xref: /linux/kernel/irq/affinity.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016 Thomas Gleixner.
4  * Copyright (C) 2016-2017 Christoph Hellwig.
5  */
6 #include <linux/interrupt.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/cpu.h>
10 
11 static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
12 				int cpus_per_vec)
13 {
14 	const struct cpumask *siblmsk;
15 	int cpu, sibl;
16 
17 	for ( ; cpus_per_vec > 0; ) {
18 		cpu = cpumask_first(nmsk);
19 
20 		/* Should not happen, but I'm too lazy to think about it */
21 		if (cpu >= nr_cpu_ids)
22 			return;
23 
24 		cpumask_clear_cpu(cpu, nmsk);
25 		cpumask_set_cpu(cpu, irqmsk);
26 		cpus_per_vec--;
27 
28 		/* If the cpu has siblings, use them first */
29 		siblmsk = topology_sibling_cpumask(cpu);
30 		for (sibl = -1; cpus_per_vec > 0; ) {
31 			sibl = cpumask_next(sibl, siblmsk);
32 			if (sibl >= nr_cpu_ids)
33 				break;
34 			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
35 				continue;
36 			cpumask_set_cpu(sibl, irqmsk);
37 			cpus_per_vec--;
38 		}
39 	}
40 }
41 
42 static cpumask_var_t *alloc_node_to_cpumask(void)
43 {
44 	cpumask_var_t *masks;
45 	int node;
46 
47 	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
48 	if (!masks)
49 		return NULL;
50 
51 	for (node = 0; node < nr_node_ids; node++) {
52 		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
53 			goto out_unwind;
54 	}
55 
56 	return masks;
57 
58 out_unwind:
59 	while (--node >= 0)
60 		free_cpumask_var(masks[node]);
61 	kfree(masks);
62 	return NULL;
63 }
64 
65 static void free_node_to_cpumask(cpumask_var_t *masks)
66 {
67 	int node;
68 
69 	for (node = 0; node < nr_node_ids; node++)
70 		free_cpumask_var(masks[node]);
71 	kfree(masks);
72 }
73 
74 static void build_node_to_cpumask(cpumask_var_t *masks)
75 {
76 	int cpu;
77 
78 	for_each_possible_cpu(cpu)
79 		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
80 }
81 
82 static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
83 				const struct cpumask *mask, nodemask_t *nodemsk)
84 {
85 	int n, nodes = 0;
86 
87 	/* Calculate the number of nodes in the supplied affinity mask */
88 	for_each_node(n) {
89 		if (cpumask_intersects(mask, node_to_cpumask[n])) {
90 			node_set(n, *nodemsk);
91 			nodes++;
92 		}
93 	}
94 	return nodes;
95 }
96 
97 static int irq_build_affinity_masks(const struct irq_affinity *affd,
98 				    int startvec, int numvecs,
99 				    cpumask_var_t *node_to_cpumask,
100 				    const struct cpumask *cpu_mask,
101 				    struct cpumask *nmsk,
102 				    struct cpumask *masks)
103 {
104 	int n, nodes, cpus_per_vec, extra_vecs, done = 0;
105 	int last_affv = affd->pre_vectors + numvecs;
106 	int curvec = startvec;
107 	nodemask_t nodemsk = NODE_MASK_NONE;
108 
109 	if (!cpumask_weight(cpu_mask))
110 		return 0;
111 
112 	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
113 
114 	/*
115 	 * If the number of nodes in the mask is greater than or equal the
116 	 * number of vectors we just spread the vectors across the nodes.
117 	 */
118 	if (numvecs <= nodes) {
119 		for_each_node_mask(n, nodemsk) {
120 			cpumask_copy(masks + curvec, node_to_cpumask[n]);
121 			if (++done == numvecs)
122 				break;
123 			if (++curvec == last_affv)
124 				curvec = affd->pre_vectors;
125 		}
126 		goto out;
127 	}
128 
129 	for_each_node_mask(n, nodemsk) {
130 		int ncpus, v, vecs_to_assign, vecs_per_node;
131 
132 		/* Spread the vectors per node */
133 		vecs_per_node = (numvecs - (curvec - affd->pre_vectors)) / nodes;
134 
135 		/* Get the cpus on this node which are in the mask */
136 		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
137 
138 		/* Calculate the number of cpus per vector */
139 		ncpus = cpumask_weight(nmsk);
140 		vecs_to_assign = min(vecs_per_node, ncpus);
141 
142 		/* Account for rounding errors */
143 		extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign);
144 
145 		for (v = 0; curvec < last_affv && v < vecs_to_assign;
146 		     curvec++, v++) {
147 			cpus_per_vec = ncpus / vecs_to_assign;
148 
149 			/* Account for extra vectors to compensate rounding errors */
150 			if (extra_vecs) {
151 				cpus_per_vec++;
152 				--extra_vecs;
153 			}
154 			irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec);
155 		}
156 
157 		done += v;
158 		if (done >= numvecs)
159 			break;
160 		if (curvec >= last_affv)
161 			curvec = affd->pre_vectors;
162 		--nodes;
163 	}
164 
165 out:
166 	return done;
167 }
168 
169 /**
170  * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
171  * @nvecs:	The total number of vectors
172  * @affd:	Description of the affinity requirements
173  *
174  * Returns the masks pointer or NULL if allocation failed.
175  */
176 struct cpumask *
177 irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd)
178 {
179 	int affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
180 	int curvec, usedvecs;
181 	cpumask_var_t nmsk, npresmsk, *node_to_cpumask;
182 	struct cpumask *masks = NULL;
183 
184 	/*
185 	 * If there aren't any vectors left after applying the pre/post
186 	 * vectors don't bother with assigning affinity.
187 	 */
188 	if (nvecs == affd->pre_vectors + affd->post_vectors)
189 		return NULL;
190 
191 	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
192 		return NULL;
193 
194 	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
195 		goto outcpumsk;
196 
197 	node_to_cpumask = alloc_node_to_cpumask();
198 	if (!node_to_cpumask)
199 		goto outnpresmsk;
200 
201 	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
202 	if (!masks)
203 		goto outnodemsk;
204 
205 	/* Fill out vectors at the beginning that don't need affinity */
206 	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
207 		cpumask_copy(masks + curvec, irq_default_affinity);
208 
209 	/* Stabilize the cpumasks */
210 	get_online_cpus();
211 	build_node_to_cpumask(node_to_cpumask);
212 
213 	/* Spread on present CPUs starting from affd->pre_vectors */
214 	usedvecs = irq_build_affinity_masks(affd, curvec, affvecs,
215 					    node_to_cpumask, cpu_present_mask,
216 					    nmsk, masks);
217 
218 	/*
219 	 * Spread on non present CPUs starting from the next vector to be
220 	 * handled. If the spreading of present CPUs already exhausted the
221 	 * vector space, assign the non present CPUs to the already spread
222 	 * out vectors.
223 	 */
224 	if (usedvecs >= affvecs)
225 		curvec = affd->pre_vectors;
226 	else
227 		curvec = affd->pre_vectors + usedvecs;
228 	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
229 	usedvecs += irq_build_affinity_masks(affd, curvec, affvecs,
230 					     node_to_cpumask, npresmsk,
231 					     nmsk, masks);
232 	put_online_cpus();
233 
234 	/* Fill out vectors at the end that don't need affinity */
235 	if (usedvecs >= affvecs)
236 		curvec = affd->pre_vectors + affvecs;
237 	else
238 		curvec = affd->pre_vectors + usedvecs;
239 	for (; curvec < nvecs; curvec++)
240 		cpumask_copy(masks + curvec, irq_default_affinity);
241 
242 outnodemsk:
243 	free_node_to_cpumask(node_to_cpumask);
244 outnpresmsk:
245 	free_cpumask_var(npresmsk);
246 outcpumsk:
247 	free_cpumask_var(nmsk);
248 	return masks;
249 }
250 
251 /**
252  * irq_calc_affinity_vectors - Calculate the optimal number of vectors
253  * @minvec:	The minimum number of vectors available
254  * @maxvec:	The maximum number of vectors available
255  * @affd:	Description of the affinity requirements
256  */
257 int irq_calc_affinity_vectors(int minvec, int maxvec, const struct irq_affinity *affd)
258 {
259 	int resv = affd->pre_vectors + affd->post_vectors;
260 	int vecs = maxvec - resv;
261 	int ret;
262 
263 	if (resv > minvec)
264 		return 0;
265 
266 	get_online_cpus();
267 	ret = min_t(int, cpumask_weight(cpu_possible_mask), vecs) + resv;
268 	put_online_cpus();
269 	return ret;
270 }
271