xref: /linux/kernel/irq/handle.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * linux/kernel/irq/handle.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6  *
7  * This file contains the core interrupt handling code.
8  *
9  * Detailed information is available in Documentation/DocBook/genericirq
10  *
11  */
12 
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 
19 #include "internals.h"
20 
21 /**
22  * handle_bad_irq - handle spurious and unhandled irqs
23  * @irq:       the interrupt number
24  * @desc:      description of the interrupt
25  *
26  * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
27  */
28 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
29 {
30 	print_irq_desc(irq, desc);
31 	kstat_incr_irqs_this_cpu(irq, desc);
32 	ack_bad_irq(irq);
33 }
34 
35 /*
36  * Linux has a controller-independent interrupt architecture.
37  * Every controller has a 'controller-template', that is used
38  * by the main code to do the right thing. Each driver-visible
39  * interrupt source is transparently wired to the appropriate
40  * controller. Thus drivers need not be aware of the
41  * interrupt-controller.
42  *
43  * The code is designed to be easily extended with new/different
44  * interrupt controllers, without having to do assembly magic or
45  * having to touch the generic code.
46  *
47  * Controller mappings for all interrupt sources:
48  */
49 int nr_irqs = NR_IRQS;
50 EXPORT_SYMBOL_GPL(nr_irqs);
51 
52 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
53 	[0 ... NR_IRQS-1] = {
54 		.status = IRQ_DISABLED,
55 		.chip = &no_irq_chip,
56 		.handle_irq = handle_bad_irq,
57 		.depth = 1,
58 		.lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
59 #ifdef CONFIG_SMP
60 		.affinity = CPU_MASK_ALL
61 #endif
62 	}
63 };
64 
65 /*
66  * What should we do if we get a hw irq event on an illegal vector?
67  * Each architecture has to answer this themself.
68  */
69 static void ack_bad(unsigned int irq)
70 {
71 	struct irq_desc *desc = irq_to_desc(irq);
72 
73 	print_irq_desc(irq, desc);
74 	ack_bad_irq(irq);
75 }
76 
77 /*
78  * NOP functions
79  */
80 static void noop(unsigned int irq)
81 {
82 }
83 
84 static unsigned int noop_ret(unsigned int irq)
85 {
86 	return 0;
87 }
88 
89 /*
90  * Generic no controller implementation
91  */
92 struct irq_chip no_irq_chip = {
93 	.name		= "none",
94 	.startup	= noop_ret,
95 	.shutdown	= noop,
96 	.enable		= noop,
97 	.disable	= noop,
98 	.ack		= ack_bad,
99 	.end		= noop,
100 };
101 
102 /*
103  * Generic dummy implementation which can be used for
104  * real dumb interrupt sources
105  */
106 struct irq_chip dummy_irq_chip = {
107 	.name		= "dummy",
108 	.startup	= noop_ret,
109 	.shutdown	= noop,
110 	.enable		= noop,
111 	.disable	= noop,
112 	.ack		= noop,
113 	.mask		= noop,
114 	.unmask		= noop,
115 	.end		= noop,
116 };
117 
118 /*
119  * Special, empty irq handler:
120  */
121 irqreturn_t no_action(int cpl, void *dev_id)
122 {
123 	return IRQ_NONE;
124 }
125 
126 /**
127  * handle_IRQ_event - irq action chain handler
128  * @irq:	the interrupt number
129  * @action:	the interrupt action chain for this irq
130  *
131  * Handles the action chain of an irq event
132  */
133 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
134 {
135 	irqreturn_t ret, retval = IRQ_NONE;
136 	unsigned int status = 0;
137 
138 	if (!(action->flags & IRQF_DISABLED))
139 		local_irq_enable_in_hardirq();
140 
141 	do {
142 		ret = action->handler(irq, action->dev_id);
143 		if (ret == IRQ_HANDLED)
144 			status |= action->flags;
145 		retval |= ret;
146 		action = action->next;
147 	} while (action);
148 
149 	if (status & IRQF_SAMPLE_RANDOM)
150 		add_interrupt_randomness(irq);
151 	local_irq_disable();
152 
153 	return retval;
154 }
155 
156 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
157 /**
158  * __do_IRQ - original all in one highlevel IRQ handler
159  * @irq:	the interrupt number
160  *
161  * __do_IRQ handles all normal device IRQ's (the special
162  * SMP cross-CPU interrupts have their own specific
163  * handlers).
164  *
165  * This is the original x86 implementation which is used for every
166  * interrupt type.
167  */
168 unsigned int __do_IRQ(unsigned int irq)
169 {
170 	struct irq_desc *desc = irq_to_desc(irq);
171 	struct irqaction *action;
172 	unsigned int status;
173 
174 	kstat_incr_irqs_this_cpu(irq, desc);
175 
176 	if (CHECK_IRQ_PER_CPU(desc->status)) {
177 		irqreturn_t action_ret;
178 
179 		/*
180 		 * No locking required for CPU-local interrupts:
181 		 */
182 		if (desc->chip->ack)
183 			desc->chip->ack(irq);
184 		if (likely(!(desc->status & IRQ_DISABLED))) {
185 			action_ret = handle_IRQ_event(irq, desc->action);
186 			if (!noirqdebug)
187 				note_interrupt(irq, desc, action_ret);
188 		}
189 		desc->chip->end(irq);
190 		return 1;
191 	}
192 
193 	spin_lock(&desc->lock);
194 	if (desc->chip->ack)
195 		desc->chip->ack(irq);
196 	/*
197 	 * REPLAY is when Linux resends an IRQ that was dropped earlier
198 	 * WAITING is used by probe to mark irqs that are being tested
199 	 */
200 	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
201 	status |= IRQ_PENDING; /* we _want_ to handle it */
202 
203 	/*
204 	 * If the IRQ is disabled for whatever reason, we cannot
205 	 * use the action we have.
206 	 */
207 	action = NULL;
208 	if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
209 		action = desc->action;
210 		status &= ~IRQ_PENDING; /* we commit to handling */
211 		status |= IRQ_INPROGRESS; /* we are handling it */
212 	}
213 	desc->status = status;
214 
215 	/*
216 	 * If there is no IRQ handler or it was disabled, exit early.
217 	 * Since we set PENDING, if another processor is handling
218 	 * a different instance of this same irq, the other processor
219 	 * will take care of it.
220 	 */
221 	if (unlikely(!action))
222 		goto out;
223 
224 	/*
225 	 * Edge triggered interrupts need to remember
226 	 * pending events.
227 	 * This applies to any hw interrupts that allow a second
228 	 * instance of the same irq to arrive while we are in do_IRQ
229 	 * or in the handler. But the code here only handles the _second_
230 	 * instance of the irq, not the third or fourth. So it is mostly
231 	 * useful for irq hardware that does not mask cleanly in an
232 	 * SMP environment.
233 	 */
234 	for (;;) {
235 		irqreturn_t action_ret;
236 
237 		spin_unlock(&desc->lock);
238 
239 		action_ret = handle_IRQ_event(irq, action);
240 		if (!noirqdebug)
241 			note_interrupt(irq, desc, action_ret);
242 
243 		spin_lock(&desc->lock);
244 		if (likely(!(desc->status & IRQ_PENDING)))
245 			break;
246 		desc->status &= ~IRQ_PENDING;
247 	}
248 	desc->status &= ~IRQ_INPROGRESS;
249 
250 out:
251 	/*
252 	 * The ->end() handler has to deal with interrupts which got
253 	 * disabled while the handler was running.
254 	 */
255 	desc->chip->end(irq);
256 	spin_unlock(&desc->lock);
257 
258 	return 1;
259 }
260 #endif
261 
262 
263 #ifdef CONFIG_TRACE_IRQFLAGS
264 /*
265  * lockdep: we want to handle all irq_desc locks as a single lock-class:
266  */
267 static struct lock_class_key irq_desc_lock_class;
268 
269 void early_init_irq_lock_class(void)
270 {
271 	struct irq_desc *desc;
272 	int i;
273 
274 	for_each_irq_desc(i, desc)
275 		lockdep_set_class(&desc->lock, &irq_desc_lock_class);
276 }
277 #endif
278