xref: /linux/kernel/irq/handle.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 
19 #include "internals.h"
20 
21 /**
22  * handle_bad_irq - handle spurious and unhandled irqs
23  * @irq:       the interrupt number
24  * @desc:      description of the interrupt
25  * @regs:      pointer to a register structure
26  *
27  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
28  */
29 void fastcall
30 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
31 {
32 	print_irq_desc(irq, desc);
33 	kstat_this_cpu.irqs[irq]++;
34 	ack_bad_irq(irq);
35 }
36 
37 /*
38  * Linux has a controller-independent interrupt architecture.
39  * Every controller has a 'controller-template', that is used
40  * by the main code to do the right thing. Each driver-visible
41  * interrupt source is transparently wired to the appropriate
42  * controller. Thus drivers need not be aware of the
43  * interrupt-controller.
44  *
45  * The code is designed to be easily extended with new/different
46  * interrupt controllers, without having to do assembly magic or
47  * having to touch the generic code.
48  *
49  * Controller mappings for all interrupt sources:
50  */
51 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned = {
52 	[0 ... NR_IRQS-1] = {
53 		.status = IRQ_DISABLED,
54 		.chip = &no_irq_chip,
55 		.handle_irq = handle_bad_irq,
56 		.depth = 1,
57 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
58 #ifdef CONFIG_SMP
59 		.affinity = CPU_MASK_ALL
60 #endif
61 	}
62 };
63 
64 /*
65  * What should we do if we get a hw irq event on an illegal vector?
66  * Each architecture has to answer this themself.
67  */
68 static void ack_bad(unsigned int irq)
69 {
70 	print_irq_desc(irq, irq_desc + irq);
71 	ack_bad_irq(irq);
72 }
73 
74 /*
75  * NOP functions
76  */
77 static void noop(unsigned int irq)
78 {
79 }
80 
81 static unsigned int noop_ret(unsigned int irq)
82 {
83 	return 0;
84 }
85 
86 /*
87  * Generic no controller implementation
88  */
89 struct irq_chip no_irq_chip = {
90 	.name		= "none",
91 	.startup	= noop_ret,
92 	.shutdown	= noop,
93 	.enable		= noop,
94 	.disable	= noop,
95 	.ack		= ack_bad,
96 	.end		= noop,
97 };
98 
99 /*
100  * Generic dummy implementation which can be used for
101  * real dumb interrupt sources
102  */
103 struct irq_chip dummy_irq_chip = {
104 	.name		= "dummy",
105 	.startup	= noop_ret,
106 	.shutdown	= noop,
107 	.enable		= noop,
108 	.disable	= noop,
109 	.ack		= noop,
110 	.mask		= noop,
111 	.unmask		= noop,
112 	.end		= noop,
113 };
114 
115 /*
116  * Special, empty irq handler:
117  */
118 irqreturn_t no_action(int cpl, void *dev_id)
119 {
120 	return IRQ_NONE;
121 }
122 
123 /**
124  * handle_IRQ_event - irq action chain handler
125  * @irq:	the interrupt number
126  * @action:	the interrupt action chain for this irq
127  *
128  * Handles the action chain of an irq event
129  */
130 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
131 {
132 	irqreturn_t ret, retval = IRQ_NONE;
133 	unsigned int status = 0;
134 
135 	handle_dynamic_tick(action);
136 
137 	if (!(action->flags & IRQF_DISABLED))
138 		local_irq_enable_in_hardirq();
139 
140 	do {
141 		ret = action->handler(irq, action->dev_id);
142 		if (ret == IRQ_HANDLED)
143 			status |= action->flags;
144 		retval |= ret;
145 		action = action->next;
146 	} while (action);
147 
148 	if (status & IRQF_SAMPLE_RANDOM)
149 		add_interrupt_randomness(irq);
150 	local_irq_disable();
151 
152 	return retval;
153 }
154 
155 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
156 /**
157  * __do_IRQ - original all in one highlevel IRQ handler
158  * @irq:	the interrupt number
159  *
160  * __do_IRQ handles all normal device IRQ's (the special
161  * SMP cross-CPU interrupts have their own specific
162  * handlers).
163  *
164  * This is the original x86 implementation which is used for every
165  * interrupt type.
166  */
167 fastcall unsigned int __do_IRQ(unsigned int irq)
168 {
169 	struct irq_desc *desc = irq_desc + irq;
170 	struct irqaction *action;
171 	unsigned int status;
172 
173 	kstat_this_cpu.irqs[irq]++;
174 	if (CHECK_IRQ_PER_CPU(desc->status)) {
175 		irqreturn_t action_ret;
176 
177 		/*
178 		 * No locking required for CPU-local interrupts:
179 		 */
180 		if (desc->chip->ack)
181 			desc->chip->ack(irq);
182 		action_ret = handle_IRQ_event(irq, desc->action);
183 		desc->chip->end(irq);
184 		return 1;
185 	}
186 
187 	spin_lock(&desc->lock);
188 	if (desc->chip->ack)
189 		desc->chip->ack(irq);
190 	/*
191 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
192 	 * WAITING is used by probe to mark irqs that are being tested
193 	 */
194 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
195 	status |= IRQ_PENDING; /* we _want_ to handle it */
196 
197 	/*
198 	 * If the IRQ is disabled for whatever reason, we cannot
199 	 * use the action we have.
200 	 */
201 	action = NULL;
202 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
203 		action = desc->action;
204 		status &= ~IRQ_PENDING; /* we commit to handling */
205 		status |= IRQ_INPROGRESS; /* we are handling it */
206 	}
207 	desc->status = status;
208 
209 	/*
210 	 * If there is no IRQ handler or it was disabled, exit early.
211 	 * Since we set PENDING, if another processor is handling
212 	 * a different instance of this same irq, the other processor
213 	 * will take care of it.
214 	 */
215 	if (unlikely(!action))
216 		goto out;
217 
218 	/*
219 	 * Edge triggered interrupts need to remember
220 	 * pending events.
221 	 * This applies to any hw interrupts that allow a second
222 	 * instance of the same irq to arrive while we are in do_IRQ
223 	 * or in the handler. But the code here only handles the _second_
224 	 * instance of the irq, not the third or fourth. So it is mostly
225 	 * useful for irq hardware that does not mask cleanly in an
226 	 * SMP environment.
227 	 */
228 	for (;;) {
229 		irqreturn_t action_ret;
230 
231 		spin_unlock(&desc->lock);
232 
233 		action_ret = handle_IRQ_event(irq, action);
234 		if (!noirqdebug)
235 			note_interrupt(irq, desc, action_ret);
236 
237 		spin_lock(&desc->lock);
238 		if (likely(!(desc->status & IRQ_PENDING)))
239 			break;
240 		desc->status &= ~IRQ_PENDING;
241 	}
242 	desc->status &= ~IRQ_INPROGRESS;
243 
244 out:
245 	/*
246 	 * The ->end() handler has to deal with interrupts which got
247 	 * disabled while the handler was running.
248 	 */
249 	desc->chip->end(irq);
250 	spin_unlock(&desc->lock);
251 
252 	return 1;
253 }
254 #endif
255 
256 #ifdef CONFIG_TRACE_IRQFLAGS
257 
258 /*
259  * lockdep: we want to handle all irq_desc locks as a single lock-class:
260  */
261 static struct lock_class_key irq_desc_lock_class;
262 
263 void early_init_irq_lock_class(void)
264 {
265 	int i;
266 
267 	for (i = 0; i < NR_IRQS; i++)
268 		lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
269 }
270 
271 #endif
272