1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 #include <linux/syscalls.h> 4 #include <linux/time_namespace.h> 5 6 #include "futex.h" 7 8 /* 9 * Support for robust futexes: the kernel cleans up held futexes at 10 * thread exit time. 11 * 12 * Implementation: user-space maintains a per-thread list of locks it 13 * is holding. Upon do_exit(), the kernel carefully walks this list, 14 * and marks all locks that are owned by this thread with the 15 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is 16 * always manipulated with the lock held, so the list is private and 17 * per-thread. Userspace also maintains a per-thread 'list_op_pending' 18 * field, to allow the kernel to clean up if the thread dies after 19 * acquiring the lock, but just before it could have added itself to 20 * the list. There can only be one such pending lock. 21 */ 22 23 /** 24 * sys_set_robust_list() - Set the robust-futex list head of a task 25 * @head: pointer to the list-head 26 * @len: length of the list-head, as userspace expects 27 */ 28 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, 29 size_t, len) 30 { 31 /* 32 * The kernel knows only one size for now: 33 */ 34 if (unlikely(len != sizeof(*head))) 35 return -EINVAL; 36 37 current->robust_list = head; 38 39 return 0; 40 } 41 42 /** 43 * sys_get_robust_list() - Get the robust-futex list head of a task 44 * @pid: pid of the process [zero for current task] 45 * @head_ptr: pointer to a list-head pointer, the kernel fills it in 46 * @len_ptr: pointer to a length field, the kernel fills in the header size 47 */ 48 SYSCALL_DEFINE3(get_robust_list, int, pid, 49 struct robust_list_head __user * __user *, head_ptr, 50 size_t __user *, len_ptr) 51 { 52 struct robust_list_head __user *head; 53 unsigned long ret; 54 struct task_struct *p; 55 56 rcu_read_lock(); 57 58 ret = -ESRCH; 59 if (!pid) 60 p = current; 61 else { 62 p = find_task_by_vpid(pid); 63 if (!p) 64 goto err_unlock; 65 } 66 67 ret = -EPERM; 68 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) 69 goto err_unlock; 70 71 head = p->robust_list; 72 rcu_read_unlock(); 73 74 if (put_user(sizeof(*head), len_ptr)) 75 return -EFAULT; 76 return put_user(head, head_ptr); 77 78 err_unlock: 79 rcu_read_unlock(); 80 81 return ret; 82 } 83 84 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, 85 u32 __user *uaddr2, u32 val2, u32 val3) 86 { 87 unsigned int flags = futex_to_flags(op); 88 int cmd = op & FUTEX_CMD_MASK; 89 90 if (flags & FLAGS_CLOCKRT) { 91 if (cmd != FUTEX_WAIT_BITSET && 92 cmd != FUTEX_WAIT_REQUEUE_PI && 93 cmd != FUTEX_LOCK_PI2) 94 return -ENOSYS; 95 } 96 97 switch (cmd) { 98 case FUTEX_WAIT: 99 val3 = FUTEX_BITSET_MATCH_ANY; 100 fallthrough; 101 case FUTEX_WAIT_BITSET: 102 return futex_wait(uaddr, flags, val, timeout, val3); 103 case FUTEX_WAKE: 104 val3 = FUTEX_BITSET_MATCH_ANY; 105 fallthrough; 106 case FUTEX_WAKE_BITSET: 107 return futex_wake(uaddr, flags, val, val3); 108 case FUTEX_REQUEUE: 109 return futex_requeue(uaddr, flags, uaddr2, flags, val, val2, NULL, 0); 110 case FUTEX_CMP_REQUEUE: 111 return futex_requeue(uaddr, flags, uaddr2, flags, val, val2, &val3, 0); 112 case FUTEX_WAKE_OP: 113 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); 114 case FUTEX_LOCK_PI: 115 flags |= FLAGS_CLOCKRT; 116 fallthrough; 117 case FUTEX_LOCK_PI2: 118 return futex_lock_pi(uaddr, flags, timeout, 0); 119 case FUTEX_UNLOCK_PI: 120 return futex_unlock_pi(uaddr, flags); 121 case FUTEX_TRYLOCK_PI: 122 return futex_lock_pi(uaddr, flags, NULL, 1); 123 case FUTEX_WAIT_REQUEUE_PI: 124 val3 = FUTEX_BITSET_MATCH_ANY; 125 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, 126 uaddr2); 127 case FUTEX_CMP_REQUEUE_PI: 128 return futex_requeue(uaddr, flags, uaddr2, flags, val, val2, &val3, 1); 129 } 130 return -ENOSYS; 131 } 132 133 static __always_inline bool futex_cmd_has_timeout(u32 cmd) 134 { 135 switch (cmd) { 136 case FUTEX_WAIT: 137 case FUTEX_LOCK_PI: 138 case FUTEX_LOCK_PI2: 139 case FUTEX_WAIT_BITSET: 140 case FUTEX_WAIT_REQUEUE_PI: 141 return true; 142 } 143 return false; 144 } 145 146 static __always_inline int 147 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t) 148 { 149 if (!timespec64_valid(ts)) 150 return -EINVAL; 151 152 *t = timespec64_to_ktime(*ts); 153 if (cmd == FUTEX_WAIT) 154 *t = ktime_add_safe(ktime_get(), *t); 155 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME)) 156 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t); 157 return 0; 158 } 159 160 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, 161 const struct __kernel_timespec __user *, utime, 162 u32 __user *, uaddr2, u32, val3) 163 { 164 int ret, cmd = op & FUTEX_CMD_MASK; 165 ktime_t t, *tp = NULL; 166 struct timespec64 ts; 167 168 if (utime && futex_cmd_has_timeout(cmd)) { 169 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG)))) 170 return -EFAULT; 171 if (get_timespec64(&ts, utime)) 172 return -EFAULT; 173 ret = futex_init_timeout(cmd, op, &ts, &t); 174 if (ret) 175 return ret; 176 tp = &t; 177 } 178 179 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3); 180 } 181 182 /** 183 * futex_parse_waitv - Parse a waitv array from userspace 184 * @futexv: Kernel side list of waiters to be filled 185 * @uwaitv: Userspace list to be parsed 186 * @nr_futexes: Length of futexv 187 * @wake: Wake to call when futex is woken 188 * @wake_data: Data for the wake handler 189 * 190 * Return: Error code on failure, 0 on success 191 */ 192 int futex_parse_waitv(struct futex_vector *futexv, 193 struct futex_waitv __user *uwaitv, 194 unsigned int nr_futexes, futex_wake_fn *wake, 195 void *wake_data) 196 { 197 struct futex_waitv aux; 198 unsigned int i; 199 200 for (i = 0; i < nr_futexes; i++) { 201 unsigned int flags; 202 203 if (copy_from_user(&aux, &uwaitv[i], sizeof(aux))) 204 return -EFAULT; 205 206 if ((aux.flags & ~FUTEX2_VALID_MASK) || aux.__reserved) 207 return -EINVAL; 208 209 flags = futex2_to_flags(aux.flags); 210 if (!futex_flags_valid(flags)) 211 return -EINVAL; 212 213 if (!futex_validate_input(flags, aux.val)) 214 return -EINVAL; 215 216 futexv[i].w.flags = flags; 217 futexv[i].w.val = aux.val; 218 futexv[i].w.uaddr = aux.uaddr; 219 futexv[i].q = futex_q_init; 220 futexv[i].q.wake = wake; 221 futexv[i].q.wake_data = wake_data; 222 } 223 224 return 0; 225 } 226 227 static int futex2_setup_timeout(struct __kernel_timespec __user *timeout, 228 clockid_t clockid, struct hrtimer_sleeper *to) 229 { 230 int flag_clkid = 0, flag_init = 0; 231 struct timespec64 ts; 232 ktime_t time; 233 int ret; 234 235 if (!timeout) 236 return 0; 237 238 if (clockid == CLOCK_REALTIME) { 239 flag_clkid = FLAGS_CLOCKRT; 240 flag_init = FUTEX_CLOCK_REALTIME; 241 } 242 243 if (clockid != CLOCK_REALTIME && clockid != CLOCK_MONOTONIC) 244 return -EINVAL; 245 246 if (get_timespec64(&ts, timeout)) 247 return -EFAULT; 248 249 /* 250 * Since there's no opcode for futex_waitv, use 251 * FUTEX_WAIT_BITSET that uses absolute timeout as well 252 */ 253 ret = futex_init_timeout(FUTEX_WAIT_BITSET, flag_init, &ts, &time); 254 if (ret) 255 return ret; 256 257 futex_setup_timer(&time, to, flag_clkid, 0); 258 return 0; 259 } 260 261 static inline void futex2_destroy_timeout(struct hrtimer_sleeper *to) 262 { 263 hrtimer_cancel(&to->timer); 264 destroy_hrtimer_on_stack(&to->timer); 265 } 266 267 /** 268 * sys_futex_waitv - Wait on a list of futexes 269 * @waiters: List of futexes to wait on 270 * @nr_futexes: Length of futexv 271 * @flags: Flag for timeout (monotonic/realtime) 272 * @timeout: Optional absolute timeout. 273 * @clockid: Clock to be used for the timeout, realtime or monotonic. 274 * 275 * Given an array of `struct futex_waitv`, wait on each uaddr. The thread wakes 276 * if a futex_wake() is performed at any uaddr. The syscall returns immediately 277 * if any waiter has *uaddr != val. *timeout is an optional timeout value for 278 * the operation. Each waiter has individual flags. The `flags` argument for 279 * the syscall should be used solely for specifying the timeout as realtime, if 280 * needed. Flags for private futexes, sizes, etc. should be used on the 281 * individual flags of each waiter. 282 * 283 * Returns the array index of one of the woken futexes. No further information 284 * is provided: any number of other futexes may also have been woken by the 285 * same event, and if more than one futex was woken, the retrned index may 286 * refer to any one of them. (It is not necessaryily the futex with the 287 * smallest index, nor the one most recently woken, nor...) 288 */ 289 290 SYSCALL_DEFINE5(futex_waitv, struct futex_waitv __user *, waiters, 291 unsigned int, nr_futexes, unsigned int, flags, 292 struct __kernel_timespec __user *, timeout, clockid_t, clockid) 293 { 294 struct hrtimer_sleeper to; 295 struct futex_vector *futexv; 296 int ret; 297 298 /* This syscall supports no flags for now */ 299 if (flags) 300 return -EINVAL; 301 302 if (!nr_futexes || nr_futexes > FUTEX_WAITV_MAX || !waiters) 303 return -EINVAL; 304 305 if (timeout && (ret = futex2_setup_timeout(timeout, clockid, &to))) 306 return ret; 307 308 futexv = kcalloc(nr_futexes, sizeof(*futexv), GFP_KERNEL); 309 if (!futexv) { 310 ret = -ENOMEM; 311 goto destroy_timer; 312 } 313 314 ret = futex_parse_waitv(futexv, waiters, nr_futexes, futex_wake_mark, 315 NULL); 316 if (!ret) 317 ret = futex_wait_multiple(futexv, nr_futexes, timeout ? &to : NULL); 318 319 kfree(futexv); 320 321 destroy_timer: 322 if (timeout) 323 futex2_destroy_timeout(&to); 324 return ret; 325 } 326 327 /* 328 * sys_futex_wake - Wake a number of futexes 329 * @uaddr: Address of the futex(es) to wake 330 * @mask: bitmask 331 * @nr: Number of the futexes to wake 332 * @flags: FUTEX2 flags 333 * 334 * Identical to the traditional FUTEX_WAKE_BITSET op, except it is part of the 335 * futex2 family of calls. 336 */ 337 338 SYSCALL_DEFINE4(futex_wake, 339 void __user *, uaddr, 340 unsigned long, mask, 341 int, nr, 342 unsigned int, flags) 343 { 344 if (flags & ~FUTEX2_VALID_MASK) 345 return -EINVAL; 346 347 flags = futex2_to_flags(flags); 348 if (!futex_flags_valid(flags)) 349 return -EINVAL; 350 351 if (!futex_validate_input(flags, mask)) 352 return -EINVAL; 353 354 return futex_wake(uaddr, FLAGS_STRICT | flags, nr, mask); 355 } 356 357 /* 358 * sys_futex_wait - Wait on a futex 359 * @uaddr: Address of the futex to wait on 360 * @val: Value of @uaddr 361 * @mask: bitmask 362 * @flags: FUTEX2 flags 363 * @timeout: Optional absolute timeout 364 * @clockid: Clock to be used for the timeout, realtime or monotonic 365 * 366 * Identical to the traditional FUTEX_WAIT_BITSET op, except it is part of the 367 * futex2 familiy of calls. 368 */ 369 370 SYSCALL_DEFINE6(futex_wait, 371 void __user *, uaddr, 372 unsigned long, val, 373 unsigned long, mask, 374 unsigned int, flags, 375 struct __kernel_timespec __user *, timeout, 376 clockid_t, clockid) 377 { 378 struct hrtimer_sleeper to; 379 int ret; 380 381 if (flags & ~FUTEX2_VALID_MASK) 382 return -EINVAL; 383 384 flags = futex2_to_flags(flags); 385 if (!futex_flags_valid(flags)) 386 return -EINVAL; 387 388 if (!futex_validate_input(flags, val) || 389 !futex_validate_input(flags, mask)) 390 return -EINVAL; 391 392 if (timeout && (ret = futex2_setup_timeout(timeout, clockid, &to))) 393 return ret; 394 395 ret = __futex_wait(uaddr, flags, val, timeout ? &to : NULL, mask); 396 397 if (timeout) 398 futex2_destroy_timeout(&to); 399 400 return ret; 401 } 402 403 /* 404 * sys_futex_requeue - Requeue a waiter from one futex to another 405 * @waiters: array describing the source and destination futex 406 * @flags: unused 407 * @nr_wake: number of futexes to wake 408 * @nr_requeue: number of futexes to requeue 409 * 410 * Identical to the traditional FUTEX_CMP_REQUEUE op, except it is part of the 411 * futex2 family of calls. 412 */ 413 414 SYSCALL_DEFINE4(futex_requeue, 415 struct futex_waitv __user *, waiters, 416 unsigned int, flags, 417 int, nr_wake, 418 int, nr_requeue) 419 { 420 struct futex_vector futexes[2]; 421 u32 cmpval; 422 int ret; 423 424 if (flags) 425 return -EINVAL; 426 427 if (!waiters) 428 return -EINVAL; 429 430 ret = futex_parse_waitv(futexes, waiters, 2, futex_wake_mark, NULL); 431 if (ret) 432 return ret; 433 434 cmpval = futexes[0].w.val; 435 436 return futex_requeue(u64_to_user_ptr(futexes[0].w.uaddr), futexes[0].w.flags, 437 u64_to_user_ptr(futexes[1].w.uaddr), futexes[1].w.flags, 438 nr_wake, nr_requeue, &cmpval, 0); 439 } 440 441 #ifdef CONFIG_COMPAT 442 COMPAT_SYSCALL_DEFINE2(set_robust_list, 443 struct compat_robust_list_head __user *, head, 444 compat_size_t, len) 445 { 446 if (unlikely(len != sizeof(*head))) 447 return -EINVAL; 448 449 current->compat_robust_list = head; 450 451 return 0; 452 } 453 454 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid, 455 compat_uptr_t __user *, head_ptr, 456 compat_size_t __user *, len_ptr) 457 { 458 struct compat_robust_list_head __user *head; 459 unsigned long ret; 460 struct task_struct *p; 461 462 rcu_read_lock(); 463 464 ret = -ESRCH; 465 if (!pid) 466 p = current; 467 else { 468 p = find_task_by_vpid(pid); 469 if (!p) 470 goto err_unlock; 471 } 472 473 ret = -EPERM; 474 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) 475 goto err_unlock; 476 477 head = p->compat_robust_list; 478 rcu_read_unlock(); 479 480 if (put_user(sizeof(*head), len_ptr)) 481 return -EFAULT; 482 return put_user(ptr_to_compat(head), head_ptr); 483 484 err_unlock: 485 rcu_read_unlock(); 486 487 return ret; 488 } 489 #endif /* CONFIG_COMPAT */ 490 491 #ifdef CONFIG_COMPAT_32BIT_TIME 492 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val, 493 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2, 494 u32, val3) 495 { 496 int ret, cmd = op & FUTEX_CMD_MASK; 497 ktime_t t, *tp = NULL; 498 struct timespec64 ts; 499 500 if (utime && futex_cmd_has_timeout(cmd)) { 501 if (get_old_timespec32(&ts, utime)) 502 return -EFAULT; 503 ret = futex_init_timeout(cmd, op, &ts, &t); 504 if (ret) 505 return ret; 506 tp = &t; 507 } 508 509 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3); 510 } 511 #endif /* CONFIG_COMPAT_32BIT_TIME */ 512 513