xref: /linux/kernel/irq/irqdesc.c (revision 087cdfb662ae50e3826e7cd2e54b6519d07b60f0)
1 /*
2  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
3  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
4  *
5  * This file contains the interrupt descriptor management code
6  *
7  * Detailed information is available in Documentation/DocBook/genericirq
8  *
9  */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/radix-tree.h>
16 #include <linux/bitmap.h>
17 #include <linux/irqdomain.h>
18 #include <linux/sysfs.h>
19 
20 #include "internals.h"
21 
22 /*
23  * lockdep: we want to handle all irq_desc locks as a single lock-class:
24  */
25 static struct lock_class_key irq_desc_lock_class;
26 
27 #if defined(CONFIG_SMP)
28 static int __init irq_affinity_setup(char *str)
29 {
30 	zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
31 	cpulist_parse(str, irq_default_affinity);
32 	/*
33 	 * Set at least the boot cpu. We don't want to end up with
34 	 * bugreports caused by random comandline masks
35 	 */
36 	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 	return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40 
41 static void __init init_irq_default_affinity(void)
42 {
43 #ifdef CONFIG_CPUMASK_OFFSTACK
44 	if (!irq_default_affinity)
45 		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
46 #endif
47 	if (cpumask_empty(irq_default_affinity))
48 		cpumask_setall(irq_default_affinity);
49 }
50 #else
51 static void __init init_irq_default_affinity(void)
52 {
53 }
54 #endif
55 
56 #ifdef CONFIG_SMP
57 static int alloc_masks(struct irq_desc *desc, gfp_t gfp, int node)
58 {
59 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
60 				     gfp, node))
61 		return -ENOMEM;
62 
63 #ifdef CONFIG_GENERIC_PENDING_IRQ
64 	if (!zalloc_cpumask_var_node(&desc->pending_mask, gfp, node)) {
65 		free_cpumask_var(desc->irq_common_data.affinity);
66 		return -ENOMEM;
67 	}
68 #endif
69 	return 0;
70 }
71 
72 static void desc_smp_init(struct irq_desc *desc, int node,
73 			  const struct cpumask *affinity)
74 {
75 	if (!affinity)
76 		affinity = irq_default_affinity;
77 	cpumask_copy(desc->irq_common_data.affinity, affinity);
78 
79 #ifdef CONFIG_GENERIC_PENDING_IRQ
80 	cpumask_clear(desc->pending_mask);
81 #endif
82 #ifdef CONFIG_NUMA
83 	desc->irq_common_data.node = node;
84 #endif
85 }
86 
87 #else
88 static inline int
89 alloc_masks(struct irq_desc *desc, gfp_t gfp, int node) { return 0; }
90 static inline void
91 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
92 #endif
93 
94 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
95 			      const struct cpumask *affinity, struct module *owner)
96 {
97 	int cpu;
98 
99 	desc->irq_common_data.handler_data = NULL;
100 	desc->irq_common_data.msi_desc = NULL;
101 
102 	desc->irq_data.common = &desc->irq_common_data;
103 	desc->irq_data.irq = irq;
104 	desc->irq_data.chip = &no_irq_chip;
105 	desc->irq_data.chip_data = NULL;
106 	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
107 	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
108 	desc->handle_irq = handle_bad_irq;
109 	desc->depth = 1;
110 	desc->irq_count = 0;
111 	desc->irqs_unhandled = 0;
112 	desc->name = NULL;
113 	desc->owner = owner;
114 	for_each_possible_cpu(cpu)
115 		*per_cpu_ptr(desc->kstat_irqs, cpu) = 0;
116 	desc_smp_init(desc, node, affinity);
117 }
118 
119 int nr_irqs = NR_IRQS;
120 EXPORT_SYMBOL_GPL(nr_irqs);
121 
122 static DEFINE_MUTEX(sparse_irq_lock);
123 static DECLARE_BITMAP(allocated_irqs, IRQ_BITMAP_BITS);
124 
125 #ifdef CONFIG_SPARSE_IRQ
126 
127 static void irq_kobj_release(struct kobject *kobj);
128 
129 #ifdef CONFIG_SYSFS
130 static struct kobject *irq_kobj_base;
131 
132 #define IRQ_ATTR_RO(_name) \
133 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
134 
135 static ssize_t per_cpu_count_show(struct kobject *kobj,
136 				  struct kobj_attribute *attr, char *buf)
137 {
138 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
139 	int cpu, irq = desc->irq_data.irq;
140 	ssize_t ret = 0;
141 	char *p = "";
142 
143 	for_each_possible_cpu(cpu) {
144 		unsigned int c = kstat_irqs_cpu(irq, cpu);
145 
146 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%u", p, c);
147 		p = ",";
148 	}
149 
150 	ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
151 	return ret;
152 }
153 IRQ_ATTR_RO(per_cpu_count);
154 
155 static ssize_t chip_name_show(struct kobject *kobj,
156 			      struct kobj_attribute *attr, char *buf)
157 {
158 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
159 	ssize_t ret = 0;
160 
161 	raw_spin_lock_irq(&desc->lock);
162 	if (desc->irq_data.chip && desc->irq_data.chip->name) {
163 		ret = scnprintf(buf, PAGE_SIZE, "%s\n",
164 				desc->irq_data.chip->name);
165 	}
166 	raw_spin_unlock_irq(&desc->lock);
167 
168 	return ret;
169 }
170 IRQ_ATTR_RO(chip_name);
171 
172 static ssize_t hwirq_show(struct kobject *kobj,
173 			  struct kobj_attribute *attr, char *buf)
174 {
175 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
176 	ssize_t ret = 0;
177 
178 	raw_spin_lock_irq(&desc->lock);
179 	if (desc->irq_data.domain)
180 		ret = sprintf(buf, "%d\n", (int)desc->irq_data.hwirq);
181 	raw_spin_unlock_irq(&desc->lock);
182 
183 	return ret;
184 }
185 IRQ_ATTR_RO(hwirq);
186 
187 static ssize_t type_show(struct kobject *kobj,
188 			 struct kobj_attribute *attr, char *buf)
189 {
190 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
191 	ssize_t ret = 0;
192 
193 	raw_spin_lock_irq(&desc->lock);
194 	ret = sprintf(buf, "%s\n",
195 		      irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
196 	raw_spin_unlock_irq(&desc->lock);
197 
198 	return ret;
199 
200 }
201 IRQ_ATTR_RO(type);
202 
203 static ssize_t name_show(struct kobject *kobj,
204 			 struct kobj_attribute *attr, char *buf)
205 {
206 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
207 	ssize_t ret = 0;
208 
209 	raw_spin_lock_irq(&desc->lock);
210 	if (desc->name)
211 		ret = scnprintf(buf, PAGE_SIZE, "%s\n", desc->name);
212 	raw_spin_unlock_irq(&desc->lock);
213 
214 	return ret;
215 }
216 IRQ_ATTR_RO(name);
217 
218 static ssize_t actions_show(struct kobject *kobj,
219 			    struct kobj_attribute *attr, char *buf)
220 {
221 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
222 	struct irqaction *action;
223 	ssize_t ret = 0;
224 	char *p = "";
225 
226 	raw_spin_lock_irq(&desc->lock);
227 	for (action = desc->action; action != NULL; action = action->next) {
228 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%s%s",
229 				 p, action->name);
230 		p = ",";
231 	}
232 	raw_spin_unlock_irq(&desc->lock);
233 
234 	if (ret)
235 		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
236 
237 	return ret;
238 }
239 IRQ_ATTR_RO(actions);
240 
241 static struct attribute *irq_attrs[] = {
242 	&per_cpu_count_attr.attr,
243 	&chip_name_attr.attr,
244 	&hwirq_attr.attr,
245 	&type_attr.attr,
246 	&name_attr.attr,
247 	&actions_attr.attr,
248 	NULL
249 };
250 
251 static struct kobj_type irq_kobj_type = {
252 	.release	= irq_kobj_release,
253 	.sysfs_ops	= &kobj_sysfs_ops,
254 	.default_attrs	= irq_attrs,
255 };
256 
257 static void irq_sysfs_add(int irq, struct irq_desc *desc)
258 {
259 	if (irq_kobj_base) {
260 		/*
261 		 * Continue even in case of failure as this is nothing
262 		 * crucial.
263 		 */
264 		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
265 			pr_warn("Failed to add kobject for irq %d\n", irq);
266 	}
267 }
268 
269 static int __init irq_sysfs_init(void)
270 {
271 	struct irq_desc *desc;
272 	int irq;
273 
274 	/* Prevent concurrent irq alloc/free */
275 	irq_lock_sparse();
276 
277 	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
278 	if (!irq_kobj_base) {
279 		irq_unlock_sparse();
280 		return -ENOMEM;
281 	}
282 
283 	/* Add the already allocated interrupts */
284 	for_each_irq_desc(irq, desc)
285 		irq_sysfs_add(irq, desc);
286 	irq_unlock_sparse();
287 
288 	return 0;
289 }
290 postcore_initcall(irq_sysfs_init);
291 
292 #else /* !CONFIG_SYSFS */
293 
294 static struct kobj_type irq_kobj_type = {
295 	.release	= irq_kobj_release,
296 };
297 
298 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
299 
300 #endif /* CONFIG_SYSFS */
301 
302 static RADIX_TREE(irq_desc_tree, GFP_KERNEL);
303 
304 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
305 {
306 	radix_tree_insert(&irq_desc_tree, irq, desc);
307 }
308 
309 struct irq_desc *irq_to_desc(unsigned int irq)
310 {
311 	return radix_tree_lookup(&irq_desc_tree, irq);
312 }
313 EXPORT_SYMBOL(irq_to_desc);
314 
315 static void delete_irq_desc(unsigned int irq)
316 {
317 	radix_tree_delete(&irq_desc_tree, irq);
318 }
319 
320 #ifdef CONFIG_SMP
321 static void free_masks(struct irq_desc *desc)
322 {
323 #ifdef CONFIG_GENERIC_PENDING_IRQ
324 	free_cpumask_var(desc->pending_mask);
325 #endif
326 	free_cpumask_var(desc->irq_common_data.affinity);
327 }
328 #else
329 static inline void free_masks(struct irq_desc *desc) { }
330 #endif
331 
332 void irq_lock_sparse(void)
333 {
334 	mutex_lock(&sparse_irq_lock);
335 }
336 
337 void irq_unlock_sparse(void)
338 {
339 	mutex_unlock(&sparse_irq_lock);
340 }
341 
342 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
343 				   const struct cpumask *affinity,
344 				   struct module *owner)
345 {
346 	struct irq_desc *desc;
347 	gfp_t gfp = GFP_KERNEL;
348 
349 	desc = kzalloc_node(sizeof(*desc), gfp, node);
350 	if (!desc)
351 		return NULL;
352 	/* allocate based on nr_cpu_ids */
353 	desc->kstat_irqs = alloc_percpu(unsigned int);
354 	if (!desc->kstat_irqs)
355 		goto err_desc;
356 
357 	if (alloc_masks(desc, gfp, node))
358 		goto err_kstat;
359 
360 	raw_spin_lock_init(&desc->lock);
361 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
362 	init_rcu_head(&desc->rcu);
363 
364 	desc_set_defaults(irq, desc, node, affinity, owner);
365 	irqd_set(&desc->irq_data, flags);
366 	kobject_init(&desc->kobj, &irq_kobj_type);
367 
368 	return desc;
369 
370 err_kstat:
371 	free_percpu(desc->kstat_irqs);
372 err_desc:
373 	kfree(desc);
374 	return NULL;
375 }
376 
377 static void irq_kobj_release(struct kobject *kobj)
378 {
379 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
380 
381 	free_masks(desc);
382 	free_percpu(desc->kstat_irqs);
383 	kfree(desc);
384 }
385 
386 static void delayed_free_desc(struct rcu_head *rhp)
387 {
388 	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
389 
390 	kobject_put(&desc->kobj);
391 }
392 
393 static void free_desc(unsigned int irq)
394 {
395 	struct irq_desc *desc = irq_to_desc(irq);
396 
397 	irq_remove_debugfs_entry(desc);
398 	unregister_irq_proc(irq, desc);
399 
400 	/*
401 	 * sparse_irq_lock protects also show_interrupts() and
402 	 * kstat_irq_usr(). Once we deleted the descriptor from the
403 	 * sparse tree we can free it. Access in proc will fail to
404 	 * lookup the descriptor.
405 	 *
406 	 * The sysfs entry must be serialized against a concurrent
407 	 * irq_sysfs_init() as well.
408 	 */
409 	mutex_lock(&sparse_irq_lock);
410 	kobject_del(&desc->kobj);
411 	delete_irq_desc(irq);
412 	mutex_unlock(&sparse_irq_lock);
413 
414 	/*
415 	 * We free the descriptor, masks and stat fields via RCU. That
416 	 * allows demultiplex interrupts to do rcu based management of
417 	 * the child interrupts.
418 	 */
419 	call_rcu(&desc->rcu, delayed_free_desc);
420 }
421 
422 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
423 		       const struct cpumask *affinity, struct module *owner)
424 {
425 	const struct cpumask *mask = NULL;
426 	struct irq_desc *desc;
427 	unsigned int flags;
428 	int i;
429 
430 	/* Validate affinity mask(s) */
431 	if (affinity) {
432 		for (i = 0, mask = affinity; i < cnt; i++, mask++) {
433 			if (cpumask_empty(mask))
434 				return -EINVAL;
435 		}
436 	}
437 
438 	flags = affinity ? IRQD_AFFINITY_MANAGED : 0;
439 	mask = NULL;
440 
441 	for (i = 0; i < cnt; i++) {
442 		if (affinity) {
443 			node = cpu_to_node(cpumask_first(affinity));
444 			mask = affinity;
445 			affinity++;
446 		}
447 		desc = alloc_desc(start + i, node, flags, mask, owner);
448 		if (!desc)
449 			goto err;
450 		mutex_lock(&sparse_irq_lock);
451 		irq_insert_desc(start + i, desc);
452 		irq_sysfs_add(start + i, desc);
453 		mutex_unlock(&sparse_irq_lock);
454 	}
455 	return start;
456 
457 err:
458 	for (i--; i >= 0; i--)
459 		free_desc(start + i);
460 
461 	mutex_lock(&sparse_irq_lock);
462 	bitmap_clear(allocated_irqs, start, cnt);
463 	mutex_unlock(&sparse_irq_lock);
464 	return -ENOMEM;
465 }
466 
467 static int irq_expand_nr_irqs(unsigned int nr)
468 {
469 	if (nr > IRQ_BITMAP_BITS)
470 		return -ENOMEM;
471 	nr_irqs = nr;
472 	return 0;
473 }
474 
475 int __init early_irq_init(void)
476 {
477 	int i, initcnt, node = first_online_node;
478 	struct irq_desc *desc;
479 
480 	init_irq_default_affinity();
481 
482 	/* Let arch update nr_irqs and return the nr of preallocated irqs */
483 	initcnt = arch_probe_nr_irqs();
484 	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
485 	       NR_IRQS, nr_irqs, initcnt);
486 
487 	if (WARN_ON(nr_irqs > IRQ_BITMAP_BITS))
488 		nr_irqs = IRQ_BITMAP_BITS;
489 
490 	if (WARN_ON(initcnt > IRQ_BITMAP_BITS))
491 		initcnt = IRQ_BITMAP_BITS;
492 
493 	if (initcnt > nr_irqs)
494 		nr_irqs = initcnt;
495 
496 	for (i = 0; i < initcnt; i++) {
497 		desc = alloc_desc(i, node, 0, NULL, NULL);
498 		set_bit(i, allocated_irqs);
499 		irq_insert_desc(i, desc);
500 	}
501 	return arch_early_irq_init();
502 }
503 
504 #else /* !CONFIG_SPARSE_IRQ */
505 
506 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
507 	[0 ... NR_IRQS-1] = {
508 		.handle_irq	= handle_bad_irq,
509 		.depth		= 1,
510 		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
511 	}
512 };
513 
514 int __init early_irq_init(void)
515 {
516 	int count, i, node = first_online_node;
517 	struct irq_desc *desc;
518 
519 	init_irq_default_affinity();
520 
521 	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
522 
523 	desc = irq_desc;
524 	count = ARRAY_SIZE(irq_desc);
525 
526 	for (i = 0; i < count; i++) {
527 		desc[i].kstat_irqs = alloc_percpu(unsigned int);
528 		alloc_masks(&desc[i], GFP_KERNEL, node);
529 		raw_spin_lock_init(&desc[i].lock);
530 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
531 		desc_set_defaults(i, &desc[i], node, NULL, NULL);
532 	}
533 	return arch_early_irq_init();
534 }
535 
536 struct irq_desc *irq_to_desc(unsigned int irq)
537 {
538 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
539 }
540 EXPORT_SYMBOL(irq_to_desc);
541 
542 static void free_desc(unsigned int irq)
543 {
544 	struct irq_desc *desc = irq_to_desc(irq);
545 	unsigned long flags;
546 
547 	raw_spin_lock_irqsave(&desc->lock, flags);
548 	desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
549 	raw_spin_unlock_irqrestore(&desc->lock, flags);
550 }
551 
552 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
553 			      const struct cpumask *affinity,
554 			      struct module *owner)
555 {
556 	u32 i;
557 
558 	for (i = 0; i < cnt; i++) {
559 		struct irq_desc *desc = irq_to_desc(start + i);
560 
561 		desc->owner = owner;
562 	}
563 	return start;
564 }
565 
566 static int irq_expand_nr_irqs(unsigned int nr)
567 {
568 	return -ENOMEM;
569 }
570 
571 void irq_mark_irq(unsigned int irq)
572 {
573 	mutex_lock(&sparse_irq_lock);
574 	bitmap_set(allocated_irqs, irq, 1);
575 	mutex_unlock(&sparse_irq_lock);
576 }
577 
578 #ifdef CONFIG_GENERIC_IRQ_LEGACY
579 void irq_init_desc(unsigned int irq)
580 {
581 	free_desc(irq);
582 }
583 #endif
584 
585 #endif /* !CONFIG_SPARSE_IRQ */
586 
587 /**
588  * generic_handle_irq - Invoke the handler for a particular irq
589  * @irq:	The irq number to handle
590  *
591  */
592 int generic_handle_irq(unsigned int irq)
593 {
594 	struct irq_desc *desc = irq_to_desc(irq);
595 
596 	if (!desc)
597 		return -EINVAL;
598 	generic_handle_irq_desc(desc);
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(generic_handle_irq);
602 
603 #ifdef CONFIG_HANDLE_DOMAIN_IRQ
604 /**
605  * __handle_domain_irq - Invoke the handler for a HW irq belonging to a domain
606  * @domain:	The domain where to perform the lookup
607  * @hwirq:	The HW irq number to convert to a logical one
608  * @lookup:	Whether to perform the domain lookup or not
609  * @regs:	Register file coming from the low-level handling code
610  *
611  * Returns:	0 on success, or -EINVAL if conversion has failed
612  */
613 int __handle_domain_irq(struct irq_domain *domain, unsigned int hwirq,
614 			bool lookup, struct pt_regs *regs)
615 {
616 	struct pt_regs *old_regs = set_irq_regs(regs);
617 	unsigned int irq = hwirq;
618 	int ret = 0;
619 
620 	irq_enter();
621 
622 #ifdef CONFIG_IRQ_DOMAIN
623 	if (lookup)
624 		irq = irq_find_mapping(domain, hwirq);
625 #endif
626 
627 	/*
628 	 * Some hardware gives randomly wrong interrupts.  Rather
629 	 * than crashing, do something sensible.
630 	 */
631 	if (unlikely(!irq || irq >= nr_irqs)) {
632 		ack_bad_irq(irq);
633 		ret = -EINVAL;
634 	} else {
635 		generic_handle_irq(irq);
636 	}
637 
638 	irq_exit();
639 	set_irq_regs(old_regs);
640 	return ret;
641 }
642 #endif
643 
644 /* Dynamic interrupt handling */
645 
646 /**
647  * irq_free_descs - free irq descriptors
648  * @from:	Start of descriptor range
649  * @cnt:	Number of consecutive irqs to free
650  */
651 void irq_free_descs(unsigned int from, unsigned int cnt)
652 {
653 	int i;
654 
655 	if (from >= nr_irqs || (from + cnt) > nr_irqs)
656 		return;
657 
658 	for (i = 0; i < cnt; i++)
659 		free_desc(from + i);
660 
661 	mutex_lock(&sparse_irq_lock);
662 	bitmap_clear(allocated_irqs, from, cnt);
663 	mutex_unlock(&sparse_irq_lock);
664 }
665 EXPORT_SYMBOL_GPL(irq_free_descs);
666 
667 /**
668  * irq_alloc_descs - allocate and initialize a range of irq descriptors
669  * @irq:	Allocate for specific irq number if irq >= 0
670  * @from:	Start the search from this irq number
671  * @cnt:	Number of consecutive irqs to allocate.
672  * @node:	Preferred node on which the irq descriptor should be allocated
673  * @owner:	Owning module (can be NULL)
674  * @affinity:	Optional pointer to an affinity mask array of size @cnt which
675  *		hints where the irq descriptors should be allocated and which
676  *		default affinities to use
677  *
678  * Returns the first irq number or error code
679  */
680 int __ref
681 __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
682 		  struct module *owner, const struct cpumask *affinity)
683 {
684 	int start, ret;
685 
686 	if (!cnt)
687 		return -EINVAL;
688 
689 	if (irq >= 0) {
690 		if (from > irq)
691 			return -EINVAL;
692 		from = irq;
693 	} else {
694 		/*
695 		 * For interrupts which are freely allocated the
696 		 * architecture can force a lower bound to the @from
697 		 * argument. x86 uses this to exclude the GSI space.
698 		 */
699 		from = arch_dynirq_lower_bound(from);
700 	}
701 
702 	mutex_lock(&sparse_irq_lock);
703 
704 	start = bitmap_find_next_zero_area(allocated_irqs, IRQ_BITMAP_BITS,
705 					   from, cnt, 0);
706 	ret = -EEXIST;
707 	if (irq >=0 && start != irq)
708 		goto err;
709 
710 	if (start + cnt > nr_irqs) {
711 		ret = irq_expand_nr_irqs(start + cnt);
712 		if (ret)
713 			goto err;
714 	}
715 
716 	bitmap_set(allocated_irqs, start, cnt);
717 	mutex_unlock(&sparse_irq_lock);
718 	return alloc_descs(start, cnt, node, affinity, owner);
719 
720 err:
721 	mutex_unlock(&sparse_irq_lock);
722 	return ret;
723 }
724 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
725 
726 #ifdef CONFIG_GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
727 /**
728  * irq_alloc_hwirqs - Allocate an irq descriptor and initialize the hardware
729  * @cnt:	number of interrupts to allocate
730  * @node:	node on which to allocate
731  *
732  * Returns an interrupt number > 0 or 0, if the allocation fails.
733  */
734 unsigned int irq_alloc_hwirqs(int cnt, int node)
735 {
736 	int i, irq = __irq_alloc_descs(-1, 0, cnt, node, NULL, NULL);
737 
738 	if (irq < 0)
739 		return 0;
740 
741 	for (i = irq; cnt > 0; i++, cnt--) {
742 		if (arch_setup_hwirq(i, node))
743 			goto err;
744 		irq_clear_status_flags(i, _IRQ_NOREQUEST);
745 	}
746 	return irq;
747 
748 err:
749 	for (i--; i >= irq; i--) {
750 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
751 		arch_teardown_hwirq(i);
752 	}
753 	irq_free_descs(irq, cnt);
754 	return 0;
755 }
756 EXPORT_SYMBOL_GPL(irq_alloc_hwirqs);
757 
758 /**
759  * irq_free_hwirqs - Free irq descriptor and cleanup the hardware
760  * @from:	Free from irq number
761  * @cnt:	number of interrupts to free
762  *
763  */
764 void irq_free_hwirqs(unsigned int from, int cnt)
765 {
766 	int i, j;
767 
768 	for (i = from, j = cnt; j > 0; i++, j--) {
769 		irq_set_status_flags(i, _IRQ_NOREQUEST | _IRQ_NOPROBE);
770 		arch_teardown_hwirq(i);
771 	}
772 	irq_free_descs(from, cnt);
773 }
774 EXPORT_SYMBOL_GPL(irq_free_hwirqs);
775 #endif
776 
777 /**
778  * irq_get_next_irq - get next allocated irq number
779  * @offset:	where to start the search
780  *
781  * Returns next irq number after offset or nr_irqs if none is found.
782  */
783 unsigned int irq_get_next_irq(unsigned int offset)
784 {
785 	return find_next_bit(allocated_irqs, nr_irqs, offset);
786 }
787 
788 struct irq_desc *
789 __irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
790 		    unsigned int check)
791 {
792 	struct irq_desc *desc = irq_to_desc(irq);
793 
794 	if (desc) {
795 		if (check & _IRQ_DESC_CHECK) {
796 			if ((check & _IRQ_DESC_PERCPU) &&
797 			    !irq_settings_is_per_cpu_devid(desc))
798 				return NULL;
799 
800 			if (!(check & _IRQ_DESC_PERCPU) &&
801 			    irq_settings_is_per_cpu_devid(desc))
802 				return NULL;
803 		}
804 
805 		if (bus)
806 			chip_bus_lock(desc);
807 		raw_spin_lock_irqsave(&desc->lock, *flags);
808 	}
809 	return desc;
810 }
811 
812 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
813 {
814 	raw_spin_unlock_irqrestore(&desc->lock, flags);
815 	if (bus)
816 		chip_bus_sync_unlock(desc);
817 }
818 
819 int irq_set_percpu_devid_partition(unsigned int irq,
820 				   const struct cpumask *affinity)
821 {
822 	struct irq_desc *desc = irq_to_desc(irq);
823 
824 	if (!desc)
825 		return -EINVAL;
826 
827 	if (desc->percpu_enabled)
828 		return -EINVAL;
829 
830 	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
831 
832 	if (!desc->percpu_enabled)
833 		return -ENOMEM;
834 
835 	if (affinity)
836 		desc->percpu_affinity = affinity;
837 	else
838 		desc->percpu_affinity = cpu_possible_mask;
839 
840 	irq_set_percpu_devid_flags(irq);
841 	return 0;
842 }
843 
844 int irq_set_percpu_devid(unsigned int irq)
845 {
846 	return irq_set_percpu_devid_partition(irq, NULL);
847 }
848 
849 int irq_get_percpu_devid_partition(unsigned int irq, struct cpumask *affinity)
850 {
851 	struct irq_desc *desc = irq_to_desc(irq);
852 
853 	if (!desc || !desc->percpu_enabled)
854 		return -EINVAL;
855 
856 	if (affinity)
857 		cpumask_copy(affinity, desc->percpu_affinity);
858 
859 	return 0;
860 }
861 
862 void kstat_incr_irq_this_cpu(unsigned int irq)
863 {
864 	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
865 }
866 
867 /**
868  * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
869  * @irq:	The interrupt number
870  * @cpu:	The cpu number
871  *
872  * Returns the sum of interrupt counts on @cpu since boot for
873  * @irq. The caller must ensure that the interrupt is not removed
874  * concurrently.
875  */
876 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
877 {
878 	struct irq_desc *desc = irq_to_desc(irq);
879 
880 	return desc && desc->kstat_irqs ?
881 			*per_cpu_ptr(desc->kstat_irqs, cpu) : 0;
882 }
883 
884 /**
885  * kstat_irqs - Get the statistics for an interrupt
886  * @irq:	The interrupt number
887  *
888  * Returns the sum of interrupt counts on all cpus since boot for
889  * @irq. The caller must ensure that the interrupt is not removed
890  * concurrently.
891  */
892 unsigned int kstat_irqs(unsigned int irq)
893 {
894 	struct irq_desc *desc = irq_to_desc(irq);
895 	int cpu;
896 	unsigned int sum = 0;
897 
898 	if (!desc || !desc->kstat_irqs)
899 		return 0;
900 	for_each_possible_cpu(cpu)
901 		sum += *per_cpu_ptr(desc->kstat_irqs, cpu);
902 	return sum;
903 }
904 
905 /**
906  * kstat_irqs_usr - Get the statistics for an interrupt
907  * @irq:	The interrupt number
908  *
909  * Returns the sum of interrupt counts on all cpus since boot for
910  * @irq. Contrary to kstat_irqs() this can be called from any
911  * preemptible context. It's protected against concurrent removal of
912  * an interrupt descriptor when sparse irqs are enabled.
913  */
914 unsigned int kstat_irqs_usr(unsigned int irq)
915 {
916 	unsigned int sum;
917 
918 	irq_lock_sparse();
919 	sum = kstat_irqs(irq);
920 	irq_unlock_sparse();
921 	return sum;
922 }
923