1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006 Thomas Gleixner 5 * 6 * This file contains driver APIs to the irq subsystem. 7 */ 8 9 #define pr_fmt(fmt) "genirq: " fmt 10 11 #include <linux/irq.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/random.h> 15 #include <linux/interrupt.h> 16 #include <linux/irqdomain.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/sched/rt.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/isolation.h> 22 #include <uapi/linux/sched/types.h> 23 #include <linux/task_work.h> 24 25 #include "internals.h" 26 27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT) 28 __read_mostly bool force_irqthreads; 29 EXPORT_SYMBOL_GPL(force_irqthreads); 30 31 static int __init setup_forced_irqthreads(char *arg) 32 { 33 force_irqthreads = true; 34 return 0; 35 } 36 early_param("threadirqs", setup_forced_irqthreads); 37 #endif 38 39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip) 40 { 41 struct irq_data *irqd = irq_desc_get_irq_data(desc); 42 bool inprogress; 43 44 do { 45 unsigned long flags; 46 47 /* 48 * Wait until we're out of the critical section. This might 49 * give the wrong answer due to the lack of memory barriers. 50 */ 51 while (irqd_irq_inprogress(&desc->irq_data)) 52 cpu_relax(); 53 54 /* Ok, that indicated we're done: double-check carefully. */ 55 raw_spin_lock_irqsave(&desc->lock, flags); 56 inprogress = irqd_irq_inprogress(&desc->irq_data); 57 58 /* 59 * If requested and supported, check at the chip whether it 60 * is in flight at the hardware level, i.e. already pending 61 * in a CPU and waiting for service and acknowledge. 62 */ 63 if (!inprogress && sync_chip) { 64 /* 65 * Ignore the return code. inprogress is only updated 66 * when the chip supports it. 67 */ 68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE, 69 &inprogress); 70 } 71 raw_spin_unlock_irqrestore(&desc->lock, flags); 72 73 /* Oops, that failed? */ 74 } while (inprogress); 75 } 76 77 /** 78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs) 79 * @irq: interrupt number to wait for 80 * 81 * This function waits for any pending hard IRQ handlers for this 82 * interrupt to complete before returning. If you use this 83 * function while holding a resource the IRQ handler may need you 84 * will deadlock. It does not take associated threaded handlers 85 * into account. 86 * 87 * Do not use this for shutdown scenarios where you must be sure 88 * that all parts (hardirq and threaded handler) have completed. 89 * 90 * Returns: false if a threaded handler is active. 91 * 92 * This function may be called - with care - from IRQ context. 93 * 94 * It does not check whether there is an interrupt in flight at the 95 * hardware level, but not serviced yet, as this might deadlock when 96 * called with interrupts disabled and the target CPU of the interrupt 97 * is the current CPU. 98 */ 99 bool synchronize_hardirq(unsigned int irq) 100 { 101 struct irq_desc *desc = irq_to_desc(irq); 102 103 if (desc) { 104 __synchronize_hardirq(desc, false); 105 return !atomic_read(&desc->threads_active); 106 } 107 108 return true; 109 } 110 EXPORT_SYMBOL(synchronize_hardirq); 111 112 /** 113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs) 114 * @irq: interrupt number to wait for 115 * 116 * This function waits for any pending IRQ handlers for this interrupt 117 * to complete before returning. If you use this function while 118 * holding a resource the IRQ handler may need you will deadlock. 119 * 120 * Can only be called from preemptible code as it might sleep when 121 * an interrupt thread is associated to @irq. 122 * 123 * It optionally makes sure (when the irq chip supports that method) 124 * that the interrupt is not pending in any CPU and waiting for 125 * service. 126 */ 127 void synchronize_irq(unsigned int irq) 128 { 129 struct irq_desc *desc = irq_to_desc(irq); 130 131 if (desc) { 132 __synchronize_hardirq(desc, true); 133 /* 134 * We made sure that no hardirq handler is 135 * running. Now verify that no threaded handlers are 136 * active. 137 */ 138 wait_event(desc->wait_for_threads, 139 !atomic_read(&desc->threads_active)); 140 } 141 } 142 EXPORT_SYMBOL(synchronize_irq); 143 144 #ifdef CONFIG_SMP 145 cpumask_var_t irq_default_affinity; 146 147 static bool __irq_can_set_affinity(struct irq_desc *desc) 148 { 149 if (!desc || !irqd_can_balance(&desc->irq_data) || 150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity) 151 return false; 152 return true; 153 } 154 155 /** 156 * irq_can_set_affinity - Check if the affinity of a given irq can be set 157 * @irq: Interrupt to check 158 * 159 */ 160 int irq_can_set_affinity(unsigned int irq) 161 { 162 return __irq_can_set_affinity(irq_to_desc(irq)); 163 } 164 165 /** 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space 167 * @irq: Interrupt to check 168 * 169 * Like irq_can_set_affinity() above, but additionally checks for the 170 * AFFINITY_MANAGED flag. 171 */ 172 bool irq_can_set_affinity_usr(unsigned int irq) 173 { 174 struct irq_desc *desc = irq_to_desc(irq); 175 176 return __irq_can_set_affinity(desc) && 177 !irqd_affinity_is_managed(&desc->irq_data); 178 } 179 180 /** 181 * irq_set_thread_affinity - Notify irq threads to adjust affinity 182 * @desc: irq descriptor which has affitnity changed 183 * 184 * We just set IRQTF_AFFINITY and delegate the affinity setting 185 * to the interrupt thread itself. We can not call 186 * set_cpus_allowed_ptr() here as we hold desc->lock and this 187 * code can be called from hard interrupt context. 188 */ 189 void irq_set_thread_affinity(struct irq_desc *desc) 190 { 191 struct irqaction *action; 192 193 for_each_action_of_desc(desc, action) 194 if (action->thread) 195 set_bit(IRQTF_AFFINITY, &action->thread_flags); 196 } 197 198 static void irq_validate_effective_affinity(struct irq_data *data) 199 { 200 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data); 202 struct irq_chip *chip = irq_data_get_irq_chip(data); 203 204 if (!cpumask_empty(m)) 205 return; 206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n", 207 chip->name, data->irq); 208 #endif 209 } 210 211 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask, 212 bool force) 213 { 214 struct irq_desc *desc = irq_data_to_desc(data); 215 struct irq_chip *chip = irq_data_get_irq_chip(data); 216 int ret; 217 218 if (!chip || !chip->irq_set_affinity) 219 return -EINVAL; 220 221 /* 222 * If this is a managed interrupt and housekeeping is enabled on 223 * it check whether the requested affinity mask intersects with 224 * a housekeeping CPU. If so, then remove the isolated CPUs from 225 * the mask and just keep the housekeeping CPU(s). This prevents 226 * the affinity setter from routing the interrupt to an isolated 227 * CPU to avoid that I/O submitted from a housekeeping CPU causes 228 * interrupts on an isolated one. 229 * 230 * If the masks do not intersect or include online CPU(s) then 231 * keep the requested mask. The isolated target CPUs are only 232 * receiving interrupts when the I/O operation was submitted 233 * directly from them. 234 * 235 * If all housekeeping CPUs in the affinity mask are offline, the 236 * interrupt will be migrated by the CPU hotplug code once a 237 * housekeeping CPU which belongs to the affinity mask comes 238 * online. 239 */ 240 if (irqd_affinity_is_managed(data) && 241 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) { 242 const struct cpumask *hk_mask, *prog_mask; 243 244 static DEFINE_RAW_SPINLOCK(tmp_mask_lock); 245 static struct cpumask tmp_mask; 246 247 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ); 248 249 raw_spin_lock(&tmp_mask_lock); 250 cpumask_and(&tmp_mask, mask, hk_mask); 251 if (!cpumask_intersects(&tmp_mask, cpu_online_mask)) 252 prog_mask = mask; 253 else 254 prog_mask = &tmp_mask; 255 ret = chip->irq_set_affinity(data, prog_mask, force); 256 raw_spin_unlock(&tmp_mask_lock); 257 } else { 258 ret = chip->irq_set_affinity(data, mask, force); 259 } 260 switch (ret) { 261 case IRQ_SET_MASK_OK: 262 case IRQ_SET_MASK_OK_DONE: 263 cpumask_copy(desc->irq_common_data.affinity, mask); 264 /* fall through */ 265 case IRQ_SET_MASK_OK_NOCOPY: 266 irq_validate_effective_affinity(data); 267 irq_set_thread_affinity(desc); 268 ret = 0; 269 } 270 271 return ret; 272 } 273 274 #ifdef CONFIG_GENERIC_PENDING_IRQ 275 static inline int irq_set_affinity_pending(struct irq_data *data, 276 const struct cpumask *dest) 277 { 278 struct irq_desc *desc = irq_data_to_desc(data); 279 280 irqd_set_move_pending(data); 281 irq_copy_pending(desc, dest); 282 return 0; 283 } 284 #else 285 static inline int irq_set_affinity_pending(struct irq_data *data, 286 const struct cpumask *dest) 287 { 288 return -EBUSY; 289 } 290 #endif 291 292 static int irq_try_set_affinity(struct irq_data *data, 293 const struct cpumask *dest, bool force) 294 { 295 int ret = irq_do_set_affinity(data, dest, force); 296 297 /* 298 * In case that the underlying vector management is busy and the 299 * architecture supports the generic pending mechanism then utilize 300 * this to avoid returning an error to user space. 301 */ 302 if (ret == -EBUSY && !force) 303 ret = irq_set_affinity_pending(data, dest); 304 return ret; 305 } 306 307 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask, 308 bool force) 309 { 310 struct irq_chip *chip = irq_data_get_irq_chip(data); 311 struct irq_desc *desc = irq_data_to_desc(data); 312 int ret = 0; 313 314 if (!chip || !chip->irq_set_affinity) 315 return -EINVAL; 316 317 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) { 318 ret = irq_try_set_affinity(data, mask, force); 319 } else { 320 irqd_set_move_pending(data); 321 irq_copy_pending(desc, mask); 322 } 323 324 if (desc->affinity_notify) { 325 kref_get(&desc->affinity_notify->kref); 326 schedule_work(&desc->affinity_notify->work); 327 } 328 irqd_set(data, IRQD_AFFINITY_SET); 329 330 return ret; 331 } 332 333 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force) 334 { 335 struct irq_desc *desc = irq_to_desc(irq); 336 unsigned long flags; 337 int ret; 338 339 if (!desc) 340 return -EINVAL; 341 342 raw_spin_lock_irqsave(&desc->lock, flags); 343 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force); 344 raw_spin_unlock_irqrestore(&desc->lock, flags); 345 return ret; 346 } 347 348 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) 349 { 350 unsigned long flags; 351 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 352 353 if (!desc) 354 return -EINVAL; 355 desc->affinity_hint = m; 356 irq_put_desc_unlock(desc, flags); 357 /* set the initial affinity to prevent every interrupt being on CPU0 */ 358 if (m) 359 __irq_set_affinity(irq, m, false); 360 return 0; 361 } 362 EXPORT_SYMBOL_GPL(irq_set_affinity_hint); 363 364 static void irq_affinity_notify(struct work_struct *work) 365 { 366 struct irq_affinity_notify *notify = 367 container_of(work, struct irq_affinity_notify, work); 368 struct irq_desc *desc = irq_to_desc(notify->irq); 369 cpumask_var_t cpumask; 370 unsigned long flags; 371 372 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL)) 373 goto out; 374 375 raw_spin_lock_irqsave(&desc->lock, flags); 376 if (irq_move_pending(&desc->irq_data)) 377 irq_get_pending(cpumask, desc); 378 else 379 cpumask_copy(cpumask, desc->irq_common_data.affinity); 380 raw_spin_unlock_irqrestore(&desc->lock, flags); 381 382 notify->notify(notify, cpumask); 383 384 free_cpumask_var(cpumask); 385 out: 386 kref_put(¬ify->kref, notify->release); 387 } 388 389 /** 390 * irq_set_affinity_notifier - control notification of IRQ affinity changes 391 * @irq: Interrupt for which to enable/disable notification 392 * @notify: Context for notification, or %NULL to disable 393 * notification. Function pointers must be initialised; 394 * the other fields will be initialised by this function. 395 * 396 * Must be called in process context. Notification may only be enabled 397 * after the IRQ is allocated and must be disabled before the IRQ is 398 * freed using free_irq(). 399 */ 400 int 401 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) 402 { 403 struct irq_desc *desc = irq_to_desc(irq); 404 struct irq_affinity_notify *old_notify; 405 unsigned long flags; 406 407 /* The release function is promised process context */ 408 might_sleep(); 409 410 if (!desc || desc->istate & IRQS_NMI) 411 return -EINVAL; 412 413 /* Complete initialisation of *notify */ 414 if (notify) { 415 notify->irq = irq; 416 kref_init(¬ify->kref); 417 INIT_WORK(¬ify->work, irq_affinity_notify); 418 } 419 420 raw_spin_lock_irqsave(&desc->lock, flags); 421 old_notify = desc->affinity_notify; 422 desc->affinity_notify = notify; 423 raw_spin_unlock_irqrestore(&desc->lock, flags); 424 425 if (old_notify) { 426 cancel_work_sync(&old_notify->work); 427 kref_put(&old_notify->kref, old_notify->release); 428 } 429 430 return 0; 431 } 432 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier); 433 434 #ifndef CONFIG_AUTO_IRQ_AFFINITY 435 /* 436 * Generic version of the affinity autoselector. 437 */ 438 int irq_setup_affinity(struct irq_desc *desc) 439 { 440 struct cpumask *set = irq_default_affinity; 441 int ret, node = irq_desc_get_node(desc); 442 static DEFINE_RAW_SPINLOCK(mask_lock); 443 static struct cpumask mask; 444 445 /* Excludes PER_CPU and NO_BALANCE interrupts */ 446 if (!__irq_can_set_affinity(desc)) 447 return 0; 448 449 raw_spin_lock(&mask_lock); 450 /* 451 * Preserve the managed affinity setting and a userspace affinity 452 * setup, but make sure that one of the targets is online. 453 */ 454 if (irqd_affinity_is_managed(&desc->irq_data) || 455 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) { 456 if (cpumask_intersects(desc->irq_common_data.affinity, 457 cpu_online_mask)) 458 set = desc->irq_common_data.affinity; 459 else 460 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET); 461 } 462 463 cpumask_and(&mask, cpu_online_mask, set); 464 if (cpumask_empty(&mask)) 465 cpumask_copy(&mask, cpu_online_mask); 466 467 if (node != NUMA_NO_NODE) { 468 const struct cpumask *nodemask = cpumask_of_node(node); 469 470 /* make sure at least one of the cpus in nodemask is online */ 471 if (cpumask_intersects(&mask, nodemask)) 472 cpumask_and(&mask, &mask, nodemask); 473 } 474 ret = irq_do_set_affinity(&desc->irq_data, &mask, false); 475 raw_spin_unlock(&mask_lock); 476 return ret; 477 } 478 #else 479 /* Wrapper for ALPHA specific affinity selector magic */ 480 int irq_setup_affinity(struct irq_desc *desc) 481 { 482 return irq_select_affinity(irq_desc_get_irq(desc)); 483 } 484 #endif /* CONFIG_AUTO_IRQ_AFFINITY */ 485 #endif /* CONFIG_SMP */ 486 487 488 /** 489 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt 490 * @irq: interrupt number to set affinity 491 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU 492 * specific data for percpu_devid interrupts 493 * 494 * This function uses the vCPU specific data to set the vCPU 495 * affinity for an irq. The vCPU specific data is passed from 496 * outside, such as KVM. One example code path is as below: 497 * KVM -> IOMMU -> irq_set_vcpu_affinity(). 498 */ 499 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info) 500 { 501 unsigned long flags; 502 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 503 struct irq_data *data; 504 struct irq_chip *chip; 505 int ret = -ENOSYS; 506 507 if (!desc) 508 return -EINVAL; 509 510 data = irq_desc_get_irq_data(desc); 511 do { 512 chip = irq_data_get_irq_chip(data); 513 if (chip && chip->irq_set_vcpu_affinity) 514 break; 515 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 516 data = data->parent_data; 517 #else 518 data = NULL; 519 #endif 520 } while (data); 521 522 if (data) 523 ret = chip->irq_set_vcpu_affinity(data, vcpu_info); 524 irq_put_desc_unlock(desc, flags); 525 526 return ret; 527 } 528 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity); 529 530 void __disable_irq(struct irq_desc *desc) 531 { 532 if (!desc->depth++) 533 irq_disable(desc); 534 } 535 536 static int __disable_irq_nosync(unsigned int irq) 537 { 538 unsigned long flags; 539 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 540 541 if (!desc) 542 return -EINVAL; 543 __disable_irq(desc); 544 irq_put_desc_busunlock(desc, flags); 545 return 0; 546 } 547 548 /** 549 * disable_irq_nosync - disable an irq without waiting 550 * @irq: Interrupt to disable 551 * 552 * Disable the selected interrupt line. Disables and Enables are 553 * nested. 554 * Unlike disable_irq(), this function does not ensure existing 555 * instances of the IRQ handler have completed before returning. 556 * 557 * This function may be called from IRQ context. 558 */ 559 void disable_irq_nosync(unsigned int irq) 560 { 561 __disable_irq_nosync(irq); 562 } 563 EXPORT_SYMBOL(disable_irq_nosync); 564 565 /** 566 * disable_irq - disable an irq and wait for completion 567 * @irq: Interrupt to disable 568 * 569 * Disable the selected interrupt line. Enables and Disables are 570 * nested. 571 * This function waits for any pending IRQ handlers for this interrupt 572 * to complete before returning. If you use this function while 573 * holding a resource the IRQ handler may need you will deadlock. 574 * 575 * This function may be called - with care - from IRQ context. 576 */ 577 void disable_irq(unsigned int irq) 578 { 579 if (!__disable_irq_nosync(irq)) 580 synchronize_irq(irq); 581 } 582 EXPORT_SYMBOL(disable_irq); 583 584 /** 585 * disable_hardirq - disables an irq and waits for hardirq completion 586 * @irq: Interrupt to disable 587 * 588 * Disable the selected interrupt line. Enables and Disables are 589 * nested. 590 * This function waits for any pending hard IRQ handlers for this 591 * interrupt to complete before returning. If you use this function while 592 * holding a resource the hard IRQ handler may need you will deadlock. 593 * 594 * When used to optimistically disable an interrupt from atomic context 595 * the return value must be checked. 596 * 597 * Returns: false if a threaded handler is active. 598 * 599 * This function may be called - with care - from IRQ context. 600 */ 601 bool disable_hardirq(unsigned int irq) 602 { 603 if (!__disable_irq_nosync(irq)) 604 return synchronize_hardirq(irq); 605 606 return false; 607 } 608 EXPORT_SYMBOL_GPL(disable_hardirq); 609 610 /** 611 * disable_nmi_nosync - disable an nmi without waiting 612 * @irq: Interrupt to disable 613 * 614 * Disable the selected interrupt line. Disables and enables are 615 * nested. 616 * The interrupt to disable must have been requested through request_nmi. 617 * Unlike disable_nmi(), this function does not ensure existing 618 * instances of the IRQ handler have completed before returning. 619 */ 620 void disable_nmi_nosync(unsigned int irq) 621 { 622 disable_irq_nosync(irq); 623 } 624 625 void __enable_irq(struct irq_desc *desc) 626 { 627 switch (desc->depth) { 628 case 0: 629 err_out: 630 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", 631 irq_desc_get_irq(desc)); 632 break; 633 case 1: { 634 if (desc->istate & IRQS_SUSPENDED) 635 goto err_out; 636 /* Prevent probing on this irq: */ 637 irq_settings_set_noprobe(desc); 638 /* 639 * Call irq_startup() not irq_enable() here because the 640 * interrupt might be marked NOAUTOEN. So irq_startup() 641 * needs to be invoked when it gets enabled the first 642 * time. If it was already started up, then irq_startup() 643 * will invoke irq_enable() under the hood. 644 */ 645 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE); 646 break; 647 } 648 default: 649 desc->depth--; 650 } 651 } 652 653 /** 654 * enable_irq - enable handling of an irq 655 * @irq: Interrupt to enable 656 * 657 * Undoes the effect of one call to disable_irq(). If this 658 * matches the last disable, processing of interrupts on this 659 * IRQ line is re-enabled. 660 * 661 * This function may be called from IRQ context only when 662 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL ! 663 */ 664 void enable_irq(unsigned int irq) 665 { 666 unsigned long flags; 667 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 668 669 if (!desc) 670 return; 671 if (WARN(!desc->irq_data.chip, 672 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq)) 673 goto out; 674 675 __enable_irq(desc); 676 out: 677 irq_put_desc_busunlock(desc, flags); 678 } 679 EXPORT_SYMBOL(enable_irq); 680 681 /** 682 * enable_nmi - enable handling of an nmi 683 * @irq: Interrupt to enable 684 * 685 * The interrupt to enable must have been requested through request_nmi. 686 * Undoes the effect of one call to disable_nmi(). If this 687 * matches the last disable, processing of interrupts on this 688 * IRQ line is re-enabled. 689 */ 690 void enable_nmi(unsigned int irq) 691 { 692 enable_irq(irq); 693 } 694 695 static int set_irq_wake_real(unsigned int irq, unsigned int on) 696 { 697 struct irq_desc *desc = irq_to_desc(irq); 698 int ret = -ENXIO; 699 700 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE) 701 return 0; 702 703 if (desc->irq_data.chip->irq_set_wake) 704 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on); 705 706 return ret; 707 } 708 709 /** 710 * irq_set_irq_wake - control irq power management wakeup 711 * @irq: interrupt to control 712 * @on: enable/disable power management wakeup 713 * 714 * Enable/disable power management wakeup mode, which is 715 * disabled by default. Enables and disables must match, 716 * just as they match for non-wakeup mode support. 717 * 718 * Wakeup mode lets this IRQ wake the system from sleep 719 * states like "suspend to RAM". 720 * 721 * Note: irq enable/disable state is completely orthogonal 722 * to the enable/disable state of irq wake. An irq can be 723 * disabled with disable_irq() and still wake the system as 724 * long as the irq has wake enabled. If this does not hold, 725 * then the underlying irq chip and the related driver need 726 * to be investigated. 727 */ 728 int irq_set_irq_wake(unsigned int irq, unsigned int on) 729 { 730 unsigned long flags; 731 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL); 732 int ret = 0; 733 734 if (!desc) 735 return -EINVAL; 736 737 /* Don't use NMIs as wake up interrupts please */ 738 if (desc->istate & IRQS_NMI) { 739 ret = -EINVAL; 740 goto out_unlock; 741 } 742 743 /* wakeup-capable irqs can be shared between drivers that 744 * don't need to have the same sleep mode behaviors. 745 */ 746 if (on) { 747 if (desc->wake_depth++ == 0) { 748 ret = set_irq_wake_real(irq, on); 749 if (ret) 750 desc->wake_depth = 0; 751 else 752 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE); 753 } 754 } else { 755 if (desc->wake_depth == 0) { 756 WARN(1, "Unbalanced IRQ %d wake disable\n", irq); 757 } else if (--desc->wake_depth == 0) { 758 ret = set_irq_wake_real(irq, on); 759 if (ret) 760 desc->wake_depth = 1; 761 else 762 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE); 763 } 764 } 765 766 out_unlock: 767 irq_put_desc_busunlock(desc, flags); 768 return ret; 769 } 770 EXPORT_SYMBOL(irq_set_irq_wake); 771 772 /* 773 * Internal function that tells the architecture code whether a 774 * particular irq has been exclusively allocated or is available 775 * for driver use. 776 */ 777 int can_request_irq(unsigned int irq, unsigned long irqflags) 778 { 779 unsigned long flags; 780 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 781 int canrequest = 0; 782 783 if (!desc) 784 return 0; 785 786 if (irq_settings_can_request(desc)) { 787 if (!desc->action || 788 irqflags & desc->action->flags & IRQF_SHARED) 789 canrequest = 1; 790 } 791 irq_put_desc_unlock(desc, flags); 792 return canrequest; 793 } 794 795 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags) 796 { 797 struct irq_chip *chip = desc->irq_data.chip; 798 int ret, unmask = 0; 799 800 if (!chip || !chip->irq_set_type) { 801 /* 802 * IRQF_TRIGGER_* but the PIC does not support multiple 803 * flow-types? 804 */ 805 pr_debug("No set_type function for IRQ %d (%s)\n", 806 irq_desc_get_irq(desc), 807 chip ? (chip->name ? : "unknown") : "unknown"); 808 return 0; 809 } 810 811 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) { 812 if (!irqd_irq_masked(&desc->irq_data)) 813 mask_irq(desc); 814 if (!irqd_irq_disabled(&desc->irq_data)) 815 unmask = 1; 816 } 817 818 /* Mask all flags except trigger mode */ 819 flags &= IRQ_TYPE_SENSE_MASK; 820 ret = chip->irq_set_type(&desc->irq_data, flags); 821 822 switch (ret) { 823 case IRQ_SET_MASK_OK: 824 case IRQ_SET_MASK_OK_DONE: 825 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK); 826 irqd_set(&desc->irq_data, flags); 827 /* fall through */ 828 829 case IRQ_SET_MASK_OK_NOCOPY: 830 flags = irqd_get_trigger_type(&desc->irq_data); 831 irq_settings_set_trigger_mask(desc, flags); 832 irqd_clear(&desc->irq_data, IRQD_LEVEL); 833 irq_settings_clr_level(desc); 834 if (flags & IRQ_TYPE_LEVEL_MASK) { 835 irq_settings_set_level(desc); 836 irqd_set(&desc->irq_data, IRQD_LEVEL); 837 } 838 839 ret = 0; 840 break; 841 default: 842 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n", 843 flags, irq_desc_get_irq(desc), chip->irq_set_type); 844 } 845 if (unmask) 846 unmask_irq(desc); 847 return ret; 848 } 849 850 #ifdef CONFIG_HARDIRQS_SW_RESEND 851 int irq_set_parent(int irq, int parent_irq) 852 { 853 unsigned long flags; 854 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0); 855 856 if (!desc) 857 return -EINVAL; 858 859 desc->parent_irq = parent_irq; 860 861 irq_put_desc_unlock(desc, flags); 862 return 0; 863 } 864 EXPORT_SYMBOL_GPL(irq_set_parent); 865 #endif 866 867 /* 868 * Default primary interrupt handler for threaded interrupts. Is 869 * assigned as primary handler when request_threaded_irq is called 870 * with handler == NULL. Useful for oneshot interrupts. 871 */ 872 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id) 873 { 874 return IRQ_WAKE_THREAD; 875 } 876 877 /* 878 * Primary handler for nested threaded interrupts. Should never be 879 * called. 880 */ 881 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id) 882 { 883 WARN(1, "Primary handler called for nested irq %d\n", irq); 884 return IRQ_NONE; 885 } 886 887 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id) 888 { 889 WARN(1, "Secondary action handler called for irq %d\n", irq); 890 return IRQ_NONE; 891 } 892 893 static int irq_wait_for_interrupt(struct irqaction *action) 894 { 895 for (;;) { 896 set_current_state(TASK_INTERRUPTIBLE); 897 898 if (kthread_should_stop()) { 899 /* may need to run one last time */ 900 if (test_and_clear_bit(IRQTF_RUNTHREAD, 901 &action->thread_flags)) { 902 __set_current_state(TASK_RUNNING); 903 return 0; 904 } 905 __set_current_state(TASK_RUNNING); 906 return -1; 907 } 908 909 if (test_and_clear_bit(IRQTF_RUNTHREAD, 910 &action->thread_flags)) { 911 __set_current_state(TASK_RUNNING); 912 return 0; 913 } 914 schedule(); 915 } 916 } 917 918 /* 919 * Oneshot interrupts keep the irq line masked until the threaded 920 * handler finished. unmask if the interrupt has not been disabled and 921 * is marked MASKED. 922 */ 923 static void irq_finalize_oneshot(struct irq_desc *desc, 924 struct irqaction *action) 925 { 926 if (!(desc->istate & IRQS_ONESHOT) || 927 action->handler == irq_forced_secondary_handler) 928 return; 929 again: 930 chip_bus_lock(desc); 931 raw_spin_lock_irq(&desc->lock); 932 933 /* 934 * Implausible though it may be we need to protect us against 935 * the following scenario: 936 * 937 * The thread is faster done than the hard interrupt handler 938 * on the other CPU. If we unmask the irq line then the 939 * interrupt can come in again and masks the line, leaves due 940 * to IRQS_INPROGRESS and the irq line is masked forever. 941 * 942 * This also serializes the state of shared oneshot handlers 943 * versus "desc->threads_onehsot |= action->thread_mask;" in 944 * irq_wake_thread(). See the comment there which explains the 945 * serialization. 946 */ 947 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) { 948 raw_spin_unlock_irq(&desc->lock); 949 chip_bus_sync_unlock(desc); 950 cpu_relax(); 951 goto again; 952 } 953 954 /* 955 * Now check again, whether the thread should run. Otherwise 956 * we would clear the threads_oneshot bit of this thread which 957 * was just set. 958 */ 959 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 960 goto out_unlock; 961 962 desc->threads_oneshot &= ~action->thread_mask; 963 964 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) && 965 irqd_irq_masked(&desc->irq_data)) 966 unmask_threaded_irq(desc); 967 968 out_unlock: 969 raw_spin_unlock_irq(&desc->lock); 970 chip_bus_sync_unlock(desc); 971 } 972 973 #ifdef CONFIG_SMP 974 /* 975 * Check whether we need to change the affinity of the interrupt thread. 976 */ 977 static void 978 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) 979 { 980 cpumask_var_t mask; 981 bool valid = true; 982 983 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags)) 984 return; 985 986 /* 987 * In case we are out of memory we set IRQTF_AFFINITY again and 988 * try again next time 989 */ 990 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { 991 set_bit(IRQTF_AFFINITY, &action->thread_flags); 992 return; 993 } 994 995 raw_spin_lock_irq(&desc->lock); 996 /* 997 * This code is triggered unconditionally. Check the affinity 998 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out. 999 */ 1000 if (cpumask_available(desc->irq_common_data.affinity)) { 1001 const struct cpumask *m; 1002 1003 m = irq_data_get_effective_affinity_mask(&desc->irq_data); 1004 cpumask_copy(mask, m); 1005 } else { 1006 valid = false; 1007 } 1008 raw_spin_unlock_irq(&desc->lock); 1009 1010 if (valid) 1011 set_cpus_allowed_ptr(current, mask); 1012 free_cpumask_var(mask); 1013 } 1014 #else 1015 static inline void 1016 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { } 1017 #endif 1018 1019 /* 1020 * Interrupts which are not explicitly requested as threaded 1021 * interrupts rely on the implicit bh/preempt disable of the hard irq 1022 * context. So we need to disable bh here to avoid deadlocks and other 1023 * side effects. 1024 */ 1025 static irqreturn_t 1026 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action) 1027 { 1028 irqreturn_t ret; 1029 1030 local_bh_disable(); 1031 ret = action->thread_fn(action->irq, action->dev_id); 1032 if (ret == IRQ_HANDLED) 1033 atomic_inc(&desc->threads_handled); 1034 1035 irq_finalize_oneshot(desc, action); 1036 local_bh_enable(); 1037 return ret; 1038 } 1039 1040 /* 1041 * Interrupts explicitly requested as threaded interrupts want to be 1042 * preemtible - many of them need to sleep and wait for slow busses to 1043 * complete. 1044 */ 1045 static irqreturn_t irq_thread_fn(struct irq_desc *desc, 1046 struct irqaction *action) 1047 { 1048 irqreturn_t ret; 1049 1050 ret = action->thread_fn(action->irq, action->dev_id); 1051 if (ret == IRQ_HANDLED) 1052 atomic_inc(&desc->threads_handled); 1053 1054 irq_finalize_oneshot(desc, action); 1055 return ret; 1056 } 1057 1058 static void wake_threads_waitq(struct irq_desc *desc) 1059 { 1060 if (atomic_dec_and_test(&desc->threads_active)) 1061 wake_up(&desc->wait_for_threads); 1062 } 1063 1064 static void irq_thread_dtor(struct callback_head *unused) 1065 { 1066 struct task_struct *tsk = current; 1067 struct irq_desc *desc; 1068 struct irqaction *action; 1069 1070 if (WARN_ON_ONCE(!(current->flags & PF_EXITING))) 1071 return; 1072 1073 action = kthread_data(tsk); 1074 1075 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n", 1076 tsk->comm, tsk->pid, action->irq); 1077 1078 1079 desc = irq_to_desc(action->irq); 1080 /* 1081 * If IRQTF_RUNTHREAD is set, we need to decrement 1082 * desc->threads_active and wake possible waiters. 1083 */ 1084 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags)) 1085 wake_threads_waitq(desc); 1086 1087 /* Prevent a stale desc->threads_oneshot */ 1088 irq_finalize_oneshot(desc, action); 1089 } 1090 1091 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action) 1092 { 1093 struct irqaction *secondary = action->secondary; 1094 1095 if (WARN_ON_ONCE(!secondary)) 1096 return; 1097 1098 raw_spin_lock_irq(&desc->lock); 1099 __irq_wake_thread(desc, secondary); 1100 raw_spin_unlock_irq(&desc->lock); 1101 } 1102 1103 /* 1104 * Interrupt handler thread 1105 */ 1106 static int irq_thread(void *data) 1107 { 1108 struct callback_head on_exit_work; 1109 struct irqaction *action = data; 1110 struct irq_desc *desc = irq_to_desc(action->irq); 1111 irqreturn_t (*handler_fn)(struct irq_desc *desc, 1112 struct irqaction *action); 1113 1114 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD, 1115 &action->thread_flags)) 1116 handler_fn = irq_forced_thread_fn; 1117 else 1118 handler_fn = irq_thread_fn; 1119 1120 init_task_work(&on_exit_work, irq_thread_dtor); 1121 task_work_add(current, &on_exit_work, false); 1122 1123 irq_thread_check_affinity(desc, action); 1124 1125 while (!irq_wait_for_interrupt(action)) { 1126 irqreturn_t action_ret; 1127 1128 irq_thread_check_affinity(desc, action); 1129 1130 action_ret = handler_fn(desc, action); 1131 if (action_ret == IRQ_WAKE_THREAD) 1132 irq_wake_secondary(desc, action); 1133 1134 wake_threads_waitq(desc); 1135 } 1136 1137 /* 1138 * This is the regular exit path. __free_irq() is stopping the 1139 * thread via kthread_stop() after calling 1140 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the 1141 * oneshot mask bit can be set. 1142 */ 1143 task_work_cancel(current, irq_thread_dtor); 1144 return 0; 1145 } 1146 1147 /** 1148 * irq_wake_thread - wake the irq thread for the action identified by dev_id 1149 * @irq: Interrupt line 1150 * @dev_id: Device identity for which the thread should be woken 1151 * 1152 */ 1153 void irq_wake_thread(unsigned int irq, void *dev_id) 1154 { 1155 struct irq_desc *desc = irq_to_desc(irq); 1156 struct irqaction *action; 1157 unsigned long flags; 1158 1159 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1160 return; 1161 1162 raw_spin_lock_irqsave(&desc->lock, flags); 1163 for_each_action_of_desc(desc, action) { 1164 if (action->dev_id == dev_id) { 1165 if (action->thread) 1166 __irq_wake_thread(desc, action); 1167 break; 1168 } 1169 } 1170 raw_spin_unlock_irqrestore(&desc->lock, flags); 1171 } 1172 EXPORT_SYMBOL_GPL(irq_wake_thread); 1173 1174 static int irq_setup_forced_threading(struct irqaction *new) 1175 { 1176 if (!force_irqthreads) 1177 return 0; 1178 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) 1179 return 0; 1180 1181 /* 1182 * No further action required for interrupts which are requested as 1183 * threaded interrupts already 1184 */ 1185 if (new->handler == irq_default_primary_handler) 1186 return 0; 1187 1188 new->flags |= IRQF_ONESHOT; 1189 1190 /* 1191 * Handle the case where we have a real primary handler and a 1192 * thread handler. We force thread them as well by creating a 1193 * secondary action. 1194 */ 1195 if (new->handler && new->thread_fn) { 1196 /* Allocate the secondary action */ 1197 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 1198 if (!new->secondary) 1199 return -ENOMEM; 1200 new->secondary->handler = irq_forced_secondary_handler; 1201 new->secondary->thread_fn = new->thread_fn; 1202 new->secondary->dev_id = new->dev_id; 1203 new->secondary->irq = new->irq; 1204 new->secondary->name = new->name; 1205 } 1206 /* Deal with the primary handler */ 1207 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags); 1208 new->thread_fn = new->handler; 1209 new->handler = irq_default_primary_handler; 1210 return 0; 1211 } 1212 1213 static int irq_request_resources(struct irq_desc *desc) 1214 { 1215 struct irq_data *d = &desc->irq_data; 1216 struct irq_chip *c = d->chip; 1217 1218 return c->irq_request_resources ? c->irq_request_resources(d) : 0; 1219 } 1220 1221 static void irq_release_resources(struct irq_desc *desc) 1222 { 1223 struct irq_data *d = &desc->irq_data; 1224 struct irq_chip *c = d->chip; 1225 1226 if (c->irq_release_resources) 1227 c->irq_release_resources(d); 1228 } 1229 1230 static bool irq_supports_nmi(struct irq_desc *desc) 1231 { 1232 struct irq_data *d = irq_desc_get_irq_data(desc); 1233 1234 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1235 /* Only IRQs directly managed by the root irqchip can be set as NMI */ 1236 if (d->parent_data) 1237 return false; 1238 #endif 1239 /* Don't support NMIs for chips behind a slow bus */ 1240 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock) 1241 return false; 1242 1243 return d->chip->flags & IRQCHIP_SUPPORTS_NMI; 1244 } 1245 1246 static int irq_nmi_setup(struct irq_desc *desc) 1247 { 1248 struct irq_data *d = irq_desc_get_irq_data(desc); 1249 struct irq_chip *c = d->chip; 1250 1251 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL; 1252 } 1253 1254 static void irq_nmi_teardown(struct irq_desc *desc) 1255 { 1256 struct irq_data *d = irq_desc_get_irq_data(desc); 1257 struct irq_chip *c = d->chip; 1258 1259 if (c->irq_nmi_teardown) 1260 c->irq_nmi_teardown(d); 1261 } 1262 1263 static int 1264 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary) 1265 { 1266 struct task_struct *t; 1267 struct sched_param param = { 1268 .sched_priority = MAX_USER_RT_PRIO/2, 1269 }; 1270 1271 if (!secondary) { 1272 t = kthread_create(irq_thread, new, "irq/%d-%s", irq, 1273 new->name); 1274 } else { 1275 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq, 1276 new->name); 1277 param.sched_priority -= 1; 1278 } 1279 1280 if (IS_ERR(t)) 1281 return PTR_ERR(t); 1282 1283 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m); 1284 1285 /* 1286 * We keep the reference to the task struct even if 1287 * the thread dies to avoid that the interrupt code 1288 * references an already freed task_struct. 1289 */ 1290 new->thread = get_task_struct(t); 1291 /* 1292 * Tell the thread to set its affinity. This is 1293 * important for shared interrupt handlers as we do 1294 * not invoke setup_affinity() for the secondary 1295 * handlers as everything is already set up. Even for 1296 * interrupts marked with IRQF_NO_BALANCE this is 1297 * correct as we want the thread to move to the cpu(s) 1298 * on which the requesting code placed the interrupt. 1299 */ 1300 set_bit(IRQTF_AFFINITY, &new->thread_flags); 1301 return 0; 1302 } 1303 1304 /* 1305 * Internal function to register an irqaction - typically used to 1306 * allocate special interrupts that are part of the architecture. 1307 * 1308 * Locking rules: 1309 * 1310 * desc->request_mutex Provides serialization against a concurrent free_irq() 1311 * chip_bus_lock Provides serialization for slow bus operations 1312 * desc->lock Provides serialization against hard interrupts 1313 * 1314 * chip_bus_lock and desc->lock are sufficient for all other management and 1315 * interrupt related functions. desc->request_mutex solely serializes 1316 * request/free_irq(). 1317 */ 1318 static int 1319 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new) 1320 { 1321 struct irqaction *old, **old_ptr; 1322 unsigned long flags, thread_mask = 0; 1323 int ret, nested, shared = 0; 1324 1325 if (!desc) 1326 return -EINVAL; 1327 1328 if (desc->irq_data.chip == &no_irq_chip) 1329 return -ENOSYS; 1330 if (!try_module_get(desc->owner)) 1331 return -ENODEV; 1332 1333 new->irq = irq; 1334 1335 /* 1336 * If the trigger type is not specified by the caller, 1337 * then use the default for this interrupt. 1338 */ 1339 if (!(new->flags & IRQF_TRIGGER_MASK)) 1340 new->flags |= irqd_get_trigger_type(&desc->irq_data); 1341 1342 /* 1343 * Check whether the interrupt nests into another interrupt 1344 * thread. 1345 */ 1346 nested = irq_settings_is_nested_thread(desc); 1347 if (nested) { 1348 if (!new->thread_fn) { 1349 ret = -EINVAL; 1350 goto out_mput; 1351 } 1352 /* 1353 * Replace the primary handler which was provided from 1354 * the driver for non nested interrupt handling by the 1355 * dummy function which warns when called. 1356 */ 1357 new->handler = irq_nested_primary_handler; 1358 } else { 1359 if (irq_settings_can_thread(desc)) { 1360 ret = irq_setup_forced_threading(new); 1361 if (ret) 1362 goto out_mput; 1363 } 1364 } 1365 1366 /* 1367 * Create a handler thread when a thread function is supplied 1368 * and the interrupt does not nest into another interrupt 1369 * thread. 1370 */ 1371 if (new->thread_fn && !nested) { 1372 ret = setup_irq_thread(new, irq, false); 1373 if (ret) 1374 goto out_mput; 1375 if (new->secondary) { 1376 ret = setup_irq_thread(new->secondary, irq, true); 1377 if (ret) 1378 goto out_thread; 1379 } 1380 } 1381 1382 /* 1383 * Drivers are often written to work w/o knowledge about the 1384 * underlying irq chip implementation, so a request for a 1385 * threaded irq without a primary hard irq context handler 1386 * requires the ONESHOT flag to be set. Some irq chips like 1387 * MSI based interrupts are per se one shot safe. Check the 1388 * chip flags, so we can avoid the unmask dance at the end of 1389 * the threaded handler for those. 1390 */ 1391 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE) 1392 new->flags &= ~IRQF_ONESHOT; 1393 1394 /* 1395 * Protects against a concurrent __free_irq() call which might wait 1396 * for synchronize_hardirq() to complete without holding the optional 1397 * chip bus lock and desc->lock. Also protects against handing out 1398 * a recycled oneshot thread_mask bit while it's still in use by 1399 * its previous owner. 1400 */ 1401 mutex_lock(&desc->request_mutex); 1402 1403 /* 1404 * Acquire bus lock as the irq_request_resources() callback below 1405 * might rely on the serialization or the magic power management 1406 * functions which are abusing the irq_bus_lock() callback, 1407 */ 1408 chip_bus_lock(desc); 1409 1410 /* First installed action requests resources. */ 1411 if (!desc->action) { 1412 ret = irq_request_resources(desc); 1413 if (ret) { 1414 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n", 1415 new->name, irq, desc->irq_data.chip->name); 1416 goto out_bus_unlock; 1417 } 1418 } 1419 1420 /* 1421 * The following block of code has to be executed atomically 1422 * protected against a concurrent interrupt and any of the other 1423 * management calls which are not serialized via 1424 * desc->request_mutex or the optional bus lock. 1425 */ 1426 raw_spin_lock_irqsave(&desc->lock, flags); 1427 old_ptr = &desc->action; 1428 old = *old_ptr; 1429 if (old) { 1430 /* 1431 * Can't share interrupts unless both agree to and are 1432 * the same type (level, edge, polarity). So both flag 1433 * fields must have IRQF_SHARED set and the bits which 1434 * set the trigger type must match. Also all must 1435 * agree on ONESHOT. 1436 * Interrupt lines used for NMIs cannot be shared. 1437 */ 1438 unsigned int oldtype; 1439 1440 if (desc->istate & IRQS_NMI) { 1441 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n", 1442 new->name, irq, desc->irq_data.chip->name); 1443 ret = -EINVAL; 1444 goto out_unlock; 1445 } 1446 1447 /* 1448 * If nobody did set the configuration before, inherit 1449 * the one provided by the requester. 1450 */ 1451 if (irqd_trigger_type_was_set(&desc->irq_data)) { 1452 oldtype = irqd_get_trigger_type(&desc->irq_data); 1453 } else { 1454 oldtype = new->flags & IRQF_TRIGGER_MASK; 1455 irqd_set_trigger_type(&desc->irq_data, oldtype); 1456 } 1457 1458 if (!((old->flags & new->flags) & IRQF_SHARED) || 1459 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) || 1460 ((old->flags ^ new->flags) & IRQF_ONESHOT)) 1461 goto mismatch; 1462 1463 /* All handlers must agree on per-cpuness */ 1464 if ((old->flags & IRQF_PERCPU) != 1465 (new->flags & IRQF_PERCPU)) 1466 goto mismatch; 1467 1468 /* add new interrupt at end of irq queue */ 1469 do { 1470 /* 1471 * Or all existing action->thread_mask bits, 1472 * so we can find the next zero bit for this 1473 * new action. 1474 */ 1475 thread_mask |= old->thread_mask; 1476 old_ptr = &old->next; 1477 old = *old_ptr; 1478 } while (old); 1479 shared = 1; 1480 } 1481 1482 /* 1483 * Setup the thread mask for this irqaction for ONESHOT. For 1484 * !ONESHOT irqs the thread mask is 0 so we can avoid a 1485 * conditional in irq_wake_thread(). 1486 */ 1487 if (new->flags & IRQF_ONESHOT) { 1488 /* 1489 * Unlikely to have 32 resp 64 irqs sharing one line, 1490 * but who knows. 1491 */ 1492 if (thread_mask == ~0UL) { 1493 ret = -EBUSY; 1494 goto out_unlock; 1495 } 1496 /* 1497 * The thread_mask for the action is or'ed to 1498 * desc->thread_active to indicate that the 1499 * IRQF_ONESHOT thread handler has been woken, but not 1500 * yet finished. The bit is cleared when a thread 1501 * completes. When all threads of a shared interrupt 1502 * line have completed desc->threads_active becomes 1503 * zero and the interrupt line is unmasked. See 1504 * handle.c:irq_wake_thread() for further information. 1505 * 1506 * If no thread is woken by primary (hard irq context) 1507 * interrupt handlers, then desc->threads_active is 1508 * also checked for zero to unmask the irq line in the 1509 * affected hard irq flow handlers 1510 * (handle_[fasteoi|level]_irq). 1511 * 1512 * The new action gets the first zero bit of 1513 * thread_mask assigned. See the loop above which or's 1514 * all existing action->thread_mask bits. 1515 */ 1516 new->thread_mask = 1UL << ffz(thread_mask); 1517 1518 } else if (new->handler == irq_default_primary_handler && 1519 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) { 1520 /* 1521 * The interrupt was requested with handler = NULL, so 1522 * we use the default primary handler for it. But it 1523 * does not have the oneshot flag set. In combination 1524 * with level interrupts this is deadly, because the 1525 * default primary handler just wakes the thread, then 1526 * the irq lines is reenabled, but the device still 1527 * has the level irq asserted. Rinse and repeat.... 1528 * 1529 * While this works for edge type interrupts, we play 1530 * it safe and reject unconditionally because we can't 1531 * say for sure which type this interrupt really 1532 * has. The type flags are unreliable as the 1533 * underlying chip implementation can override them. 1534 */ 1535 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n", 1536 new->name, irq); 1537 ret = -EINVAL; 1538 goto out_unlock; 1539 } 1540 1541 if (!shared) { 1542 init_waitqueue_head(&desc->wait_for_threads); 1543 1544 /* Setup the type (level, edge polarity) if configured: */ 1545 if (new->flags & IRQF_TRIGGER_MASK) { 1546 ret = __irq_set_trigger(desc, 1547 new->flags & IRQF_TRIGGER_MASK); 1548 1549 if (ret) 1550 goto out_unlock; 1551 } 1552 1553 /* 1554 * Activate the interrupt. That activation must happen 1555 * independently of IRQ_NOAUTOEN. request_irq() can fail 1556 * and the callers are supposed to handle 1557 * that. enable_irq() of an interrupt requested with 1558 * IRQ_NOAUTOEN is not supposed to fail. The activation 1559 * keeps it in shutdown mode, it merily associates 1560 * resources if necessary and if that's not possible it 1561 * fails. Interrupts which are in managed shutdown mode 1562 * will simply ignore that activation request. 1563 */ 1564 ret = irq_activate(desc); 1565 if (ret) 1566 goto out_unlock; 1567 1568 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \ 1569 IRQS_ONESHOT | IRQS_WAITING); 1570 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 1571 1572 if (new->flags & IRQF_PERCPU) { 1573 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1574 irq_settings_set_per_cpu(desc); 1575 } 1576 1577 if (new->flags & IRQF_ONESHOT) 1578 desc->istate |= IRQS_ONESHOT; 1579 1580 /* Exclude IRQ from balancing if requested */ 1581 if (new->flags & IRQF_NOBALANCING) { 1582 irq_settings_set_no_balancing(desc); 1583 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1584 } 1585 1586 if (irq_settings_can_autoenable(desc)) { 1587 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 1588 } else { 1589 /* 1590 * Shared interrupts do not go well with disabling 1591 * auto enable. The sharing interrupt might request 1592 * it while it's still disabled and then wait for 1593 * interrupts forever. 1594 */ 1595 WARN_ON_ONCE(new->flags & IRQF_SHARED); 1596 /* Undo nested disables: */ 1597 desc->depth = 1; 1598 } 1599 1600 } else if (new->flags & IRQF_TRIGGER_MASK) { 1601 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK; 1602 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data); 1603 1604 if (nmsk != omsk) 1605 /* hope the handler works with current trigger mode */ 1606 pr_warn("irq %d uses trigger mode %u; requested %u\n", 1607 irq, omsk, nmsk); 1608 } 1609 1610 *old_ptr = new; 1611 1612 irq_pm_install_action(desc, new); 1613 1614 /* Reset broken irq detection when installing new handler */ 1615 desc->irq_count = 0; 1616 desc->irqs_unhandled = 0; 1617 1618 /* 1619 * Check whether we disabled the irq via the spurious handler 1620 * before. Reenable it and give it another chance. 1621 */ 1622 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) { 1623 desc->istate &= ~IRQS_SPURIOUS_DISABLED; 1624 __enable_irq(desc); 1625 } 1626 1627 raw_spin_unlock_irqrestore(&desc->lock, flags); 1628 chip_bus_sync_unlock(desc); 1629 mutex_unlock(&desc->request_mutex); 1630 1631 irq_setup_timings(desc, new); 1632 1633 /* 1634 * Strictly no need to wake it up, but hung_task complains 1635 * when no hard interrupt wakes the thread up. 1636 */ 1637 if (new->thread) 1638 wake_up_process(new->thread); 1639 if (new->secondary) 1640 wake_up_process(new->secondary->thread); 1641 1642 register_irq_proc(irq, desc); 1643 new->dir = NULL; 1644 register_handler_proc(irq, new); 1645 return 0; 1646 1647 mismatch: 1648 if (!(new->flags & IRQF_PROBE_SHARED)) { 1649 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n", 1650 irq, new->flags, new->name, old->flags, old->name); 1651 #ifdef CONFIG_DEBUG_SHIRQ 1652 dump_stack(); 1653 #endif 1654 } 1655 ret = -EBUSY; 1656 1657 out_unlock: 1658 raw_spin_unlock_irqrestore(&desc->lock, flags); 1659 1660 if (!desc->action) 1661 irq_release_resources(desc); 1662 out_bus_unlock: 1663 chip_bus_sync_unlock(desc); 1664 mutex_unlock(&desc->request_mutex); 1665 1666 out_thread: 1667 if (new->thread) { 1668 struct task_struct *t = new->thread; 1669 1670 new->thread = NULL; 1671 kthread_stop(t); 1672 put_task_struct(t); 1673 } 1674 if (new->secondary && new->secondary->thread) { 1675 struct task_struct *t = new->secondary->thread; 1676 1677 new->secondary->thread = NULL; 1678 kthread_stop(t); 1679 put_task_struct(t); 1680 } 1681 out_mput: 1682 module_put(desc->owner); 1683 return ret; 1684 } 1685 1686 /** 1687 * setup_irq - setup an interrupt 1688 * @irq: Interrupt line to setup 1689 * @act: irqaction for the interrupt 1690 * 1691 * Used to statically setup interrupts in the early boot process. 1692 */ 1693 int setup_irq(unsigned int irq, struct irqaction *act) 1694 { 1695 int retval; 1696 struct irq_desc *desc = irq_to_desc(irq); 1697 1698 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1699 return -EINVAL; 1700 1701 retval = irq_chip_pm_get(&desc->irq_data); 1702 if (retval < 0) 1703 return retval; 1704 1705 retval = __setup_irq(irq, desc, act); 1706 1707 if (retval) 1708 irq_chip_pm_put(&desc->irq_data); 1709 1710 return retval; 1711 } 1712 EXPORT_SYMBOL_GPL(setup_irq); 1713 1714 /* 1715 * Internal function to unregister an irqaction - used to free 1716 * regular and special interrupts that are part of the architecture. 1717 */ 1718 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id) 1719 { 1720 unsigned irq = desc->irq_data.irq; 1721 struct irqaction *action, **action_ptr; 1722 unsigned long flags; 1723 1724 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 1725 1726 mutex_lock(&desc->request_mutex); 1727 chip_bus_lock(desc); 1728 raw_spin_lock_irqsave(&desc->lock, flags); 1729 1730 /* 1731 * There can be multiple actions per IRQ descriptor, find the right 1732 * one based on the dev_id: 1733 */ 1734 action_ptr = &desc->action; 1735 for (;;) { 1736 action = *action_ptr; 1737 1738 if (!action) { 1739 WARN(1, "Trying to free already-free IRQ %d\n", irq); 1740 raw_spin_unlock_irqrestore(&desc->lock, flags); 1741 chip_bus_sync_unlock(desc); 1742 mutex_unlock(&desc->request_mutex); 1743 return NULL; 1744 } 1745 1746 if (action->dev_id == dev_id) 1747 break; 1748 action_ptr = &action->next; 1749 } 1750 1751 /* Found it - now remove it from the list of entries: */ 1752 *action_ptr = action->next; 1753 1754 irq_pm_remove_action(desc, action); 1755 1756 /* If this was the last handler, shut down the IRQ line: */ 1757 if (!desc->action) { 1758 irq_settings_clr_disable_unlazy(desc); 1759 /* Only shutdown. Deactivate after synchronize_hardirq() */ 1760 irq_shutdown(desc); 1761 } 1762 1763 #ifdef CONFIG_SMP 1764 /* make sure affinity_hint is cleaned up */ 1765 if (WARN_ON_ONCE(desc->affinity_hint)) 1766 desc->affinity_hint = NULL; 1767 #endif 1768 1769 raw_spin_unlock_irqrestore(&desc->lock, flags); 1770 /* 1771 * Drop bus_lock here so the changes which were done in the chip 1772 * callbacks above are synced out to the irq chips which hang 1773 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq(). 1774 * 1775 * Aside of that the bus_lock can also be taken from the threaded 1776 * handler in irq_finalize_oneshot() which results in a deadlock 1777 * because kthread_stop() would wait forever for the thread to 1778 * complete, which is blocked on the bus lock. 1779 * 1780 * The still held desc->request_mutex() protects against a 1781 * concurrent request_irq() of this irq so the release of resources 1782 * and timing data is properly serialized. 1783 */ 1784 chip_bus_sync_unlock(desc); 1785 1786 unregister_handler_proc(irq, action); 1787 1788 /* 1789 * Make sure it's not being used on another CPU and if the chip 1790 * supports it also make sure that there is no (not yet serviced) 1791 * interrupt in flight at the hardware level. 1792 */ 1793 __synchronize_hardirq(desc, true); 1794 1795 #ifdef CONFIG_DEBUG_SHIRQ 1796 /* 1797 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 1798 * event to happen even now it's being freed, so let's make sure that 1799 * is so by doing an extra call to the handler .... 1800 * 1801 * ( We do this after actually deregistering it, to make sure that a 1802 * 'real' IRQ doesn't run in parallel with our fake. ) 1803 */ 1804 if (action->flags & IRQF_SHARED) { 1805 local_irq_save(flags); 1806 action->handler(irq, dev_id); 1807 local_irq_restore(flags); 1808 } 1809 #endif 1810 1811 /* 1812 * The action has already been removed above, but the thread writes 1813 * its oneshot mask bit when it completes. Though request_mutex is 1814 * held across this which prevents __setup_irq() from handing out 1815 * the same bit to a newly requested action. 1816 */ 1817 if (action->thread) { 1818 kthread_stop(action->thread); 1819 put_task_struct(action->thread); 1820 if (action->secondary && action->secondary->thread) { 1821 kthread_stop(action->secondary->thread); 1822 put_task_struct(action->secondary->thread); 1823 } 1824 } 1825 1826 /* Last action releases resources */ 1827 if (!desc->action) { 1828 /* 1829 * Reaquire bus lock as irq_release_resources() might 1830 * require it to deallocate resources over the slow bus. 1831 */ 1832 chip_bus_lock(desc); 1833 /* 1834 * There is no interrupt on the fly anymore. Deactivate it 1835 * completely. 1836 */ 1837 raw_spin_lock_irqsave(&desc->lock, flags); 1838 irq_domain_deactivate_irq(&desc->irq_data); 1839 raw_spin_unlock_irqrestore(&desc->lock, flags); 1840 1841 irq_release_resources(desc); 1842 chip_bus_sync_unlock(desc); 1843 irq_remove_timings(desc); 1844 } 1845 1846 mutex_unlock(&desc->request_mutex); 1847 1848 irq_chip_pm_put(&desc->irq_data); 1849 module_put(desc->owner); 1850 kfree(action->secondary); 1851 return action; 1852 } 1853 1854 /** 1855 * remove_irq - free an interrupt 1856 * @irq: Interrupt line to free 1857 * @act: irqaction for the interrupt 1858 * 1859 * Used to remove interrupts statically setup by the early boot process. 1860 */ 1861 void remove_irq(unsigned int irq, struct irqaction *act) 1862 { 1863 struct irq_desc *desc = irq_to_desc(irq); 1864 1865 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1866 __free_irq(desc, act->dev_id); 1867 } 1868 EXPORT_SYMBOL_GPL(remove_irq); 1869 1870 /** 1871 * free_irq - free an interrupt allocated with request_irq 1872 * @irq: Interrupt line to free 1873 * @dev_id: Device identity to free 1874 * 1875 * Remove an interrupt handler. The handler is removed and if the 1876 * interrupt line is no longer in use by any driver it is disabled. 1877 * On a shared IRQ the caller must ensure the interrupt is disabled 1878 * on the card it drives before calling this function. The function 1879 * does not return until any executing interrupts for this IRQ 1880 * have completed. 1881 * 1882 * This function must not be called from interrupt context. 1883 * 1884 * Returns the devname argument passed to request_irq. 1885 */ 1886 const void *free_irq(unsigned int irq, void *dev_id) 1887 { 1888 struct irq_desc *desc = irq_to_desc(irq); 1889 struct irqaction *action; 1890 const char *devname; 1891 1892 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1893 return NULL; 1894 1895 #ifdef CONFIG_SMP 1896 if (WARN_ON(desc->affinity_notify)) 1897 desc->affinity_notify = NULL; 1898 #endif 1899 1900 action = __free_irq(desc, dev_id); 1901 1902 if (!action) 1903 return NULL; 1904 1905 devname = action->name; 1906 kfree(action); 1907 return devname; 1908 } 1909 EXPORT_SYMBOL(free_irq); 1910 1911 /* This function must be called with desc->lock held */ 1912 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc) 1913 { 1914 const char *devname = NULL; 1915 1916 desc->istate &= ~IRQS_NMI; 1917 1918 if (!WARN_ON(desc->action == NULL)) { 1919 irq_pm_remove_action(desc, desc->action); 1920 devname = desc->action->name; 1921 unregister_handler_proc(irq, desc->action); 1922 1923 kfree(desc->action); 1924 desc->action = NULL; 1925 } 1926 1927 irq_settings_clr_disable_unlazy(desc); 1928 irq_shutdown_and_deactivate(desc); 1929 1930 irq_release_resources(desc); 1931 1932 irq_chip_pm_put(&desc->irq_data); 1933 module_put(desc->owner); 1934 1935 return devname; 1936 } 1937 1938 const void *free_nmi(unsigned int irq, void *dev_id) 1939 { 1940 struct irq_desc *desc = irq_to_desc(irq); 1941 unsigned long flags; 1942 const void *devname; 1943 1944 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI))) 1945 return NULL; 1946 1947 if (WARN_ON(irq_settings_is_per_cpu_devid(desc))) 1948 return NULL; 1949 1950 /* NMI still enabled */ 1951 if (WARN_ON(desc->depth == 0)) 1952 disable_nmi_nosync(irq); 1953 1954 raw_spin_lock_irqsave(&desc->lock, flags); 1955 1956 irq_nmi_teardown(desc); 1957 devname = __cleanup_nmi(irq, desc); 1958 1959 raw_spin_unlock_irqrestore(&desc->lock, flags); 1960 1961 return devname; 1962 } 1963 1964 /** 1965 * request_threaded_irq - allocate an interrupt line 1966 * @irq: Interrupt line to allocate 1967 * @handler: Function to be called when the IRQ occurs. 1968 * Primary handler for threaded interrupts 1969 * If NULL and thread_fn != NULL the default 1970 * primary handler is installed 1971 * @thread_fn: Function called from the irq handler thread 1972 * If NULL, no irq thread is created 1973 * @irqflags: Interrupt type flags 1974 * @devname: An ascii name for the claiming device 1975 * @dev_id: A cookie passed back to the handler function 1976 * 1977 * This call allocates interrupt resources and enables the 1978 * interrupt line and IRQ handling. From the point this 1979 * call is made your handler function may be invoked. Since 1980 * your handler function must clear any interrupt the board 1981 * raises, you must take care both to initialise your hardware 1982 * and to set up the interrupt handler in the right order. 1983 * 1984 * If you want to set up a threaded irq handler for your device 1985 * then you need to supply @handler and @thread_fn. @handler is 1986 * still called in hard interrupt context and has to check 1987 * whether the interrupt originates from the device. If yes it 1988 * needs to disable the interrupt on the device and return 1989 * IRQ_WAKE_THREAD which will wake up the handler thread and run 1990 * @thread_fn. This split handler design is necessary to support 1991 * shared interrupts. 1992 * 1993 * Dev_id must be globally unique. Normally the address of the 1994 * device data structure is used as the cookie. Since the handler 1995 * receives this value it makes sense to use it. 1996 * 1997 * If your interrupt is shared you must pass a non NULL dev_id 1998 * as this is required when freeing the interrupt. 1999 * 2000 * Flags: 2001 * 2002 * IRQF_SHARED Interrupt is shared 2003 * IRQF_TRIGGER_* Specify active edge(s) or level 2004 * 2005 */ 2006 int request_threaded_irq(unsigned int irq, irq_handler_t handler, 2007 irq_handler_t thread_fn, unsigned long irqflags, 2008 const char *devname, void *dev_id) 2009 { 2010 struct irqaction *action; 2011 struct irq_desc *desc; 2012 int retval; 2013 2014 if (irq == IRQ_NOTCONNECTED) 2015 return -ENOTCONN; 2016 2017 /* 2018 * Sanity-check: shared interrupts must pass in a real dev-ID, 2019 * otherwise we'll have trouble later trying to figure out 2020 * which interrupt is which (messes up the interrupt freeing 2021 * logic etc). 2022 * 2023 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and 2024 * it cannot be set along with IRQF_NO_SUSPEND. 2025 */ 2026 if (((irqflags & IRQF_SHARED) && !dev_id) || 2027 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) || 2028 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND))) 2029 return -EINVAL; 2030 2031 desc = irq_to_desc(irq); 2032 if (!desc) 2033 return -EINVAL; 2034 2035 if (!irq_settings_can_request(desc) || 2036 WARN_ON(irq_settings_is_per_cpu_devid(desc))) 2037 return -EINVAL; 2038 2039 if (!handler) { 2040 if (!thread_fn) 2041 return -EINVAL; 2042 handler = irq_default_primary_handler; 2043 } 2044 2045 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2046 if (!action) 2047 return -ENOMEM; 2048 2049 action->handler = handler; 2050 action->thread_fn = thread_fn; 2051 action->flags = irqflags; 2052 action->name = devname; 2053 action->dev_id = dev_id; 2054 2055 retval = irq_chip_pm_get(&desc->irq_data); 2056 if (retval < 0) { 2057 kfree(action); 2058 return retval; 2059 } 2060 2061 retval = __setup_irq(irq, desc, action); 2062 2063 if (retval) { 2064 irq_chip_pm_put(&desc->irq_data); 2065 kfree(action->secondary); 2066 kfree(action); 2067 } 2068 2069 #ifdef CONFIG_DEBUG_SHIRQ_FIXME 2070 if (!retval && (irqflags & IRQF_SHARED)) { 2071 /* 2072 * It's a shared IRQ -- the driver ought to be prepared for it 2073 * to happen immediately, so let's make sure.... 2074 * We disable the irq to make sure that a 'real' IRQ doesn't 2075 * run in parallel with our fake. 2076 */ 2077 unsigned long flags; 2078 2079 disable_irq(irq); 2080 local_irq_save(flags); 2081 2082 handler(irq, dev_id); 2083 2084 local_irq_restore(flags); 2085 enable_irq(irq); 2086 } 2087 #endif 2088 return retval; 2089 } 2090 EXPORT_SYMBOL(request_threaded_irq); 2091 2092 /** 2093 * request_any_context_irq - allocate an interrupt line 2094 * @irq: Interrupt line to allocate 2095 * @handler: Function to be called when the IRQ occurs. 2096 * Threaded handler for threaded interrupts. 2097 * @flags: Interrupt type flags 2098 * @name: An ascii name for the claiming device 2099 * @dev_id: A cookie passed back to the handler function 2100 * 2101 * This call allocates interrupt resources and enables the 2102 * interrupt line and IRQ handling. It selects either a 2103 * hardirq or threaded handling method depending on the 2104 * context. 2105 * 2106 * On failure, it returns a negative value. On success, 2107 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED. 2108 */ 2109 int request_any_context_irq(unsigned int irq, irq_handler_t handler, 2110 unsigned long flags, const char *name, void *dev_id) 2111 { 2112 struct irq_desc *desc; 2113 int ret; 2114 2115 if (irq == IRQ_NOTCONNECTED) 2116 return -ENOTCONN; 2117 2118 desc = irq_to_desc(irq); 2119 if (!desc) 2120 return -EINVAL; 2121 2122 if (irq_settings_is_nested_thread(desc)) { 2123 ret = request_threaded_irq(irq, NULL, handler, 2124 flags, name, dev_id); 2125 return !ret ? IRQC_IS_NESTED : ret; 2126 } 2127 2128 ret = request_irq(irq, handler, flags, name, dev_id); 2129 return !ret ? IRQC_IS_HARDIRQ : ret; 2130 } 2131 EXPORT_SYMBOL_GPL(request_any_context_irq); 2132 2133 /** 2134 * request_nmi - allocate an interrupt line for NMI delivery 2135 * @irq: Interrupt line to allocate 2136 * @handler: Function to be called when the IRQ occurs. 2137 * Threaded handler for threaded interrupts. 2138 * @irqflags: Interrupt type flags 2139 * @name: An ascii name for the claiming device 2140 * @dev_id: A cookie passed back to the handler function 2141 * 2142 * This call allocates interrupt resources and enables the 2143 * interrupt line and IRQ handling. It sets up the IRQ line 2144 * to be handled as an NMI. 2145 * 2146 * An interrupt line delivering NMIs cannot be shared and IRQ handling 2147 * cannot be threaded. 2148 * 2149 * Interrupt lines requested for NMI delivering must produce per cpu 2150 * interrupts and have auto enabling setting disabled. 2151 * 2152 * Dev_id must be globally unique. Normally the address of the 2153 * device data structure is used as the cookie. Since the handler 2154 * receives this value it makes sense to use it. 2155 * 2156 * If the interrupt line cannot be used to deliver NMIs, function 2157 * will fail and return a negative value. 2158 */ 2159 int request_nmi(unsigned int irq, irq_handler_t handler, 2160 unsigned long irqflags, const char *name, void *dev_id) 2161 { 2162 struct irqaction *action; 2163 struct irq_desc *desc; 2164 unsigned long flags; 2165 int retval; 2166 2167 if (irq == IRQ_NOTCONNECTED) 2168 return -ENOTCONN; 2169 2170 /* NMI cannot be shared, used for Polling */ 2171 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL)) 2172 return -EINVAL; 2173 2174 if (!(irqflags & IRQF_PERCPU)) 2175 return -EINVAL; 2176 2177 if (!handler) 2178 return -EINVAL; 2179 2180 desc = irq_to_desc(irq); 2181 2182 if (!desc || irq_settings_can_autoenable(desc) || 2183 !irq_settings_can_request(desc) || 2184 WARN_ON(irq_settings_is_per_cpu_devid(desc)) || 2185 !irq_supports_nmi(desc)) 2186 return -EINVAL; 2187 2188 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2189 if (!action) 2190 return -ENOMEM; 2191 2192 action->handler = handler; 2193 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING; 2194 action->name = name; 2195 action->dev_id = dev_id; 2196 2197 retval = irq_chip_pm_get(&desc->irq_data); 2198 if (retval < 0) 2199 goto err_out; 2200 2201 retval = __setup_irq(irq, desc, action); 2202 if (retval) 2203 goto err_irq_setup; 2204 2205 raw_spin_lock_irqsave(&desc->lock, flags); 2206 2207 /* Setup NMI state */ 2208 desc->istate |= IRQS_NMI; 2209 retval = irq_nmi_setup(desc); 2210 if (retval) { 2211 __cleanup_nmi(irq, desc); 2212 raw_spin_unlock_irqrestore(&desc->lock, flags); 2213 return -EINVAL; 2214 } 2215 2216 raw_spin_unlock_irqrestore(&desc->lock, flags); 2217 2218 return 0; 2219 2220 err_irq_setup: 2221 irq_chip_pm_put(&desc->irq_data); 2222 err_out: 2223 kfree(action); 2224 2225 return retval; 2226 } 2227 2228 void enable_percpu_irq(unsigned int irq, unsigned int type) 2229 { 2230 unsigned int cpu = smp_processor_id(); 2231 unsigned long flags; 2232 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2233 2234 if (!desc) 2235 return; 2236 2237 /* 2238 * If the trigger type is not specified by the caller, then 2239 * use the default for this interrupt. 2240 */ 2241 type &= IRQ_TYPE_SENSE_MASK; 2242 if (type == IRQ_TYPE_NONE) 2243 type = irqd_get_trigger_type(&desc->irq_data); 2244 2245 if (type != IRQ_TYPE_NONE) { 2246 int ret; 2247 2248 ret = __irq_set_trigger(desc, type); 2249 2250 if (ret) { 2251 WARN(1, "failed to set type for IRQ%d\n", irq); 2252 goto out; 2253 } 2254 } 2255 2256 irq_percpu_enable(desc, cpu); 2257 out: 2258 irq_put_desc_unlock(desc, flags); 2259 } 2260 EXPORT_SYMBOL_GPL(enable_percpu_irq); 2261 2262 void enable_percpu_nmi(unsigned int irq, unsigned int type) 2263 { 2264 enable_percpu_irq(irq, type); 2265 } 2266 2267 /** 2268 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled 2269 * @irq: Linux irq number to check for 2270 * 2271 * Must be called from a non migratable context. Returns the enable 2272 * state of a per cpu interrupt on the current cpu. 2273 */ 2274 bool irq_percpu_is_enabled(unsigned int irq) 2275 { 2276 unsigned int cpu = smp_processor_id(); 2277 struct irq_desc *desc; 2278 unsigned long flags; 2279 bool is_enabled; 2280 2281 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2282 if (!desc) 2283 return false; 2284 2285 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 2286 irq_put_desc_unlock(desc, flags); 2287 2288 return is_enabled; 2289 } 2290 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled); 2291 2292 void disable_percpu_irq(unsigned int irq) 2293 { 2294 unsigned int cpu = smp_processor_id(); 2295 unsigned long flags; 2296 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU); 2297 2298 if (!desc) 2299 return; 2300 2301 irq_percpu_disable(desc, cpu); 2302 irq_put_desc_unlock(desc, flags); 2303 } 2304 EXPORT_SYMBOL_GPL(disable_percpu_irq); 2305 2306 void disable_percpu_nmi(unsigned int irq) 2307 { 2308 disable_percpu_irq(irq); 2309 } 2310 2311 /* 2312 * Internal function to unregister a percpu irqaction. 2313 */ 2314 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2315 { 2316 struct irq_desc *desc = irq_to_desc(irq); 2317 struct irqaction *action; 2318 unsigned long flags; 2319 2320 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 2321 2322 if (!desc) 2323 return NULL; 2324 2325 raw_spin_lock_irqsave(&desc->lock, flags); 2326 2327 action = desc->action; 2328 if (!action || action->percpu_dev_id != dev_id) { 2329 WARN(1, "Trying to free already-free IRQ %d\n", irq); 2330 goto bad; 2331 } 2332 2333 if (!cpumask_empty(desc->percpu_enabled)) { 2334 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n", 2335 irq, cpumask_first(desc->percpu_enabled)); 2336 goto bad; 2337 } 2338 2339 /* Found it - now remove it from the list of entries: */ 2340 desc->action = NULL; 2341 2342 desc->istate &= ~IRQS_NMI; 2343 2344 raw_spin_unlock_irqrestore(&desc->lock, flags); 2345 2346 unregister_handler_proc(irq, action); 2347 2348 irq_chip_pm_put(&desc->irq_data); 2349 module_put(desc->owner); 2350 return action; 2351 2352 bad: 2353 raw_spin_unlock_irqrestore(&desc->lock, flags); 2354 return NULL; 2355 } 2356 2357 /** 2358 * remove_percpu_irq - free a per-cpu interrupt 2359 * @irq: Interrupt line to free 2360 * @act: irqaction for the interrupt 2361 * 2362 * Used to remove interrupts statically setup by the early boot process. 2363 */ 2364 void remove_percpu_irq(unsigned int irq, struct irqaction *act) 2365 { 2366 struct irq_desc *desc = irq_to_desc(irq); 2367 2368 if (desc && irq_settings_is_per_cpu_devid(desc)) 2369 __free_percpu_irq(irq, act->percpu_dev_id); 2370 } 2371 2372 /** 2373 * free_percpu_irq - free an interrupt allocated with request_percpu_irq 2374 * @irq: Interrupt line to free 2375 * @dev_id: Device identity to free 2376 * 2377 * Remove a percpu interrupt handler. The handler is removed, but 2378 * the interrupt line is not disabled. This must be done on each 2379 * CPU before calling this function. The function does not return 2380 * until any executing interrupts for this IRQ have completed. 2381 * 2382 * This function must not be called from interrupt context. 2383 */ 2384 void free_percpu_irq(unsigned int irq, void __percpu *dev_id) 2385 { 2386 struct irq_desc *desc = irq_to_desc(irq); 2387 2388 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2389 return; 2390 2391 chip_bus_lock(desc); 2392 kfree(__free_percpu_irq(irq, dev_id)); 2393 chip_bus_sync_unlock(desc); 2394 } 2395 EXPORT_SYMBOL_GPL(free_percpu_irq); 2396 2397 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id) 2398 { 2399 struct irq_desc *desc = irq_to_desc(irq); 2400 2401 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2402 return; 2403 2404 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2405 return; 2406 2407 kfree(__free_percpu_irq(irq, dev_id)); 2408 } 2409 2410 /** 2411 * setup_percpu_irq - setup a per-cpu interrupt 2412 * @irq: Interrupt line to setup 2413 * @act: irqaction for the interrupt 2414 * 2415 * Used to statically setup per-cpu interrupts in the early boot process. 2416 */ 2417 int setup_percpu_irq(unsigned int irq, struct irqaction *act) 2418 { 2419 struct irq_desc *desc = irq_to_desc(irq); 2420 int retval; 2421 2422 if (!desc || !irq_settings_is_per_cpu_devid(desc)) 2423 return -EINVAL; 2424 2425 retval = irq_chip_pm_get(&desc->irq_data); 2426 if (retval < 0) 2427 return retval; 2428 2429 retval = __setup_irq(irq, desc, act); 2430 2431 if (retval) 2432 irq_chip_pm_put(&desc->irq_data); 2433 2434 return retval; 2435 } 2436 2437 /** 2438 * __request_percpu_irq - allocate a percpu interrupt line 2439 * @irq: Interrupt line to allocate 2440 * @handler: Function to be called when the IRQ occurs. 2441 * @flags: Interrupt type flags (IRQF_TIMER only) 2442 * @devname: An ascii name for the claiming device 2443 * @dev_id: A percpu cookie passed back to the handler function 2444 * 2445 * This call allocates interrupt resources and enables the 2446 * interrupt on the local CPU. If the interrupt is supposed to be 2447 * enabled on other CPUs, it has to be done on each CPU using 2448 * enable_percpu_irq(). 2449 * 2450 * Dev_id must be globally unique. It is a per-cpu variable, and 2451 * the handler gets called with the interrupted CPU's instance of 2452 * that variable. 2453 */ 2454 int __request_percpu_irq(unsigned int irq, irq_handler_t handler, 2455 unsigned long flags, const char *devname, 2456 void __percpu *dev_id) 2457 { 2458 struct irqaction *action; 2459 struct irq_desc *desc; 2460 int retval; 2461 2462 if (!dev_id) 2463 return -EINVAL; 2464 2465 desc = irq_to_desc(irq); 2466 if (!desc || !irq_settings_can_request(desc) || 2467 !irq_settings_is_per_cpu_devid(desc)) 2468 return -EINVAL; 2469 2470 if (flags && flags != IRQF_TIMER) 2471 return -EINVAL; 2472 2473 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2474 if (!action) 2475 return -ENOMEM; 2476 2477 action->handler = handler; 2478 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND; 2479 action->name = devname; 2480 action->percpu_dev_id = dev_id; 2481 2482 retval = irq_chip_pm_get(&desc->irq_data); 2483 if (retval < 0) { 2484 kfree(action); 2485 return retval; 2486 } 2487 2488 retval = __setup_irq(irq, desc, action); 2489 2490 if (retval) { 2491 irq_chip_pm_put(&desc->irq_data); 2492 kfree(action); 2493 } 2494 2495 return retval; 2496 } 2497 EXPORT_SYMBOL_GPL(__request_percpu_irq); 2498 2499 /** 2500 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery 2501 * @irq: Interrupt line to allocate 2502 * @handler: Function to be called when the IRQ occurs. 2503 * @name: An ascii name for the claiming device 2504 * @dev_id: A percpu cookie passed back to the handler function 2505 * 2506 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs 2507 * have to be setup on each CPU by calling prepare_percpu_nmi() before 2508 * being enabled on the same CPU by using enable_percpu_nmi(). 2509 * 2510 * Dev_id must be globally unique. It is a per-cpu variable, and 2511 * the handler gets called with the interrupted CPU's instance of 2512 * that variable. 2513 * 2514 * Interrupt lines requested for NMI delivering should have auto enabling 2515 * setting disabled. 2516 * 2517 * If the interrupt line cannot be used to deliver NMIs, function 2518 * will fail returning a negative value. 2519 */ 2520 int request_percpu_nmi(unsigned int irq, irq_handler_t handler, 2521 const char *name, void __percpu *dev_id) 2522 { 2523 struct irqaction *action; 2524 struct irq_desc *desc; 2525 unsigned long flags; 2526 int retval; 2527 2528 if (!handler) 2529 return -EINVAL; 2530 2531 desc = irq_to_desc(irq); 2532 2533 if (!desc || !irq_settings_can_request(desc) || 2534 !irq_settings_is_per_cpu_devid(desc) || 2535 irq_settings_can_autoenable(desc) || 2536 !irq_supports_nmi(desc)) 2537 return -EINVAL; 2538 2539 /* The line cannot already be NMI */ 2540 if (desc->istate & IRQS_NMI) 2541 return -EINVAL; 2542 2543 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL); 2544 if (!action) 2545 return -ENOMEM; 2546 2547 action->handler = handler; 2548 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD 2549 | IRQF_NOBALANCING; 2550 action->name = name; 2551 action->percpu_dev_id = dev_id; 2552 2553 retval = irq_chip_pm_get(&desc->irq_data); 2554 if (retval < 0) 2555 goto err_out; 2556 2557 retval = __setup_irq(irq, desc, action); 2558 if (retval) 2559 goto err_irq_setup; 2560 2561 raw_spin_lock_irqsave(&desc->lock, flags); 2562 desc->istate |= IRQS_NMI; 2563 raw_spin_unlock_irqrestore(&desc->lock, flags); 2564 2565 return 0; 2566 2567 err_irq_setup: 2568 irq_chip_pm_put(&desc->irq_data); 2569 err_out: 2570 kfree(action); 2571 2572 return retval; 2573 } 2574 2575 /** 2576 * prepare_percpu_nmi - performs CPU local setup for NMI delivery 2577 * @irq: Interrupt line to prepare for NMI delivery 2578 * 2579 * This call prepares an interrupt line to deliver NMI on the current CPU, 2580 * before that interrupt line gets enabled with enable_percpu_nmi(). 2581 * 2582 * As a CPU local operation, this should be called from non-preemptible 2583 * context. 2584 * 2585 * If the interrupt line cannot be used to deliver NMIs, function 2586 * will fail returning a negative value. 2587 */ 2588 int prepare_percpu_nmi(unsigned int irq) 2589 { 2590 unsigned long flags; 2591 struct irq_desc *desc; 2592 int ret = 0; 2593 2594 WARN_ON(preemptible()); 2595 2596 desc = irq_get_desc_lock(irq, &flags, 2597 IRQ_GET_DESC_CHECK_PERCPU); 2598 if (!desc) 2599 return -EINVAL; 2600 2601 if (WARN(!(desc->istate & IRQS_NMI), 2602 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", 2603 irq)) { 2604 ret = -EINVAL; 2605 goto out; 2606 } 2607 2608 ret = irq_nmi_setup(desc); 2609 if (ret) { 2610 pr_err("Failed to setup NMI delivery: irq %u\n", irq); 2611 goto out; 2612 } 2613 2614 out: 2615 irq_put_desc_unlock(desc, flags); 2616 return ret; 2617 } 2618 2619 /** 2620 * teardown_percpu_nmi - undoes NMI setup of IRQ line 2621 * @irq: Interrupt line from which CPU local NMI configuration should be 2622 * removed 2623 * 2624 * This call undoes the setup done by prepare_percpu_nmi(). 2625 * 2626 * IRQ line should not be enabled for the current CPU. 2627 * 2628 * As a CPU local operation, this should be called from non-preemptible 2629 * context. 2630 */ 2631 void teardown_percpu_nmi(unsigned int irq) 2632 { 2633 unsigned long flags; 2634 struct irq_desc *desc; 2635 2636 WARN_ON(preemptible()); 2637 2638 desc = irq_get_desc_lock(irq, &flags, 2639 IRQ_GET_DESC_CHECK_PERCPU); 2640 if (!desc) 2641 return; 2642 2643 if (WARN_ON(!(desc->istate & IRQS_NMI))) 2644 goto out; 2645 2646 irq_nmi_teardown(desc); 2647 out: 2648 irq_put_desc_unlock(desc, flags); 2649 } 2650 2651 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, 2652 bool *state) 2653 { 2654 struct irq_chip *chip; 2655 int err = -EINVAL; 2656 2657 do { 2658 chip = irq_data_get_irq_chip(data); 2659 if (chip->irq_get_irqchip_state) 2660 break; 2661 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2662 data = data->parent_data; 2663 #else 2664 data = NULL; 2665 #endif 2666 } while (data); 2667 2668 if (data) 2669 err = chip->irq_get_irqchip_state(data, which, state); 2670 return err; 2671 } 2672 2673 /** 2674 * irq_get_irqchip_state - returns the irqchip state of a interrupt. 2675 * @irq: Interrupt line that is forwarded to a VM 2676 * @which: One of IRQCHIP_STATE_* the caller wants to know about 2677 * @state: a pointer to a boolean where the state is to be storeed 2678 * 2679 * This call snapshots the internal irqchip state of an 2680 * interrupt, returning into @state the bit corresponding to 2681 * stage @which 2682 * 2683 * This function should be called with preemption disabled if the 2684 * interrupt controller has per-cpu registers. 2685 */ 2686 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2687 bool *state) 2688 { 2689 struct irq_desc *desc; 2690 struct irq_data *data; 2691 unsigned long flags; 2692 int err = -EINVAL; 2693 2694 desc = irq_get_desc_buslock(irq, &flags, 0); 2695 if (!desc) 2696 return err; 2697 2698 data = irq_desc_get_irq_data(desc); 2699 2700 err = __irq_get_irqchip_state(data, which, state); 2701 2702 irq_put_desc_busunlock(desc, flags); 2703 return err; 2704 } 2705 EXPORT_SYMBOL_GPL(irq_get_irqchip_state); 2706 2707 /** 2708 * irq_set_irqchip_state - set the state of a forwarded interrupt. 2709 * @irq: Interrupt line that is forwarded to a VM 2710 * @which: State to be restored (one of IRQCHIP_STATE_*) 2711 * @val: Value corresponding to @which 2712 * 2713 * This call sets the internal irqchip state of an interrupt, 2714 * depending on the value of @which. 2715 * 2716 * This function should be called with preemption disabled if the 2717 * interrupt controller has per-cpu registers. 2718 */ 2719 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, 2720 bool val) 2721 { 2722 struct irq_desc *desc; 2723 struct irq_data *data; 2724 struct irq_chip *chip; 2725 unsigned long flags; 2726 int err = -EINVAL; 2727 2728 desc = irq_get_desc_buslock(irq, &flags, 0); 2729 if (!desc) 2730 return err; 2731 2732 data = irq_desc_get_irq_data(desc); 2733 2734 do { 2735 chip = irq_data_get_irq_chip(data); 2736 if (chip->irq_set_irqchip_state) 2737 break; 2738 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 2739 data = data->parent_data; 2740 #else 2741 data = NULL; 2742 #endif 2743 } while (data); 2744 2745 if (data) 2746 err = chip->irq_set_irqchip_state(data, which, val); 2747 2748 irq_put_desc_busunlock(desc, flags); 2749 return err; 2750 } 2751 EXPORT_SYMBOL_GPL(irq_set_irqchip_state); 2752