xref: /linux/kernel/futex/waitwake.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/sched/task.h>
4 #include <linux/sched/signal.h>
5 #include <linux/freezer.h>
6 
7 #include "futex.h"
8 
9 /*
10  * READ this before attempting to hack on futexes!
11  *
12  * Basic futex operation and ordering guarantees
13  * =============================================
14  *
15  * The waiter reads the futex value in user space and calls
16  * futex_wait(). This function computes the hash bucket and acquires
17  * the hash bucket lock. After that it reads the futex user space value
18  * again and verifies that the data has not changed. If it has not changed
19  * it enqueues itself into the hash bucket, releases the hash bucket lock
20  * and schedules.
21  *
22  * The waker side modifies the user space value of the futex and calls
23  * futex_wake(). This function computes the hash bucket and acquires the
24  * hash bucket lock. Then it looks for waiters on that futex in the hash
25  * bucket and wakes them.
26  *
27  * In futex wake up scenarios where no tasks are blocked on a futex, taking
28  * the hb spinlock can be avoided and simply return. In order for this
29  * optimization to work, ordering guarantees must exist so that the waiter
30  * being added to the list is acknowledged when the list is concurrently being
31  * checked by the waker, avoiding scenarios like the following:
32  *
33  * CPU 0                               CPU 1
34  * val = *futex;
35  * sys_futex(WAIT, futex, val);
36  *   futex_wait(futex, val);
37  *   uval = *futex;
38  *                                     *futex = newval;
39  *                                     sys_futex(WAKE, futex);
40  *                                       futex_wake(futex);
41  *                                       if (queue_empty())
42  *                                         return;
43  *   if (uval == val)
44  *      lock(hash_bucket(futex));
45  *      queue();
46  *     unlock(hash_bucket(futex));
47  *     schedule();
48  *
49  * This would cause the waiter on CPU 0 to wait forever because it
50  * missed the transition of the user space value from val to newval
51  * and the waker did not find the waiter in the hash bucket queue.
52  *
53  * The correct serialization ensures that a waiter either observes
54  * the changed user space value before blocking or is woken by a
55  * concurrent waker:
56  *
57  * CPU 0                                 CPU 1
58  * val = *futex;
59  * sys_futex(WAIT, futex, val);
60  *   futex_wait(futex, val);
61  *
62  *   waiters++; (a)
63  *   smp_mb(); (A) <-- paired with -.
64  *                                  |
65  *   lock(hash_bucket(futex));      |
66  *                                  |
67  *   uval = *futex;                 |
68  *                                  |        *futex = newval;
69  *                                  |        sys_futex(WAKE, futex);
70  *                                  |          futex_wake(futex);
71  *                                  |
72  *                                  `--------> smp_mb(); (B)
73  *   if (uval == val)
74  *     queue();
75  *     unlock(hash_bucket(futex));
76  *     schedule();                         if (waiters)
77  *                                           lock(hash_bucket(futex));
78  *   else                                    wake_waiters(futex);
79  *     waiters--; (b)                        unlock(hash_bucket(futex));
80  *
81  * Where (A) orders the waiters increment and the futex value read through
82  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
83  * to futex and the waiters read (see futex_hb_waiters_pending()).
84  *
85  * This yields the following case (where X:=waiters, Y:=futex):
86  *
87  *	X = Y = 0
88  *
89  *	w[X]=1		w[Y]=1
90  *	MB		MB
91  *	r[Y]=y		r[X]=x
92  *
93  * Which guarantees that x==0 && y==0 is impossible; which translates back into
94  * the guarantee that we cannot both miss the futex variable change and the
95  * enqueue.
96  *
97  * Note that a new waiter is accounted for in (a) even when it is possible that
98  * the wait call can return error, in which case we backtrack from it in (b).
99  * Refer to the comment in futex_q_lock().
100  *
101  * Similarly, in order to account for waiters being requeued on another
102  * address we always increment the waiters for the destination bucket before
103  * acquiring the lock. It then decrements them again  after releasing it -
104  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
105  * will do the additional required waiter count housekeeping. This is done for
106  * double_lock_hb() and double_unlock_hb(), respectively.
107  */
108 
109 /*
110  * The hash bucket lock must be held when this is called.
111  * Afterwards, the futex_q must not be accessed. Callers
112  * must ensure to later call wake_up_q() for the actual
113  * wakeups to occur.
114  */
115 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
116 {
117 	struct task_struct *p = q->task;
118 
119 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
120 		return;
121 
122 	get_task_struct(p);
123 	__futex_unqueue(q);
124 	/*
125 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
126 	 * is written, without taking any locks. This is possible in the event
127 	 * of a spurious wakeup, for example. A memory barrier is required here
128 	 * to prevent the following store to lock_ptr from getting ahead of the
129 	 * plist_del in __futex_unqueue().
130 	 */
131 	smp_store_release(&q->lock_ptr, NULL);
132 
133 	/*
134 	 * Queue the task for later wakeup for after we've released
135 	 * the hb->lock.
136 	 */
137 	wake_q_add_safe(wake_q, p);
138 }
139 
140 /*
141  * Wake up waiters matching bitset queued on this futex (uaddr).
142  */
143 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
144 {
145 	struct futex_hash_bucket *hb;
146 	struct futex_q *this, *next;
147 	union futex_key key = FUTEX_KEY_INIT;
148 	DEFINE_WAKE_Q(wake_q);
149 	int ret;
150 
151 	if (!bitset)
152 		return -EINVAL;
153 
154 	ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
155 	if (unlikely(ret != 0))
156 		return ret;
157 
158 	if ((flags & FLAGS_STRICT) && !nr_wake)
159 		return 0;
160 
161 	hb = futex_hash(&key);
162 
163 	/* Make sure we really have tasks to wakeup */
164 	if (!futex_hb_waiters_pending(hb))
165 		return ret;
166 
167 	spin_lock(&hb->lock);
168 
169 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
170 		if (futex_match (&this->key, &key)) {
171 			if (this->pi_state || this->rt_waiter) {
172 				ret = -EINVAL;
173 				break;
174 			}
175 
176 			/* Check if one of the bits is set in both bitsets */
177 			if (!(this->bitset & bitset))
178 				continue;
179 
180 			futex_wake_mark(&wake_q, this);
181 			if (++ret >= nr_wake)
182 				break;
183 		}
184 	}
185 
186 	spin_unlock(&hb->lock);
187 	wake_up_q(&wake_q);
188 	return ret;
189 }
190 
191 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
192 {
193 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
194 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
195 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
196 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
197 	int oldval, ret;
198 
199 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
200 		if (oparg < 0 || oparg > 31) {
201 			char comm[sizeof(current->comm)];
202 			/*
203 			 * kill this print and return -EINVAL when userspace
204 			 * is sane again
205 			 */
206 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
207 					get_task_comm(comm, current), oparg);
208 			oparg &= 31;
209 		}
210 		oparg = 1 << oparg;
211 	}
212 
213 	pagefault_disable();
214 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
215 	pagefault_enable();
216 	if (ret)
217 		return ret;
218 
219 	switch (cmp) {
220 	case FUTEX_OP_CMP_EQ:
221 		return oldval == cmparg;
222 	case FUTEX_OP_CMP_NE:
223 		return oldval != cmparg;
224 	case FUTEX_OP_CMP_LT:
225 		return oldval < cmparg;
226 	case FUTEX_OP_CMP_GE:
227 		return oldval >= cmparg;
228 	case FUTEX_OP_CMP_LE:
229 		return oldval <= cmparg;
230 	case FUTEX_OP_CMP_GT:
231 		return oldval > cmparg;
232 	default:
233 		return -ENOSYS;
234 	}
235 }
236 
237 /*
238  * Wake up all waiters hashed on the physical page that is mapped
239  * to this virtual address:
240  */
241 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
242 		  int nr_wake, int nr_wake2, int op)
243 {
244 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
245 	struct futex_hash_bucket *hb1, *hb2;
246 	struct futex_q *this, *next;
247 	int ret, op_ret;
248 	DEFINE_WAKE_Q(wake_q);
249 
250 retry:
251 	ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
252 	if (unlikely(ret != 0))
253 		return ret;
254 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
255 	if (unlikely(ret != 0))
256 		return ret;
257 
258 	hb1 = futex_hash(&key1);
259 	hb2 = futex_hash(&key2);
260 
261 retry_private:
262 	double_lock_hb(hb1, hb2);
263 	op_ret = futex_atomic_op_inuser(op, uaddr2);
264 	if (unlikely(op_ret < 0)) {
265 		double_unlock_hb(hb1, hb2);
266 
267 		if (!IS_ENABLED(CONFIG_MMU) ||
268 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
269 			/*
270 			 * we don't get EFAULT from MMU faults if we don't have
271 			 * an MMU, but we might get them from range checking
272 			 */
273 			ret = op_ret;
274 			return ret;
275 		}
276 
277 		if (op_ret == -EFAULT) {
278 			ret = fault_in_user_writeable(uaddr2);
279 			if (ret)
280 				return ret;
281 		}
282 
283 		cond_resched();
284 		if (!(flags & FLAGS_SHARED))
285 			goto retry_private;
286 		goto retry;
287 	}
288 
289 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
290 		if (futex_match (&this->key, &key1)) {
291 			if (this->pi_state || this->rt_waiter) {
292 				ret = -EINVAL;
293 				goto out_unlock;
294 			}
295 			futex_wake_mark(&wake_q, this);
296 			if (++ret >= nr_wake)
297 				break;
298 		}
299 	}
300 
301 	if (op_ret > 0) {
302 		op_ret = 0;
303 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
304 			if (futex_match (&this->key, &key2)) {
305 				if (this->pi_state || this->rt_waiter) {
306 					ret = -EINVAL;
307 					goto out_unlock;
308 				}
309 				futex_wake_mark(&wake_q, this);
310 				if (++op_ret >= nr_wake2)
311 					break;
312 			}
313 		}
314 		ret += op_ret;
315 	}
316 
317 out_unlock:
318 	double_unlock_hb(hb1, hb2);
319 	wake_up_q(&wake_q);
320 	return ret;
321 }
322 
323 static long futex_wait_restart(struct restart_block *restart);
324 
325 /**
326  * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
327  * @hb:		the futex hash bucket, must be locked by the caller
328  * @q:		the futex_q to queue up on
329  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
330  */
331 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
332 			    struct hrtimer_sleeper *timeout)
333 {
334 	/*
335 	 * The task state is guaranteed to be set before another task can
336 	 * wake it. set_current_state() is implemented using smp_store_mb() and
337 	 * futex_queue() calls spin_unlock() upon completion, both serializing
338 	 * access to the hash list and forcing another memory barrier.
339 	 */
340 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
341 	futex_queue(q, hb);
342 
343 	/* Arm the timer */
344 	if (timeout)
345 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
346 
347 	/*
348 	 * If we have been removed from the hash list, then another task
349 	 * has tried to wake us, and we can skip the call to schedule().
350 	 */
351 	if (likely(!plist_node_empty(&q->list))) {
352 		/*
353 		 * If the timer has already expired, current will already be
354 		 * flagged for rescheduling. Only call schedule if there
355 		 * is no timeout, or if it has yet to expire.
356 		 */
357 		if (!timeout || timeout->task)
358 			schedule();
359 	}
360 	__set_current_state(TASK_RUNNING);
361 }
362 
363 /**
364  * unqueue_multiple - Remove various futexes from their hash bucket
365  * @v:	   The list of futexes to unqueue
366  * @count: Number of futexes in the list
367  *
368  * Helper to unqueue a list of futexes. This can't fail.
369  *
370  * Return:
371  *  - >=0 - Index of the last futex that was awoken;
372  *  - -1  - No futex was awoken
373  */
374 static int unqueue_multiple(struct futex_vector *v, int count)
375 {
376 	int ret = -1, i;
377 
378 	for (i = 0; i < count; i++) {
379 		if (!futex_unqueue(&v[i].q))
380 			ret = i;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
388  * @vs:		The futex list to wait on
389  * @count:	The size of the list
390  * @woken:	Index of the last woken futex, if any. Used to notify the
391  *		caller that it can return this index to userspace (return parameter)
392  *
393  * Prepare multiple futexes in a single step and enqueue them. This may fail if
394  * the futex list is invalid or if any futex was already awoken. On success the
395  * task is ready to interruptible sleep.
396  *
397  * Return:
398  *  -  1 - One of the futexes was woken by another thread
399  *  -  0 - Success
400  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
401  */
402 static int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
403 {
404 	struct futex_hash_bucket *hb;
405 	bool retry = false;
406 	int ret, i;
407 	u32 uval;
408 
409 	/*
410 	 * Enqueuing multiple futexes is tricky, because we need to enqueue
411 	 * each futex on the list before dealing with the next one to avoid
412 	 * deadlocking on the hash bucket. But, before enqueuing, we need to
413 	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
414 	 * lose any wake events, which cannot be done before the get_futex_key
415 	 * of the next key, because it calls get_user_pages, which can sleep.
416 	 * Thus, we fetch the list of futexes keys in two steps, by first
417 	 * pinning all the memory keys in the futex key, and only then we read
418 	 * each key and queue the corresponding futex.
419 	 *
420 	 * Private futexes doesn't need to recalculate hash in retry, so skip
421 	 * get_futex_key() when retrying.
422 	 */
423 retry:
424 	for (i = 0; i < count; i++) {
425 		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
426 			continue;
427 
428 		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
429 				    vs[i].w.flags,
430 				    &vs[i].q.key, FUTEX_READ);
431 
432 		if (unlikely(ret))
433 			return ret;
434 	}
435 
436 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
437 
438 	for (i = 0; i < count; i++) {
439 		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
440 		struct futex_q *q = &vs[i].q;
441 		u32 val = vs[i].w.val;
442 
443 		hb = futex_q_lock(q);
444 		ret = futex_get_value_locked(&uval, uaddr);
445 
446 		if (!ret && uval == val) {
447 			/*
448 			 * The bucket lock can't be held while dealing with the
449 			 * next futex. Queue each futex at this moment so hb can
450 			 * be unlocked.
451 			 */
452 			futex_queue(q, hb);
453 			continue;
454 		}
455 
456 		futex_q_unlock(hb);
457 		__set_current_state(TASK_RUNNING);
458 
459 		/*
460 		 * Even if something went wrong, if we find out that a futex
461 		 * was woken, we don't return error and return this index to
462 		 * userspace
463 		 */
464 		*woken = unqueue_multiple(vs, i);
465 		if (*woken >= 0)
466 			return 1;
467 
468 		if (ret) {
469 			/*
470 			 * If we need to handle a page fault, we need to do so
471 			 * without any lock and any enqueued futex (otherwise
472 			 * we could lose some wakeup). So we do it here, after
473 			 * undoing all the work done so far. In success, we
474 			 * retry all the work.
475 			 */
476 			if (get_user(uval, uaddr))
477 				return -EFAULT;
478 
479 			retry = true;
480 			goto retry;
481 		}
482 
483 		if (uval != val)
484 			return -EWOULDBLOCK;
485 	}
486 
487 	return 0;
488 }
489 
490 /**
491  * futex_sleep_multiple - Check sleeping conditions and sleep
492  * @vs:    List of futexes to wait for
493  * @count: Length of vs
494  * @to:    Timeout
495  *
496  * Sleep if and only if the timeout hasn't expired and no futex on the list has
497  * been woken up.
498  */
499 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
500 				 struct hrtimer_sleeper *to)
501 {
502 	if (to && !to->task)
503 		return;
504 
505 	for (; count; count--, vs++) {
506 		if (!READ_ONCE(vs->q.lock_ptr))
507 			return;
508 	}
509 
510 	schedule();
511 }
512 
513 /**
514  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
515  * @vs:		The list of futexes to wait on
516  * @count:	The number of objects
517  * @to:		Timeout before giving up and returning to userspace
518  *
519  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
520  * sleeps on a group of futexes and returns on the first futex that is
521  * wake, or after the timeout has elapsed.
522  *
523  * Return:
524  *  - >=0 - Hint to the futex that was awoken
525  *  - <0  - On error
526  */
527 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
528 			struct hrtimer_sleeper *to)
529 {
530 	int ret, hint = 0;
531 
532 	if (to)
533 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
534 
535 	while (1) {
536 		ret = futex_wait_multiple_setup(vs, count, &hint);
537 		if (ret) {
538 			if (ret > 0) {
539 				/* A futex was woken during setup */
540 				ret = hint;
541 			}
542 			return ret;
543 		}
544 
545 		futex_sleep_multiple(vs, count, to);
546 
547 		__set_current_state(TASK_RUNNING);
548 
549 		ret = unqueue_multiple(vs, count);
550 		if (ret >= 0)
551 			return ret;
552 
553 		if (to && !to->task)
554 			return -ETIMEDOUT;
555 		else if (signal_pending(current))
556 			return -ERESTARTSYS;
557 		/*
558 		 * The final case is a spurious wakeup, for
559 		 * which just retry.
560 		 */
561 	}
562 }
563 
564 /**
565  * futex_wait_setup() - Prepare to wait on a futex
566  * @uaddr:	the futex userspace address
567  * @val:	the expected value
568  * @flags:	futex flags (FLAGS_SHARED, etc.)
569  * @q:		the associated futex_q
570  * @hb:		storage for hash_bucket pointer to be returned to caller
571  *
572  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
573  * compare it with the expected value.  Handle atomic faults internally.
574  * Return with the hb lock held on success, and unlocked on failure.
575  *
576  * Return:
577  *  -  0 - uaddr contains val and hb has been locked;
578  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
579  */
580 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
581 		     struct futex_q *q, struct futex_hash_bucket **hb)
582 {
583 	u32 uval;
584 	int ret;
585 
586 	/*
587 	 * Access the page AFTER the hash-bucket is locked.
588 	 * Order is important:
589 	 *
590 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
591 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
592 	 *
593 	 * The basic logical guarantee of a futex is that it blocks ONLY
594 	 * if cond(var) is known to be true at the time of blocking, for
595 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
596 	 * would open a race condition where we could block indefinitely with
597 	 * cond(var) false, which would violate the guarantee.
598 	 *
599 	 * On the other hand, we insert q and release the hash-bucket only
600 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
601 	 * absorb a wakeup if *uaddr does not match the desired values
602 	 * while the syscall executes.
603 	 */
604 retry:
605 	ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
606 	if (unlikely(ret != 0))
607 		return ret;
608 
609 retry_private:
610 	*hb = futex_q_lock(q);
611 
612 	ret = futex_get_value_locked(&uval, uaddr);
613 
614 	if (ret) {
615 		futex_q_unlock(*hb);
616 
617 		ret = get_user(uval, uaddr);
618 		if (ret)
619 			return ret;
620 
621 		if (!(flags & FLAGS_SHARED))
622 			goto retry_private;
623 
624 		goto retry;
625 	}
626 
627 	if (uval != val) {
628 		futex_q_unlock(*hb);
629 		ret = -EWOULDBLOCK;
630 	}
631 
632 	return ret;
633 }
634 
635 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
636 		 struct hrtimer_sleeper *to, u32 bitset)
637 {
638 	struct futex_q q = futex_q_init;
639 	struct futex_hash_bucket *hb;
640 	int ret;
641 
642 	if (!bitset)
643 		return -EINVAL;
644 
645 	q.bitset = bitset;
646 
647 retry:
648 	/*
649 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
650 	 * is initialized.
651 	 */
652 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
653 	if (ret)
654 		return ret;
655 
656 	/* futex_queue and wait for wakeup, timeout, or a signal. */
657 	futex_wait_queue(hb, &q, to);
658 
659 	/* If we were woken (and unqueued), we succeeded, whatever. */
660 	if (!futex_unqueue(&q))
661 		return 0;
662 
663 	if (to && !to->task)
664 		return -ETIMEDOUT;
665 
666 	/*
667 	 * We expect signal_pending(current), but we might be the
668 	 * victim of a spurious wakeup as well.
669 	 */
670 	if (!signal_pending(current))
671 		goto retry;
672 
673 	return -ERESTARTSYS;
674 }
675 
676 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
677 {
678 	struct hrtimer_sleeper timeout, *to;
679 	struct restart_block *restart;
680 	int ret;
681 
682 	to = futex_setup_timer(abs_time, &timeout, flags,
683 			       current->timer_slack_ns);
684 
685 	ret = __futex_wait(uaddr, flags, val, to, bitset);
686 
687 	/* No timeout, nothing to clean up. */
688 	if (!to)
689 		return ret;
690 
691 	hrtimer_cancel(&to->timer);
692 	destroy_hrtimer_on_stack(&to->timer);
693 
694 	if (ret == -ERESTARTSYS) {
695 		restart = &current->restart_block;
696 		restart->futex.uaddr = uaddr;
697 		restart->futex.val = val;
698 		restart->futex.time = *abs_time;
699 		restart->futex.bitset = bitset;
700 		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
701 
702 		return set_restart_fn(restart, futex_wait_restart);
703 	}
704 
705 	return ret;
706 }
707 
708 static long futex_wait_restart(struct restart_block *restart)
709 {
710 	u32 __user *uaddr = restart->futex.uaddr;
711 	ktime_t t, *tp = NULL;
712 
713 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
714 		t = restart->futex.time;
715 		tp = &t;
716 	}
717 	restart->fn = do_no_restart_syscall;
718 
719 	return (long)futex_wait(uaddr, restart->futex.flags,
720 				restart->futex.val, tp, restart->futex.bitset);
721 }
722 
723