xref: /linux/kernel/futex/waitwake.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 #include <linux/sched/task.h>
4 #include <linux/sched/signal.h>
5 #include <linux/freezer.h>
6 
7 #include "futex.h"
8 
9 /*
10  * READ this before attempting to hack on futexes!
11  *
12  * Basic futex operation and ordering guarantees
13  * =============================================
14  *
15  * The waiter reads the futex value in user space and calls
16  * futex_wait(). This function computes the hash bucket and acquires
17  * the hash bucket lock. After that it reads the futex user space value
18  * again and verifies that the data has not changed. If it has not changed
19  * it enqueues itself into the hash bucket, releases the hash bucket lock
20  * and schedules.
21  *
22  * The waker side modifies the user space value of the futex and calls
23  * futex_wake(). This function computes the hash bucket and acquires the
24  * hash bucket lock. Then it looks for waiters on that futex in the hash
25  * bucket and wakes them.
26  *
27  * In futex wake up scenarios where no tasks are blocked on a futex, taking
28  * the hb spinlock can be avoided and simply return. In order for this
29  * optimization to work, ordering guarantees must exist so that the waiter
30  * being added to the list is acknowledged when the list is concurrently being
31  * checked by the waker, avoiding scenarios like the following:
32  *
33  * CPU 0                               CPU 1
34  * val = *futex;
35  * sys_futex(WAIT, futex, val);
36  *   futex_wait(futex, val);
37  *   uval = *futex;
38  *                                     *futex = newval;
39  *                                     sys_futex(WAKE, futex);
40  *                                       futex_wake(futex);
41  *                                       if (queue_empty())
42  *                                         return;
43  *   if (uval == val)
44  *      lock(hash_bucket(futex));
45  *      queue();
46  *     unlock(hash_bucket(futex));
47  *     schedule();
48  *
49  * This would cause the waiter on CPU 0 to wait forever because it
50  * missed the transition of the user space value from val to newval
51  * and the waker did not find the waiter in the hash bucket queue.
52  *
53  * The correct serialization ensures that a waiter either observes
54  * the changed user space value before blocking or is woken by a
55  * concurrent waker:
56  *
57  * CPU 0                                 CPU 1
58  * val = *futex;
59  * sys_futex(WAIT, futex, val);
60  *   futex_wait(futex, val);
61  *
62  *   waiters++; (a)
63  *   smp_mb(); (A) <-- paired with -.
64  *                                  |
65  *   lock(hash_bucket(futex));      |
66  *                                  |
67  *   uval = *futex;                 |
68  *                                  |        *futex = newval;
69  *                                  |        sys_futex(WAKE, futex);
70  *                                  |          futex_wake(futex);
71  *                                  |
72  *                                  `--------> smp_mb(); (B)
73  *   if (uval == val)
74  *     queue();
75  *     unlock(hash_bucket(futex));
76  *     schedule();                         if (waiters)
77  *                                           lock(hash_bucket(futex));
78  *   else                                    wake_waiters(futex);
79  *     waiters--; (b)                        unlock(hash_bucket(futex));
80  *
81  * Where (A) orders the waiters increment and the futex value read through
82  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
83  * to futex and the waiters read (see futex_hb_waiters_pending()).
84  *
85  * This yields the following case (where X:=waiters, Y:=futex):
86  *
87  *	X = Y = 0
88  *
89  *	w[X]=1		w[Y]=1
90  *	MB		MB
91  *	r[Y]=y		r[X]=x
92  *
93  * Which guarantees that x==0 && y==0 is impossible; which translates back into
94  * the guarantee that we cannot both miss the futex variable change and the
95  * enqueue.
96  *
97  * Note that a new waiter is accounted for in (a) even when it is possible that
98  * the wait call can return error, in which case we backtrack from it in (b).
99  * Refer to the comment in futex_q_lock().
100  *
101  * Similarly, in order to account for waiters being requeued on another
102  * address we always increment the waiters for the destination bucket before
103  * acquiring the lock. It then decrements them again  after releasing it -
104  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
105  * will do the additional required waiter count housekeeping. This is done for
106  * double_lock_hb() and double_unlock_hb(), respectively.
107  */
108 
109 bool __futex_wake_mark(struct futex_q *q)
110 {
111 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
112 		return false;
113 
114 	__futex_unqueue(q);
115 	/*
116 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
117 	 * is written, without taking any locks. This is possible in the event
118 	 * of a spurious wakeup, for example. A memory barrier is required here
119 	 * to prevent the following store to lock_ptr from getting ahead of the
120 	 * plist_del in __futex_unqueue().
121 	 */
122 	smp_store_release(&q->lock_ptr, NULL);
123 
124 	return true;
125 }
126 
127 /*
128  * The hash bucket lock must be held when this is called.
129  * Afterwards, the futex_q must not be accessed. Callers
130  * must ensure to later call wake_up_q() for the actual
131  * wakeups to occur.
132  */
133 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
134 {
135 	struct task_struct *p = q->task;
136 
137 	get_task_struct(p);
138 
139 	if (!__futex_wake_mark(q)) {
140 		put_task_struct(p);
141 		return;
142 	}
143 
144 	/*
145 	 * Queue the task for later wakeup for after we've released
146 	 * the hb->lock.
147 	 */
148 	wake_q_add_safe(wake_q, p);
149 }
150 
151 /*
152  * Wake up waiters matching bitset queued on this futex (uaddr).
153  */
154 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
155 {
156 	struct futex_hash_bucket *hb;
157 	struct futex_q *this, *next;
158 	union futex_key key = FUTEX_KEY_INIT;
159 	DEFINE_WAKE_Q(wake_q);
160 	int ret;
161 
162 	if (!bitset)
163 		return -EINVAL;
164 
165 	ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
166 	if (unlikely(ret != 0))
167 		return ret;
168 
169 	if ((flags & FLAGS_STRICT) && !nr_wake)
170 		return 0;
171 
172 	hb = futex_hash(&key);
173 
174 	/* Make sure we really have tasks to wakeup */
175 	if (!futex_hb_waiters_pending(hb))
176 		return ret;
177 
178 	spin_lock(&hb->lock);
179 
180 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
181 		if (futex_match (&this->key, &key)) {
182 			if (this->pi_state || this->rt_waiter) {
183 				ret = -EINVAL;
184 				break;
185 			}
186 
187 			/* Check if one of the bits is set in both bitsets */
188 			if (!(this->bitset & bitset))
189 				continue;
190 
191 			this->wake(&wake_q, this);
192 			if (++ret >= nr_wake)
193 				break;
194 		}
195 	}
196 
197 	spin_unlock(&hb->lock);
198 	wake_up_q(&wake_q);
199 	return ret;
200 }
201 
202 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
203 {
204 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
205 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
206 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
207 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
208 	int oldval, ret;
209 
210 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
211 		if (oparg < 0 || oparg > 31) {
212 			char comm[sizeof(current->comm)];
213 			/*
214 			 * kill this print and return -EINVAL when userspace
215 			 * is sane again
216 			 */
217 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
218 					get_task_comm(comm, current), oparg);
219 			oparg &= 31;
220 		}
221 		oparg = 1 << oparg;
222 	}
223 
224 	pagefault_disable();
225 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
226 	pagefault_enable();
227 	if (ret)
228 		return ret;
229 
230 	switch (cmp) {
231 	case FUTEX_OP_CMP_EQ:
232 		return oldval == cmparg;
233 	case FUTEX_OP_CMP_NE:
234 		return oldval != cmparg;
235 	case FUTEX_OP_CMP_LT:
236 		return oldval < cmparg;
237 	case FUTEX_OP_CMP_GE:
238 		return oldval >= cmparg;
239 	case FUTEX_OP_CMP_LE:
240 		return oldval <= cmparg;
241 	case FUTEX_OP_CMP_GT:
242 		return oldval > cmparg;
243 	default:
244 		return -ENOSYS;
245 	}
246 }
247 
248 /*
249  * Wake up all waiters hashed on the physical page that is mapped
250  * to this virtual address:
251  */
252 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
253 		  int nr_wake, int nr_wake2, int op)
254 {
255 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
256 	struct futex_hash_bucket *hb1, *hb2;
257 	struct futex_q *this, *next;
258 	int ret, op_ret;
259 	DEFINE_WAKE_Q(wake_q);
260 
261 retry:
262 	ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
263 	if (unlikely(ret != 0))
264 		return ret;
265 	ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
266 	if (unlikely(ret != 0))
267 		return ret;
268 
269 	hb1 = futex_hash(&key1);
270 	hb2 = futex_hash(&key2);
271 
272 retry_private:
273 	double_lock_hb(hb1, hb2);
274 	op_ret = futex_atomic_op_inuser(op, uaddr2);
275 	if (unlikely(op_ret < 0)) {
276 		double_unlock_hb(hb1, hb2);
277 
278 		if (!IS_ENABLED(CONFIG_MMU) ||
279 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
280 			/*
281 			 * we don't get EFAULT from MMU faults if we don't have
282 			 * an MMU, but we might get them from range checking
283 			 */
284 			ret = op_ret;
285 			return ret;
286 		}
287 
288 		if (op_ret == -EFAULT) {
289 			ret = fault_in_user_writeable(uaddr2);
290 			if (ret)
291 				return ret;
292 		}
293 
294 		cond_resched();
295 		if (!(flags & FLAGS_SHARED))
296 			goto retry_private;
297 		goto retry;
298 	}
299 
300 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
301 		if (futex_match (&this->key, &key1)) {
302 			if (this->pi_state || this->rt_waiter) {
303 				ret = -EINVAL;
304 				goto out_unlock;
305 			}
306 			this->wake(&wake_q, this);
307 			if (++ret >= nr_wake)
308 				break;
309 		}
310 	}
311 
312 	if (op_ret > 0) {
313 		op_ret = 0;
314 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
315 			if (futex_match (&this->key, &key2)) {
316 				if (this->pi_state || this->rt_waiter) {
317 					ret = -EINVAL;
318 					goto out_unlock;
319 				}
320 				this->wake(&wake_q, this);
321 				if (++op_ret >= nr_wake2)
322 					break;
323 			}
324 		}
325 		ret += op_ret;
326 	}
327 
328 out_unlock:
329 	double_unlock_hb(hb1, hb2);
330 	wake_up_q(&wake_q);
331 	return ret;
332 }
333 
334 static long futex_wait_restart(struct restart_block *restart);
335 
336 /**
337  * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
338  * @hb:		the futex hash bucket, must be locked by the caller
339  * @q:		the futex_q to queue up on
340  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
341  */
342 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
343 			    struct hrtimer_sleeper *timeout)
344 {
345 	/*
346 	 * The task state is guaranteed to be set before another task can
347 	 * wake it. set_current_state() is implemented using smp_store_mb() and
348 	 * futex_queue() calls spin_unlock() upon completion, both serializing
349 	 * access to the hash list and forcing another memory barrier.
350 	 */
351 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
352 	futex_queue(q, hb);
353 
354 	/* Arm the timer */
355 	if (timeout)
356 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
357 
358 	/*
359 	 * If we have been removed from the hash list, then another task
360 	 * has tried to wake us, and we can skip the call to schedule().
361 	 */
362 	if (likely(!plist_node_empty(&q->list))) {
363 		/*
364 		 * If the timer has already expired, current will already be
365 		 * flagged for rescheduling. Only call schedule if there
366 		 * is no timeout, or if it has yet to expire.
367 		 */
368 		if (!timeout || timeout->task)
369 			schedule();
370 	}
371 	__set_current_state(TASK_RUNNING);
372 }
373 
374 /**
375  * futex_unqueue_multiple - Remove various futexes from their hash bucket
376  * @v:	   The list of futexes to unqueue
377  * @count: Number of futexes in the list
378  *
379  * Helper to unqueue a list of futexes. This can't fail.
380  *
381  * Return:
382  *  - >=0 - Index of the last futex that was awoken;
383  *  - -1  - No futex was awoken
384  */
385 int futex_unqueue_multiple(struct futex_vector *v, int count)
386 {
387 	int ret = -1, i;
388 
389 	for (i = 0; i < count; i++) {
390 		if (!futex_unqueue(&v[i].q))
391 			ret = i;
392 	}
393 
394 	return ret;
395 }
396 
397 /**
398  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
399  * @vs:		The futex list to wait on
400  * @count:	The size of the list
401  * @woken:	Index of the last woken futex, if any. Used to notify the
402  *		caller that it can return this index to userspace (return parameter)
403  *
404  * Prepare multiple futexes in a single step and enqueue them. This may fail if
405  * the futex list is invalid or if any futex was already awoken. On success the
406  * task is ready to interruptible sleep.
407  *
408  * Return:
409  *  -  1 - One of the futexes was woken by another thread
410  *  -  0 - Success
411  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
412  */
413 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
414 {
415 	struct futex_hash_bucket *hb;
416 	bool retry = false;
417 	int ret, i;
418 	u32 uval;
419 
420 	/*
421 	 * Enqueuing multiple futexes is tricky, because we need to enqueue
422 	 * each futex on the list before dealing with the next one to avoid
423 	 * deadlocking on the hash bucket. But, before enqueuing, we need to
424 	 * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
425 	 * lose any wake events, which cannot be done before the get_futex_key
426 	 * of the next key, because it calls get_user_pages, which can sleep.
427 	 * Thus, we fetch the list of futexes keys in two steps, by first
428 	 * pinning all the memory keys in the futex key, and only then we read
429 	 * each key and queue the corresponding futex.
430 	 *
431 	 * Private futexes doesn't need to recalculate hash in retry, so skip
432 	 * get_futex_key() when retrying.
433 	 */
434 retry:
435 	for (i = 0; i < count; i++) {
436 		if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
437 			continue;
438 
439 		ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
440 				    vs[i].w.flags,
441 				    &vs[i].q.key, FUTEX_READ);
442 
443 		if (unlikely(ret))
444 			return ret;
445 	}
446 
447 	set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
448 
449 	for (i = 0; i < count; i++) {
450 		u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
451 		struct futex_q *q = &vs[i].q;
452 		u32 val = vs[i].w.val;
453 
454 		hb = futex_q_lock(q);
455 		ret = futex_get_value_locked(&uval, uaddr);
456 
457 		if (!ret && uval == val) {
458 			/*
459 			 * The bucket lock can't be held while dealing with the
460 			 * next futex. Queue each futex at this moment so hb can
461 			 * be unlocked.
462 			 */
463 			futex_queue(q, hb);
464 			continue;
465 		}
466 
467 		futex_q_unlock(hb);
468 		__set_current_state(TASK_RUNNING);
469 
470 		/*
471 		 * Even if something went wrong, if we find out that a futex
472 		 * was woken, we don't return error and return this index to
473 		 * userspace
474 		 */
475 		*woken = futex_unqueue_multiple(vs, i);
476 		if (*woken >= 0)
477 			return 1;
478 
479 		if (ret) {
480 			/*
481 			 * If we need to handle a page fault, we need to do so
482 			 * without any lock and any enqueued futex (otherwise
483 			 * we could lose some wakeup). So we do it here, after
484 			 * undoing all the work done so far. In success, we
485 			 * retry all the work.
486 			 */
487 			if (get_user(uval, uaddr))
488 				return -EFAULT;
489 
490 			retry = true;
491 			goto retry;
492 		}
493 
494 		if (uval != val)
495 			return -EWOULDBLOCK;
496 	}
497 
498 	return 0;
499 }
500 
501 /**
502  * futex_sleep_multiple - Check sleeping conditions and sleep
503  * @vs:    List of futexes to wait for
504  * @count: Length of vs
505  * @to:    Timeout
506  *
507  * Sleep if and only if the timeout hasn't expired and no futex on the list has
508  * been woken up.
509  */
510 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
511 				 struct hrtimer_sleeper *to)
512 {
513 	if (to && !to->task)
514 		return;
515 
516 	for (; count; count--, vs++) {
517 		if (!READ_ONCE(vs->q.lock_ptr))
518 			return;
519 	}
520 
521 	schedule();
522 }
523 
524 /**
525  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
526  * @vs:		The list of futexes to wait on
527  * @count:	The number of objects
528  * @to:		Timeout before giving up and returning to userspace
529  *
530  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
531  * sleeps on a group of futexes and returns on the first futex that is
532  * wake, or after the timeout has elapsed.
533  *
534  * Return:
535  *  - >=0 - Hint to the futex that was awoken
536  *  - <0  - On error
537  */
538 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
539 			struct hrtimer_sleeper *to)
540 {
541 	int ret, hint = 0;
542 
543 	if (to)
544 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
545 
546 	while (1) {
547 		ret = futex_wait_multiple_setup(vs, count, &hint);
548 		if (ret) {
549 			if (ret > 0) {
550 				/* A futex was woken during setup */
551 				ret = hint;
552 			}
553 			return ret;
554 		}
555 
556 		futex_sleep_multiple(vs, count, to);
557 
558 		__set_current_state(TASK_RUNNING);
559 
560 		ret = futex_unqueue_multiple(vs, count);
561 		if (ret >= 0)
562 			return ret;
563 
564 		if (to && !to->task)
565 			return -ETIMEDOUT;
566 		else if (signal_pending(current))
567 			return -ERESTARTSYS;
568 		/*
569 		 * The final case is a spurious wakeup, for
570 		 * which just retry.
571 		 */
572 	}
573 }
574 
575 /**
576  * futex_wait_setup() - Prepare to wait on a futex
577  * @uaddr:	the futex userspace address
578  * @val:	the expected value
579  * @flags:	futex flags (FLAGS_SHARED, etc.)
580  * @q:		the associated futex_q
581  * @hb:		storage for hash_bucket pointer to be returned to caller
582  *
583  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
584  * compare it with the expected value.  Handle atomic faults internally.
585  * Return with the hb lock held on success, and unlocked on failure.
586  *
587  * Return:
588  *  -  0 - uaddr contains val and hb has been locked;
589  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
590  */
591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
592 		     struct futex_q *q, struct futex_hash_bucket **hb)
593 {
594 	u32 uval;
595 	int ret;
596 
597 	/*
598 	 * Access the page AFTER the hash-bucket is locked.
599 	 * Order is important:
600 	 *
601 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
602 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
603 	 *
604 	 * The basic logical guarantee of a futex is that it blocks ONLY
605 	 * if cond(var) is known to be true at the time of blocking, for
606 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
607 	 * would open a race condition where we could block indefinitely with
608 	 * cond(var) false, which would violate the guarantee.
609 	 *
610 	 * On the other hand, we insert q and release the hash-bucket only
611 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
612 	 * absorb a wakeup if *uaddr does not match the desired values
613 	 * while the syscall executes.
614 	 */
615 retry:
616 	ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
617 	if (unlikely(ret != 0))
618 		return ret;
619 
620 retry_private:
621 	*hb = futex_q_lock(q);
622 
623 	ret = futex_get_value_locked(&uval, uaddr);
624 
625 	if (ret) {
626 		futex_q_unlock(*hb);
627 
628 		ret = get_user(uval, uaddr);
629 		if (ret)
630 			return ret;
631 
632 		if (!(flags & FLAGS_SHARED))
633 			goto retry_private;
634 
635 		goto retry;
636 	}
637 
638 	if (uval != val) {
639 		futex_q_unlock(*hb);
640 		ret = -EWOULDBLOCK;
641 	}
642 
643 	return ret;
644 }
645 
646 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
647 		 struct hrtimer_sleeper *to, u32 bitset)
648 {
649 	struct futex_q q = futex_q_init;
650 	struct futex_hash_bucket *hb;
651 	int ret;
652 
653 	if (!bitset)
654 		return -EINVAL;
655 
656 	q.bitset = bitset;
657 
658 retry:
659 	/*
660 	 * Prepare to wait on uaddr. On success, it holds hb->lock and q
661 	 * is initialized.
662 	 */
663 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
664 	if (ret)
665 		return ret;
666 
667 	/* futex_queue and wait for wakeup, timeout, or a signal. */
668 	futex_wait_queue(hb, &q, to);
669 
670 	/* If we were woken (and unqueued), we succeeded, whatever. */
671 	if (!futex_unqueue(&q))
672 		return 0;
673 
674 	if (to && !to->task)
675 		return -ETIMEDOUT;
676 
677 	/*
678 	 * We expect signal_pending(current), but we might be the
679 	 * victim of a spurious wakeup as well.
680 	 */
681 	if (!signal_pending(current))
682 		goto retry;
683 
684 	return -ERESTARTSYS;
685 }
686 
687 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
688 {
689 	struct hrtimer_sleeper timeout, *to;
690 	struct restart_block *restart;
691 	int ret;
692 
693 	to = futex_setup_timer(abs_time, &timeout, flags,
694 			       current->timer_slack_ns);
695 
696 	ret = __futex_wait(uaddr, flags, val, to, bitset);
697 
698 	/* No timeout, nothing to clean up. */
699 	if (!to)
700 		return ret;
701 
702 	hrtimer_cancel(&to->timer);
703 	destroy_hrtimer_on_stack(&to->timer);
704 
705 	if (ret == -ERESTARTSYS) {
706 		restart = &current->restart_block;
707 		restart->futex.uaddr = uaddr;
708 		restart->futex.val = val;
709 		restart->futex.time = *abs_time;
710 		restart->futex.bitset = bitset;
711 		restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
712 
713 		return set_restart_fn(restart, futex_wait_restart);
714 	}
715 
716 	return ret;
717 }
718 
719 static long futex_wait_restart(struct restart_block *restart)
720 {
721 	u32 __user *uaddr = restart->futex.uaddr;
722 	ktime_t t, *tp = NULL;
723 
724 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
725 		t = restart->futex.time;
726 		tp = &t;
727 	}
728 	restart->fn = do_no_restart_syscall;
729 
730 	return (long)futex_wait(uaddr, restart->futex.flags,
731 				restart->futex.val, tp, restart->futex.bitset);
732 }
733 
734