1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Fast Userspace Mutexes (which I call "Futexes!"). 4 * (C) Rusty Russell, IBM 2002 5 * 6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar 7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved 8 * 9 * Removed page pinning, fix privately mapped COW pages and other cleanups 10 * (C) Copyright 2003, 2004 Jamie Lokier 11 * 12 * Robust futex support started by Ingo Molnar 13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved 14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes. 15 * 16 * PI-futex support started by Ingo Molnar and Thomas Gleixner 17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 19 * 20 * PRIVATE futexes by Eric Dumazet 21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> 22 * 23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> 24 * Copyright (C) IBM Corporation, 2009 25 * Thanks to Thomas Gleixner for conceptual design and careful reviews. 26 * 27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly 28 * enough at me, Linus for the original (flawed) idea, Matthew 29 * Kirkwood for proof-of-concept implementation. 30 * 31 * "The futexes are also cursed." 32 * "But they come in a choice of three flavours!" 33 */ 34 #include <linux/compat.h> 35 #include <linux/jhash.h> 36 #include <linux/pagemap.h> 37 #include <linux/memblock.h> 38 #include <linux/fault-inject.h> 39 #include <linux/slab.h> 40 41 #include "futex.h" 42 #include "../locking/rtmutex_common.h" 43 44 /* 45 * The base of the bucket array and its size are always used together 46 * (after initialization only in futex_hash()), so ensure that they 47 * reside in the same cacheline. 48 */ 49 static struct { 50 struct futex_hash_bucket *queues; 51 unsigned long hashsize; 52 } __futex_data __read_mostly __aligned(2*sizeof(long)); 53 #define futex_queues (__futex_data.queues) 54 #define futex_hashsize (__futex_data.hashsize) 55 56 57 /* 58 * Fault injections for futexes. 59 */ 60 #ifdef CONFIG_FAIL_FUTEX 61 62 static struct { 63 struct fault_attr attr; 64 65 bool ignore_private; 66 } fail_futex = { 67 .attr = FAULT_ATTR_INITIALIZER, 68 .ignore_private = false, 69 }; 70 71 static int __init setup_fail_futex(char *str) 72 { 73 return setup_fault_attr(&fail_futex.attr, str); 74 } 75 __setup("fail_futex=", setup_fail_futex); 76 77 bool should_fail_futex(bool fshared) 78 { 79 if (fail_futex.ignore_private && !fshared) 80 return false; 81 82 return should_fail(&fail_futex.attr, 1); 83 } 84 85 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 86 87 static int __init fail_futex_debugfs(void) 88 { 89 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 90 struct dentry *dir; 91 92 dir = fault_create_debugfs_attr("fail_futex", NULL, 93 &fail_futex.attr); 94 if (IS_ERR(dir)) 95 return PTR_ERR(dir); 96 97 debugfs_create_bool("ignore-private", mode, dir, 98 &fail_futex.ignore_private); 99 return 0; 100 } 101 102 late_initcall(fail_futex_debugfs); 103 104 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 105 106 #endif /* CONFIG_FAIL_FUTEX */ 107 108 /** 109 * futex_hash - Return the hash bucket in the global hash 110 * @key: Pointer to the futex key for which the hash is calculated 111 * 112 * We hash on the keys returned from get_futex_key (see below) and return the 113 * corresponding hash bucket in the global hash. 114 */ 115 struct futex_hash_bucket *futex_hash(union futex_key *key) 116 { 117 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4, 118 key->both.offset); 119 120 return &futex_queues[hash & (futex_hashsize - 1)]; 121 } 122 123 124 /** 125 * futex_setup_timer - set up the sleeping hrtimer. 126 * @time: ptr to the given timeout value 127 * @timeout: the hrtimer_sleeper structure to be set up 128 * @flags: futex flags 129 * @range_ns: optional range in ns 130 * 131 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout 132 * value given 133 */ 134 struct hrtimer_sleeper * 135 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, 136 int flags, u64 range_ns) 137 { 138 if (!time) 139 return NULL; 140 141 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ? 142 CLOCK_REALTIME : CLOCK_MONOTONIC, 143 HRTIMER_MODE_ABS); 144 /* 145 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is 146 * effectively the same as calling hrtimer_set_expires(). 147 */ 148 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); 149 150 return timeout; 151 } 152 153 /* 154 * Generate a machine wide unique identifier for this inode. 155 * 156 * This relies on u64 not wrapping in the life-time of the machine; which with 157 * 1ns resolution means almost 585 years. 158 * 159 * This further relies on the fact that a well formed program will not unmap 160 * the file while it has a (shared) futex waiting on it. This mapping will have 161 * a file reference which pins the mount and inode. 162 * 163 * If for some reason an inode gets evicted and read back in again, it will get 164 * a new sequence number and will _NOT_ match, even though it is the exact same 165 * file. 166 * 167 * It is important that futex_match() will never have a false-positive, esp. 168 * for PI futexes that can mess up the state. The above argues that false-negatives 169 * are only possible for malformed programs. 170 */ 171 static u64 get_inode_sequence_number(struct inode *inode) 172 { 173 static atomic64_t i_seq; 174 u64 old; 175 176 /* Does the inode already have a sequence number? */ 177 old = atomic64_read(&inode->i_sequence); 178 if (likely(old)) 179 return old; 180 181 for (;;) { 182 u64 new = atomic64_add_return(1, &i_seq); 183 if (WARN_ON_ONCE(!new)) 184 continue; 185 186 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new); 187 if (old) 188 return old; 189 return new; 190 } 191 } 192 193 /** 194 * get_futex_key() - Get parameters which are the keys for a futex 195 * @uaddr: virtual address of the futex 196 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED 197 * @key: address where result is stored. 198 * @rw: mapping needs to be read/write (values: FUTEX_READ, 199 * FUTEX_WRITE) 200 * 201 * Return: a negative error code or 0 202 * 203 * The key words are stored in @key on success. 204 * 205 * For shared mappings (when @fshared), the key is: 206 * 207 * ( inode->i_sequence, page->index, offset_within_page ) 208 * 209 * [ also see get_inode_sequence_number() ] 210 * 211 * For private mappings (or when !@fshared), the key is: 212 * 213 * ( current->mm, address, 0 ) 214 * 215 * This allows (cross process, where applicable) identification of the futex 216 * without keeping the page pinned for the duration of the FUTEX_WAIT. 217 * 218 * lock_page() might sleep, the caller should not hold a spinlock. 219 */ 220 int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key, 221 enum futex_access rw) 222 { 223 unsigned long address = (unsigned long)uaddr; 224 struct mm_struct *mm = current->mm; 225 struct page *page, *tail; 226 struct address_space *mapping; 227 int err, ro = 0; 228 229 /* 230 * The futex address must be "naturally" aligned. 231 */ 232 key->both.offset = address % PAGE_SIZE; 233 if (unlikely((address % sizeof(u32)) != 0)) 234 return -EINVAL; 235 address -= key->both.offset; 236 237 if (unlikely(!access_ok(uaddr, sizeof(u32)))) 238 return -EFAULT; 239 240 if (unlikely(should_fail_futex(fshared))) 241 return -EFAULT; 242 243 /* 244 * PROCESS_PRIVATE futexes are fast. 245 * As the mm cannot disappear under us and the 'key' only needs 246 * virtual address, we dont even have to find the underlying vma. 247 * Note : We do have to check 'uaddr' is a valid user address, 248 * but access_ok() should be faster than find_vma() 249 */ 250 if (!fshared) { 251 key->private.mm = mm; 252 key->private.address = address; 253 return 0; 254 } 255 256 again: 257 /* Ignore any VERIFY_READ mapping (futex common case) */ 258 if (unlikely(should_fail_futex(true))) 259 return -EFAULT; 260 261 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); 262 /* 263 * If write access is not required (eg. FUTEX_WAIT), try 264 * and get read-only access. 265 */ 266 if (err == -EFAULT && rw == FUTEX_READ) { 267 err = get_user_pages_fast(address, 1, 0, &page); 268 ro = 1; 269 } 270 if (err < 0) 271 return err; 272 else 273 err = 0; 274 275 /* 276 * The treatment of mapping from this point on is critical. The page 277 * lock protects many things but in this context the page lock 278 * stabilizes mapping, prevents inode freeing in the shared 279 * file-backed region case and guards against movement to swap cache. 280 * 281 * Strictly speaking the page lock is not needed in all cases being 282 * considered here and page lock forces unnecessarily serialization 283 * From this point on, mapping will be re-verified if necessary and 284 * page lock will be acquired only if it is unavoidable 285 * 286 * Mapping checks require the head page for any compound page so the 287 * head page and mapping is looked up now. For anonymous pages, it 288 * does not matter if the page splits in the future as the key is 289 * based on the address. For filesystem-backed pages, the tail is 290 * required as the index of the page determines the key. For 291 * base pages, there is no tail page and tail == page. 292 */ 293 tail = page; 294 page = compound_head(page); 295 mapping = READ_ONCE(page->mapping); 296 297 /* 298 * If page->mapping is NULL, then it cannot be a PageAnon 299 * page; but it might be the ZERO_PAGE or in the gate area or 300 * in a special mapping (all cases which we are happy to fail); 301 * or it may have been a good file page when get_user_pages_fast 302 * found it, but truncated or holepunched or subjected to 303 * invalidate_complete_page2 before we got the page lock (also 304 * cases which we are happy to fail). And we hold a reference, 305 * so refcount care in invalidate_inode_page's remove_mapping 306 * prevents drop_caches from setting mapping to NULL beneath us. 307 * 308 * The case we do have to guard against is when memory pressure made 309 * shmem_writepage move it from filecache to swapcache beneath us: 310 * an unlikely race, but we do need to retry for page->mapping. 311 */ 312 if (unlikely(!mapping)) { 313 int shmem_swizzled; 314 315 /* 316 * Page lock is required to identify which special case above 317 * applies. If this is really a shmem page then the page lock 318 * will prevent unexpected transitions. 319 */ 320 lock_page(page); 321 shmem_swizzled = PageSwapCache(page) || page->mapping; 322 unlock_page(page); 323 put_page(page); 324 325 if (shmem_swizzled) 326 goto again; 327 328 return -EFAULT; 329 } 330 331 /* 332 * Private mappings are handled in a simple way. 333 * 334 * If the futex key is stored on an anonymous page, then the associated 335 * object is the mm which is implicitly pinned by the calling process. 336 * 337 * NOTE: When userspace waits on a MAP_SHARED mapping, even if 338 * it's a read-only handle, it's expected that futexes attach to 339 * the object not the particular process. 340 */ 341 if (PageAnon(page)) { 342 /* 343 * A RO anonymous page will never change and thus doesn't make 344 * sense for futex operations. 345 */ 346 if (unlikely(should_fail_futex(true)) || ro) { 347 err = -EFAULT; 348 goto out; 349 } 350 351 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ 352 key->private.mm = mm; 353 key->private.address = address; 354 355 } else { 356 struct inode *inode; 357 358 /* 359 * The associated futex object in this case is the inode and 360 * the page->mapping must be traversed. Ordinarily this should 361 * be stabilised under page lock but it's not strictly 362 * necessary in this case as we just want to pin the inode, not 363 * update the radix tree or anything like that. 364 * 365 * The RCU read lock is taken as the inode is finally freed 366 * under RCU. If the mapping still matches expectations then the 367 * mapping->host can be safely accessed as being a valid inode. 368 */ 369 rcu_read_lock(); 370 371 if (READ_ONCE(page->mapping) != mapping) { 372 rcu_read_unlock(); 373 put_page(page); 374 375 goto again; 376 } 377 378 inode = READ_ONCE(mapping->host); 379 if (!inode) { 380 rcu_read_unlock(); 381 put_page(page); 382 383 goto again; 384 } 385 386 key->both.offset |= FUT_OFF_INODE; /* inode-based key */ 387 key->shared.i_seq = get_inode_sequence_number(inode); 388 key->shared.pgoff = page_to_pgoff(tail); 389 rcu_read_unlock(); 390 } 391 392 out: 393 put_page(page); 394 return err; 395 } 396 397 /** 398 * fault_in_user_writeable() - Fault in user address and verify RW access 399 * @uaddr: pointer to faulting user space address 400 * 401 * Slow path to fixup the fault we just took in the atomic write 402 * access to @uaddr. 403 * 404 * We have no generic implementation of a non-destructive write to the 405 * user address. We know that we faulted in the atomic pagefault 406 * disabled section so we can as well avoid the #PF overhead by 407 * calling get_user_pages() right away. 408 */ 409 int fault_in_user_writeable(u32 __user *uaddr) 410 { 411 struct mm_struct *mm = current->mm; 412 int ret; 413 414 mmap_read_lock(mm); 415 ret = fixup_user_fault(mm, (unsigned long)uaddr, 416 FAULT_FLAG_WRITE, NULL); 417 mmap_read_unlock(mm); 418 419 return ret < 0 ? ret : 0; 420 } 421 422 /** 423 * futex_top_waiter() - Return the highest priority waiter on a futex 424 * @hb: the hash bucket the futex_q's reside in 425 * @key: the futex key (to distinguish it from other futex futex_q's) 426 * 427 * Must be called with the hb lock held. 428 */ 429 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key) 430 { 431 struct futex_q *this; 432 433 plist_for_each_entry(this, &hb->chain, list) { 434 if (futex_match(&this->key, key)) 435 return this; 436 } 437 return NULL; 438 } 439 440 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval) 441 { 442 int ret; 443 444 pagefault_disable(); 445 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); 446 pagefault_enable(); 447 448 return ret; 449 } 450 451 int futex_get_value_locked(u32 *dest, u32 __user *from) 452 { 453 int ret; 454 455 pagefault_disable(); 456 ret = __get_user(*dest, from); 457 pagefault_enable(); 458 459 return ret ? -EFAULT : 0; 460 } 461 462 /** 463 * wait_for_owner_exiting - Block until the owner has exited 464 * @ret: owner's current futex lock status 465 * @exiting: Pointer to the exiting task 466 * 467 * Caller must hold a refcount on @exiting. 468 */ 469 void wait_for_owner_exiting(int ret, struct task_struct *exiting) 470 { 471 if (ret != -EBUSY) { 472 WARN_ON_ONCE(exiting); 473 return; 474 } 475 476 if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) 477 return; 478 479 mutex_lock(&exiting->futex_exit_mutex); 480 /* 481 * No point in doing state checking here. If the waiter got here 482 * while the task was in exec()->exec_futex_release() then it can 483 * have any FUTEX_STATE_* value when the waiter has acquired the 484 * mutex. OK, if running, EXITING or DEAD if it reached exit() 485 * already. Highly unlikely and not a problem. Just one more round 486 * through the futex maze. 487 */ 488 mutex_unlock(&exiting->futex_exit_mutex); 489 490 put_task_struct(exiting); 491 } 492 493 /** 494 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket 495 * @q: The futex_q to unqueue 496 * 497 * The q->lock_ptr must not be NULL and must be held by the caller. 498 */ 499 void __futex_unqueue(struct futex_q *q) 500 { 501 struct futex_hash_bucket *hb; 502 503 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) 504 return; 505 lockdep_assert_held(q->lock_ptr); 506 507 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); 508 plist_del(&q->list, &hb->chain); 509 futex_hb_waiters_dec(hb); 510 } 511 512 /* The key must be already stored in q->key. */ 513 struct futex_hash_bucket *futex_q_lock(struct futex_q *q) 514 __acquires(&hb->lock) 515 { 516 struct futex_hash_bucket *hb; 517 518 hb = futex_hash(&q->key); 519 520 /* 521 * Increment the counter before taking the lock so that 522 * a potential waker won't miss a to-be-slept task that is 523 * waiting for the spinlock. This is safe as all futex_q_lock() 524 * users end up calling futex_queue(). Similarly, for housekeeping, 525 * decrement the counter at futex_q_unlock() when some error has 526 * occurred and we don't end up adding the task to the list. 527 */ 528 futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */ 529 530 q->lock_ptr = &hb->lock; 531 532 spin_lock(&hb->lock); 533 return hb; 534 } 535 536 void futex_q_unlock(struct futex_hash_bucket *hb) 537 __releases(&hb->lock) 538 { 539 spin_unlock(&hb->lock); 540 futex_hb_waiters_dec(hb); 541 } 542 543 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb) 544 { 545 int prio; 546 547 /* 548 * The priority used to register this element is 549 * - either the real thread-priority for the real-time threads 550 * (i.e. threads with a priority lower than MAX_RT_PRIO) 551 * - or MAX_RT_PRIO for non-RT threads. 552 * Thus, all RT-threads are woken first in priority order, and 553 * the others are woken last, in FIFO order. 554 */ 555 prio = min(current->normal_prio, MAX_RT_PRIO); 556 557 plist_node_init(&q->list, prio); 558 plist_add(&q->list, &hb->chain); 559 q->task = current; 560 } 561 562 /** 563 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket 564 * @q: The futex_q to unqueue 565 * 566 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must 567 * be paired with exactly one earlier call to futex_queue(). 568 * 569 * Return: 570 * - 1 - if the futex_q was still queued (and we removed unqueued it); 571 * - 0 - if the futex_q was already removed by the waking thread 572 */ 573 int futex_unqueue(struct futex_q *q) 574 { 575 spinlock_t *lock_ptr; 576 int ret = 0; 577 578 /* In the common case we don't take the spinlock, which is nice. */ 579 retry: 580 /* 581 * q->lock_ptr can change between this read and the following spin_lock. 582 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and 583 * optimizing lock_ptr out of the logic below. 584 */ 585 lock_ptr = READ_ONCE(q->lock_ptr); 586 if (lock_ptr != NULL) { 587 spin_lock(lock_ptr); 588 /* 589 * q->lock_ptr can change between reading it and 590 * spin_lock(), causing us to take the wrong lock. This 591 * corrects the race condition. 592 * 593 * Reasoning goes like this: if we have the wrong lock, 594 * q->lock_ptr must have changed (maybe several times) 595 * between reading it and the spin_lock(). It can 596 * change again after the spin_lock() but only if it was 597 * already changed before the spin_lock(). It cannot, 598 * however, change back to the original value. Therefore 599 * we can detect whether we acquired the correct lock. 600 */ 601 if (unlikely(lock_ptr != q->lock_ptr)) { 602 spin_unlock(lock_ptr); 603 goto retry; 604 } 605 __futex_unqueue(q); 606 607 BUG_ON(q->pi_state); 608 609 spin_unlock(lock_ptr); 610 ret = 1; 611 } 612 613 return ret; 614 } 615 616 /* 617 * PI futexes can not be requeued and must remove themselves from the 618 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held. 619 */ 620 void futex_unqueue_pi(struct futex_q *q) 621 { 622 __futex_unqueue(q); 623 624 BUG_ON(!q->pi_state); 625 put_pi_state(q->pi_state); 626 q->pi_state = NULL; 627 } 628 629 /* Constants for the pending_op argument of handle_futex_death */ 630 #define HANDLE_DEATH_PENDING true 631 #define HANDLE_DEATH_LIST false 632 633 /* 634 * Process a futex-list entry, check whether it's owned by the 635 * dying task, and do notification if so: 636 */ 637 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, 638 bool pi, bool pending_op) 639 { 640 u32 uval, nval, mval; 641 pid_t owner; 642 int err; 643 644 /* Futex address must be 32bit aligned */ 645 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) 646 return -1; 647 648 retry: 649 if (get_user(uval, uaddr)) 650 return -1; 651 652 /* 653 * Special case for regular (non PI) futexes. The unlock path in 654 * user space has two race scenarios: 655 * 656 * 1. The unlock path releases the user space futex value and 657 * before it can execute the futex() syscall to wake up 658 * waiters it is killed. 659 * 660 * 2. A woken up waiter is killed before it can acquire the 661 * futex in user space. 662 * 663 * In the second case, the wake up notification could be generated 664 * by the unlock path in user space after setting the futex value 665 * to zero or by the kernel after setting the OWNER_DIED bit below. 666 * 667 * In both cases the TID validation below prevents a wakeup of 668 * potential waiters which can cause these waiters to block 669 * forever. 670 * 671 * In both cases the following conditions are met: 672 * 673 * 1) task->robust_list->list_op_pending != NULL 674 * @pending_op == true 675 * 2) The owner part of user space futex value == 0 676 * 3) Regular futex: @pi == false 677 * 678 * If these conditions are met, it is safe to attempt waking up a 679 * potential waiter without touching the user space futex value and 680 * trying to set the OWNER_DIED bit. If the futex value is zero, 681 * the rest of the user space mutex state is consistent, so a woken 682 * waiter will just take over the uncontended futex. Setting the 683 * OWNER_DIED bit would create inconsistent state and malfunction 684 * of the user space owner died handling. Otherwise, the OWNER_DIED 685 * bit is already set, and the woken waiter is expected to deal with 686 * this. 687 */ 688 owner = uval & FUTEX_TID_MASK; 689 690 if (pending_op && !pi && !owner) { 691 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); 692 return 0; 693 } 694 695 if (owner != task_pid_vnr(curr)) 696 return 0; 697 698 /* 699 * Ok, this dying thread is truly holding a futex 700 * of interest. Set the OWNER_DIED bit atomically 701 * via cmpxchg, and if the value had FUTEX_WAITERS 702 * set, wake up a waiter (if any). (We have to do a 703 * futex_wake() even if OWNER_DIED is already set - 704 * to handle the rare but possible case of recursive 705 * thread-death.) The rest of the cleanup is done in 706 * userspace. 707 */ 708 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; 709 710 /* 711 * We are not holding a lock here, but we want to have 712 * the pagefault_disable/enable() protection because 713 * we want to handle the fault gracefully. If the 714 * access fails we try to fault in the futex with R/W 715 * verification via get_user_pages. get_user() above 716 * does not guarantee R/W access. If that fails we 717 * give up and leave the futex locked. 718 */ 719 if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) { 720 switch (err) { 721 case -EFAULT: 722 if (fault_in_user_writeable(uaddr)) 723 return -1; 724 goto retry; 725 726 case -EAGAIN: 727 cond_resched(); 728 goto retry; 729 730 default: 731 WARN_ON_ONCE(1); 732 return err; 733 } 734 } 735 736 if (nval != uval) 737 goto retry; 738 739 /* 740 * Wake robust non-PI futexes here. The wakeup of 741 * PI futexes happens in exit_pi_state(): 742 */ 743 if (!pi && (uval & FUTEX_WAITERS)) 744 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); 745 746 return 0; 747 } 748 749 /* 750 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 751 */ 752 static inline int fetch_robust_entry(struct robust_list __user **entry, 753 struct robust_list __user * __user *head, 754 unsigned int *pi) 755 { 756 unsigned long uentry; 757 758 if (get_user(uentry, (unsigned long __user *)head)) 759 return -EFAULT; 760 761 *entry = (void __user *)(uentry & ~1UL); 762 *pi = uentry & 1; 763 764 return 0; 765 } 766 767 /* 768 * Walk curr->robust_list (very carefully, it's a userspace list!) 769 * and mark any locks found there dead, and notify any waiters. 770 * 771 * We silently return on any sign of list-walking problem. 772 */ 773 static void exit_robust_list(struct task_struct *curr) 774 { 775 struct robust_list_head __user *head = curr->robust_list; 776 struct robust_list __user *entry, *next_entry, *pending; 777 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 778 unsigned int next_pi; 779 unsigned long futex_offset; 780 int rc; 781 782 /* 783 * Fetch the list head (which was registered earlier, via 784 * sys_set_robust_list()): 785 */ 786 if (fetch_robust_entry(&entry, &head->list.next, &pi)) 787 return; 788 /* 789 * Fetch the relative futex offset: 790 */ 791 if (get_user(futex_offset, &head->futex_offset)) 792 return; 793 /* 794 * Fetch any possibly pending lock-add first, and handle it 795 * if it exists: 796 */ 797 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) 798 return; 799 800 next_entry = NULL; /* avoid warning with gcc */ 801 while (entry != &head->list) { 802 /* 803 * Fetch the next entry in the list before calling 804 * handle_futex_death: 805 */ 806 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); 807 /* 808 * A pending lock might already be on the list, so 809 * don't process it twice: 810 */ 811 if (entry != pending) { 812 if (handle_futex_death((void __user *)entry + futex_offset, 813 curr, pi, HANDLE_DEATH_LIST)) 814 return; 815 } 816 if (rc) 817 return; 818 entry = next_entry; 819 pi = next_pi; 820 /* 821 * Avoid excessively long or circular lists: 822 */ 823 if (!--limit) 824 break; 825 826 cond_resched(); 827 } 828 829 if (pending) { 830 handle_futex_death((void __user *)pending + futex_offset, 831 curr, pip, HANDLE_DEATH_PENDING); 832 } 833 } 834 835 #ifdef CONFIG_COMPAT 836 static void __user *futex_uaddr(struct robust_list __user *entry, 837 compat_long_t futex_offset) 838 { 839 compat_uptr_t base = ptr_to_compat(entry); 840 void __user *uaddr = compat_ptr(base + futex_offset); 841 842 return uaddr; 843 } 844 845 /* 846 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 847 */ 848 static inline int 849 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, 850 compat_uptr_t __user *head, unsigned int *pi) 851 { 852 if (get_user(*uentry, head)) 853 return -EFAULT; 854 855 *entry = compat_ptr((*uentry) & ~1); 856 *pi = (unsigned int)(*uentry) & 1; 857 858 return 0; 859 } 860 861 /* 862 * Walk curr->robust_list (very carefully, it's a userspace list!) 863 * and mark any locks found there dead, and notify any waiters. 864 * 865 * We silently return on any sign of list-walking problem. 866 */ 867 static void compat_exit_robust_list(struct task_struct *curr) 868 { 869 struct compat_robust_list_head __user *head = curr->compat_robust_list; 870 struct robust_list __user *entry, *next_entry, *pending; 871 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 872 unsigned int next_pi; 873 compat_uptr_t uentry, next_uentry, upending; 874 compat_long_t futex_offset; 875 int rc; 876 877 /* 878 * Fetch the list head (which was registered earlier, via 879 * sys_set_robust_list()): 880 */ 881 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) 882 return; 883 /* 884 * Fetch the relative futex offset: 885 */ 886 if (get_user(futex_offset, &head->futex_offset)) 887 return; 888 /* 889 * Fetch any possibly pending lock-add first, and handle it 890 * if it exists: 891 */ 892 if (compat_fetch_robust_entry(&upending, &pending, 893 &head->list_op_pending, &pip)) 894 return; 895 896 next_entry = NULL; /* avoid warning with gcc */ 897 while (entry != (struct robust_list __user *) &head->list) { 898 /* 899 * Fetch the next entry in the list before calling 900 * handle_futex_death: 901 */ 902 rc = compat_fetch_robust_entry(&next_uentry, &next_entry, 903 (compat_uptr_t __user *)&entry->next, &next_pi); 904 /* 905 * A pending lock might already be on the list, so 906 * dont process it twice: 907 */ 908 if (entry != pending) { 909 void __user *uaddr = futex_uaddr(entry, futex_offset); 910 911 if (handle_futex_death(uaddr, curr, pi, 912 HANDLE_DEATH_LIST)) 913 return; 914 } 915 if (rc) 916 return; 917 uentry = next_uentry; 918 entry = next_entry; 919 pi = next_pi; 920 /* 921 * Avoid excessively long or circular lists: 922 */ 923 if (!--limit) 924 break; 925 926 cond_resched(); 927 } 928 if (pending) { 929 void __user *uaddr = futex_uaddr(pending, futex_offset); 930 931 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); 932 } 933 } 934 #endif 935 936 #ifdef CONFIG_FUTEX_PI 937 938 /* 939 * This task is holding PI mutexes at exit time => bad. 940 * Kernel cleans up PI-state, but userspace is likely hosed. 941 * (Robust-futex cleanup is separate and might save the day for userspace.) 942 */ 943 static void exit_pi_state_list(struct task_struct *curr) 944 { 945 struct list_head *next, *head = &curr->pi_state_list; 946 struct futex_pi_state *pi_state; 947 struct futex_hash_bucket *hb; 948 union futex_key key = FUTEX_KEY_INIT; 949 950 /* 951 * We are a ZOMBIE and nobody can enqueue itself on 952 * pi_state_list anymore, but we have to be careful 953 * versus waiters unqueueing themselves: 954 */ 955 raw_spin_lock_irq(&curr->pi_lock); 956 while (!list_empty(head)) { 957 next = head->next; 958 pi_state = list_entry(next, struct futex_pi_state, list); 959 key = pi_state->key; 960 hb = futex_hash(&key); 961 962 /* 963 * We can race against put_pi_state() removing itself from the 964 * list (a waiter going away). put_pi_state() will first 965 * decrement the reference count and then modify the list, so 966 * its possible to see the list entry but fail this reference 967 * acquire. 968 * 969 * In that case; drop the locks to let put_pi_state() make 970 * progress and retry the loop. 971 */ 972 if (!refcount_inc_not_zero(&pi_state->refcount)) { 973 raw_spin_unlock_irq(&curr->pi_lock); 974 cpu_relax(); 975 raw_spin_lock_irq(&curr->pi_lock); 976 continue; 977 } 978 raw_spin_unlock_irq(&curr->pi_lock); 979 980 spin_lock(&hb->lock); 981 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); 982 raw_spin_lock(&curr->pi_lock); 983 /* 984 * We dropped the pi-lock, so re-check whether this 985 * task still owns the PI-state: 986 */ 987 if (head->next != next) { 988 /* retain curr->pi_lock for the loop invariant */ 989 raw_spin_unlock(&pi_state->pi_mutex.wait_lock); 990 spin_unlock(&hb->lock); 991 put_pi_state(pi_state); 992 continue; 993 } 994 995 WARN_ON(pi_state->owner != curr); 996 WARN_ON(list_empty(&pi_state->list)); 997 list_del_init(&pi_state->list); 998 pi_state->owner = NULL; 999 1000 raw_spin_unlock(&curr->pi_lock); 1001 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); 1002 spin_unlock(&hb->lock); 1003 1004 rt_mutex_futex_unlock(&pi_state->pi_mutex); 1005 put_pi_state(pi_state); 1006 1007 raw_spin_lock_irq(&curr->pi_lock); 1008 } 1009 raw_spin_unlock_irq(&curr->pi_lock); 1010 } 1011 #else 1012 static inline void exit_pi_state_list(struct task_struct *curr) { } 1013 #endif 1014 1015 static void futex_cleanup(struct task_struct *tsk) 1016 { 1017 if (unlikely(tsk->robust_list)) { 1018 exit_robust_list(tsk); 1019 tsk->robust_list = NULL; 1020 } 1021 1022 #ifdef CONFIG_COMPAT 1023 if (unlikely(tsk->compat_robust_list)) { 1024 compat_exit_robust_list(tsk); 1025 tsk->compat_robust_list = NULL; 1026 } 1027 #endif 1028 1029 if (unlikely(!list_empty(&tsk->pi_state_list))) 1030 exit_pi_state_list(tsk); 1031 } 1032 1033 /** 1034 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD 1035 * @tsk: task to set the state on 1036 * 1037 * Set the futex exit state of the task lockless. The futex waiter code 1038 * observes that state when a task is exiting and loops until the task has 1039 * actually finished the futex cleanup. The worst case for this is that the 1040 * waiter runs through the wait loop until the state becomes visible. 1041 * 1042 * This is called from the recursive fault handling path in make_task_dead(). 1043 * 1044 * This is best effort. Either the futex exit code has run already or 1045 * not. If the OWNER_DIED bit has been set on the futex then the waiter can 1046 * take it over. If not, the problem is pushed back to user space. If the 1047 * futex exit code did not run yet, then an already queued waiter might 1048 * block forever, but there is nothing which can be done about that. 1049 */ 1050 void futex_exit_recursive(struct task_struct *tsk) 1051 { 1052 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ 1053 if (tsk->futex_state == FUTEX_STATE_EXITING) 1054 mutex_unlock(&tsk->futex_exit_mutex); 1055 tsk->futex_state = FUTEX_STATE_DEAD; 1056 } 1057 1058 static void futex_cleanup_begin(struct task_struct *tsk) 1059 { 1060 /* 1061 * Prevent various race issues against a concurrent incoming waiter 1062 * including live locks by forcing the waiter to block on 1063 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in 1064 * attach_to_pi_owner(). 1065 */ 1066 mutex_lock(&tsk->futex_exit_mutex); 1067 1068 /* 1069 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. 1070 * 1071 * This ensures that all subsequent checks of tsk->futex_state in 1072 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with 1073 * tsk->pi_lock held. 1074 * 1075 * It guarantees also that a pi_state which was queued right before 1076 * the state change under tsk->pi_lock by a concurrent waiter must 1077 * be observed in exit_pi_state_list(). 1078 */ 1079 raw_spin_lock_irq(&tsk->pi_lock); 1080 tsk->futex_state = FUTEX_STATE_EXITING; 1081 raw_spin_unlock_irq(&tsk->pi_lock); 1082 } 1083 1084 static void futex_cleanup_end(struct task_struct *tsk, int state) 1085 { 1086 /* 1087 * Lockless store. The only side effect is that an observer might 1088 * take another loop until it becomes visible. 1089 */ 1090 tsk->futex_state = state; 1091 /* 1092 * Drop the exit protection. This unblocks waiters which observed 1093 * FUTEX_STATE_EXITING to reevaluate the state. 1094 */ 1095 mutex_unlock(&tsk->futex_exit_mutex); 1096 } 1097 1098 void futex_exec_release(struct task_struct *tsk) 1099 { 1100 /* 1101 * The state handling is done for consistency, but in the case of 1102 * exec() there is no way to prevent further damage as the PID stays 1103 * the same. But for the unlikely and arguably buggy case that a 1104 * futex is held on exec(), this provides at least as much state 1105 * consistency protection which is possible. 1106 */ 1107 futex_cleanup_begin(tsk); 1108 futex_cleanup(tsk); 1109 /* 1110 * Reset the state to FUTEX_STATE_OK. The task is alive and about 1111 * exec a new binary. 1112 */ 1113 futex_cleanup_end(tsk, FUTEX_STATE_OK); 1114 } 1115 1116 void futex_exit_release(struct task_struct *tsk) 1117 { 1118 futex_cleanup_begin(tsk); 1119 futex_cleanup(tsk); 1120 futex_cleanup_end(tsk, FUTEX_STATE_DEAD); 1121 } 1122 1123 static int __init futex_init(void) 1124 { 1125 unsigned int futex_shift; 1126 unsigned long i; 1127 1128 #if CONFIG_BASE_SMALL 1129 futex_hashsize = 16; 1130 #else 1131 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); 1132 #endif 1133 1134 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), 1135 futex_hashsize, 0, 1136 futex_hashsize < 256 ? HASH_SMALL : 0, 1137 &futex_shift, NULL, 1138 futex_hashsize, futex_hashsize); 1139 futex_hashsize = 1UL << futex_shift; 1140 1141 for (i = 0; i < futex_hashsize; i++) { 1142 atomic_set(&futex_queues[i].waiters, 0); 1143 plist_head_init(&futex_queues[i].chain); 1144 spin_lock_init(&futex_queues[i].lock); 1145 } 1146 1147 return 0; 1148 } 1149 core_initcall(futex_init); 1150