_sync_unlock(desc);
1629 	mutex_unlock(&desc->request_mutex);
1630 
1631 	irq_setup_timings(desc, new);
1632 
1633 	/*
1634 	 * Strictly no need to wake it up, but hung_task complains
1635 	 * when no hard interrupt wakes the thread up.
1636 	 */
1637 	if (new->thread)
1638 		wake_up_process(new->thread);
1639 	if (new->secondary)
1640 		wake_up_process(new->secondary->thread);
1641 
1642 	register_irq_proc(irq, desc);
1643 	new->dir = NULL;
1644 	register_handler_proc(irq, new);
1645 	return 0;
1646 
1647 mismatch:
1648 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1649 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1650 		       irq, new->flags, new->name, old->flags, old->name);
1651 #ifdef CONFIG_DEBUG_SHIRQ
1652 		dump_stack();
1653 #endif
1654 	}
1655 	ret = -EBUSY;
1656 
1657 out_unlock:
1658 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1659 
1660 	if (!desc->action)
1661 		irq_release_resources(desc);
1662 out_bus_unlock:
1663 	chip_bus_sync_unlock(desc);
1664 	mutex_unlock(&desc->request_mutex);
1665 
1666 out_thread:
1667 	if (new->thread) {
1668 		struct task_struct *t = new->thread;
1669 
1670 		new->thread = NULL;
1671 		kthread_stop(t);
1672 		put_task_struct(t);
1673 	}
1674 	if (new->secondary && new->secondary->thread) {
1675 		struct task_struct *t = new->secondary->thread;
1676 
1677 		new->secondary->thread = NULL;
1678 		kthread_stop(t);
1679 		put_task_struct(t);
1680 	}
1681 out_mput:
1682 	module_put(desc->owner);
1683 	return ret;
1684 }
1685 
1686 /**
1687  *	setup_irq - setup an interrupt
1688  *	@irq: Interrupt line to setup
1689  *	@act: irqaction for the interrupt
1690  *
1691  * Used to statically setup interrupts in the early boot process.
1692  */
1693 int setup_irq(unsigned int irq, struct irqaction *act)
1694 {
1695 	int retval;
1696 	struct irq_desc *desc = irq_to_desc(irq);
1697 
1698 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1699 		return -EINVAL;
1700 
1701 	retval = irq_chip_pm_get(&desc->irq_data);
1702 	if (retval < 0)
1703 		return retval;
1704 
1705 	retval = __setup_irq(irq, desc, act);
1706 
1707 	if (retval)
1708 		irq_chip_pm_put(&desc->irq_data);
1709 
1710 	return retval;
1711 }
1712 EXPORT_SYMBOL_GPL(setup_irq);
1713 
1714 /*
1715  * Internal function to unregister an irqaction - used to free
1716  * regular and special interrupts that are part of the architecture.
1717  */
1718 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1719 {
1720 	unsigned irq = desc->irq_data.irq;
1721 	struct irqaction *action, **action_ptr;
1722 	unsigned long flags;
1723 
1724 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1725 
1726 	mutex_lock(&desc->request_mutex);
1727 	chip_bus_lock(desc);
1728 	raw_spin_lock_irqsave(&desc->lock, flags);
1729 
1730 	/*
1731 	 * There can be multiple actions per IRQ descriptor, find the right
1732 	 * one based on the dev_id:
1733 	 */
1734 	action_ptr = &desc->action;
1735 	for (;;) {
1736 		action = *action_ptr;
1737 
1738 		if (!action) {
1739 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1740 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1741 			chip_bus_sync_unlock(desc);
1742 			mutex_unlock(&desc->request_mutex);
1743 			return NULL;
1744 		}
1745 
1746 		if (action->dev_id == dev_id)
1747 			break;
1748 		action_ptr = &action->next;
1749 	}
1750 
1751 	/* Found it - now remove it from the list of entries: */
1752 	*action_ptr = action->next;
1753 
1754 	irq_pm_remove_action(desc, action);
1755 
1756 	/* If this was the last handler, shut down the IRQ line: */
1757 	if (!desc->action) {
1758 		irq_settings_clr_disable_unlazy(desc);
1759 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1760 		irq_shutdown(desc);
1761 	}
1762 
1763 #ifdef CONFIG_SMP
1764 	/* make sure affinity_hint is cleaned up */
1765 	if (WARN_ON_ONCE(desc->affinity_hint))
1766 		desc->affinity_hint = NULL;
1767 #endif
1768 
1769 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1770 	/*
1771 	 * Drop bus_lock here so the changes which were done in the chip
1772 	 * callbacks above are synced out to the irq chips which hang
1773 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1774 	 *
1775 	 * Aside of that the bus_lock can also be taken from the threaded
1776 	 * handler in irq_finalize_oneshot() which results in a deadlock
1777 	 * because kthread_stop() would wait forever for the thread to
1778 	 * complete, which is blocked on the bus lock.
1779 	 *
1780 	 * The still held desc->request_mutex() protects against a
1781 	 * concurrent request_irq() of this irq so the release of resources
1782 	 * and timing data is properly serialized.
1783 	 */
1784 	chip_bus_sync_unlock(desc);
1785 
1786 	unregister_handler_proc(irq, action);
1787 
1788 	/*
1789 	 * Make sure it's not being used on another CPU and if the chip
1790 	 * supports it also make sure that there is no (not yet serviced)
1791 	 * interrupt in flight at the hardware level.
1792 	 */
1793 	__synchronize_hardirq(desc, true);
1794 
1795 #ifdef CONFIG_DEBUG_SHIRQ
1796 	/*
1797 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1798 	 * event to happen even now it's being freed, so let's make sure that
1799 	 * is so by doing an extra call to the handler ....
1800 	 *
1801 	 * ( We do this after actually deregistering it, to make sure that a
1802 	 *   'real' IRQ doesn't run in parallel with our fake. )
1803 	 */
1804 	if (action->flags & IRQF_SHARED) {
1805 		local_irq_save(flags);
1806 		action->handler(irq, dev_id);
1807 		local_irq_restore(flags);
1808 	}
1809 #endif
1810 
1811 	/*
1812 	 * The action has already been removed above, but the thread writes
1813 	 * its oneshot mask bit when it completes. Though request_mutex is
1814 	 * held across this which prevents __setup_irq() from handing out
1815 	 * the same bit to a newly requested action.
1816 	 */
1817 	if (action->thread) {
1818 		kthread_stop(action->thread);
1819 		put_task_struct(action->thread);
1820 		if (action->secondary && action->secondary->thread) {
1821 			kthread_stop(action->secondary->thread);
1822 			put_task_struct(action->secondary->thread);
1823 		}
1824 	}
1825 
1826 	/* Last action releases resources */
1827 	if (!desc->action) {
1828 		/*
1829 		 * Reaquire bus lock as irq_release_resources() might
1830 		 * require it to deallocate resources over the slow bus.
1831 		 */
1832 		chip_bus_lock(desc);
1833 		/*
1834 		 * There is no interrupt on the fly anymore. Deactivate it
1835 		 * completely.
1836 		 */
1837 		raw_spin_lock_irqsave(&desc->lock, flags);
1838 		irq_domain_deactivate_irq(&desc->irq_data);
1839 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1840 
1841 		irq_release_resources(desc);
1842 		chip_bus_sync_unlock(desc);
1843 		irq_remove_timings(desc);
1844 	}
1845 
1846 	mutex_unlock(&desc->request_mutex);
1847 
1848 	irq_chip_pm_put(&desc->irq_data);
1849 	module_put(desc->owner);
1850 	kfree(action->secondary);
1851 	return action;
1852 }
1853 
1854 /**
1855  *	remove_irq - free an interrupt
1856  *	@irq: Interrupt line to free
1857  *	@act: irqaction for the interrupt
1858  *
1859  * Used to remove interrupts statically setup by the early boot process.
1860  */
1861 void remove_irq(unsigned int irq, struct irqaction *act)
1862 {
1863 	struct irq_desc *desc = irq_to_desc(irq);
1864 
1865 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1866 		__free_irq(desc, act->dev_id);
1867 }
1868 EXPORT_SYMBOL_GPL(remove_irq);
1869 
1870 /**
1871  *	free_irq - free an interrupt allocated with request_irq
1872  *	@irq: Interrupt line to free
1873  *	@dev_id: Device identity to free
1874  *
1875  *	Remove an interrupt handler. The handler is removed and if the
1876  *	interrupt line is no longer in use by any driver it is disabled.
1877  *	On a shared IRQ the caller must ensure the interrupt is disabled
1878  *	on the card it drives before calling this function. The function
1879  *	does not return until any executing interrupts for this IRQ
1880  *	have completed.
1881  *
1882  *	This function must not be called from interrupt context.
1883  *
1884  *	Returns the devname argument passed to request_irq.
1885  */
1886 const void *free_irq(unsigned int irq, void *dev_id)
1887 {
1888 	struct irq_desc *desc = irq_to_desc(irq);
1889 	struct irqaction *action;
1890 	const char *devname;
1891 
1892 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1893 		return NULL;
1894 
1895 #ifdef CONFIG_SMP
1896 	if (WARN_ON(desc->affinity_notify))
1897 		desc->affinity_notify = NULL;
1898 #endif
1899 
1900 	action = __free_irq(desc, dev_id);
1901 
1902 	if (!action)
1903 		return NULL;
1904 
1905 	devname = action->name;
1906 	kfree(action);
1907 	return devname;
1908 }
1909 EXPORT_SYMBOL(free_irq);
1910 
1911 /* This function must be called with desc->lock held */
1912 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1913 {
1914 	const char *devname = NULL;
1915 
1916 	desc->istate &= ~IRQS_NMI;
1917 
1918 	if (!WARN_ON(desc->action == NULL)) {
1919 		irq_pm_remove_action(desc, desc->action);
1920 		devname = desc->action->name;
1921 		unregister_handler_proc(irq, desc->action);
1922 
1923 		kfree(desc->action);
1924 		desc->action = NULL;
1925 	}
1926 
1927 	irq_settings_clr_disable_unlazy(desc);
1928 	irq_shutdown_and_deactivate(desc);
1929 
1930 	irq_release_resources(desc);
1931 
1932 	irq_chip_pm_put(&desc->irq_data);
1933 	module_put(desc->owner);
1934 
1935 	return devname;
1936 }
1937 
1938 const void *free_nmi(unsigned int irq, void *dev_id)
1939 {
1940 	struct irq_desc *desc = irq_to_desc(irq);
1941 	unsigned long flags;
1942 	const void *devname;
1943 
1944 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1945 		return NULL;
1946 
1947 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1948 		return NULL;
1949 
1950 	/* NMI still enabled */
1951 	if (WARN_ON(desc->depth == 0))
1952 		disable_nmi_nosync(irq);
1953 
1954 	raw_spin_lock_irqsave(&desc->lock, flags);
1955 
1956 	irq_nmi_teardown(desc);
1957 	devname = __cleanup_nmi(irq, desc);
1958 
1959 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1960 
1961 	return devname;
1962 }
1963 
1964 /**
1965  *	request_threaded_irq - allocate an interrupt line
1966  *	@irq: Interrupt line to allocate
1967  *	@handler: Function to be called when the IRQ occurs.
1968  *		  Primary handler for threaded interrupts
1969  *		  If NULL and thread_fn != NULL the default
1970  *		  primary handler is installed
1971  *	@thread_fn: Function called from the irq handler thread
1972  *		    If NULL, no irq thread is created
1973  *	@irqflags: Interrupt type flags
1974  *	@devname: An ascii name for the claiming device
1975  *	@dev_id: A cookie passed back to the handler function
1976  *
1977  *	This call allocates interrupt resources and enables the
1978  *	interrupt line and IRQ handling. From the point this
1979  *	call is made your handler function may be invoked. Since
1980  *	your handler function must clear any interrupt the board
1981  *	raises, you must take care both to initialise your hardware
1982  *	and to set up the interrupt handler in the right order.
1983  *
1984  *	If you want to set up a threaded irq handler for your device
1985  *	then you need to supply @handler and @thread_fn. @handler is
1986  *	still called in hard interrupt context and has to check
1987  *	whether the interrupt originates from the device. If yes it
1988  *	needs to disable the interrupt on the device and return
1989  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
1990  *	@thread_fn. This split handler design is necessary to support
1991  *	shared interrupts.
1992  *
1993  *	Dev_id must be globally unique. Normally the address of the
1994  *	device data structure is used as the cookie. Since the handler
1995  *	receives this value it makes sense to use it.
1996  *
1997  *	If your interrupt is shared you must pass a non NULL dev_id
1998  *	as this is required when freeing the interrupt.
1999  *
2000  *	Flags:
2001  *
2002  *	IRQF_SHARED		Interrupt is shared
2003  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2004  *
2005  */
2006 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2007 			 irq_handler_t thread_fn, unsigned long irqflags,
2008 			 const char *devname, void *dev_id)
2009 {
2010 	struct irqaction *action;
2011 	struct irq_desc *desc;
2012 	int retval;
2013 
2014 	if (irq == IRQ_NOTCONNECTED)
2015 		return -ENOTCONN;
2016 
2017 	/*
2018 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2019 	 * otherwise we'll have trouble later trying to figure out
2020 	 * which interrupt is which (messes up the interrupt freeing
2021 	 * logic etc).
2022 	 *
2023 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2024 	 * it cannot be set along with IRQF_NO_SUSPEND.
2025 	 */
2026 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2027 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2028 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2029 		return -EINVAL;
2030 
2031 	desc = irq_to_desc(irq);
2032 	if (!desc)
2033 		return -EINVAL;
2034 
2035 	if (!irq_settings_can_request(desc) ||
2036 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2037 		return -EINVAL;
2038 
2039 	if (!handler) {
2040 		if (!thread_fn)
2041 			return -EINVAL;
2042 		handler = irq_default_primary_handler;
2043 	}
2044 
2045 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2046 	if (!action)
2047 		return -ENOMEM;
2048 
2049 	action->handler = handler;
2050 	action->thread_fn = thread_fn;
2051 	action->flags = irqflags;
2052 	action->name = devname;
2053 	action->dev_id = dev_id;
2054 
2055 	retval = irq_chip_pm_get(&desc->irq_data);
2056 	if (retval < 0) {
2057 		kfree(action);
2058 		return retval;
2059 	}
2060 
2061 	retval = __setup_irq(irq, desc, action);
2062 
2063 	if (retval) {
2064 		irq_chip_pm_put(&desc->irq_data);
2065 		kfree(action->secondary);
2066 		kfree(action);
2067 	}
2068 
2069 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2070 	if (!retval && (irqflags & IRQF_SHARED)) {
2071 		/*
2072 		 * It's a shared IRQ -- the driver ought to be prepared for it
2073 		 * to happen immediately, so let's make sure....
2074 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2075 		 * run in parallel with our fake.
2076 		 */
2077 		unsigned long flags;
2078 
2079 		disable_irq(irq);
2080 		local_irq_save(flags);
2081 
2082 		handler(irq, dev_id);
2083 
2084 		local_irq_restore(flags);
2085 		enable_irq(irq);
2086 	}
2087 #endif
2088 	return retval;
2089 }
2090 EXPORT_SYMBOL(request_threaded_irq);
2091 
2092 /**
2093  *	request_any_context_irq - allocate an interrupt line
2094  *	@irq: Interrupt line to allocate
2095  *	@handler: Function to be called when the IRQ occurs.
2096  *		  Threaded handler for threaded interrupts.
2097  *	@flags: Interrupt type flags
2098  *	@name: An ascii name for the claiming device
2099  *	@dev_id: A cookie passed back to the handler function
2100  *
2101  *	This call allocates interrupt resources and enables the
2102  *	interrupt line and IRQ handling. It selects either a
2103  *	hardirq or threaded handling method depending on the
2104  *	context.
2105  *
2106  *	On failure, it returns a negative value. On success,
2107  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2108  */
2109 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2110 			    unsigned long flags, const char *name, void *dev_id)
2111 {
2112 	struct irq_desc *desc;
2113 	int ret;
2114 
2115 	if (irq == IRQ_NOTCONNECTED)
2116 		return -ENOTCONN;
2117 
2118 	desc = irq_to_desc(irq);
2119 	if (!desc)
2120 		return -EINVAL;
2121 
2122 	if (irq_settings_is_nested_thread(desc)) {
2123 		ret = request_threaded_irq(irq, NULL, handler,
2124 					   flags, name, dev_id);
2125 		return !ret ? IRQC_IS_NESTED : ret;
2126 	}
2127 
2128 	ret = request_irq(irq, handler, flags, name, dev_id);
2129 	return !ret ? IRQC_IS_HARDIRQ : ret;
2130 }
2131 EXPORT_SYMBOL_GPL(request_any_context_irq);
2132 
2133 /**
2134  *	request_nmi - allocate an interrupt line for NMI delivery
2135  *	@irq: Interrupt line to allocate
2136  *	@handler: Function to be called when the IRQ occurs.
2137  *		  Threaded handler for threaded interrupts.
2138  *	@irqflags: Interrupt type flags
2139  *	@name: An ascii name for the claiming device
2140  *	@dev_id: A cookie passed back to the handler function
2141  *
2142  *	This call allocates interrupt resources and enables the
2143  *	interrupt line and IRQ handling. It sets up the IRQ line
2144  *	to be handled as an NMI.
2145  *
2146  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2147  *	cannot be threaded.
2148  *
2149  *	Interrupt lines requested for NMI delivering must produce per cpu
2150  *	interrupts and have auto enabling setting disabled.
2151  *
2152  *	Dev_id must be globally unique. Normally the address of the
2153  *	device data structure is used as the cookie. Since the handler
2154  *	receives this value it makes sense to use it.
2155  *
2156  *	If the interrupt line cannot be used to deliver NMIs, function
2157  *	will fail and return a negative value.
2158  */
2159 int request_nmi(unsigned int irq, irq_handler_t handler,
2160 		unsigned long irqflags, const char *name, void *dev_id)
2161 {
2162 	struct irqaction *action;
2163 	struct irq_desc *desc;
2164 	unsigned long flags;
2165 	int retval;
2166 
2167 	if (irq == IRQ_NOTCONNECTED)
2168 		return -ENOTCONN;
2169 
2170 	/* NMI cannot be shared, used for Polling */
2171 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2172 		return -EINVAL;
2173 
2174 	if (!(irqflags & IRQF_PERCPU))
2175 		return -EINVAL;
2176 
2177 	if (!handler)
2178 		return -EINVAL;
2179 
2180 	desc = irq_to_desc(irq);
2181 
2182 	if (!desc || irq_settings_can_autoenable(desc) ||
2183 	    !irq_settings_can_request(desc) ||
2184 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2185 	    !irq_supports_nmi(desc))
2186 		return -EINVAL;
2187 
2188 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2189 	if (!action)
2190 		return -ENOMEM;
2191 
2192 	action->handler = handler;
2193 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2194 	action->name = name;
2195 	action->dev_id = dev_id;
2196 
2197 	retval = irq_chip_pm_get(&desc->irq_data);
2198 	if (retval < 0)
2199 		goto err_out;
2200 
2201 	retval = __setup_irq(irq, desc, action);
2202 	if (retval)
2203 		goto err_irq_setup;
2204 
2205 	raw_spin_lock_irqsave(&desc->lock, flags);
2206 
2207 	/* Setup NMI state */
2208 	desc->istate |= IRQS_NMI;
2209 	retval = irq_nmi_setup(desc);
2210 	if (retval) {
2211 		__cleanup_nmi(irq, desc);
2212 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2213 		return -EINVAL;
2214 	}
2215 
2216 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2217 
2218 	return 0;
2219 
2220 err_irq_setup:
2221 	irq_chip_pm_put(&desc->irq_data);
2222 err_out:
2223 	kfree(action);
2224 
2225 	return retval;
2226 }
2227 
2228 void enable_percpu_irq(unsigned int irq, unsigned int type)
2229 {
2230 	unsigned int cpu = smp_processor_id();
2231 	unsigned long flags;
2232 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2233 
2234 	if (!desc)
2235 		return;
2236 
2237 	/*
2238 	 * If the trigger type is not specified by the caller, then
2239 	 * use the default for this interrupt.
2240 	 */
2241 	type &= IRQ_TYPE_SENSE_MASK;
2242 	if (type == IRQ_TYPE_NONE)
2243 		type = irqd_get_trigger_type(&desc->irq_data);
2244 
2245 	if (type != IRQ_TYPE_NONE) {
2246 		int ret;
2247 
2248 		ret = __irq_set_trigger(desc, type);
2249 
2250 		if (ret) {
2251 			WARN(1, "failed to set type for IRQ%d\n", irq);
2252 			goto out;
2253 		}
2254 	}
2255 
2256 	irq_percpu_enable(desc, cpu);
2257 out:
2258 	irq_put_desc_unlock(desc, flags);
2259 }
2260 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2261 
2262 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2263 {
2264 	enable_percpu_irq(irq, type);
2265 }
2266 
2267 /**
2268  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2269  * @irq:	Linux irq number to check for
2270  *
2271  * Must be called from a non migratable context. Returns the enable
2272  * state of a per cpu interrupt on the current cpu.
2273  */
2274 bool irq_percpu_is_enabled(unsigned int irq)
2275 {
2276 	unsigned int cpu = smp_processor_id();
2277 	struct irq_desc *desc;
2278 	unsigned long flags;
2279 	bool is_enabled;
2280 
2281 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2282 	if (!desc)
2283 		return false;
2284 
2285 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2286 	irq_put_desc_unlock(desc, flags);
2287 
2288 	return is_enabled;
2289 }
2290 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2291 
2292 void disable_percpu_irq(unsigned int irq)
2293 {
2294 	unsigned int cpu = smp_processor_id();
2295 	unsigned long flags;
2296 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2297 
2298 	if (!desc)
2299 		return;
2300 
2301 	irq_percpu_disable(desc, cpu);
2302 	irq_put_desc_unlock(desc, flags);
2303 }
2304 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2305 
2306 void disable_percpu_nmi(unsigned int irq)
2307 {
2308 	disable_percpu_irq(irq);
2309 }
2310 
2311 /*
2312  * Internal function to unregister a percpu irqaction.
2313  */
2314 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2315 {
2316 	struct irq_desc *desc = irq_to_desc(irq);
2317 	struct irqaction *action;
2318 	unsigned long flags;
2319 
2320 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2321 
2322 	if (!desc)
2323 		return NULL;
2324 
2325 	raw_spin_lock_irqsave(&desc->lock, flags);
2326 
2327 	action = desc->action;
2328 	if (!action || action->percpu_dev_id != dev_id) {
2329 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2330 		goto bad;
2331 	}
2332 
2333 	if (!cpumask_empty(desc->percpu_enabled)) {
2334 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2335 		     irq, cpumask_first(desc->percpu_enabled));
2336 		goto bad;
2337 	}
2338 
2339 	/* Found it - now remove it from the list of entries: */
2340 	desc->action = NULL;
2341 
2342 	desc->istate &= ~IRQS_NMI;
2343 
2344 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2345 
2346 	unregister_handler_proc(irq, action);
2347 
2348 	irq_chip_pm_put(&desc->irq_data);
2349 	module_put(desc->owner);
2350 	return action;
2351 
2352 bad:
2353 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2354 	return NULL;
2355 }
2356 
2357 /**
2358  *	remove_percpu_irq - free a per-cpu interrupt
2359  *	@irq: Interrupt line to free
2360  *	@act: irqaction for the interrupt
2361  *
2362  * Used to remove interrupts statically setup by the early boot process.
2363  */
2364 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2365 {
2366 	struct irq_desc *desc = irq_to_desc(irq);
2367 
2368 	if (desc && irq_settings_is_per_cpu_devid(desc))
2369 	    __free_percpu_irq(irq, act->percpu_dev_id);
2370 }
2371 
2372 /**
2373  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2374  *	@irq: Interrupt line to free
2375  *	@dev_id: Device identity to free
2376  *
2377  *	Remove a percpu interrupt handler. The handler is removed, but
2378  *	the interrupt line is not disabled. This must be done on each
2379  *	CPU before calling this function. The function does not return
2380  *	until any executing interrupts for this IRQ have completed.
2381  *
2382  *	This function must not be called from interrupt context.
2383  */
2384 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2385 {
2386 	struct irq_desc *desc = irq_to_desc(irq);
2387 
2388 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2389 		return;
2390 
2391 	chip_bus_lock(desc);
2392 	kfree(__free_percpu_irq(irq, dev_id));
2393 	chip_bus_sync_unlock(desc);
2394 }
2395 EXPORT_SYMBOL_GPL(free_percpu_irq);
2396 
2397 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2398 {
2399 	struct irq_desc *desc = irq_to_desc(irq);
2400 
2401 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2402 		return;
2403 
2404 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2405 		return;
2406 
2407 	kfree(__free_percpu_irq(irq, dev_id));
2408 }
2409 
2410 /**
2411  *	setup_percpu_irq - setup a per-cpu interrupt
2412  *	@irq: Interrupt line to setup
2413  *	@act: irqaction for the interrupt
2414  *
2415  * Used to statically setup per-cpu interrupts in the early boot process.
2416  */
2417 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2418 {
2419 	struct irq_desc *desc = irq_to_desc(irq);
2420 	int retval;
2421 
2422 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2423 		return -EINVAL;
2424 
2425 	retval = irq_chip_pm_get(&desc->irq_data);
2426 	if (retval < 0)
2427 		return retval;
2428 
2429 	retval = __setup_irq(irq, desc, act);
2430 
2431 	if (retval)
2432 		irq_chip_pm_put(&desc->irq_data);
2433 
2434 	return retval;
2435 }
2436 
2437 /**
2438  *	__request_percpu_irq - allocate a percpu interrupt line
2439  *	@irq: Interrupt line to allocate
2440  *	@handler: Function to be called when the IRQ occurs.
2441  *	@flags: Interrupt type flags (IRQF_TIMER only)
2442  *	@devname: An ascii name for the claiming device
2443  *	@dev_id: A percpu cookie passed back to the handler function
2444  *
2445  *	This call allocates interrupt resources and enables the
2446  *	interrupt on the local CPU. If the interrupt is supposed to be
2447  *	enabled on other CPUs, it has to be done on each CPU using
2448  *	enable_percpu_irq().
2449  *
2450  *	Dev_id must be globally unique. It is a per-cpu variable, and
2451  *	the handler gets called with the interrupted CPU's instance of
2452  *	that variable.
2453  */
2454 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2455 			 unsigned long flags, const char *devname,
2456 			 void __percpu *dev_id)
2457 {
2458 	struct irqaction *action;
2459 	struct irq_desc *desc;
2460 	int retval;
2461 
2462 	if (!dev_id)
2463 		return -EINVAL;
2464 
2465 	desc = irq_to_desc(irq);
2466 	if (!desc || !irq_settings_can_request(desc) ||
2467 	    !irq_settings_is_per_cpu_devid(desc))
2468 		return -EINVAL;
2469 
2470 	if (flags && flags != IRQF_TIMER)
2471 		return -EINVAL;
2472 
2473 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2474 	if (!action)
2475 		return -ENOMEM;
2476 
2477 	action->handler = handler;
2478 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2479 	action->name = devname;
2480 	action->percpu_dev_id = dev_id;
2481 
2482 	retval = irq_chip_pm_get(&desc->irq_data);
2483 	if (retval < 0) {
2484 		kfree(action);
2485 		return retval;
2486 	}
2487 
2488 	retval = __setup_irq(irq, desc, action);
2489 
2490 	if (retval) {
2491 		irq_chip_pm_put(&desc->irq_data);
2492 		kfree(action);
2493 	}
2494 
2495 	return retval;
2496 }
2497 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2498 
2499 /**
2500  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2501  *	@irq: Interrupt line to allocate
2502  *	@handler: Function to be called when the IRQ occurs.
2503  *	@name: An ascii name for the claiming device
2504  *	@dev_id: A percpu cookie passed back to the handler function
2505  *
2506  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2507  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2508  *	being enabled on the same CPU by using enable_percpu_nmi().
2509  *
2510  *	Dev_id must be globally unique. It is a per-cpu variable, and
2511  *	the handler gets called with the interrupted CPU's instance of
2512  *	that variable.
2513  *
2514  *	Interrupt lines requested for NMI delivering should have auto enabling
2515  *	setting disabled.
2516  *
2517  *	If the interrupt line cannot be used to deliver NMIs, function
2518  *	will fail returning a negative value.
2519  */
2520 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2521 		       const char *name, void __percpu *dev_id)
2522 {
2523 	struct irqaction *action;
2524 	struct irq_desc *desc;
2525 	unsigned long flags;
2526 	int retval;
2527 
2528 	if (!handler)
2529 		return -EINVAL;
2530 
2531 	desc = irq_to_desc(irq);
2532 
2533 	if (!desc || !irq_settings_can_request(desc) ||
2534 	    !irq_settings_is_per_cpu_devid(desc) ||
2535 	    irq_settings_can_autoenable(desc) ||
2536 	    !irq_supports_nmi(desc))
2537 		return -EINVAL;
2538 
2539 	/* The line cannot already be NMI */
2540 	if (desc->istate & IRQS_NMI)
2541 		return -EINVAL;
2542 
2543 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2544 	if (!action)
2545 		return -ENOMEM;
2546 
2547 	action->handler = handler;
2548 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2549 		| IRQF_NOBALANCING;
2550 	action->name = name;
2551 	action->percpu_dev_id = dev_id;
2552 
2553 	retval = irq_chip_pm_get(&desc->irq_data);
2554 	if (retval < 0)
2555 		goto err_out;
2556 
2557 	retval = __setup_irq(irq, desc, action);
2558 	if (retval)
2559 		goto err_irq_setup;
2560 
2561 	raw_spin_lock_irqsave(&desc->lock, flags);
2562 	desc->istate |= IRQS_NMI;
2563 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2564 
2565 	return 0;
2566 
2567 err_irq_setup:
2568 	irq_chip_pm_put(&desc->irq_data);
2569 err_out:
2570 	kfree(action);
2571 
2572 	return retval;
2573 }
2574 
2575 /**
2576  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2577  *	@irq: Interrupt line to prepare for NMI delivery
2578  *
2579  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2580  *	before that interrupt line gets enabled with enable_percpu_nmi().
2581  *
2582  *	As a CPU local operation, this should be called from non-preemptible
2583  *	context.
2584  *
2585  *	If the interrupt line cannot be used to deliver NMIs, function
2586  *	will fail returning a negative value.
2587  */
2588 int prepare_percpu_nmi(unsigned int irq)
2589 {
2590 	unsigned long flags;
2591 	struct irq_desc *desc;
2592 	int ret = 0;
2593 
2594 	WARN_ON(preemptible());
2595 
2596 	desc = irq_get_desc_lock(irq, &flags,
2597 				 IRQ_GET_DESC_CHECK_PERCPU);
2598 	if (!desc)
2599 		return -EINVAL;
2600 
2601 	if (WARN(!(desc->istate & IRQS_NMI),
2602 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2603 		 irq)) {
2604 		ret = -EINVAL;
2605 		goto out;
2606 	}
2607 
2608 	ret = irq_nmi_setup(desc);
2609 	if (ret) {
2610 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2611 		goto out;
2612 	}
2613 
2614 out:
2615 	irq_put_desc_unlock(desc, flags);
2616 	return ret;
2617 }
2618 
2619 /**
2620  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2621  *	@irq: Interrupt line from which CPU local NMI configuration should be
2622  *	      removed
2623  *
2624  *	This call undoes the setup done by prepare_percpu_nmi().
2625  *
2626  *	IRQ line should not be enabled for the current CPU.
2627  *
2628  *	As a CPU local operation, this should be called from non-preemptible
2629  *	context.
2630  */
2631 void teardown_percpu_nmi(unsigned int irq)
2632 {
2633 	unsigned long flags;
2634 	struct irq_desc *desc;
2635 
2636 	WARN_ON(preemptible());
2637 
2638 	desc = irq_get_desc_lock(irq, &flags,
2639 				 IRQ_GET_DESC_CHECK_PERCPU);
2640 	if (!desc)
2641 		return;
2642 
2643 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2644 		goto out;
2645 
2646 	irq_nmi_teardown(desc);
2647 out:
2648 	irq_put_desc_unlock(desc, flags);
2649 }
2650 
2651 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2652 			    bool *state)
2653 {
2654 	struct irq_chip *chip;
2655 	int err = -EINVAL;
2656 
2657 	do {
2658 		chip = irq_data_get_irq_chip(data);
2659 		if (chip->irq_get_irqchip_state)
2660 			break;
2661 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2662 		data = data->parent_data;
2663 #else
2664 		data = NULL;
2665 #endif
2666 	} while (data);
2667 
2668 	if (data)
2669 		err = chip->irq_get_irqchip_state(data, which, state);
2670 	return err;
2671 }
2672 
2673 /**
2674  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2675  *	@irq: Interrupt line that is forwarded to a VM
2676  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2677  *	@state: a pointer to a boolean where the state is to be storeed
2678  *
2679  *	This call snapshots the internal irqchip state of an
2680  *	interrupt, returning into @state the bit corresponding to
2681  *	stage @which
2682  *
2683  *	This function should be called with preemption disabled if the
2684  *	interrupt controller has per-cpu registers.
2685  */
2686 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2687 			  bool *state)
2688 {
2689 	struct irq_desc *desc;
2690 	struct irq_data *data;
2691 	unsigned long flags;
2692 	int err = -EINVAL;
2693 
2694 	desc = irq_get_desc_buslock(irq, &flags, 0);
2695 	if (!desc)
2696 		return err;
2697 
2698 	data = irq_desc_get_irq_data(desc);
2699 
2700 	err = __irq_get_irqchip_state(data, which, state);
2701 
2702 	irq_put_desc_busunlock(desc, flags);
2703 	return err;
2704 }
2705 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2706 
2707 /**
2708  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2709  *	@irq: Interrupt line that is forwarded to a VM
2710  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2711  *	@val: Value corresponding to @which
2712  *
2713  *	This call sets the internal irqchip state of an interrupt,
2714  *	depending on the value of @which.
2715  *
2716  *	This function should be called with preemption disabled if the
2717  *	interrupt controller has per-cpu registers.
2718  */
2719 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2720 			  bool val)
2721 {
2722 	struct irq_desc *desc;
2723 	struct irq_data *data;
2724 	struct irq_chip *chip;
2725 	unsigned long flags;
2726 	int err = -EINVAL;
2727 
2728 	desc = irq_get_desc_buslock(irq, &flags, 0);
2729 	if (!desc)
2730 		return err;
2731 
2732 	data = irq_desc_get_irq_data(desc);
2733 
2734 	do {
2735 		chip = irq_data_get_irq_chip(data);
2736 		if (chip->irq_set_irqchip_state)
2737 			break;
2738 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2739 		data = data->parent_data;
2740 #else
2741 		data = NULL;
2742 #endif
2743 	} while (data);
2744 
2745 	if (data)
2746 		err = chip->irq_set_irqchip_state(data, which, val);
2747 
2748 	irq_put_desc_busunlock(desc, flags);
2749 	return err;
2750 }
2751 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2752