xref: /linux/kernel/irq/handle.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20 
21 #include "internals.h"
22 
23 /*
24  * lockdep: we want to handle all irq_desc locks as a single lock-class:
25  */
26 struct lock_class_key irq_desc_lock_class;
27 
28 /**
29  * handle_bad_irq - handle spurious and unhandled irqs
30  * @irq:       the interrupt number
31  * @desc:      description of the interrupt
32  *
33  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
34  */
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
36 {
37 	print_irq_desc(irq, desc);
38 	kstat_incr_irqs_this_cpu(irq, desc);
39 	ack_bad_irq(irq);
40 }
41 
42 /*
43  * Linux has a controller-independent interrupt architecture.
44  * Every controller has a 'controller-template', that is used
45  * by the main code to do the right thing. Each driver-visible
46  * interrupt source is transparently wired to the appropriate
47  * controller. Thus drivers need not be aware of the
48  * interrupt-controller.
49  *
50  * The code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic or
52  * having to touch the generic code.
53  *
54  * Controller mappings for all interrupt sources:
55  */
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
58 
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
61 	.irq	    = -1,
62 	.status	    = IRQ_DISABLED,
63 	.chip	    = &no_irq_chip,
64 	.handle_irq = handle_bad_irq,
65 	.depth      = 1,
66 	.lock       = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
67 #ifdef CONFIG_SMP
68 	.affinity   = CPU_MASK_ALL
69 #endif
70 };
71 
72 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
73 {
74 	unsigned long bytes;
75 	char *ptr;
76 	int node;
77 
78 	/* Compute how many bytes we need per irq and allocate them */
79 	bytes = nr * sizeof(unsigned int);
80 
81 	node = cpu_to_node(cpu);
82 	ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
83 	printk(KERN_DEBUG "  alloc kstat_irqs on cpu %d node %d\n", cpu, node);
84 
85 	if (ptr)
86 		desc->kstat_irqs = (unsigned int *)ptr;
87 }
88 
89 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
90 {
91 	memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
92 
93 	spin_lock_init(&desc->lock);
94 	desc->irq = irq;
95 #ifdef CONFIG_SMP
96 	desc->cpu = cpu;
97 #endif
98 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
99 	init_kstat_irqs(desc, cpu, nr_cpu_ids);
100 	if (!desc->kstat_irqs) {
101 		printk(KERN_ERR "can not alloc kstat_irqs\n");
102 		BUG_ON(1);
103 	}
104 	arch_init_chip_data(desc, cpu);
105 }
106 
107 /*
108  * Protect the sparse_irqs:
109  */
110 DEFINE_SPINLOCK(sparse_irq_lock);
111 
112 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
113 
114 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
115 	[0 ... NR_IRQS_LEGACY-1] = {
116 		.irq	    = -1,
117 		.status	    = IRQ_DISABLED,
118 		.chip	    = &no_irq_chip,
119 		.handle_irq = handle_bad_irq,
120 		.depth	    = 1,
121 		.lock	    = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
122 #ifdef CONFIG_SMP
123 		.affinity   = CPU_MASK_ALL
124 #endif
125 	}
126 };
127 
128 /* FIXME: use bootmem alloc ...*/
129 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
130 
131 int __init early_irq_init(void)
132 {
133 	struct irq_desc *desc;
134 	int legacy_count;
135 	int i;
136 
137 	desc = irq_desc_legacy;
138 	legacy_count = ARRAY_SIZE(irq_desc_legacy);
139 
140 	for (i = 0; i < legacy_count; i++) {
141 		desc[i].irq = i;
142 		desc[i].kstat_irqs = kstat_irqs_legacy[i];
143 		lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
144 
145 		irq_desc_ptrs[i] = desc + i;
146 	}
147 
148 	for (i = legacy_count; i < NR_IRQS; i++)
149 		irq_desc_ptrs[i] = NULL;
150 
151 	return arch_early_irq_init();
152 }
153 
154 struct irq_desc *irq_to_desc(unsigned int irq)
155 {
156 	return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
157 }
158 
159 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
160 {
161 	struct irq_desc *desc;
162 	unsigned long flags;
163 	int node;
164 
165 	if (irq >= NR_IRQS) {
166 		printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
167 				irq, NR_IRQS);
168 		WARN_ON(1);
169 		return NULL;
170 	}
171 
172 	desc = irq_desc_ptrs[irq];
173 	if (desc)
174 		return desc;
175 
176 	spin_lock_irqsave(&sparse_irq_lock, flags);
177 
178 	/* We have to check it to avoid races with another CPU */
179 	desc = irq_desc_ptrs[irq];
180 	if (desc)
181 		goto out_unlock;
182 
183 	node = cpu_to_node(cpu);
184 	desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
185 	printk(KERN_DEBUG "  alloc irq_desc for %d on cpu %d node %d\n",
186 		 irq, cpu, node);
187 	if (!desc) {
188 		printk(KERN_ERR "can not alloc irq_desc\n");
189 		BUG_ON(1);
190 	}
191 	init_one_irq_desc(irq, desc, cpu);
192 
193 	irq_desc_ptrs[irq] = desc;
194 
195 out_unlock:
196 	spin_unlock_irqrestore(&sparse_irq_lock, flags);
197 
198 	return desc;
199 }
200 
201 #else /* !CONFIG_SPARSE_IRQ */
202 
203 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
204 	[0 ... NR_IRQS-1] = {
205 		.status = IRQ_DISABLED,
206 		.chip = &no_irq_chip,
207 		.handle_irq = handle_bad_irq,
208 		.depth = 1,
209 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
210 #ifdef CONFIG_SMP
211 		.affinity = CPU_MASK_ALL
212 #endif
213 	}
214 };
215 
216 int __init early_irq_init(void)
217 {
218 	struct irq_desc *desc;
219 	int count;
220 	int i;
221 
222 	desc = irq_desc;
223 	count = ARRAY_SIZE(irq_desc);
224 
225 	for (i = 0; i < count; i++)
226 		desc[i].irq = i;
227 
228 	return arch_early_irq_init();
229 }
230 
231 struct irq_desc *irq_to_desc(unsigned int irq)
232 {
233 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
234 }
235 
236 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
237 {
238 	return irq_to_desc(irq);
239 }
240 #endif /* !CONFIG_SPARSE_IRQ */
241 
242 /*
243  * What should we do if we get a hw irq event on an illegal vector?
244  * Each architecture has to answer this themself.
245  */
246 static void ack_bad(unsigned int irq)
247 {
248 	struct irq_desc *desc = irq_to_desc(irq);
249 
250 	print_irq_desc(irq, desc);
251 	ack_bad_irq(irq);
252 }
253 
254 /*
255  * NOP functions
256  */
257 static void noop(unsigned int irq)
258 {
259 }
260 
261 static unsigned int noop_ret(unsigned int irq)
262 {
263 	return 0;
264 }
265 
266 /*
267  * Generic no controller implementation
268  */
269 struct irq_chip no_irq_chip = {
270 	.name		= "none",
271 	.startup	= noop_ret,
272 	.shutdown	= noop,
273 	.enable		= noop,
274 	.disable	= noop,
275 	.ack		= ack_bad,
276 	.end		= noop,
277 };
278 
279 /*
280  * Generic dummy implementation which can be used for
281  * real dumb interrupt sources
282  */
283 struct irq_chip dummy_irq_chip = {
284 	.name		= "dummy",
285 	.startup	= noop_ret,
286 	.shutdown	= noop,
287 	.enable		= noop,
288 	.disable	= noop,
289 	.ack		= noop,
290 	.mask		= noop,
291 	.unmask		= noop,
292 	.end		= noop,
293 };
294 
295 /*
296  * Special, empty irq handler:
297  */
298 irqreturn_t no_action(int cpl, void *dev_id)
299 {
300 	return IRQ_NONE;
301 }
302 
303 /**
304  * handle_IRQ_event - irq action chain handler
305  * @irq:	the interrupt number
306  * @action:	the interrupt action chain for this irq
307  *
308  * Handles the action chain of an irq event
309  */
310 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
311 {
312 	irqreturn_t ret, retval = IRQ_NONE;
313 	unsigned int status = 0;
314 
315 	if (!(action->flags & IRQF_DISABLED))
316 		local_irq_enable_in_hardirq();
317 
318 	do {
319 		ret = action->handler(irq, action->dev_id);
320 		if (ret == IRQ_HANDLED)
321 			status |= action->flags;
322 		retval |= ret;
323 		action = action->next;
324 	} while (action);
325 
326 	if (status & IRQF_SAMPLE_RANDOM)
327 		add_interrupt_randomness(irq);
328 	local_irq_disable();
329 
330 	return retval;
331 }
332 
333 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
334 /**
335  * __do_IRQ - original all in one highlevel IRQ handler
336  * @irq:	the interrupt number
337  *
338  * __do_IRQ handles all normal device IRQ's (the special
339  * SMP cross-CPU interrupts have their own specific
340  * handlers).
341  *
342  * This is the original x86 implementation which is used for every
343  * interrupt type.
344  */
345 unsigned int __do_IRQ(unsigned int irq)
346 {
347 	struct irq_desc *desc = irq_to_desc(irq);
348 	struct irqaction *action;
349 	unsigned int status;
350 
351 	kstat_incr_irqs_this_cpu(irq, desc);
352 
353 	if (CHECK_IRQ_PER_CPU(desc->status)) {
354 		irqreturn_t action_ret;
355 
356 		/*
357 		 * No locking required for CPU-local interrupts:
358 		 */
359 		if (desc->chip->ack) {
360 			desc->chip->ack(irq);
361 			/* get new one */
362 			desc = irq_remap_to_desc(irq, desc);
363 		}
364 		if (likely(!(desc->status & IRQ_DISABLED))) {
365 			action_ret = handle_IRQ_event(irq, desc->action);
366 			if (!noirqdebug)
367 				note_interrupt(irq, desc, action_ret);
368 		}
369 		desc->chip->end(irq);
370 		return 1;
371 	}
372 
373 	spin_lock(&desc->lock);
374 	if (desc->chip->ack) {
375 		desc->chip->ack(irq);
376 		desc = irq_remap_to_desc(irq, desc);
377 	}
378 	/*
379 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
380 	 * WAITING is used by probe to mark irqs that are being tested
381 	 */
382 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
383 	status |= IRQ_PENDING; /* we _want_ to handle it */
384 
385 	/*
386 	 * If the IRQ is disabled for whatever reason, we cannot
387 	 * use the action we have.
388 	 */
389 	action = NULL;
390 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
391 		action = desc->action;
392 		status &= ~IRQ_PENDING; /* we commit to handling */
393 		status |= IRQ_INPROGRESS; /* we are handling it */
394 	}
395 	desc->status = status;
396 
397 	/*
398 	 * If there is no IRQ handler or it was disabled, exit early.
399 	 * Since we set PENDING, if another processor is handling
400 	 * a different instance of this same irq, the other processor
401 	 * will take care of it.
402 	 */
403 	if (unlikely(!action))
404 		goto out;
405 
406 	/*
407 	 * Edge triggered interrupts need to remember
408 	 * pending events.
409 	 * This applies to any hw interrupts that allow a second
410 	 * instance of the same irq to arrive while we are in do_IRQ
411 	 * or in the handler. But the code here only handles the _second_
412 	 * instance of the irq, not the third or fourth. So it is mostly
413 	 * useful for irq hardware that does not mask cleanly in an
414 	 * SMP environment.
415 	 */
416 	for (;;) {
417 		irqreturn_t action_ret;
418 
419 		spin_unlock(&desc->lock);
420 
421 		action_ret = handle_IRQ_event(irq, action);
422 		if (!noirqdebug)
423 			note_interrupt(irq, desc, action_ret);
424 
425 		spin_lock(&desc->lock);
426 		if (likely(!(desc->status & IRQ_PENDING)))
427 			break;
428 		desc->status &= ~IRQ_PENDING;
429 	}
430 	desc->status &= ~IRQ_INPROGRESS;
431 
432 out:
433 	/*
434 	 * The ->end() handler has to deal with interrupts which got
435 	 * disabled while the handler was running.
436 	 */
437 	desc->chip->end(irq);
438 	spin_unlock(&desc->lock);
439 
440 	return 1;
441 }
442 #endif
443 
444 void early_init_irq_lock_class(void)
445 {
446 	struct irq_desc *desc;
447 	int i;
448 
449 	for_each_irq_desc(i, desc) {
450 		lockdep_set_class(&desc->lock, &irq_desc_lock_class);
451 	}
452 }
453 
454 #ifdef CONFIG_SPARSE_IRQ
455 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
456 {
457 	struct irq_desc *desc = irq_to_desc(irq);
458 	return desc ? desc->kstat_irqs[cpu] : 0;
459 }
460 #endif
461 EXPORT_SYMBOL(kstat_irqs_cpu);
462 
463