1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King 5 * 6 * This file contains the core interrupt handling code, for irq-chip based 7 * architectures. Detailed information is available in 8 * Documentation/core-api/genericirq.rst 9 */ 10 11 #include <linux/irq.h> 12 #include <linux/msi.h> 13 #include <linux/module.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/irqdomain.h> 17 18 #include <trace/events/irq.h> 19 20 #include "internals.h" 21 22 static irqreturn_t bad_chained_irq(int irq, void *dev_id) 23 { 24 WARN_ONCE(1, "Chained irq %d should not call an action\n", irq); 25 return IRQ_NONE; 26 } 27 28 /* 29 * Chained handlers should never call action on their IRQ. This default 30 * action will emit warning if such thing happens. 31 */ 32 struct irqaction chained_action = { 33 .handler = bad_chained_irq, 34 }; 35 36 /** 37 * irq_set_chip - set the irq chip for an irq 38 * @irq: irq number 39 * @chip: pointer to irq chip description structure 40 */ 41 int irq_set_chip(unsigned int irq, const struct irq_chip *chip) 42 { 43 int ret = -EINVAL; 44 45 scoped_irqdesc_get_and_lock(irq, 0) { 46 scoped_irqdesc->irq_data.chip = (struct irq_chip *)(chip ?: &no_irq_chip); 47 ret = 0; 48 } 49 /* For !CONFIG_SPARSE_IRQ make the irq show up in allocated_irqs. */ 50 if (!ret) 51 irq_mark_irq(irq); 52 return ret; 53 } 54 EXPORT_SYMBOL(irq_set_chip); 55 56 /** 57 * irq_set_irq_type - set the irq trigger type for an irq 58 * @irq: irq number 59 * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h 60 */ 61 int irq_set_irq_type(unsigned int irq, unsigned int type) 62 { 63 scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) 64 return __irq_set_trigger(scoped_irqdesc, type); 65 return -EINVAL; 66 } 67 EXPORT_SYMBOL(irq_set_irq_type); 68 69 /** 70 * irq_set_handler_data - set irq handler data for an irq 71 * @irq: Interrupt number 72 * @data: Pointer to interrupt specific data 73 * 74 * Set the hardware irq controller data for an irq 75 */ 76 int irq_set_handler_data(unsigned int irq, void *data) 77 { 78 scoped_irqdesc_get_and_lock(irq, 0) { 79 scoped_irqdesc->irq_common_data.handler_data = data; 80 return 0; 81 } 82 return -EINVAL; 83 } 84 EXPORT_SYMBOL(irq_set_handler_data); 85 86 /** 87 * irq_set_msi_desc_off - set MSI descriptor data for an irq at offset 88 * @irq_base: Interrupt number base 89 * @irq_offset: Interrupt number offset 90 * @entry: Pointer to MSI descriptor data 91 * 92 * Set the MSI descriptor entry for an irq at offset 93 */ 94 int irq_set_msi_desc_off(unsigned int irq_base, unsigned int irq_offset, struct msi_desc *entry) 95 { 96 scoped_irqdesc_get_and_lock(irq_base + irq_offset, IRQ_GET_DESC_CHECK_GLOBAL) { 97 scoped_irqdesc->irq_common_data.msi_desc = entry; 98 if (entry && !irq_offset) 99 entry->irq = irq_base; 100 return 0; 101 } 102 return -EINVAL; 103 } 104 105 /** 106 * irq_set_msi_desc - set MSI descriptor data for an irq 107 * @irq: Interrupt number 108 * @entry: Pointer to MSI descriptor data 109 * 110 * Set the MSI descriptor entry for an irq 111 */ 112 int irq_set_msi_desc(unsigned int irq, struct msi_desc *entry) 113 { 114 return irq_set_msi_desc_off(irq, 0, entry); 115 } 116 117 /** 118 * irq_set_chip_data - set irq chip data for an irq 119 * @irq: Interrupt number 120 * @data: Pointer to chip specific data 121 * 122 * Set the hardware irq chip data for an irq 123 */ 124 int irq_set_chip_data(unsigned int irq, void *data) 125 { 126 scoped_irqdesc_get_and_lock(irq, 0) { 127 scoped_irqdesc->irq_data.chip_data = data; 128 return 0; 129 } 130 return -EINVAL; 131 } 132 EXPORT_SYMBOL(irq_set_chip_data); 133 134 struct irq_data *irq_get_irq_data(unsigned int irq) 135 { 136 struct irq_desc *desc = irq_to_desc(irq); 137 138 return desc ? &desc->irq_data : NULL; 139 } 140 EXPORT_SYMBOL_GPL(irq_get_irq_data); 141 142 static void irq_state_clr_disabled(struct irq_desc *desc) 143 { 144 irqd_clear(&desc->irq_data, IRQD_IRQ_DISABLED); 145 } 146 147 static void irq_state_clr_masked(struct irq_desc *desc) 148 { 149 irqd_clear(&desc->irq_data, IRQD_IRQ_MASKED); 150 } 151 152 static void irq_state_clr_started(struct irq_desc *desc) 153 { 154 irqd_clear(&desc->irq_data, IRQD_IRQ_STARTED); 155 } 156 157 static void irq_state_set_started(struct irq_desc *desc) 158 { 159 irqd_set(&desc->irq_data, IRQD_IRQ_STARTED); 160 } 161 162 enum { 163 IRQ_STARTUP_NORMAL, 164 IRQ_STARTUP_MANAGED, 165 IRQ_STARTUP_ABORT, 166 }; 167 168 #ifdef CONFIG_SMP 169 static int 170 __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, 171 bool force) 172 { 173 struct irq_data *d = irq_desc_get_irq_data(desc); 174 175 if (!irqd_affinity_is_managed(d)) 176 return IRQ_STARTUP_NORMAL; 177 178 irqd_clr_managed_shutdown(d); 179 180 if (!cpumask_intersects(aff, cpu_online_mask)) { 181 /* 182 * Catch code which fiddles with enable_irq() on a managed 183 * and potentially shutdown IRQ. Chained interrupt 184 * installment or irq auto probing should not happen on 185 * managed irqs either. 186 */ 187 if (WARN_ON_ONCE(force)) 188 return IRQ_STARTUP_ABORT; 189 /* 190 * The interrupt was requested, but there is no online CPU 191 * in it's affinity mask. Put it into managed shutdown 192 * state and let the cpu hotplug mechanism start it up once 193 * a CPU in the mask becomes available. 194 */ 195 return IRQ_STARTUP_ABORT; 196 } 197 /* 198 * Managed interrupts have reserved resources, so this should not 199 * happen. 200 */ 201 if (WARN_ON(irq_domain_activate_irq(d, false))) 202 return IRQ_STARTUP_ABORT; 203 return IRQ_STARTUP_MANAGED; 204 } 205 206 void irq_startup_managed(struct irq_desc *desc) 207 { 208 struct irq_data *d = irq_desc_get_irq_data(desc); 209 210 /* 211 * Clear managed-shutdown flag, so we don't repeat managed-startup for 212 * multiple hotplugs, and cause imbalanced disable depth. 213 */ 214 irqd_clr_managed_shutdown(d); 215 216 /* 217 * Only start it up when the disable depth is 1, so that a disable, 218 * hotunplug, hotplug sequence does not end up enabling it during 219 * hotplug unconditionally. 220 */ 221 desc->depth--; 222 if (!desc->depth) 223 irq_startup(desc, IRQ_RESEND, IRQ_START_COND); 224 } 225 226 #else 227 static __always_inline int 228 __irq_startup_managed(struct irq_desc *desc, const struct cpumask *aff, 229 bool force) 230 { 231 return IRQ_STARTUP_NORMAL; 232 } 233 #endif 234 235 static void irq_enable(struct irq_desc *desc) 236 { 237 if (!irqd_irq_disabled(&desc->irq_data)) { 238 unmask_irq(desc); 239 } else { 240 irq_state_clr_disabled(desc); 241 if (desc->irq_data.chip->irq_enable) { 242 desc->irq_data.chip->irq_enable(&desc->irq_data); 243 irq_state_clr_masked(desc); 244 } else { 245 unmask_irq(desc); 246 } 247 } 248 } 249 250 static int __irq_startup(struct irq_desc *desc) 251 { 252 struct irq_data *d = irq_desc_get_irq_data(desc); 253 int ret = 0; 254 255 /* Warn if this interrupt is not activated but try nevertheless */ 256 WARN_ON_ONCE(!irqd_is_activated(d)); 257 258 if (d->chip->irq_startup) { 259 ret = d->chip->irq_startup(d); 260 irq_state_clr_disabled(desc); 261 irq_state_clr_masked(desc); 262 } else { 263 irq_enable(desc); 264 } 265 irq_state_set_started(desc); 266 return ret; 267 } 268 269 int irq_startup(struct irq_desc *desc, bool resend, bool force) 270 { 271 struct irq_data *d = irq_desc_get_irq_data(desc); 272 const struct cpumask *aff = irq_data_get_affinity_mask(d); 273 int ret = 0; 274 275 desc->depth = 0; 276 277 if (irqd_is_started(d)) { 278 irq_enable(desc); 279 } else { 280 switch (__irq_startup_managed(desc, aff, force)) { 281 case IRQ_STARTUP_NORMAL: 282 if (d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP) 283 irq_setup_affinity(desc); 284 ret = __irq_startup(desc); 285 if (!(d->chip->flags & IRQCHIP_AFFINITY_PRE_STARTUP)) 286 irq_setup_affinity(desc); 287 break; 288 case IRQ_STARTUP_MANAGED: 289 irq_do_set_affinity(d, aff, false); 290 ret = __irq_startup(desc); 291 break; 292 case IRQ_STARTUP_ABORT: 293 desc->depth = 1; 294 irqd_set_managed_shutdown(d); 295 return 0; 296 } 297 } 298 if (resend) 299 check_irq_resend(desc, false); 300 301 return ret; 302 } 303 304 int irq_activate(struct irq_desc *desc) 305 { 306 struct irq_data *d = irq_desc_get_irq_data(desc); 307 308 if (!irqd_affinity_is_managed(d)) 309 return irq_domain_activate_irq(d, false); 310 return 0; 311 } 312 313 int irq_activate_and_startup(struct irq_desc *desc, bool resend) 314 { 315 if (WARN_ON(irq_activate(desc))) 316 return 0; 317 return irq_startup(desc, resend, IRQ_START_FORCE); 318 } 319 320 static void __irq_disable(struct irq_desc *desc, bool mask); 321 322 void irq_shutdown(struct irq_desc *desc) 323 { 324 if (irqd_is_started(&desc->irq_data)) { 325 clear_irq_resend(desc); 326 /* 327 * Increment disable depth, so that a managed shutdown on 328 * CPU hotunplug preserves the actual disabled state when the 329 * CPU comes back online. See irq_startup_managed(). 330 */ 331 desc->depth++; 332 333 if (desc->irq_data.chip->irq_shutdown) { 334 desc->irq_data.chip->irq_shutdown(&desc->irq_data); 335 irq_state_set_disabled(desc); 336 irq_state_set_masked(desc); 337 } else { 338 __irq_disable(desc, true); 339 } 340 irq_state_clr_started(desc); 341 } 342 } 343 344 345 void irq_shutdown_and_deactivate(struct irq_desc *desc) 346 { 347 irq_shutdown(desc); 348 /* 349 * This must be called even if the interrupt was never started up, 350 * because the activation can happen before the interrupt is 351 * available for request/startup. It has it's own state tracking so 352 * it's safe to call it unconditionally. 353 */ 354 irq_domain_deactivate_irq(&desc->irq_data); 355 } 356 357 static void __irq_disable(struct irq_desc *desc, bool mask) 358 { 359 if (irqd_irq_disabled(&desc->irq_data)) { 360 if (mask) 361 mask_irq(desc); 362 } else { 363 irq_state_set_disabled(desc); 364 if (desc->irq_data.chip->irq_disable) { 365 desc->irq_data.chip->irq_disable(&desc->irq_data); 366 irq_state_set_masked(desc); 367 } else if (mask) { 368 mask_irq(desc); 369 } 370 } 371 } 372 373 /** 374 * irq_disable - Mark interrupt disabled 375 * @desc: irq descriptor which should be disabled 376 * 377 * If the chip does not implement the irq_disable callback, we 378 * use a lazy disable approach. That means we mark the interrupt 379 * disabled, but leave the hardware unmasked. That's an 380 * optimization because we avoid the hardware access for the 381 * common case where no interrupt happens after we marked it 382 * disabled. If an interrupt happens, then the interrupt flow 383 * handler masks the line at the hardware level and marks it 384 * pending. 385 * 386 * If the interrupt chip does not implement the irq_disable callback, 387 * a driver can disable the lazy approach for a particular irq line by 388 * calling 'irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY)'. This can 389 * be used for devices which cannot disable the interrupt at the 390 * device level under certain circumstances and have to use 391 * disable_irq[_nosync] instead. 392 */ 393 void irq_disable(struct irq_desc *desc) 394 { 395 __irq_disable(desc, irq_settings_disable_unlazy(desc)); 396 } 397 398 void irq_percpu_enable(struct irq_desc *desc, unsigned int cpu) 399 { 400 if (desc->irq_data.chip->irq_enable) 401 desc->irq_data.chip->irq_enable(&desc->irq_data); 402 else 403 desc->irq_data.chip->irq_unmask(&desc->irq_data); 404 cpumask_set_cpu(cpu, desc->percpu_enabled); 405 } 406 407 void irq_percpu_disable(struct irq_desc *desc, unsigned int cpu) 408 { 409 if (desc->irq_data.chip->irq_disable) 410 desc->irq_data.chip->irq_disable(&desc->irq_data); 411 else 412 desc->irq_data.chip->irq_mask(&desc->irq_data); 413 cpumask_clear_cpu(cpu, desc->percpu_enabled); 414 } 415 416 static inline void mask_ack_irq(struct irq_desc *desc) 417 { 418 if (desc->irq_data.chip->irq_mask_ack) { 419 desc->irq_data.chip->irq_mask_ack(&desc->irq_data); 420 irq_state_set_masked(desc); 421 } else { 422 mask_irq(desc); 423 if (desc->irq_data.chip->irq_ack) 424 desc->irq_data.chip->irq_ack(&desc->irq_data); 425 } 426 } 427 428 void mask_irq(struct irq_desc *desc) 429 { 430 if (irqd_irq_masked(&desc->irq_data)) 431 return; 432 433 if (desc->irq_data.chip->irq_mask) { 434 desc->irq_data.chip->irq_mask(&desc->irq_data); 435 irq_state_set_masked(desc); 436 } 437 } 438 439 void unmask_irq(struct irq_desc *desc) 440 { 441 if (!irqd_irq_masked(&desc->irq_data)) 442 return; 443 444 if (desc->irq_data.chip->irq_unmask) { 445 desc->irq_data.chip->irq_unmask(&desc->irq_data); 446 irq_state_clr_masked(desc); 447 } 448 } 449 450 void unmask_threaded_irq(struct irq_desc *desc) 451 { 452 struct irq_chip *chip = desc->irq_data.chip; 453 454 if (chip->flags & IRQCHIP_EOI_THREADED) 455 chip->irq_eoi(&desc->irq_data); 456 457 unmask_irq(desc); 458 } 459 460 /* Busy wait until INPROGRESS is cleared */ 461 static bool irq_wait_on_inprogress(struct irq_desc *desc) 462 { 463 if (IS_ENABLED(CONFIG_SMP)) { 464 do { 465 raw_spin_unlock(&desc->lock); 466 while (irqd_irq_inprogress(&desc->irq_data)) 467 cpu_relax(); 468 raw_spin_lock(&desc->lock); 469 } while (irqd_irq_inprogress(&desc->irq_data)); 470 471 /* Might have been disabled in meantime */ 472 return !irqd_irq_disabled(&desc->irq_data) && desc->action; 473 } 474 return false; 475 } 476 477 static bool irq_can_handle_pm(struct irq_desc *desc) 478 { 479 struct irq_data *irqd = &desc->irq_data; 480 const struct cpumask *aff; 481 482 /* 483 * If the interrupt is not in progress and is not an armed 484 * wakeup interrupt, proceed. 485 */ 486 if (!irqd_has_set(irqd, IRQD_IRQ_INPROGRESS | IRQD_WAKEUP_ARMED)) 487 return true; 488 489 /* 490 * If the interrupt is an armed wakeup source, mark it pending 491 * and suspended, disable it and notify the pm core about the 492 * event. 493 */ 494 if (unlikely(irqd_has_set(irqd, IRQD_WAKEUP_ARMED))) { 495 irq_pm_handle_wakeup(desc); 496 return false; 497 } 498 499 /* Check whether the interrupt is polled on another CPU */ 500 if (unlikely(desc->istate & IRQS_POLL_INPROGRESS)) { 501 if (WARN_ONCE(irq_poll_cpu == smp_processor_id(), 502 "irq poll in progress on cpu %d for irq %d\n", 503 smp_processor_id(), desc->irq_data.irq)) 504 return false; 505 return irq_wait_on_inprogress(desc); 506 } 507 508 /* The below works only for single target interrupts */ 509 if (!IS_ENABLED(CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK) || 510 !irqd_is_single_target(irqd) || desc->handle_irq != handle_edge_irq) 511 return false; 512 513 /* 514 * If the interrupt affinity was moved to this CPU and the 515 * interrupt is currently handled on the previous target CPU, then 516 * busy wait for INPROGRESS to be cleared. Otherwise for edge type 517 * interrupts the handler might get stuck on the previous target: 518 * 519 * CPU 0 CPU 1 (new target) 520 * handle_edge_irq() 521 * repeat: 522 * handle_event() handle_edge_irq() 523 * if (INPROGESS) { 524 * set(PENDING); 525 * mask(); 526 * return; 527 * } 528 * if (PENDING) { 529 * clear(PENDING); 530 * unmask(); 531 * goto repeat; 532 * } 533 * 534 * This happens when the device raises interrupts with a high rate 535 * and always before handle_event() completes and the CPU0 handler 536 * can clear INPROGRESS. This has been observed in virtual machines. 537 */ 538 aff = irq_data_get_effective_affinity_mask(irqd); 539 if (cpumask_first(aff) != smp_processor_id()) 540 return false; 541 return irq_wait_on_inprogress(desc); 542 } 543 544 static inline bool irq_can_handle_actions(struct irq_desc *desc) 545 { 546 desc->istate &= ~(IRQS_REPLAY | IRQS_WAITING); 547 548 if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) { 549 desc->istate |= IRQS_PENDING; 550 return false; 551 } 552 return true; 553 } 554 555 static inline bool irq_can_handle(struct irq_desc *desc) 556 { 557 if (!irq_can_handle_pm(desc)) 558 return false; 559 560 return irq_can_handle_actions(desc); 561 } 562 563 /** 564 * handle_nested_irq - Handle a nested irq from a irq thread 565 * @irq: the interrupt number 566 * 567 * Handle interrupts which are nested into a threaded interrupt 568 * handler. The handler function is called inside the calling threads 569 * context. 570 */ 571 void handle_nested_irq(unsigned int irq) 572 { 573 struct irq_desc *desc = irq_to_desc(irq); 574 struct irqaction *action; 575 irqreturn_t action_ret; 576 577 might_sleep(); 578 579 scoped_guard(raw_spinlock_irq, &desc->lock) { 580 if (!irq_can_handle_actions(desc)) 581 return; 582 583 action = desc->action; 584 kstat_incr_irqs_this_cpu(desc); 585 atomic_inc(&desc->threads_active); 586 } 587 588 action_ret = IRQ_NONE; 589 for_each_action_of_desc(desc, action) 590 action_ret |= action->thread_fn(action->irq, action->dev_id); 591 592 if (!irq_settings_no_debug(desc)) 593 note_interrupt(desc, action_ret); 594 595 wake_threads_waitq(desc); 596 } 597 EXPORT_SYMBOL_GPL(handle_nested_irq); 598 599 /** 600 * handle_simple_irq - Simple and software-decoded IRQs. 601 * @desc: the interrupt description structure for this irq 602 * 603 * Simple interrupts are either sent from a demultiplexing interrupt 604 * handler or come from hardware, where no interrupt hardware control is 605 * necessary. 606 * 607 * Note: The caller is expected to handle the ack, clear, mask and unmask 608 * issues if necessary. 609 */ 610 void handle_simple_irq(struct irq_desc *desc) 611 { 612 guard(raw_spinlock)(&desc->lock); 613 614 if (!irq_can_handle(desc)) 615 return; 616 617 kstat_incr_irqs_this_cpu(desc); 618 handle_irq_event(desc); 619 } 620 EXPORT_SYMBOL_GPL(handle_simple_irq); 621 622 /** 623 * handle_untracked_irq - Simple and software-decoded IRQs. 624 * @desc: the interrupt description structure for this irq 625 * 626 * Untracked interrupts are sent from a demultiplexing interrupt handler 627 * when the demultiplexer does not know which device it its multiplexed irq 628 * domain generated the interrupt. IRQ's handled through here are not 629 * subjected to stats tracking, randomness, or spurious interrupt 630 * detection. 631 * 632 * Note: Like handle_simple_irq, the caller is expected to handle the ack, 633 * clear, mask and unmask issues if necessary. 634 */ 635 void handle_untracked_irq(struct irq_desc *desc) 636 { 637 scoped_guard(raw_spinlock, &desc->lock) { 638 if (!irq_can_handle(desc)) 639 return; 640 641 desc->istate &= ~IRQS_PENDING; 642 irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS); 643 } 644 645 __handle_irq_event_percpu(desc); 646 647 scoped_guard(raw_spinlock, &desc->lock) 648 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS); 649 } 650 EXPORT_SYMBOL_GPL(handle_untracked_irq); 651 652 /* 653 * Called unconditionally from handle_level_irq() and only for oneshot 654 * interrupts from handle_fasteoi_irq() 655 */ 656 static void cond_unmask_irq(struct irq_desc *desc) 657 { 658 /* 659 * We need to unmask in the following cases: 660 * - Standard level irq (IRQF_ONESHOT is not set) 661 * - Oneshot irq which did not wake the thread (caused by a 662 * spurious interrupt or a primary handler handling it 663 * completely). 664 */ 665 if (!irqd_irq_disabled(&desc->irq_data) && 666 irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) 667 unmask_irq(desc); 668 } 669 670 /** 671 * handle_level_irq - Level type irq handler 672 * @desc: the interrupt description structure for this irq 673 * 674 * Level type interrupts are active as long as the hardware line has the 675 * active level. This may require to mask the interrupt and unmask it after 676 * the associated handler has acknowledged the device, so the interrupt 677 * line is back to inactive. 678 */ 679 void handle_level_irq(struct irq_desc *desc) 680 { 681 guard(raw_spinlock)(&desc->lock); 682 mask_ack_irq(desc); 683 684 if (!irq_can_handle(desc)) 685 return; 686 687 kstat_incr_irqs_this_cpu(desc); 688 handle_irq_event(desc); 689 690 cond_unmask_irq(desc); 691 } 692 EXPORT_SYMBOL_GPL(handle_level_irq); 693 694 static void cond_unmask_eoi_irq(struct irq_desc *desc, struct irq_chip *chip) 695 { 696 if (!(desc->istate & IRQS_ONESHOT)) { 697 chip->irq_eoi(&desc->irq_data); 698 return; 699 } 700 /* 701 * We need to unmask in the following cases: 702 * - Oneshot irq which did not wake the thread (caused by a 703 * spurious interrupt or a primary handler handling it 704 * completely). 705 */ 706 if (!irqd_irq_disabled(&desc->irq_data) && 707 irqd_irq_masked(&desc->irq_data) && !desc->threads_oneshot) { 708 chip->irq_eoi(&desc->irq_data); 709 unmask_irq(desc); 710 } else if (!(chip->flags & IRQCHIP_EOI_THREADED)) { 711 chip->irq_eoi(&desc->irq_data); 712 } 713 } 714 715 static inline void cond_eoi_irq(struct irq_chip *chip, struct irq_data *data) 716 { 717 if (!(chip->flags & IRQCHIP_EOI_IF_HANDLED)) 718 chip->irq_eoi(data); 719 } 720 721 /** 722 * handle_fasteoi_irq - irq handler for transparent controllers 723 * @desc: the interrupt description structure for this irq 724 * 725 * Only a single callback will be issued to the chip: an ->eoi() call when 726 * the interrupt has been serviced. This enables support for modern forms 727 * of interrupt handlers, which handle the flow details in hardware, 728 * transparently. 729 */ 730 void handle_fasteoi_irq(struct irq_desc *desc) 731 { 732 struct irq_chip *chip = desc->irq_data.chip; 733 734 guard(raw_spinlock)(&desc->lock); 735 736 /* 737 * When an affinity change races with IRQ handling, the next interrupt 738 * can arrive on the new CPU before the original CPU has completed 739 * handling the previous one - it may need to be resent. 740 */ 741 if (!irq_can_handle_pm(desc)) { 742 if (irqd_needs_resend_when_in_progress(&desc->irq_data)) 743 desc->istate |= IRQS_PENDING; 744 cond_eoi_irq(chip, &desc->irq_data); 745 return; 746 } 747 748 if (!irq_can_handle_actions(desc)) { 749 mask_irq(desc); 750 cond_eoi_irq(chip, &desc->irq_data); 751 return; 752 } 753 754 kstat_incr_irqs_this_cpu(desc); 755 if (desc->istate & IRQS_ONESHOT) 756 mask_irq(desc); 757 758 handle_irq_event(desc); 759 760 cond_unmask_eoi_irq(desc, chip); 761 762 /* 763 * When the race described above happens this will resend the interrupt. 764 */ 765 if (unlikely(desc->istate & IRQS_PENDING)) 766 check_irq_resend(desc, false); 767 } 768 EXPORT_SYMBOL_GPL(handle_fasteoi_irq); 769 770 /** 771 * handle_fasteoi_nmi - irq handler for NMI interrupt lines 772 * @desc: the interrupt description structure for this irq 773 * 774 * A simple NMI-safe handler, considering the restrictions 775 * from request_nmi. 776 * 777 * Only a single callback will be issued to the chip: an ->eoi() 778 * call when the interrupt has been serviced. This enables support 779 * for modern forms of interrupt handlers, which handle the flow 780 * details in hardware, transparently. 781 */ 782 void handle_fasteoi_nmi(struct irq_desc *desc) 783 { 784 struct irq_chip *chip = irq_desc_get_chip(desc); 785 struct irqaction *action = desc->action; 786 unsigned int irq = irq_desc_get_irq(desc); 787 irqreturn_t res; 788 789 __kstat_incr_irqs_this_cpu(desc); 790 791 trace_irq_handler_entry(irq, action); 792 /* 793 * NMIs cannot be shared, there is only one action. 794 */ 795 res = action->handler(irq, action->dev_id); 796 trace_irq_handler_exit(irq, action, res); 797 798 if (chip->irq_eoi) 799 chip->irq_eoi(&desc->irq_data); 800 } 801 EXPORT_SYMBOL_GPL(handle_fasteoi_nmi); 802 803 /** 804 * handle_edge_irq - edge type IRQ handler 805 * @desc: the interrupt description structure for this irq 806 * 807 * Interrupt occurs on the falling and/or rising edge of a hardware 808 * signal. The occurrence is latched into the irq controller hardware and 809 * must be acked in order to be reenabled. After the ack another interrupt 810 * can happen on the same source even before the first one is handled by 811 * the associated event handler. If this happens it might be necessary to 812 * disable (mask) the interrupt depending on the controller hardware. This 813 * requires to reenable the interrupt inside of the loop which handles the 814 * interrupts which have arrived while the handler was running. If all 815 * pending interrupts are handled, the loop is left. 816 */ 817 void handle_edge_irq(struct irq_desc *desc) 818 { 819 guard(raw_spinlock)(&desc->lock); 820 821 if (!irq_can_handle(desc)) { 822 desc->istate |= IRQS_PENDING; 823 mask_ack_irq(desc); 824 return; 825 } 826 827 kstat_incr_irqs_this_cpu(desc); 828 829 /* Start handling the irq */ 830 desc->irq_data.chip->irq_ack(&desc->irq_data); 831 832 do { 833 if (unlikely(!desc->action)) { 834 mask_irq(desc); 835 return; 836 } 837 838 /* 839 * When another irq arrived while we were handling 840 * one, we could have masked the irq. 841 * Reenable it, if it was not disabled in meantime. 842 */ 843 if (unlikely(desc->istate & IRQS_PENDING)) { 844 if (!irqd_irq_disabled(&desc->irq_data) && 845 irqd_irq_masked(&desc->irq_data)) 846 unmask_irq(desc); 847 } 848 849 handle_irq_event(desc); 850 851 } while ((desc->istate & IRQS_PENDING) && !irqd_irq_disabled(&desc->irq_data)); 852 } 853 EXPORT_SYMBOL(handle_edge_irq); 854 855 /** 856 * handle_percpu_irq - Per CPU local irq handler 857 * @desc: the interrupt description structure for this irq 858 * 859 * Per CPU interrupts on SMP machines without locking requirements 860 */ 861 void handle_percpu_irq(struct irq_desc *desc) 862 { 863 struct irq_chip *chip = irq_desc_get_chip(desc); 864 865 /* 866 * PER CPU interrupts are not serialized. Do not touch 867 * desc->tot_count. 868 */ 869 __kstat_incr_irqs_this_cpu(desc); 870 871 if (chip->irq_ack) 872 chip->irq_ack(&desc->irq_data); 873 874 handle_irq_event_percpu(desc); 875 876 if (chip->irq_eoi) 877 chip->irq_eoi(&desc->irq_data); 878 } 879 880 /** 881 * handle_percpu_devid_irq - Per CPU local irq handler with per cpu dev ids 882 * @desc: the interrupt description structure for this irq 883 * 884 * Per CPU interrupts on SMP machines without locking requirements. Same as 885 * handle_percpu_irq() above but with the following extras: 886 * 887 * action->percpu_dev_id is a pointer to percpu variables which 888 * contain the real device id for the cpu on which this handler is 889 * called 890 */ 891 void handle_percpu_devid_irq(struct irq_desc *desc) 892 { 893 struct irq_chip *chip = irq_desc_get_chip(desc); 894 struct irqaction *action = desc->action; 895 unsigned int irq = irq_desc_get_irq(desc); 896 irqreturn_t res; 897 898 /* 899 * PER CPU interrupts are not serialized. Do not touch 900 * desc->tot_count. 901 */ 902 __kstat_incr_irqs_this_cpu(desc); 903 904 if (chip->irq_ack) 905 chip->irq_ack(&desc->irq_data); 906 907 if (likely(action)) { 908 trace_irq_handler_entry(irq, action); 909 res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); 910 trace_irq_handler_exit(irq, action, res); 911 } else { 912 unsigned int cpu = smp_processor_id(); 913 bool enabled = cpumask_test_cpu(cpu, desc->percpu_enabled); 914 915 if (enabled) 916 irq_percpu_disable(desc, cpu); 917 918 pr_err_once("Spurious%s percpu IRQ%u on CPU%u\n", 919 enabled ? " and unmasked" : "", irq, cpu); 920 } 921 922 if (chip->irq_eoi) 923 chip->irq_eoi(&desc->irq_data); 924 } 925 926 /** 927 * handle_percpu_devid_fasteoi_nmi - Per CPU local NMI handler with per cpu 928 * dev ids 929 * @desc: the interrupt description structure for this irq 930 * 931 * Similar to handle_fasteoi_nmi, but handling the dev_id cookie 932 * as a percpu pointer. 933 */ 934 void handle_percpu_devid_fasteoi_nmi(struct irq_desc *desc) 935 { 936 struct irq_chip *chip = irq_desc_get_chip(desc); 937 struct irqaction *action = desc->action; 938 unsigned int irq = irq_desc_get_irq(desc); 939 irqreturn_t res; 940 941 __kstat_incr_irqs_this_cpu(desc); 942 943 trace_irq_handler_entry(irq, action); 944 res = action->handler(irq, raw_cpu_ptr(action->percpu_dev_id)); 945 trace_irq_handler_exit(irq, action, res); 946 947 if (chip->irq_eoi) 948 chip->irq_eoi(&desc->irq_data); 949 } 950 951 static void 952 __irq_do_set_handler(struct irq_desc *desc, irq_flow_handler_t handle, 953 int is_chained, const char *name) 954 { 955 if (!handle) { 956 handle = handle_bad_irq; 957 } else { 958 struct irq_data *irq_data = &desc->irq_data; 959 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 960 /* 961 * With hierarchical domains we might run into a 962 * situation where the outermost chip is not yet set 963 * up, but the inner chips are there. Instead of 964 * bailing we install the handler, but obviously we 965 * cannot enable/startup the interrupt at this point. 966 */ 967 while (irq_data) { 968 if (irq_data->chip != &no_irq_chip) 969 break; 970 /* 971 * Bail out if the outer chip is not set up 972 * and the interrupt supposed to be started 973 * right away. 974 */ 975 if (WARN_ON(is_chained)) 976 return; 977 /* Try the parent */ 978 irq_data = irq_data->parent_data; 979 } 980 #endif 981 if (WARN_ON(!irq_data || irq_data->chip == &no_irq_chip)) 982 return; 983 } 984 985 /* Uninstall? */ 986 if (handle == handle_bad_irq) { 987 if (desc->irq_data.chip != &no_irq_chip) 988 mask_ack_irq(desc); 989 irq_state_set_disabled(desc); 990 if (is_chained) { 991 desc->action = NULL; 992 WARN_ON(irq_chip_pm_put(irq_desc_get_irq_data(desc))); 993 } 994 desc->depth = 1; 995 } 996 desc->handle_irq = handle; 997 desc->name = name; 998 999 if (handle != handle_bad_irq && is_chained) { 1000 unsigned int type = irqd_get_trigger_type(&desc->irq_data); 1001 1002 /* 1003 * We're about to start this interrupt immediately, 1004 * hence the need to set the trigger configuration. 1005 * But the .set_type callback may have overridden the 1006 * flow handler, ignoring that we're dealing with a 1007 * chained interrupt. Reset it immediately because we 1008 * do know better. 1009 */ 1010 if (type != IRQ_TYPE_NONE) { 1011 __irq_set_trigger(desc, type); 1012 desc->handle_irq = handle; 1013 } 1014 1015 irq_settings_set_noprobe(desc); 1016 irq_settings_set_norequest(desc); 1017 irq_settings_set_nothread(desc); 1018 desc->action = &chained_action; 1019 WARN_ON(irq_chip_pm_get(irq_desc_get_irq_data(desc))); 1020 irq_activate_and_startup(desc, IRQ_RESEND); 1021 } 1022 } 1023 1024 void __irq_set_handler(unsigned int irq, irq_flow_handler_t handle, int is_chained, 1025 const char *name) 1026 { 1027 scoped_irqdesc_get_and_lock(irq, 0) 1028 __irq_do_set_handler(scoped_irqdesc, handle, is_chained, name); 1029 } 1030 EXPORT_SYMBOL_GPL(__irq_set_handler); 1031 1032 void irq_set_chained_handler_and_data(unsigned int irq, irq_flow_handler_t handle, 1033 void *data) 1034 { 1035 scoped_irqdesc_get_and_buslock(irq, 0) { 1036 struct irq_desc *desc = scoped_irqdesc; 1037 1038 desc->irq_common_data.handler_data = data; 1039 __irq_do_set_handler(desc, handle, 1, NULL); 1040 } 1041 } 1042 EXPORT_SYMBOL_GPL(irq_set_chained_handler_and_data); 1043 1044 void 1045 irq_set_chip_and_handler_name(unsigned int irq, const struct irq_chip *chip, 1046 irq_flow_handler_t handle, const char *name) 1047 { 1048 irq_set_chip(irq, chip); 1049 __irq_set_handler(irq, handle, 0, name); 1050 } 1051 EXPORT_SYMBOL_GPL(irq_set_chip_and_handler_name); 1052 1053 void irq_modify_status(unsigned int irq, unsigned long clr, unsigned long set) 1054 { 1055 scoped_irqdesc_get_and_lock(irq, 0) { 1056 struct irq_desc *desc = scoped_irqdesc; 1057 unsigned long trigger, tmp; 1058 /* 1059 * Warn when a driver sets the no autoenable flag on an already 1060 * active interrupt. 1061 */ 1062 WARN_ON_ONCE(!desc->depth && (set & _IRQ_NOAUTOEN)); 1063 1064 irq_settings_clr_and_set(desc, clr, set); 1065 1066 trigger = irqd_get_trigger_type(&desc->irq_data); 1067 1068 irqd_clear(&desc->irq_data, IRQD_NO_BALANCING | IRQD_PER_CPU | 1069 IRQD_TRIGGER_MASK | IRQD_LEVEL); 1070 if (irq_settings_has_no_balance_set(desc)) 1071 irqd_set(&desc->irq_data, IRQD_NO_BALANCING); 1072 if (irq_settings_is_per_cpu(desc)) 1073 irqd_set(&desc->irq_data, IRQD_PER_CPU); 1074 if (irq_settings_is_level(desc)) 1075 irqd_set(&desc->irq_data, IRQD_LEVEL); 1076 1077 tmp = irq_settings_get_trigger_mask(desc); 1078 if (tmp != IRQ_TYPE_NONE) 1079 trigger = tmp; 1080 1081 irqd_set(&desc->irq_data, trigger); 1082 } 1083 } 1084 EXPORT_SYMBOL_GPL(irq_modify_status); 1085 1086 #ifdef CONFIG_DEPRECATED_IRQ_CPU_ONOFFLINE 1087 /** 1088 * irq_cpu_online - Invoke all irq_cpu_online functions. 1089 * 1090 * Iterate through all irqs and invoke the chip.irq_cpu_online() 1091 * for each. 1092 */ 1093 void irq_cpu_online(void) 1094 { 1095 unsigned int irq; 1096 1097 for_each_active_irq(irq) { 1098 struct irq_desc *desc = irq_to_desc(irq); 1099 struct irq_chip *chip; 1100 1101 if (!desc) 1102 continue; 1103 1104 guard(raw_spinlock_irqsave)(&desc->lock); 1105 chip = irq_data_get_irq_chip(&desc->irq_data); 1106 if (chip && chip->irq_cpu_online && 1107 (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || 1108 !irqd_irq_disabled(&desc->irq_data))) 1109 chip->irq_cpu_online(&desc->irq_data); 1110 } 1111 } 1112 1113 /** 1114 * irq_cpu_offline - Invoke all irq_cpu_offline functions. 1115 * 1116 * Iterate through all irqs and invoke the chip.irq_cpu_offline() 1117 * for each. 1118 */ 1119 void irq_cpu_offline(void) 1120 { 1121 unsigned int irq; 1122 1123 for_each_active_irq(irq) { 1124 struct irq_desc *desc = irq_to_desc(irq); 1125 struct irq_chip *chip; 1126 1127 if (!desc) 1128 continue; 1129 1130 guard(raw_spinlock_irqsave)(&desc->lock); 1131 chip = irq_data_get_irq_chip(&desc->irq_data); 1132 if (chip && chip->irq_cpu_offline && 1133 (!(chip->flags & IRQCHIP_ONOFFLINE_ENABLED) || 1134 !irqd_irq_disabled(&desc->irq_data))) 1135 chip->irq_cpu_offline(&desc->irq_data); 1136 } 1137 } 1138 #endif 1139 1140 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY 1141 1142 #ifdef CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS 1143 /** 1144 * handle_fasteoi_ack_irq - irq handler for edge hierarchy stacked on 1145 * transparent controllers 1146 * 1147 * @desc: the interrupt description structure for this irq 1148 * 1149 * Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip 1150 * also needs to have its ->irq_ack() function called. 1151 */ 1152 void handle_fasteoi_ack_irq(struct irq_desc *desc) 1153 { 1154 struct irq_chip *chip = desc->irq_data.chip; 1155 1156 guard(raw_spinlock)(&desc->lock); 1157 1158 if (!irq_can_handle_pm(desc)) { 1159 cond_eoi_irq(chip, &desc->irq_data); 1160 return; 1161 } 1162 1163 if (unlikely(!irq_can_handle_actions(desc))) { 1164 mask_irq(desc); 1165 cond_eoi_irq(chip, &desc->irq_data); 1166 return; 1167 } 1168 1169 kstat_incr_irqs_this_cpu(desc); 1170 if (desc->istate & IRQS_ONESHOT) 1171 mask_irq(desc); 1172 1173 desc->irq_data.chip->irq_ack(&desc->irq_data); 1174 1175 handle_irq_event(desc); 1176 1177 cond_unmask_eoi_irq(desc, chip); 1178 } 1179 EXPORT_SYMBOL_GPL(handle_fasteoi_ack_irq); 1180 1181 /** 1182 * handle_fasteoi_mask_irq - irq handler for level hierarchy stacked on 1183 * transparent controllers 1184 * 1185 * @desc: the interrupt description structure for this irq 1186 * 1187 * Like handle_fasteoi_irq(), but for use with hierarchy where the irq_chip 1188 * also needs to have its ->irq_mask_ack() function called. 1189 */ 1190 void handle_fasteoi_mask_irq(struct irq_desc *desc) 1191 { 1192 struct irq_chip *chip = desc->irq_data.chip; 1193 1194 guard(raw_spinlock)(&desc->lock); 1195 mask_ack_irq(desc); 1196 1197 if (!irq_can_handle(desc)) { 1198 cond_eoi_irq(chip, &desc->irq_data); 1199 return; 1200 } 1201 1202 kstat_incr_irqs_this_cpu(desc); 1203 1204 handle_irq_event(desc); 1205 1206 cond_unmask_eoi_irq(desc, chip); 1207 } 1208 EXPORT_SYMBOL_GPL(handle_fasteoi_mask_irq); 1209 1210 #endif /* CONFIG_IRQ_FASTEOI_HIERARCHY_HANDLERS */ 1211 1212 /** 1213 * irq_chip_set_parent_state - set the state of a parent interrupt. 1214 * 1215 * @data: Pointer to interrupt specific data 1216 * @which: State to be restored (one of IRQCHIP_STATE_*) 1217 * @val: Value corresponding to @which 1218 * 1219 * Conditional success, if the underlying irqchip does not implement it. 1220 */ 1221 int irq_chip_set_parent_state(struct irq_data *data, 1222 enum irqchip_irq_state which, 1223 bool val) 1224 { 1225 data = data->parent_data; 1226 1227 if (!data || !data->chip->irq_set_irqchip_state) 1228 return 0; 1229 1230 return data->chip->irq_set_irqchip_state(data, which, val); 1231 } 1232 EXPORT_SYMBOL_GPL(irq_chip_set_parent_state); 1233 1234 /** 1235 * irq_chip_get_parent_state - get the state of a parent interrupt. 1236 * 1237 * @data: Pointer to interrupt specific data 1238 * @which: one of IRQCHIP_STATE_* the caller wants to know 1239 * @state: a pointer to a boolean where the state is to be stored 1240 * 1241 * Conditional success, if the underlying irqchip does not implement it. 1242 */ 1243 int irq_chip_get_parent_state(struct irq_data *data, 1244 enum irqchip_irq_state which, 1245 bool *state) 1246 { 1247 data = data->parent_data; 1248 1249 if (!data || !data->chip->irq_get_irqchip_state) 1250 return 0; 1251 1252 return data->chip->irq_get_irqchip_state(data, which, state); 1253 } 1254 EXPORT_SYMBOL_GPL(irq_chip_get_parent_state); 1255 1256 /** 1257 * irq_chip_enable_parent - Enable the parent interrupt (defaults to unmask if 1258 * NULL) 1259 * @data: Pointer to interrupt specific data 1260 */ 1261 void irq_chip_enable_parent(struct irq_data *data) 1262 { 1263 data = data->parent_data; 1264 if (data->chip->irq_enable) 1265 data->chip->irq_enable(data); 1266 else 1267 data->chip->irq_unmask(data); 1268 } 1269 EXPORT_SYMBOL_GPL(irq_chip_enable_parent); 1270 1271 /** 1272 * irq_chip_disable_parent - Disable the parent interrupt (defaults to mask if 1273 * NULL) 1274 * @data: Pointer to interrupt specific data 1275 */ 1276 void irq_chip_disable_parent(struct irq_data *data) 1277 { 1278 data = data->parent_data; 1279 if (data->chip->irq_disable) 1280 data->chip->irq_disable(data); 1281 else 1282 data->chip->irq_mask(data); 1283 } 1284 EXPORT_SYMBOL_GPL(irq_chip_disable_parent); 1285 1286 /** 1287 * irq_chip_ack_parent - Acknowledge the parent interrupt 1288 * @data: Pointer to interrupt specific data 1289 */ 1290 void irq_chip_ack_parent(struct irq_data *data) 1291 { 1292 data = data->parent_data; 1293 data->chip->irq_ack(data); 1294 } 1295 EXPORT_SYMBOL_GPL(irq_chip_ack_parent); 1296 1297 /** 1298 * irq_chip_mask_parent - Mask the parent interrupt 1299 * @data: Pointer to interrupt specific data 1300 */ 1301 void irq_chip_mask_parent(struct irq_data *data) 1302 { 1303 data = data->parent_data; 1304 data->chip->irq_mask(data); 1305 } 1306 EXPORT_SYMBOL_GPL(irq_chip_mask_parent); 1307 1308 /** 1309 * irq_chip_mask_ack_parent - Mask and acknowledge the parent interrupt 1310 * @data: Pointer to interrupt specific data 1311 */ 1312 void irq_chip_mask_ack_parent(struct irq_data *data) 1313 { 1314 data = data->parent_data; 1315 data->chip->irq_mask_ack(data); 1316 } 1317 EXPORT_SYMBOL_GPL(irq_chip_mask_ack_parent); 1318 1319 /** 1320 * irq_chip_unmask_parent - Unmask the parent interrupt 1321 * @data: Pointer to interrupt specific data 1322 */ 1323 void irq_chip_unmask_parent(struct irq_data *data) 1324 { 1325 data = data->parent_data; 1326 data->chip->irq_unmask(data); 1327 } 1328 EXPORT_SYMBOL_GPL(irq_chip_unmask_parent); 1329 1330 /** 1331 * irq_chip_eoi_parent - Invoke EOI on the parent interrupt 1332 * @data: Pointer to interrupt specific data 1333 */ 1334 void irq_chip_eoi_parent(struct irq_data *data) 1335 { 1336 data = data->parent_data; 1337 data->chip->irq_eoi(data); 1338 } 1339 EXPORT_SYMBOL_GPL(irq_chip_eoi_parent); 1340 1341 /** 1342 * irq_chip_set_affinity_parent - Set affinity on the parent interrupt 1343 * @data: Pointer to interrupt specific data 1344 * @dest: The affinity mask to set 1345 * @force: Flag to enforce setting (disable online checks) 1346 * 1347 * Conditional, as the underlying parent chip might not implement it. 1348 */ 1349 int irq_chip_set_affinity_parent(struct irq_data *data, 1350 const struct cpumask *dest, bool force) 1351 { 1352 data = data->parent_data; 1353 if (data->chip->irq_set_affinity) 1354 return data->chip->irq_set_affinity(data, dest, force); 1355 1356 return -ENOSYS; 1357 } 1358 EXPORT_SYMBOL_GPL(irq_chip_set_affinity_parent); 1359 1360 /** 1361 * irq_chip_set_type_parent - Set IRQ type on the parent interrupt 1362 * @data: Pointer to interrupt specific data 1363 * @type: IRQ_TYPE_{LEVEL,EDGE}_* value - see include/linux/irq.h 1364 * 1365 * Conditional, as the underlying parent chip might not implement it. 1366 */ 1367 int irq_chip_set_type_parent(struct irq_data *data, unsigned int type) 1368 { 1369 data = data->parent_data; 1370 1371 if (data->chip->irq_set_type) 1372 return data->chip->irq_set_type(data, type); 1373 1374 return -ENOSYS; 1375 } 1376 EXPORT_SYMBOL_GPL(irq_chip_set_type_parent); 1377 1378 /** 1379 * irq_chip_retrigger_hierarchy - Retrigger an interrupt in hardware 1380 * @data: Pointer to interrupt specific data 1381 * 1382 * Iterate through the domain hierarchy of the interrupt and check 1383 * whether a hw retrigger function exists. If yes, invoke it. 1384 */ 1385 int irq_chip_retrigger_hierarchy(struct irq_data *data) 1386 { 1387 for (data = data->parent_data; data; data = data->parent_data) 1388 if (data->chip && data->chip->irq_retrigger) 1389 return data->chip->irq_retrigger(data); 1390 1391 return 0; 1392 } 1393 EXPORT_SYMBOL_GPL(irq_chip_retrigger_hierarchy); 1394 1395 /** 1396 * irq_chip_set_vcpu_affinity_parent - Set vcpu affinity on the parent interrupt 1397 * @data: Pointer to interrupt specific data 1398 * @vcpu_info: The vcpu affinity information 1399 */ 1400 int irq_chip_set_vcpu_affinity_parent(struct irq_data *data, void *vcpu_info) 1401 { 1402 data = data->parent_data; 1403 if (data->chip->irq_set_vcpu_affinity) 1404 return data->chip->irq_set_vcpu_affinity(data, vcpu_info); 1405 1406 return -ENOSYS; 1407 } 1408 EXPORT_SYMBOL_GPL(irq_chip_set_vcpu_affinity_parent); 1409 /** 1410 * irq_chip_set_wake_parent - Set/reset wake-up on the parent interrupt 1411 * @data: Pointer to interrupt specific data 1412 * @on: Whether to set or reset the wake-up capability of this irq 1413 * 1414 * Conditional, as the underlying parent chip might not implement it. 1415 */ 1416 int irq_chip_set_wake_parent(struct irq_data *data, unsigned int on) 1417 { 1418 data = data->parent_data; 1419 1420 if (data->chip->flags & IRQCHIP_SKIP_SET_WAKE) 1421 return 0; 1422 1423 if (data->chip->irq_set_wake) 1424 return data->chip->irq_set_wake(data, on); 1425 1426 return -ENOSYS; 1427 } 1428 EXPORT_SYMBOL_GPL(irq_chip_set_wake_parent); 1429 1430 /** 1431 * irq_chip_request_resources_parent - Request resources on the parent interrupt 1432 * @data: Pointer to interrupt specific data 1433 */ 1434 int irq_chip_request_resources_parent(struct irq_data *data) 1435 { 1436 data = data->parent_data; 1437 1438 if (data->chip->irq_request_resources) 1439 return data->chip->irq_request_resources(data); 1440 1441 /* no error on missing optional irq_chip::irq_request_resources */ 1442 return 0; 1443 } 1444 EXPORT_SYMBOL_GPL(irq_chip_request_resources_parent); 1445 1446 /** 1447 * irq_chip_release_resources_parent - Release resources on the parent interrupt 1448 * @data: Pointer to interrupt specific data 1449 */ 1450 void irq_chip_release_resources_parent(struct irq_data *data) 1451 { 1452 data = data->parent_data; 1453 if (data->chip->irq_release_resources) 1454 data->chip->irq_release_resources(data); 1455 } 1456 EXPORT_SYMBOL_GPL(irq_chip_release_resources_parent); 1457 #endif 1458 1459 /** 1460 * irq_chip_compose_msi_msg - Compose msi message for a irq chip 1461 * @data: Pointer to interrupt specific data 1462 * @msg: Pointer to the MSI message 1463 * 1464 * For hierarchical domains we find the first chip in the hierarchy 1465 * which implements the irq_compose_msi_msg callback. For non 1466 * hierarchical we use the top level chip. 1467 */ 1468 int irq_chip_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1469 { 1470 struct irq_data *pos; 1471 1472 for (pos = NULL; !pos && data; data = irqd_get_parent_data(data)) { 1473 if (data->chip && data->chip->irq_compose_msi_msg) 1474 pos = data; 1475 } 1476 1477 if (!pos) 1478 return -ENOSYS; 1479 1480 pos->chip->irq_compose_msi_msg(pos, msg); 1481 return 0; 1482 } 1483 1484 static struct device *irq_get_pm_device(struct irq_data *data) 1485 { 1486 if (data->domain) 1487 return data->domain->pm_dev; 1488 1489 return NULL; 1490 } 1491 1492 /** 1493 * irq_chip_pm_get - Enable power for an IRQ chip 1494 * @data: Pointer to interrupt specific data 1495 * 1496 * Enable the power to the IRQ chip referenced by the interrupt data 1497 * structure. 1498 */ 1499 int irq_chip_pm_get(struct irq_data *data) 1500 { 1501 struct device *dev = irq_get_pm_device(data); 1502 int retval = 0; 1503 1504 if (IS_ENABLED(CONFIG_PM) && dev) 1505 retval = pm_runtime_resume_and_get(dev); 1506 1507 return retval; 1508 } 1509 1510 /** 1511 * irq_chip_pm_put - Disable power for an IRQ chip 1512 * @data: Pointer to interrupt specific data 1513 * 1514 * Disable the power to the IRQ chip referenced by the interrupt data 1515 * structure, belongs. Note that power will only be disabled, once this 1516 * function has been called for all IRQs that have called irq_chip_pm_get(). 1517 */ 1518 int irq_chip_pm_put(struct irq_data *data) 1519 { 1520 struct device *dev = irq_get_pm_device(data); 1521 int retval = 0; 1522 1523 if (IS_ENABLED(CONFIG_PM) && dev) 1524 retval = pm_runtime_put(dev); 1525 1526 return (retval < 0) ? retval : 0; 1527 } 1528