1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/plist.h> 4 #include <linux/sched/task.h> 5 #include <linux/sched/signal.h> 6 #include <linux/freezer.h> 7 8 #include "futex.h" 9 10 /* 11 * READ this before attempting to hack on futexes! 12 * 13 * Basic futex operation and ordering guarantees 14 * ============================================= 15 * 16 * The waiter reads the futex value in user space and calls 17 * futex_wait(). This function computes the hash bucket and acquires 18 * the hash bucket lock. After that it reads the futex user space value 19 * again and verifies that the data has not changed. If it has not changed 20 * it enqueues itself into the hash bucket, releases the hash bucket lock 21 * and schedules. 22 * 23 * The waker side modifies the user space value of the futex and calls 24 * futex_wake(). This function computes the hash bucket and acquires the 25 * hash bucket lock. Then it looks for waiters on that futex in the hash 26 * bucket and wakes them. 27 * 28 * In futex wake up scenarios where no tasks are blocked on a futex, taking 29 * the hb spinlock can be avoided and simply return. In order for this 30 * optimization to work, ordering guarantees must exist so that the waiter 31 * being added to the list is acknowledged when the list is concurrently being 32 * checked by the waker, avoiding scenarios like the following: 33 * 34 * CPU 0 CPU 1 35 * val = *futex; 36 * sys_futex(WAIT, futex, val); 37 * futex_wait(futex, val); 38 * uval = *futex; 39 * *futex = newval; 40 * sys_futex(WAKE, futex); 41 * futex_wake(futex); 42 * if (queue_empty()) 43 * return; 44 * if (uval == val) 45 * lock(hash_bucket(futex)); 46 * queue(); 47 * unlock(hash_bucket(futex)); 48 * schedule(); 49 * 50 * This would cause the waiter on CPU 0 to wait forever because it 51 * missed the transition of the user space value from val to newval 52 * and the waker did not find the waiter in the hash bucket queue. 53 * 54 * The correct serialization ensures that a waiter either observes 55 * the changed user space value before blocking or is woken by a 56 * concurrent waker: 57 * 58 * CPU 0 CPU 1 59 * val = *futex; 60 * sys_futex(WAIT, futex, val); 61 * futex_wait(futex, val); 62 * 63 * waiters++; (a) 64 * smp_mb(); (A) <-- paired with -. 65 * | 66 * lock(hash_bucket(futex)); | 67 * | 68 * uval = *futex; | 69 * | *futex = newval; 70 * | sys_futex(WAKE, futex); 71 * | futex_wake(futex); 72 * | 73 * `--------> smp_mb(); (B) 74 * if (uval == val) 75 * queue(); 76 * unlock(hash_bucket(futex)); 77 * schedule(); if (waiters) 78 * lock(hash_bucket(futex)); 79 * else wake_waiters(futex); 80 * waiters--; (b) unlock(hash_bucket(futex)); 81 * 82 * Where (A) orders the waiters increment and the futex value read through 83 * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write 84 * to futex and the waiters read (see futex_hb_waiters_pending()). 85 * 86 * This yields the following case (where X:=waiters, Y:=futex): 87 * 88 * X = Y = 0 89 * 90 * w[X]=1 w[Y]=1 91 * MB MB 92 * r[Y]=y r[X]=x 93 * 94 * Which guarantees that x==0 && y==0 is impossible; which translates back into 95 * the guarantee that we cannot both miss the futex variable change and the 96 * enqueue. 97 * 98 * Note that a new waiter is accounted for in (a) even when it is possible that 99 * the wait call can return error, in which case we backtrack from it in (b). 100 * Refer to the comment in futex_q_lock(). 101 * 102 * Similarly, in order to account for waiters being requeued on another 103 * address we always increment the waiters for the destination bucket before 104 * acquiring the lock. It then decrements them again after releasing it - 105 * the code that actually moves the futex(es) between hash buckets (requeue_futex) 106 * will do the additional required waiter count housekeeping. This is done for 107 * double_lock_hb() and double_unlock_hb(), respectively. 108 */ 109 110 bool __futex_wake_mark(struct futex_q *q) 111 { 112 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) 113 return false; 114 115 __futex_unqueue(q); 116 /* 117 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL 118 * is written, without taking any locks. This is possible in the event 119 * of a spurious wakeup, for example. A memory barrier is required here 120 * to prevent the following store to lock_ptr from getting ahead of the 121 * plist_del in __futex_unqueue(). 122 */ 123 smp_store_release(&q->lock_ptr, NULL); 124 125 return true; 126 } 127 128 /* 129 * The hash bucket lock must be held when this is called. 130 * Afterwards, the futex_q must not be accessed. Callers 131 * must ensure to later call wake_up_q() for the actual 132 * wakeups to occur. 133 */ 134 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q) 135 { 136 struct task_struct *p = q->task; 137 138 get_task_struct(p); 139 140 if (!__futex_wake_mark(q)) { 141 put_task_struct(p); 142 return; 143 } 144 145 /* 146 * Queue the task for later wakeup for after we've released 147 * the hb->lock. 148 */ 149 wake_q_add_safe(wake_q, p); 150 } 151 152 /* 153 * Wake up waiters matching bitset queued on this futex (uaddr). 154 */ 155 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) 156 { 157 struct futex_hash_bucket *hb; 158 struct futex_q *this, *next; 159 union futex_key key = FUTEX_KEY_INIT; 160 DEFINE_WAKE_Q(wake_q); 161 int ret; 162 163 if (!bitset) 164 return -EINVAL; 165 166 ret = get_futex_key(uaddr, flags, &key, FUTEX_READ); 167 if (unlikely(ret != 0)) 168 return ret; 169 170 if ((flags & FLAGS_STRICT) && !nr_wake) 171 return 0; 172 173 hb = futex_hash(&key); 174 175 /* Make sure we really have tasks to wakeup */ 176 if (!futex_hb_waiters_pending(hb)) 177 return ret; 178 179 spin_lock(&hb->lock); 180 181 plist_for_each_entry_safe(this, next, &hb->chain, list) { 182 if (futex_match (&this->key, &key)) { 183 if (this->pi_state || this->rt_waiter) { 184 ret = -EINVAL; 185 break; 186 } 187 188 /* Check if one of the bits is set in both bitsets */ 189 if (!(this->bitset & bitset)) 190 continue; 191 192 this->wake(&wake_q, this); 193 if (++ret >= nr_wake) 194 break; 195 } 196 } 197 198 spin_unlock(&hb->lock); 199 wake_up_q(&wake_q); 200 return ret; 201 } 202 203 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) 204 { 205 unsigned int op = (encoded_op & 0x70000000) >> 28; 206 unsigned int cmp = (encoded_op & 0x0f000000) >> 24; 207 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); 208 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); 209 int oldval, ret; 210 211 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { 212 if (oparg < 0 || oparg > 31) { 213 /* 214 * kill this print and return -EINVAL when userspace 215 * is sane again 216 */ 217 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", 218 current->comm, oparg); 219 oparg &= 31; 220 } 221 oparg = 1 << oparg; 222 } 223 224 pagefault_disable(); 225 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); 226 pagefault_enable(); 227 if (ret) 228 return ret; 229 230 switch (cmp) { 231 case FUTEX_OP_CMP_EQ: 232 return oldval == cmparg; 233 case FUTEX_OP_CMP_NE: 234 return oldval != cmparg; 235 case FUTEX_OP_CMP_LT: 236 return oldval < cmparg; 237 case FUTEX_OP_CMP_GE: 238 return oldval >= cmparg; 239 case FUTEX_OP_CMP_LE: 240 return oldval <= cmparg; 241 case FUTEX_OP_CMP_GT: 242 return oldval > cmparg; 243 default: 244 return -ENOSYS; 245 } 246 } 247 248 /* 249 * Wake up all waiters hashed on the physical page that is mapped 250 * to this virtual address: 251 */ 252 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, 253 int nr_wake, int nr_wake2, int op) 254 { 255 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; 256 struct futex_hash_bucket *hb1, *hb2; 257 struct futex_q *this, *next; 258 int ret, op_ret; 259 DEFINE_WAKE_Q(wake_q); 260 261 retry: 262 ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ); 263 if (unlikely(ret != 0)) 264 return ret; 265 ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE); 266 if (unlikely(ret != 0)) 267 return ret; 268 269 hb1 = futex_hash(&key1); 270 hb2 = futex_hash(&key2); 271 272 retry_private: 273 double_lock_hb(hb1, hb2); 274 op_ret = futex_atomic_op_inuser(op, uaddr2); 275 if (unlikely(op_ret < 0)) { 276 double_unlock_hb(hb1, hb2); 277 278 if (!IS_ENABLED(CONFIG_MMU) || 279 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { 280 /* 281 * we don't get EFAULT from MMU faults if we don't have 282 * an MMU, but we might get them from range checking 283 */ 284 ret = op_ret; 285 return ret; 286 } 287 288 if (op_ret == -EFAULT) { 289 ret = fault_in_user_writeable(uaddr2); 290 if (ret) 291 return ret; 292 } 293 294 cond_resched(); 295 if (!(flags & FLAGS_SHARED)) 296 goto retry_private; 297 goto retry; 298 } 299 300 plist_for_each_entry_safe(this, next, &hb1->chain, list) { 301 if (futex_match (&this->key, &key1)) { 302 if (this->pi_state || this->rt_waiter) { 303 ret = -EINVAL; 304 goto out_unlock; 305 } 306 this->wake(&wake_q, this); 307 if (++ret >= nr_wake) 308 break; 309 } 310 } 311 312 if (op_ret > 0) { 313 op_ret = 0; 314 plist_for_each_entry_safe(this, next, &hb2->chain, list) { 315 if (futex_match (&this->key, &key2)) { 316 if (this->pi_state || this->rt_waiter) { 317 ret = -EINVAL; 318 goto out_unlock; 319 } 320 this->wake(&wake_q, this); 321 if (++op_ret >= nr_wake2) 322 break; 323 } 324 } 325 ret += op_ret; 326 } 327 328 out_unlock: 329 double_unlock_hb(hb1, hb2); 330 wake_up_q(&wake_q); 331 return ret; 332 } 333 334 static long futex_wait_restart(struct restart_block *restart); 335 336 /** 337 * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal 338 * @hb: the futex hash bucket, must be locked by the caller 339 * @q: the futex_q to queue up on 340 * @timeout: the prepared hrtimer_sleeper, or null for no timeout 341 */ 342 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, 343 struct hrtimer_sleeper *timeout) 344 { 345 /* 346 * The task state is guaranteed to be set before another task can 347 * wake it. set_current_state() is implemented using smp_store_mb() and 348 * futex_queue() calls spin_unlock() upon completion, both serializing 349 * access to the hash list and forcing another memory barrier. 350 */ 351 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 352 futex_queue(q, hb, current); 353 354 /* Arm the timer */ 355 if (timeout) 356 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); 357 358 /* 359 * If we have been removed from the hash list, then another task 360 * has tried to wake us, and we can skip the call to schedule(). 361 */ 362 if (likely(!plist_node_empty(&q->list))) { 363 /* 364 * If the timer has already expired, current will already be 365 * flagged for rescheduling. Only call schedule if there 366 * is no timeout, or if it has yet to expire. 367 */ 368 if (!timeout || timeout->task) 369 schedule(); 370 } 371 __set_current_state(TASK_RUNNING); 372 } 373 374 /** 375 * futex_unqueue_multiple - Remove various futexes from their hash bucket 376 * @v: The list of futexes to unqueue 377 * @count: Number of futexes in the list 378 * 379 * Helper to unqueue a list of futexes. This can't fail. 380 * 381 * Return: 382 * - >=0 - Index of the last futex that was awoken; 383 * - -1 - No futex was awoken 384 */ 385 int futex_unqueue_multiple(struct futex_vector *v, int count) 386 { 387 int ret = -1, i; 388 389 for (i = 0; i < count; i++) { 390 if (!futex_unqueue(&v[i].q)) 391 ret = i; 392 } 393 394 return ret; 395 } 396 397 /** 398 * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes 399 * @vs: The futex list to wait on 400 * @count: The size of the list 401 * @woken: Index of the last woken futex, if any. Used to notify the 402 * caller that it can return this index to userspace (return parameter) 403 * 404 * Prepare multiple futexes in a single step and enqueue them. This may fail if 405 * the futex list is invalid or if any futex was already awoken. On success the 406 * task is ready to interruptible sleep. 407 * 408 * Return: 409 * - 1 - One of the futexes was woken by another thread 410 * - 0 - Success 411 * - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL 412 */ 413 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken) 414 { 415 struct futex_hash_bucket *hb; 416 bool retry = false; 417 int ret, i; 418 u32 uval; 419 420 /* 421 * Enqueuing multiple futexes is tricky, because we need to enqueue 422 * each futex on the list before dealing with the next one to avoid 423 * deadlocking on the hash bucket. But, before enqueuing, we need to 424 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't 425 * lose any wake events, which cannot be done before the get_futex_key 426 * of the next key, because it calls get_user_pages, which can sleep. 427 * Thus, we fetch the list of futexes keys in two steps, by first 428 * pinning all the memory keys in the futex key, and only then we read 429 * each key and queue the corresponding futex. 430 * 431 * Private futexes doesn't need to recalculate hash in retry, so skip 432 * get_futex_key() when retrying. 433 */ 434 retry: 435 for (i = 0; i < count; i++) { 436 if (!(vs[i].w.flags & FLAGS_SHARED) && retry) 437 continue; 438 439 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr), 440 vs[i].w.flags, 441 &vs[i].q.key, FUTEX_READ); 442 443 if (unlikely(ret)) 444 return ret; 445 } 446 447 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 448 449 for (i = 0; i < count; i++) { 450 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr; 451 struct futex_q *q = &vs[i].q; 452 u32 val = vs[i].w.val; 453 454 hb = futex_q_lock(q); 455 ret = futex_get_value_locked(&uval, uaddr); 456 457 if (!ret && uval == val) { 458 /* 459 * The bucket lock can't be held while dealing with the 460 * next futex. Queue each futex at this moment so hb can 461 * be unlocked. 462 */ 463 futex_queue(q, hb, current); 464 continue; 465 } 466 467 futex_q_unlock(hb); 468 __set_current_state(TASK_RUNNING); 469 470 /* 471 * Even if something went wrong, if we find out that a futex 472 * was woken, we don't return error and return this index to 473 * userspace 474 */ 475 *woken = futex_unqueue_multiple(vs, i); 476 if (*woken >= 0) 477 return 1; 478 479 if (ret) { 480 /* 481 * If we need to handle a page fault, we need to do so 482 * without any lock and any enqueued futex (otherwise 483 * we could lose some wakeup). So we do it here, after 484 * undoing all the work done so far. In success, we 485 * retry all the work. 486 */ 487 if (get_user(uval, uaddr)) 488 return -EFAULT; 489 490 retry = true; 491 goto retry; 492 } 493 494 if (uval != val) 495 return -EWOULDBLOCK; 496 } 497 498 return 0; 499 } 500 501 /** 502 * futex_sleep_multiple - Check sleeping conditions and sleep 503 * @vs: List of futexes to wait for 504 * @count: Length of vs 505 * @to: Timeout 506 * 507 * Sleep if and only if the timeout hasn't expired and no futex on the list has 508 * been woken up. 509 */ 510 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count, 511 struct hrtimer_sleeper *to) 512 { 513 if (to && !to->task) 514 return; 515 516 for (; count; count--, vs++) { 517 if (!READ_ONCE(vs->q.lock_ptr)) 518 return; 519 } 520 521 schedule(); 522 } 523 524 /** 525 * futex_wait_multiple - Prepare to wait on and enqueue several futexes 526 * @vs: The list of futexes to wait on 527 * @count: The number of objects 528 * @to: Timeout before giving up and returning to userspace 529 * 530 * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function 531 * sleeps on a group of futexes and returns on the first futex that is 532 * wake, or after the timeout has elapsed. 533 * 534 * Return: 535 * - >=0 - Hint to the futex that was awoken 536 * - <0 - On error 537 */ 538 int futex_wait_multiple(struct futex_vector *vs, unsigned int count, 539 struct hrtimer_sleeper *to) 540 { 541 int ret, hint = 0; 542 543 if (to) 544 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); 545 546 while (1) { 547 ret = futex_wait_multiple_setup(vs, count, &hint); 548 if (ret) { 549 if (ret > 0) { 550 /* A futex was woken during setup */ 551 ret = hint; 552 } 553 return ret; 554 } 555 556 futex_sleep_multiple(vs, count, to); 557 558 __set_current_state(TASK_RUNNING); 559 560 ret = futex_unqueue_multiple(vs, count); 561 if (ret >= 0) 562 return ret; 563 564 if (to && !to->task) 565 return -ETIMEDOUT; 566 else if (signal_pending(current)) 567 return -ERESTARTSYS; 568 /* 569 * The final case is a spurious wakeup, for 570 * which just retry. 571 */ 572 } 573 } 574 575 /** 576 * futex_wait_setup() - Prepare to wait on a futex 577 * @uaddr: the futex userspace address 578 * @val: the expected value 579 * @flags: futex flags (FLAGS_SHARED, etc.) 580 * @q: the associated futex_q 581 * @hb: storage for hash_bucket pointer to be returned to caller 582 * 583 * Setup the futex_q and locate the hash_bucket. Get the futex value and 584 * compare it with the expected value. Handle atomic faults internally. 585 * Return with the hb lock held on success, and unlocked on failure. 586 * 587 * Return: 588 * - 0 - uaddr contains val and hb has been locked; 589 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked 590 */ 591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, 592 struct futex_q *q, struct futex_hash_bucket **hb) 593 { 594 u32 uval; 595 int ret; 596 597 /* 598 * Access the page AFTER the hash-bucket is locked. 599 * Order is important: 600 * 601 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); 602 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } 603 * 604 * The basic logical guarantee of a futex is that it blocks ONLY 605 * if cond(var) is known to be true at the time of blocking, for 606 * any cond. If we locked the hash-bucket after testing *uaddr, that 607 * would open a race condition where we could block indefinitely with 608 * cond(var) false, which would violate the guarantee. 609 * 610 * On the other hand, we insert q and release the hash-bucket only 611 * after testing *uaddr. This guarantees that futex_wait() will NOT 612 * absorb a wakeup if *uaddr does not match the desired values 613 * while the syscall executes. 614 */ 615 retry: 616 ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ); 617 if (unlikely(ret != 0)) 618 return ret; 619 620 retry_private: 621 *hb = futex_q_lock(q); 622 623 ret = futex_get_value_locked(&uval, uaddr); 624 625 if (ret) { 626 futex_q_unlock(*hb); 627 628 ret = get_user(uval, uaddr); 629 if (ret) 630 return ret; 631 632 if (!(flags & FLAGS_SHARED)) 633 goto retry_private; 634 635 goto retry; 636 } 637 638 if (uval != val) { 639 futex_q_unlock(*hb); 640 ret = -EWOULDBLOCK; 641 } 642 643 return ret; 644 } 645 646 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, 647 struct hrtimer_sleeper *to, u32 bitset) 648 { 649 struct futex_q q = futex_q_init; 650 struct futex_hash_bucket *hb; 651 int ret; 652 653 if (!bitset) 654 return -EINVAL; 655 656 q.bitset = bitset; 657 658 retry: 659 /* 660 * Prepare to wait on uaddr. On success, it holds hb->lock and q 661 * is initialized. 662 */ 663 ret = futex_wait_setup(uaddr, val, flags, &q, &hb); 664 if (ret) 665 return ret; 666 667 /* futex_queue and wait for wakeup, timeout, or a signal. */ 668 futex_wait_queue(hb, &q, to); 669 670 /* If we were woken (and unqueued), we succeeded, whatever. */ 671 if (!futex_unqueue(&q)) 672 return 0; 673 674 if (to && !to->task) 675 return -ETIMEDOUT; 676 677 /* 678 * We expect signal_pending(current), but we might be the 679 * victim of a spurious wakeup as well. 680 */ 681 if (!signal_pending(current)) 682 goto retry; 683 684 return -ERESTARTSYS; 685 } 686 687 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) 688 { 689 struct hrtimer_sleeper timeout, *to; 690 struct restart_block *restart; 691 int ret; 692 693 to = futex_setup_timer(abs_time, &timeout, flags, 694 current->timer_slack_ns); 695 696 ret = __futex_wait(uaddr, flags, val, to, bitset); 697 698 /* No timeout, nothing to clean up. */ 699 if (!to) 700 return ret; 701 702 hrtimer_cancel(&to->timer); 703 destroy_hrtimer_on_stack(&to->timer); 704 705 if (ret == -ERESTARTSYS) { 706 restart = ¤t->restart_block; 707 restart->futex.uaddr = uaddr; 708 restart->futex.val = val; 709 restart->futex.time = *abs_time; 710 restart->futex.bitset = bitset; 711 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; 712 713 return set_restart_fn(restart, futex_wait_restart); 714 } 715 716 return ret; 717 } 718 719 static long futex_wait_restart(struct restart_block *restart) 720 { 721 u32 __user *uaddr = restart->futex.uaddr; 722 ktime_t t, *tp = NULL; 723 724 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { 725 t = restart->futex.time; 726 tp = &t; 727 } 728 restart->fn = do_no_restart_syscall; 729 730 return (long)futex_wait(uaddr, restart->futex.flags, 731 restart->futex.val, tp, restart->futex.bitset); 732 } 733 734