xref: /linux/kernel/futex/core.c (revision cec199c5e39bde7191a08087cc3d002ccfab31ff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/debugfs.h>
38 #include <linux/plist.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/memblock.h>
42 #include <linux/fault-inject.h>
43 #include <linux/slab.h>
44 #include <linux/prctl.h>
45 #include <linux/rcuref.h>
46 
47 #include "futex.h"
48 #include "../locking/rtmutex_common.h"
49 
50 /*
51  * The base of the bucket array and its size are always used together
52  * (after initialization only in futex_hash()), so ensure that they
53  * reside in the same cacheline.
54  */
55 static struct {
56 	unsigned long            hashmask;
57 	unsigned int		 hashshift;
58 	struct futex_hash_bucket *queues[MAX_NUMNODES];
59 } __futex_data __read_mostly __aligned(2*sizeof(long));
60 
61 #define futex_hashmask	(__futex_data.hashmask)
62 #define futex_hashshift	(__futex_data.hashshift)
63 #define futex_queues	(__futex_data.queues)
64 
65 struct futex_private_hash {
66 	rcuref_t	users;
67 	unsigned int	hash_mask;
68 	struct rcu_head	rcu;
69 	void		*mm;
70 	bool		custom;
71 	bool		immutable;
72 	struct futex_hash_bucket queues[];
73 };
74 
75 /*
76  * Fault injections for futexes.
77  */
78 #ifdef CONFIG_FAIL_FUTEX
79 
80 static struct {
81 	struct fault_attr attr;
82 
83 	bool ignore_private;
84 } fail_futex = {
85 	.attr = FAULT_ATTR_INITIALIZER,
86 	.ignore_private = false,
87 };
88 
89 static int __init setup_fail_futex(char *str)
90 {
91 	return setup_fault_attr(&fail_futex.attr, str);
92 }
93 __setup("fail_futex=", setup_fail_futex);
94 
95 bool should_fail_futex(bool fshared)
96 {
97 	if (fail_futex.ignore_private && !fshared)
98 		return false;
99 
100 	return should_fail(&fail_futex.attr, 1);
101 }
102 
103 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
104 
105 static int __init fail_futex_debugfs(void)
106 {
107 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
108 	struct dentry *dir;
109 
110 	dir = fault_create_debugfs_attr("fail_futex", NULL,
111 					&fail_futex.attr);
112 	if (IS_ERR(dir))
113 		return PTR_ERR(dir);
114 
115 	debugfs_create_bool("ignore-private", mode, dir,
116 			    &fail_futex.ignore_private);
117 	return 0;
118 }
119 
120 late_initcall(fail_futex_debugfs);
121 
122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
123 
124 #endif /* CONFIG_FAIL_FUTEX */
125 
126 static struct futex_hash_bucket *
127 __futex_hash(union futex_key *key, struct futex_private_hash *fph);
128 
129 #ifdef CONFIG_FUTEX_PRIVATE_HASH
130 static inline bool futex_key_is_private(union futex_key *key)
131 {
132 	/*
133 	 * Relies on get_futex_key() to set either bit for shared
134 	 * futexes -- see comment with union futex_key.
135 	 */
136 	return !(key->both.offset & (FUT_OFF_INODE | FUT_OFF_MMSHARED));
137 }
138 
139 bool futex_private_hash_get(struct futex_private_hash *fph)
140 {
141 	if (fph->immutable)
142 		return true;
143 	return rcuref_get(&fph->users);
144 }
145 
146 void futex_private_hash_put(struct futex_private_hash *fph)
147 {
148 	/* Ignore return value, last put is verified via rcuref_is_dead() */
149 	if (fph->immutable)
150 		return;
151 	if (rcuref_put(&fph->users))
152 		wake_up_var(fph->mm);
153 }
154 
155 /**
156  * futex_hash_get - Get an additional reference for the local hash.
157  * @hb:                    ptr to the private local hash.
158  *
159  * Obtain an additional reference for the already obtained hash bucket. The
160  * caller must already own an reference.
161  */
162 void futex_hash_get(struct futex_hash_bucket *hb)
163 {
164 	struct futex_private_hash *fph = hb->priv;
165 
166 	if (!fph)
167 		return;
168 	WARN_ON_ONCE(!futex_private_hash_get(fph));
169 }
170 
171 void futex_hash_put(struct futex_hash_bucket *hb)
172 {
173 	struct futex_private_hash *fph = hb->priv;
174 
175 	if (!fph)
176 		return;
177 	futex_private_hash_put(fph);
178 }
179 
180 static struct futex_hash_bucket *
181 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
182 {
183 	u32 hash;
184 
185 	if (!futex_key_is_private(key))
186 		return NULL;
187 
188 	if (!fph)
189 		fph = rcu_dereference(key->private.mm->futex_phash);
190 	if (!fph || !fph->hash_mask)
191 		return NULL;
192 
193 	hash = jhash2((void *)&key->private.address,
194 		      sizeof(key->private.address) / 4,
195 		      key->both.offset);
196 	return &fph->queues[hash & fph->hash_mask];
197 }
198 
199 static void futex_rehash_private(struct futex_private_hash *old,
200 				 struct futex_private_hash *new)
201 {
202 	struct futex_hash_bucket *hb_old, *hb_new;
203 	unsigned int slots = old->hash_mask + 1;
204 	unsigned int i;
205 
206 	for (i = 0; i < slots; i++) {
207 		struct futex_q *this, *tmp;
208 
209 		hb_old = &old->queues[i];
210 
211 		spin_lock(&hb_old->lock);
212 		plist_for_each_entry_safe(this, tmp, &hb_old->chain, list) {
213 
214 			plist_del(&this->list, &hb_old->chain);
215 			futex_hb_waiters_dec(hb_old);
216 
217 			WARN_ON_ONCE(this->lock_ptr != &hb_old->lock);
218 
219 			hb_new = __futex_hash(&this->key, new);
220 			futex_hb_waiters_inc(hb_new);
221 			/*
222 			 * The new pointer isn't published yet but an already
223 			 * moved user can be unqueued due to timeout or signal.
224 			 */
225 			spin_lock_nested(&hb_new->lock, SINGLE_DEPTH_NESTING);
226 			plist_add(&this->list, &hb_new->chain);
227 			this->lock_ptr = &hb_new->lock;
228 			spin_unlock(&hb_new->lock);
229 		}
230 		spin_unlock(&hb_old->lock);
231 	}
232 }
233 
234 static bool __futex_pivot_hash(struct mm_struct *mm,
235 			       struct futex_private_hash *new)
236 {
237 	struct futex_private_hash *fph;
238 
239 	WARN_ON_ONCE(mm->futex_phash_new);
240 
241 	fph = rcu_dereference_protected(mm->futex_phash,
242 					lockdep_is_held(&mm->futex_hash_lock));
243 	if (fph) {
244 		if (!rcuref_is_dead(&fph->users)) {
245 			mm->futex_phash_new = new;
246 			return false;
247 		}
248 
249 		futex_rehash_private(fph, new);
250 	}
251 	rcu_assign_pointer(mm->futex_phash, new);
252 	kvfree_rcu(fph, rcu);
253 	return true;
254 }
255 
256 static void futex_pivot_hash(struct mm_struct *mm)
257 {
258 	scoped_guard(mutex, &mm->futex_hash_lock) {
259 		struct futex_private_hash *fph;
260 
261 		fph = mm->futex_phash_new;
262 		if (fph) {
263 			mm->futex_phash_new = NULL;
264 			__futex_pivot_hash(mm, fph);
265 		}
266 	}
267 }
268 
269 struct futex_private_hash *futex_private_hash(void)
270 {
271 	struct mm_struct *mm = current->mm;
272 	/*
273 	 * Ideally we don't loop. If there is a replacement in progress
274 	 * then a new private hash is already prepared and a reference can't be
275 	 * obtained once the last user dropped it's.
276 	 * In that case we block on mm_struct::futex_hash_lock and either have
277 	 * to perform the replacement or wait while someone else is doing the
278 	 * job. Eitherway, on the second iteration we acquire a reference on the
279 	 * new private hash or loop again because a new replacement has been
280 	 * requested.
281 	 */
282 again:
283 	scoped_guard(rcu) {
284 		struct futex_private_hash *fph;
285 
286 		fph = rcu_dereference(mm->futex_phash);
287 		if (!fph)
288 			return NULL;
289 
290 		if (fph->immutable)
291 			return fph;
292 		if (rcuref_get(&fph->users))
293 			return fph;
294 	}
295 	futex_pivot_hash(mm);
296 	goto again;
297 }
298 
299 struct futex_hash_bucket *futex_hash(union futex_key *key)
300 {
301 	struct futex_private_hash *fph;
302 	struct futex_hash_bucket *hb;
303 
304 again:
305 	scoped_guard(rcu) {
306 		hb = __futex_hash(key, NULL);
307 		fph = hb->priv;
308 
309 		if (!fph || futex_private_hash_get(fph))
310 			return hb;
311 	}
312 	futex_pivot_hash(key->private.mm);
313 	goto again;
314 }
315 
316 #else /* !CONFIG_FUTEX_PRIVATE_HASH */
317 
318 static struct futex_hash_bucket *
319 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
320 {
321 	return NULL;
322 }
323 
324 struct futex_hash_bucket *futex_hash(union futex_key *key)
325 {
326 	return __futex_hash(key, NULL);
327 }
328 
329 #endif /* CONFIG_FUTEX_PRIVATE_HASH */
330 
331 /**
332  * __futex_hash - Return the hash bucket
333  * @key:	Pointer to the futex key for which the hash is calculated
334  * @fph:	Pointer to private hash if known
335  *
336  * We hash on the keys returned from get_futex_key (see below) and return the
337  * corresponding hash bucket.
338  * If the FUTEX is PROCESS_PRIVATE then a per-process hash bucket (from the
339  * private hash) is returned if existing. Otherwise a hash bucket from the
340  * global hash is returned.
341  */
342 static struct futex_hash_bucket *
343 __futex_hash(union futex_key *key, struct futex_private_hash *fph)
344 {
345 	struct futex_hash_bucket *hb;
346 	u32 hash;
347 	int node;
348 
349 	hb = __futex_hash_private(key, fph);
350 	if (hb)
351 		return hb;
352 
353 	hash = jhash2((u32 *)key,
354 		      offsetof(typeof(*key), both.offset) / sizeof(u32),
355 		      key->both.offset);
356 	node = key->both.node;
357 
358 	if (node == FUTEX_NO_NODE) {
359 		/*
360 		 * In case of !FLAGS_NUMA, use some unused hash bits to pick a
361 		 * node -- this ensures regular futexes are interleaved across
362 		 * the nodes and avoids having to allocate multiple
363 		 * hash-tables.
364 		 *
365 		 * NOTE: this isn't perfectly uniform, but it is fast and
366 		 * handles sparse node masks.
367 		 */
368 		node = (hash >> futex_hashshift) % nr_node_ids;
369 		if (!node_possible(node)) {
370 			node = find_next_bit_wrap(node_possible_map.bits,
371 						  nr_node_ids, node);
372 		}
373 	}
374 
375 	return &futex_queues[node][hash & futex_hashmask];
376 }
377 
378 /**
379  * futex_setup_timer - set up the sleeping hrtimer.
380  * @time:	ptr to the given timeout value
381  * @timeout:	the hrtimer_sleeper structure to be set up
382  * @flags:	futex flags
383  * @range_ns:	optional range in ns
384  *
385  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
386  *	   value given
387  */
388 struct hrtimer_sleeper *
389 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
390 		  int flags, u64 range_ns)
391 {
392 	if (!time)
393 		return NULL;
394 
395 	hrtimer_setup_sleeper_on_stack(timeout,
396 				       (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC,
397 				       HRTIMER_MODE_ABS);
398 	/*
399 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
400 	 * effectively the same as calling hrtimer_set_expires().
401 	 */
402 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
403 
404 	return timeout;
405 }
406 
407 /*
408  * Generate a machine wide unique identifier for this inode.
409  *
410  * This relies on u64 not wrapping in the life-time of the machine; which with
411  * 1ns resolution means almost 585 years.
412  *
413  * This further relies on the fact that a well formed program will not unmap
414  * the file while it has a (shared) futex waiting on it. This mapping will have
415  * a file reference which pins the mount and inode.
416  *
417  * If for some reason an inode gets evicted and read back in again, it will get
418  * a new sequence number and will _NOT_ match, even though it is the exact same
419  * file.
420  *
421  * It is important that futex_match() will never have a false-positive, esp.
422  * for PI futexes that can mess up the state. The above argues that false-negatives
423  * are only possible for malformed programs.
424  */
425 static u64 get_inode_sequence_number(struct inode *inode)
426 {
427 	static atomic64_t i_seq;
428 	u64 old;
429 
430 	/* Does the inode already have a sequence number? */
431 	old = atomic64_read(&inode->i_sequence);
432 	if (likely(old))
433 		return old;
434 
435 	for (;;) {
436 		u64 new = atomic64_inc_return(&i_seq);
437 		if (WARN_ON_ONCE(!new))
438 			continue;
439 
440 		old = 0;
441 		if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new))
442 			return old;
443 		return new;
444 	}
445 }
446 
447 /**
448  * get_futex_key() - Get parameters which are the keys for a futex
449  * @uaddr:	virtual address of the futex
450  * @flags:	FLAGS_*
451  * @key:	address where result is stored.
452  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
453  *              FUTEX_WRITE)
454  *
455  * Return: a negative error code or 0
456  *
457  * The key words are stored in @key on success.
458  *
459  * For shared mappings (when @fshared), the key is:
460  *
461  *   ( inode->i_sequence, page->index, offset_within_page )
462  *
463  * [ also see get_inode_sequence_number() ]
464  *
465  * For private mappings (or when !@fshared), the key is:
466  *
467  *   ( current->mm, address, 0 )
468  *
469  * This allows (cross process, where applicable) identification of the futex
470  * without keeping the page pinned for the duration of the FUTEX_WAIT.
471  *
472  * lock_page() might sleep, the caller should not hold a spinlock.
473  */
474 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
475 		  enum futex_access rw)
476 {
477 	unsigned long address = (unsigned long)uaddr;
478 	struct mm_struct *mm = current->mm;
479 	struct page *page;
480 	struct folio *folio;
481 	struct address_space *mapping;
482 	int node, err, size, ro = 0;
483 	bool fshared;
484 
485 	fshared = flags & FLAGS_SHARED;
486 	size = futex_size(flags);
487 	if (flags & FLAGS_NUMA)
488 		size *= 2;
489 
490 	/*
491 	 * The futex address must be "naturally" aligned.
492 	 */
493 	key->both.offset = address % PAGE_SIZE;
494 	if (unlikely((address % size) != 0))
495 		return -EINVAL;
496 	address -= key->both.offset;
497 
498 	if (unlikely(!access_ok(uaddr, size)))
499 		return -EFAULT;
500 
501 	if (unlikely(should_fail_futex(fshared)))
502 		return -EFAULT;
503 
504 	if (flags & FLAGS_NUMA) {
505 		u32 __user *naddr = (void *)uaddr + size / 2;
506 
507 		if (futex_get_value(&node, naddr))
508 			return -EFAULT;
509 
510 		if (node == FUTEX_NO_NODE) {
511 			node = numa_node_id();
512 			if (futex_put_value(node, naddr))
513 				return -EFAULT;
514 
515 		} else if (node >= MAX_NUMNODES || !node_possible(node)) {
516 			return -EINVAL;
517 		}
518 
519 		key->both.node = node;
520 
521 	} else {
522 		key->both.node = FUTEX_NO_NODE;
523 	}
524 
525 	/*
526 	 * PROCESS_PRIVATE futexes are fast.
527 	 * As the mm cannot disappear under us and the 'key' only needs
528 	 * virtual address, we dont even have to find the underlying vma.
529 	 * Note : We do have to check 'uaddr' is a valid user address,
530 	 *        but access_ok() should be faster than find_vma()
531 	 */
532 	if (!fshared) {
533 		/*
534 		 * On no-MMU, shared futexes are treated as private, therefore
535 		 * we must not include the current process in the key. Since
536 		 * there is only one address space, the address is a unique key
537 		 * on its own.
538 		 */
539 		if (IS_ENABLED(CONFIG_MMU))
540 			key->private.mm = mm;
541 		else
542 			key->private.mm = NULL;
543 
544 		key->private.address = address;
545 		return 0;
546 	}
547 
548 again:
549 	/* Ignore any VERIFY_READ mapping (futex common case) */
550 	if (unlikely(should_fail_futex(true)))
551 		return -EFAULT;
552 
553 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
554 	/*
555 	 * If write access is not required (eg. FUTEX_WAIT), try
556 	 * and get read-only access.
557 	 */
558 	if (err == -EFAULT && rw == FUTEX_READ) {
559 		err = get_user_pages_fast(address, 1, 0, &page);
560 		ro = 1;
561 	}
562 	if (err < 0)
563 		return err;
564 	else
565 		err = 0;
566 
567 	/*
568 	 * The treatment of mapping from this point on is critical. The folio
569 	 * lock protects many things but in this context the folio lock
570 	 * stabilizes mapping, prevents inode freeing in the shared
571 	 * file-backed region case and guards against movement to swap cache.
572 	 *
573 	 * Strictly speaking the folio lock is not needed in all cases being
574 	 * considered here and folio lock forces unnecessarily serialization.
575 	 * From this point on, mapping will be re-verified if necessary and
576 	 * folio lock will be acquired only if it is unavoidable
577 	 *
578 	 * Mapping checks require the folio so it is looked up now. For
579 	 * anonymous pages, it does not matter if the folio is split
580 	 * in the future as the key is based on the address. For
581 	 * filesystem-backed pages, the precise page is required as the
582 	 * index of the page determines the key.
583 	 */
584 	folio = page_folio(page);
585 	mapping = READ_ONCE(folio->mapping);
586 
587 	/*
588 	 * If folio->mapping is NULL, then it cannot be an anonymous
589 	 * page; but it might be the ZERO_PAGE or in the gate area or
590 	 * in a special mapping (all cases which we are happy to fail);
591 	 * or it may have been a good file page when get_user_pages_fast
592 	 * found it, but truncated or holepunched or subjected to
593 	 * invalidate_complete_page2 before we got the folio lock (also
594 	 * cases which we are happy to fail).  And we hold a reference,
595 	 * so refcount care in invalidate_inode_page's remove_mapping
596 	 * prevents drop_caches from setting mapping to NULL beneath us.
597 	 *
598 	 * The case we do have to guard against is when memory pressure made
599 	 * shmem_writepage move it from filecache to swapcache beneath us:
600 	 * an unlikely race, but we do need to retry for folio->mapping.
601 	 */
602 	if (unlikely(!mapping)) {
603 		int shmem_swizzled;
604 
605 		/*
606 		 * Folio lock is required to identify which special case above
607 		 * applies. If this is really a shmem page then the folio lock
608 		 * will prevent unexpected transitions.
609 		 */
610 		folio_lock(folio);
611 		shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
612 		folio_unlock(folio);
613 		folio_put(folio);
614 
615 		if (shmem_swizzled)
616 			goto again;
617 
618 		return -EFAULT;
619 	}
620 
621 	/*
622 	 * Private mappings are handled in a simple way.
623 	 *
624 	 * If the futex key is stored in anonymous memory, then the associated
625 	 * object is the mm which is implicitly pinned by the calling process.
626 	 *
627 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
628 	 * it's a read-only handle, it's expected that futexes attach to
629 	 * the object not the particular process.
630 	 */
631 	if (folio_test_anon(folio)) {
632 		/*
633 		 * A RO anonymous page will never change and thus doesn't make
634 		 * sense for futex operations.
635 		 */
636 		if (unlikely(should_fail_futex(true)) || ro) {
637 			err = -EFAULT;
638 			goto out;
639 		}
640 
641 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
642 		key->private.mm = mm;
643 		key->private.address = address;
644 
645 	} else {
646 		struct inode *inode;
647 
648 		/*
649 		 * The associated futex object in this case is the inode and
650 		 * the folio->mapping must be traversed. Ordinarily this should
651 		 * be stabilised under folio lock but it's not strictly
652 		 * necessary in this case as we just want to pin the inode, not
653 		 * update i_pages or anything like that.
654 		 *
655 		 * The RCU read lock is taken as the inode is finally freed
656 		 * under RCU. If the mapping still matches expectations then the
657 		 * mapping->host can be safely accessed as being a valid inode.
658 		 */
659 		rcu_read_lock();
660 
661 		if (READ_ONCE(folio->mapping) != mapping) {
662 			rcu_read_unlock();
663 			folio_put(folio);
664 
665 			goto again;
666 		}
667 
668 		inode = READ_ONCE(mapping->host);
669 		if (!inode) {
670 			rcu_read_unlock();
671 			folio_put(folio);
672 
673 			goto again;
674 		}
675 
676 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
677 		key->shared.i_seq = get_inode_sequence_number(inode);
678 		key->shared.pgoff = page_pgoff(folio, page);
679 		rcu_read_unlock();
680 	}
681 
682 out:
683 	folio_put(folio);
684 	return err;
685 }
686 
687 /**
688  * fault_in_user_writeable() - Fault in user address and verify RW access
689  * @uaddr:	pointer to faulting user space address
690  *
691  * Slow path to fixup the fault we just took in the atomic write
692  * access to @uaddr.
693  *
694  * We have no generic implementation of a non-destructive write to the
695  * user address. We know that we faulted in the atomic pagefault
696  * disabled section so we can as well avoid the #PF overhead by
697  * calling get_user_pages() right away.
698  */
699 int fault_in_user_writeable(u32 __user *uaddr)
700 {
701 	struct mm_struct *mm = current->mm;
702 	int ret;
703 
704 	mmap_read_lock(mm);
705 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
706 			       FAULT_FLAG_WRITE, NULL);
707 	mmap_read_unlock(mm);
708 
709 	return ret < 0 ? ret : 0;
710 }
711 
712 /**
713  * futex_top_waiter() - Return the highest priority waiter on a futex
714  * @hb:		the hash bucket the futex_q's reside in
715  * @key:	the futex key (to distinguish it from other futex futex_q's)
716  *
717  * Must be called with the hb lock held.
718  */
719 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
720 {
721 	struct futex_q *this;
722 
723 	plist_for_each_entry(this, &hb->chain, list) {
724 		if (futex_match(&this->key, key))
725 			return this;
726 	}
727 	return NULL;
728 }
729 
730 /**
731  * wait_for_owner_exiting - Block until the owner has exited
732  * @ret: owner's current futex lock status
733  * @exiting:	Pointer to the exiting task
734  *
735  * Caller must hold a refcount on @exiting.
736  */
737 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
738 {
739 	if (ret != -EBUSY) {
740 		WARN_ON_ONCE(exiting);
741 		return;
742 	}
743 
744 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
745 		return;
746 
747 	mutex_lock(&exiting->futex_exit_mutex);
748 	/*
749 	 * No point in doing state checking here. If the waiter got here
750 	 * while the task was in exec()->exec_futex_release() then it can
751 	 * have any FUTEX_STATE_* value when the waiter has acquired the
752 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
753 	 * already. Highly unlikely and not a problem. Just one more round
754 	 * through the futex maze.
755 	 */
756 	mutex_unlock(&exiting->futex_exit_mutex);
757 
758 	put_task_struct(exiting);
759 }
760 
761 /**
762  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
763  * @q:	The futex_q to unqueue
764  *
765  * The q->lock_ptr must not be NULL and must be held by the caller.
766  */
767 void __futex_unqueue(struct futex_q *q)
768 {
769 	struct futex_hash_bucket *hb;
770 
771 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
772 		return;
773 	lockdep_assert_held(q->lock_ptr);
774 
775 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
776 	plist_del(&q->list, &hb->chain);
777 	futex_hb_waiters_dec(hb);
778 }
779 
780 /* The key must be already stored in q->key. */
781 void futex_q_lock(struct futex_q *q, struct futex_hash_bucket *hb)
782 	__acquires(&hb->lock)
783 {
784 	/*
785 	 * Increment the counter before taking the lock so that
786 	 * a potential waker won't miss a to-be-slept task that is
787 	 * waiting for the spinlock. This is safe as all futex_q_lock()
788 	 * users end up calling futex_queue(). Similarly, for housekeeping,
789 	 * decrement the counter at futex_q_unlock() when some error has
790 	 * occurred and we don't end up adding the task to the list.
791 	 */
792 	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
793 
794 	q->lock_ptr = &hb->lock;
795 
796 	spin_lock(&hb->lock);
797 }
798 
799 void futex_q_unlock(struct futex_hash_bucket *hb)
800 	__releases(&hb->lock)
801 {
802 	futex_hb_waiters_dec(hb);
803 	spin_unlock(&hb->lock);
804 }
805 
806 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb,
807 		   struct task_struct *task)
808 {
809 	int prio;
810 
811 	/*
812 	 * The priority used to register this element is
813 	 * - either the real thread-priority for the real-time threads
814 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
815 	 * - or MAX_RT_PRIO for non-RT threads.
816 	 * Thus, all RT-threads are woken first in priority order, and
817 	 * the others are woken last, in FIFO order.
818 	 */
819 	prio = min(current->normal_prio, MAX_RT_PRIO);
820 
821 	plist_node_init(&q->list, prio);
822 	plist_add(&q->list, &hb->chain);
823 	q->task = task;
824 }
825 
826 /**
827  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
828  * @q:	The futex_q to unqueue
829  *
830  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
831  * be paired with exactly one earlier call to futex_queue().
832  *
833  * Return:
834  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
835  *  - 0 - if the futex_q was already removed by the waking thread
836  */
837 int futex_unqueue(struct futex_q *q)
838 {
839 	spinlock_t *lock_ptr;
840 	int ret = 0;
841 
842 	/* RCU so lock_ptr is not going away during locking. */
843 	guard(rcu)();
844 	/* In the common case we don't take the spinlock, which is nice. */
845 retry:
846 	/*
847 	 * q->lock_ptr can change between this read and the following spin_lock.
848 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
849 	 * optimizing lock_ptr out of the logic below.
850 	 */
851 	lock_ptr = READ_ONCE(q->lock_ptr);
852 	if (lock_ptr != NULL) {
853 		spin_lock(lock_ptr);
854 		/*
855 		 * q->lock_ptr can change between reading it and
856 		 * spin_lock(), causing us to take the wrong lock.  This
857 		 * corrects the race condition.
858 		 *
859 		 * Reasoning goes like this: if we have the wrong lock,
860 		 * q->lock_ptr must have changed (maybe several times)
861 		 * between reading it and the spin_lock().  It can
862 		 * change again after the spin_lock() but only if it was
863 		 * already changed before the spin_lock().  It cannot,
864 		 * however, change back to the original value.  Therefore
865 		 * we can detect whether we acquired the correct lock.
866 		 */
867 		if (unlikely(lock_ptr != q->lock_ptr)) {
868 			spin_unlock(lock_ptr);
869 			goto retry;
870 		}
871 		__futex_unqueue(q);
872 
873 		BUG_ON(q->pi_state);
874 
875 		spin_unlock(lock_ptr);
876 		ret = 1;
877 	}
878 
879 	return ret;
880 }
881 
882 void futex_q_lockptr_lock(struct futex_q *q)
883 {
884 	spinlock_t *lock_ptr;
885 
886 	/*
887 	 * See futex_unqueue() why lock_ptr can change.
888 	 */
889 	guard(rcu)();
890 retry:
891 	lock_ptr = READ_ONCE(q->lock_ptr);
892 	spin_lock(lock_ptr);
893 
894 	if (unlikely(lock_ptr != q->lock_ptr)) {
895 		spin_unlock(lock_ptr);
896 		goto retry;
897 	}
898 }
899 
900 /*
901  * PI futexes can not be requeued and must remove themselves from the hash
902  * bucket. The hash bucket lock (i.e. lock_ptr) is held.
903  */
904 void futex_unqueue_pi(struct futex_q *q)
905 {
906 	/*
907 	 * If the lock was not acquired (due to timeout or signal) then the
908 	 * rt_waiter is removed before futex_q is. If this is observed by
909 	 * an unlocker after dropping the rtmutex wait lock and before
910 	 * acquiring the hash bucket lock, then the unlocker dequeues the
911 	 * futex_q from the hash bucket list to guarantee consistent state
912 	 * vs. userspace. Therefore the dequeue here must be conditional.
913 	 */
914 	if (!plist_node_empty(&q->list))
915 		__futex_unqueue(q);
916 
917 	BUG_ON(!q->pi_state);
918 	put_pi_state(q->pi_state);
919 	q->pi_state = NULL;
920 }
921 
922 /* Constants for the pending_op argument of handle_futex_death */
923 #define HANDLE_DEATH_PENDING	true
924 #define HANDLE_DEATH_LIST	false
925 
926 /*
927  * Process a futex-list entry, check whether it's owned by the
928  * dying task, and do notification if so:
929  */
930 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
931 			      bool pi, bool pending_op)
932 {
933 	u32 uval, nval, mval;
934 	pid_t owner;
935 	int err;
936 
937 	/* Futex address must be 32bit aligned */
938 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
939 		return -1;
940 
941 retry:
942 	if (get_user(uval, uaddr))
943 		return -1;
944 
945 	/*
946 	 * Special case for regular (non PI) futexes. The unlock path in
947 	 * user space has two race scenarios:
948 	 *
949 	 * 1. The unlock path releases the user space futex value and
950 	 *    before it can execute the futex() syscall to wake up
951 	 *    waiters it is killed.
952 	 *
953 	 * 2. A woken up waiter is killed before it can acquire the
954 	 *    futex in user space.
955 	 *
956 	 * In the second case, the wake up notification could be generated
957 	 * by the unlock path in user space after setting the futex value
958 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
959 	 *
960 	 * In both cases the TID validation below prevents a wakeup of
961 	 * potential waiters which can cause these waiters to block
962 	 * forever.
963 	 *
964 	 * In both cases the following conditions are met:
965 	 *
966 	 *	1) task->robust_list->list_op_pending != NULL
967 	 *	   @pending_op == true
968 	 *	2) The owner part of user space futex value == 0
969 	 *	3) Regular futex: @pi == false
970 	 *
971 	 * If these conditions are met, it is safe to attempt waking up a
972 	 * potential waiter without touching the user space futex value and
973 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
974 	 * the rest of the user space mutex state is consistent, so a woken
975 	 * waiter will just take over the uncontended futex. Setting the
976 	 * OWNER_DIED bit would create inconsistent state and malfunction
977 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
978 	 * bit is already set, and the woken waiter is expected to deal with
979 	 * this.
980 	 */
981 	owner = uval & FUTEX_TID_MASK;
982 
983 	if (pending_op && !pi && !owner) {
984 		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
985 			   FUTEX_BITSET_MATCH_ANY);
986 		return 0;
987 	}
988 
989 	if (owner != task_pid_vnr(curr))
990 		return 0;
991 
992 	/*
993 	 * Ok, this dying thread is truly holding a futex
994 	 * of interest. Set the OWNER_DIED bit atomically
995 	 * via cmpxchg, and if the value had FUTEX_WAITERS
996 	 * set, wake up a waiter (if any). (We have to do a
997 	 * futex_wake() even if OWNER_DIED is already set -
998 	 * to handle the rare but possible case of recursive
999 	 * thread-death.) The rest of the cleanup is done in
1000 	 * userspace.
1001 	 */
1002 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1003 
1004 	/*
1005 	 * We are not holding a lock here, but we want to have
1006 	 * the pagefault_disable/enable() protection because
1007 	 * we want to handle the fault gracefully. If the
1008 	 * access fails we try to fault in the futex with R/W
1009 	 * verification via get_user_pages. get_user() above
1010 	 * does not guarantee R/W access. If that fails we
1011 	 * give up and leave the futex locked.
1012 	 */
1013 	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
1014 		switch (err) {
1015 		case -EFAULT:
1016 			if (fault_in_user_writeable(uaddr))
1017 				return -1;
1018 			goto retry;
1019 
1020 		case -EAGAIN:
1021 			cond_resched();
1022 			goto retry;
1023 
1024 		default:
1025 			WARN_ON_ONCE(1);
1026 			return err;
1027 		}
1028 	}
1029 
1030 	if (nval != uval)
1031 		goto retry;
1032 
1033 	/*
1034 	 * Wake robust non-PI futexes here. The wakeup of
1035 	 * PI futexes happens in exit_pi_state():
1036 	 */
1037 	if (!pi && (uval & FUTEX_WAITERS)) {
1038 		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
1039 			   FUTEX_BITSET_MATCH_ANY);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1047  */
1048 static inline int fetch_robust_entry(struct robust_list __user **entry,
1049 				     struct robust_list __user * __user *head,
1050 				     unsigned int *pi)
1051 {
1052 	unsigned long uentry;
1053 
1054 	if (get_user(uentry, (unsigned long __user *)head))
1055 		return -EFAULT;
1056 
1057 	*entry = (void __user *)(uentry & ~1UL);
1058 	*pi = uentry & 1;
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Walk curr->robust_list (very carefully, it's a userspace list!)
1065  * and mark any locks found there dead, and notify any waiters.
1066  *
1067  * We silently return on any sign of list-walking problem.
1068  */
1069 static void exit_robust_list(struct task_struct *curr)
1070 {
1071 	struct robust_list_head __user *head = curr->robust_list;
1072 	struct robust_list __user *entry, *next_entry, *pending;
1073 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1074 	unsigned int next_pi;
1075 	unsigned long futex_offset;
1076 	int rc;
1077 
1078 	/*
1079 	 * Fetch the list head (which was registered earlier, via
1080 	 * sys_set_robust_list()):
1081 	 */
1082 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
1083 		return;
1084 	/*
1085 	 * Fetch the relative futex offset:
1086 	 */
1087 	if (get_user(futex_offset, &head->futex_offset))
1088 		return;
1089 	/*
1090 	 * Fetch any possibly pending lock-add first, and handle it
1091 	 * if it exists:
1092 	 */
1093 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1094 		return;
1095 
1096 	next_entry = NULL;	/* avoid warning with gcc */
1097 	while (entry != &head->list) {
1098 		/*
1099 		 * Fetch the next entry in the list before calling
1100 		 * handle_futex_death:
1101 		 */
1102 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1103 		/*
1104 		 * A pending lock might already be on the list, so
1105 		 * don't process it twice:
1106 		 */
1107 		if (entry != pending) {
1108 			if (handle_futex_death((void __user *)entry + futex_offset,
1109 						curr, pi, HANDLE_DEATH_LIST))
1110 				return;
1111 		}
1112 		if (rc)
1113 			return;
1114 		entry = next_entry;
1115 		pi = next_pi;
1116 		/*
1117 		 * Avoid excessively long or circular lists:
1118 		 */
1119 		if (!--limit)
1120 			break;
1121 
1122 		cond_resched();
1123 	}
1124 
1125 	if (pending) {
1126 		handle_futex_death((void __user *)pending + futex_offset,
1127 				   curr, pip, HANDLE_DEATH_PENDING);
1128 	}
1129 }
1130 
1131 #ifdef CONFIG_COMPAT
1132 static void __user *futex_uaddr(struct robust_list __user *entry,
1133 				compat_long_t futex_offset)
1134 {
1135 	compat_uptr_t base = ptr_to_compat(entry);
1136 	void __user *uaddr = compat_ptr(base + futex_offset);
1137 
1138 	return uaddr;
1139 }
1140 
1141 /*
1142  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1143  */
1144 static inline int
1145 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
1146 		   compat_uptr_t __user *head, unsigned int *pi)
1147 {
1148 	if (get_user(*uentry, head))
1149 		return -EFAULT;
1150 
1151 	*entry = compat_ptr((*uentry) & ~1);
1152 	*pi = (unsigned int)(*uentry) & 1;
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Walk curr->robust_list (very carefully, it's a userspace list!)
1159  * and mark any locks found there dead, and notify any waiters.
1160  *
1161  * We silently return on any sign of list-walking problem.
1162  */
1163 static void compat_exit_robust_list(struct task_struct *curr)
1164 {
1165 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
1166 	struct robust_list __user *entry, *next_entry, *pending;
1167 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1168 	unsigned int next_pi;
1169 	compat_uptr_t uentry, next_uentry, upending;
1170 	compat_long_t futex_offset;
1171 	int rc;
1172 
1173 	/*
1174 	 * Fetch the list head (which was registered earlier, via
1175 	 * sys_set_robust_list()):
1176 	 */
1177 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
1178 		return;
1179 	/*
1180 	 * Fetch the relative futex offset:
1181 	 */
1182 	if (get_user(futex_offset, &head->futex_offset))
1183 		return;
1184 	/*
1185 	 * Fetch any possibly pending lock-add first, and handle it
1186 	 * if it exists:
1187 	 */
1188 	if (compat_fetch_robust_entry(&upending, &pending,
1189 			       &head->list_op_pending, &pip))
1190 		return;
1191 
1192 	next_entry = NULL;	/* avoid warning with gcc */
1193 	while (entry != (struct robust_list __user *) &head->list) {
1194 		/*
1195 		 * Fetch the next entry in the list before calling
1196 		 * handle_futex_death:
1197 		 */
1198 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
1199 			(compat_uptr_t __user *)&entry->next, &next_pi);
1200 		/*
1201 		 * A pending lock might already be on the list, so
1202 		 * dont process it twice:
1203 		 */
1204 		if (entry != pending) {
1205 			void __user *uaddr = futex_uaddr(entry, futex_offset);
1206 
1207 			if (handle_futex_death(uaddr, curr, pi,
1208 					       HANDLE_DEATH_LIST))
1209 				return;
1210 		}
1211 		if (rc)
1212 			return;
1213 		uentry = next_uentry;
1214 		entry = next_entry;
1215 		pi = next_pi;
1216 		/*
1217 		 * Avoid excessively long or circular lists:
1218 		 */
1219 		if (!--limit)
1220 			break;
1221 
1222 		cond_resched();
1223 	}
1224 	if (pending) {
1225 		void __user *uaddr = futex_uaddr(pending, futex_offset);
1226 
1227 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
1228 	}
1229 }
1230 #endif
1231 
1232 #ifdef CONFIG_FUTEX_PI
1233 
1234 /*
1235  * This task is holding PI mutexes at exit time => bad.
1236  * Kernel cleans up PI-state, but userspace is likely hosed.
1237  * (Robust-futex cleanup is separate and might save the day for userspace.)
1238  */
1239 static void exit_pi_state_list(struct task_struct *curr)
1240 {
1241 	struct list_head *next, *head = &curr->pi_state_list;
1242 	struct futex_pi_state *pi_state;
1243 	union futex_key key = FUTEX_KEY_INIT;
1244 
1245 	/*
1246 	 * The mutex mm_struct::futex_hash_lock might be acquired.
1247 	 */
1248 	might_sleep();
1249 	/*
1250 	 * Ensure the hash remains stable (no resize) during the while loop
1251 	 * below. The hb pointer is acquired under the pi_lock so we can't block
1252 	 * on the mutex.
1253 	 */
1254 	WARN_ON(curr != current);
1255 	guard(private_hash)();
1256 	/*
1257 	 * We are a ZOMBIE and nobody can enqueue itself on
1258 	 * pi_state_list anymore, but we have to be careful
1259 	 * versus waiters unqueueing themselves:
1260 	 */
1261 	raw_spin_lock_irq(&curr->pi_lock);
1262 	while (!list_empty(head)) {
1263 		next = head->next;
1264 		pi_state = list_entry(next, struct futex_pi_state, list);
1265 		key = pi_state->key;
1266 		if (1) {
1267 			CLASS(hb, hb)(&key);
1268 
1269 			/*
1270 			 * We can race against put_pi_state() removing itself from the
1271 			 * list (a waiter going away). put_pi_state() will first
1272 			 * decrement the reference count and then modify the list, so
1273 			 * its possible to see the list entry but fail this reference
1274 			 * acquire.
1275 			 *
1276 			 * In that case; drop the locks to let put_pi_state() make
1277 			 * progress and retry the loop.
1278 			 */
1279 			if (!refcount_inc_not_zero(&pi_state->refcount)) {
1280 				raw_spin_unlock_irq(&curr->pi_lock);
1281 				cpu_relax();
1282 				raw_spin_lock_irq(&curr->pi_lock);
1283 				continue;
1284 			}
1285 			raw_spin_unlock_irq(&curr->pi_lock);
1286 
1287 			spin_lock(&hb->lock);
1288 			raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1289 			raw_spin_lock(&curr->pi_lock);
1290 			/*
1291 			 * We dropped the pi-lock, so re-check whether this
1292 			 * task still owns the PI-state:
1293 			 */
1294 			if (head->next != next) {
1295 				/* retain curr->pi_lock for the loop invariant */
1296 				raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1297 				spin_unlock(&hb->lock);
1298 				put_pi_state(pi_state);
1299 				continue;
1300 			}
1301 
1302 			WARN_ON(pi_state->owner != curr);
1303 			WARN_ON(list_empty(&pi_state->list));
1304 			list_del_init(&pi_state->list);
1305 			pi_state->owner = NULL;
1306 
1307 			raw_spin_unlock(&curr->pi_lock);
1308 			raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1309 			spin_unlock(&hb->lock);
1310 		}
1311 
1312 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1313 		put_pi_state(pi_state);
1314 
1315 		raw_spin_lock_irq(&curr->pi_lock);
1316 	}
1317 	raw_spin_unlock_irq(&curr->pi_lock);
1318 }
1319 #else
1320 static inline void exit_pi_state_list(struct task_struct *curr) { }
1321 #endif
1322 
1323 static void futex_cleanup(struct task_struct *tsk)
1324 {
1325 	if (unlikely(tsk->robust_list)) {
1326 		exit_robust_list(tsk);
1327 		tsk->robust_list = NULL;
1328 	}
1329 
1330 #ifdef CONFIG_COMPAT
1331 	if (unlikely(tsk->compat_robust_list)) {
1332 		compat_exit_robust_list(tsk);
1333 		tsk->compat_robust_list = NULL;
1334 	}
1335 #endif
1336 
1337 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1338 		exit_pi_state_list(tsk);
1339 }
1340 
1341 /**
1342  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1343  * @tsk:	task to set the state on
1344  *
1345  * Set the futex exit state of the task lockless. The futex waiter code
1346  * observes that state when a task is exiting and loops until the task has
1347  * actually finished the futex cleanup. The worst case for this is that the
1348  * waiter runs through the wait loop until the state becomes visible.
1349  *
1350  * This is called from the recursive fault handling path in make_task_dead().
1351  *
1352  * This is best effort. Either the futex exit code has run already or
1353  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1354  * take it over. If not, the problem is pushed back to user space. If the
1355  * futex exit code did not run yet, then an already queued waiter might
1356  * block forever, but there is nothing which can be done about that.
1357  */
1358 void futex_exit_recursive(struct task_struct *tsk)
1359 {
1360 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1361 	if (tsk->futex_state == FUTEX_STATE_EXITING)
1362 		mutex_unlock(&tsk->futex_exit_mutex);
1363 	tsk->futex_state = FUTEX_STATE_DEAD;
1364 }
1365 
1366 static void futex_cleanup_begin(struct task_struct *tsk)
1367 {
1368 	/*
1369 	 * Prevent various race issues against a concurrent incoming waiter
1370 	 * including live locks by forcing the waiter to block on
1371 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1372 	 * attach_to_pi_owner().
1373 	 */
1374 	mutex_lock(&tsk->futex_exit_mutex);
1375 
1376 	/*
1377 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1378 	 *
1379 	 * This ensures that all subsequent checks of tsk->futex_state in
1380 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1381 	 * tsk->pi_lock held.
1382 	 *
1383 	 * It guarantees also that a pi_state which was queued right before
1384 	 * the state change under tsk->pi_lock by a concurrent waiter must
1385 	 * be observed in exit_pi_state_list().
1386 	 */
1387 	raw_spin_lock_irq(&tsk->pi_lock);
1388 	tsk->futex_state = FUTEX_STATE_EXITING;
1389 	raw_spin_unlock_irq(&tsk->pi_lock);
1390 }
1391 
1392 static void futex_cleanup_end(struct task_struct *tsk, int state)
1393 {
1394 	/*
1395 	 * Lockless store. The only side effect is that an observer might
1396 	 * take another loop until it becomes visible.
1397 	 */
1398 	tsk->futex_state = state;
1399 	/*
1400 	 * Drop the exit protection. This unblocks waiters which observed
1401 	 * FUTEX_STATE_EXITING to reevaluate the state.
1402 	 */
1403 	mutex_unlock(&tsk->futex_exit_mutex);
1404 }
1405 
1406 void futex_exec_release(struct task_struct *tsk)
1407 {
1408 	/*
1409 	 * The state handling is done for consistency, but in the case of
1410 	 * exec() there is no way to prevent further damage as the PID stays
1411 	 * the same. But for the unlikely and arguably buggy case that a
1412 	 * futex is held on exec(), this provides at least as much state
1413 	 * consistency protection which is possible.
1414 	 */
1415 	futex_cleanup_begin(tsk);
1416 	futex_cleanup(tsk);
1417 	/*
1418 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1419 	 * exec a new binary.
1420 	 */
1421 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1422 }
1423 
1424 void futex_exit_release(struct task_struct *tsk)
1425 {
1426 	futex_cleanup_begin(tsk);
1427 	futex_cleanup(tsk);
1428 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1429 }
1430 
1431 static void futex_hash_bucket_init(struct futex_hash_bucket *fhb,
1432 				   struct futex_private_hash *fph)
1433 {
1434 #ifdef CONFIG_FUTEX_PRIVATE_HASH
1435 	fhb->priv = fph;
1436 #endif
1437 	atomic_set(&fhb->waiters, 0);
1438 	plist_head_init(&fhb->chain);
1439 	spin_lock_init(&fhb->lock);
1440 }
1441 
1442 #define FH_CUSTOM	0x01
1443 #define FH_IMMUTABLE	0x02
1444 
1445 #ifdef CONFIG_FUTEX_PRIVATE_HASH
1446 void futex_hash_free(struct mm_struct *mm)
1447 {
1448 	struct futex_private_hash *fph;
1449 
1450 	kvfree(mm->futex_phash_new);
1451 	fph = rcu_dereference_raw(mm->futex_phash);
1452 	if (fph) {
1453 		WARN_ON_ONCE(rcuref_read(&fph->users) > 1);
1454 		kvfree(fph);
1455 	}
1456 }
1457 
1458 static bool futex_pivot_pending(struct mm_struct *mm)
1459 {
1460 	struct futex_private_hash *fph;
1461 
1462 	guard(rcu)();
1463 
1464 	if (!mm->futex_phash_new)
1465 		return true;
1466 
1467 	fph = rcu_dereference(mm->futex_phash);
1468 	return rcuref_is_dead(&fph->users);
1469 }
1470 
1471 static bool futex_hash_less(struct futex_private_hash *a,
1472 			    struct futex_private_hash *b)
1473 {
1474 	/* user provided always wins */
1475 	if (!a->custom && b->custom)
1476 		return true;
1477 	if (a->custom && !b->custom)
1478 		return false;
1479 
1480 	/* zero-sized hash wins */
1481 	if (!b->hash_mask)
1482 		return true;
1483 	if (!a->hash_mask)
1484 		return false;
1485 
1486 	/* keep the biggest */
1487 	if (a->hash_mask < b->hash_mask)
1488 		return true;
1489 	if (a->hash_mask > b->hash_mask)
1490 		return false;
1491 
1492 	return false; /* equal */
1493 }
1494 
1495 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1496 {
1497 	struct mm_struct *mm = current->mm;
1498 	struct futex_private_hash *fph;
1499 	bool custom = flags & FH_CUSTOM;
1500 	int i;
1501 
1502 	if (hash_slots && (hash_slots == 1 || !is_power_of_2(hash_slots)))
1503 		return -EINVAL;
1504 
1505 	/*
1506 	 * Once we've disabled the global hash there is no way back.
1507 	 */
1508 	scoped_guard(rcu) {
1509 		fph = rcu_dereference(mm->futex_phash);
1510 		if (fph && (!fph->hash_mask || fph->immutable)) {
1511 			if (custom)
1512 				return -EBUSY;
1513 			return 0;
1514 		}
1515 	}
1516 
1517 	fph = kvzalloc(struct_size(fph, queues, hash_slots), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1518 	if (!fph)
1519 		return -ENOMEM;
1520 
1521 	rcuref_init(&fph->users, 1);
1522 	fph->hash_mask = hash_slots ? hash_slots - 1 : 0;
1523 	fph->custom = custom;
1524 	fph->immutable = !!(flags & FH_IMMUTABLE);
1525 	fph->mm = mm;
1526 
1527 	for (i = 0; i < hash_slots; i++)
1528 		futex_hash_bucket_init(&fph->queues[i], fph);
1529 
1530 	if (custom) {
1531 		/*
1532 		 * Only let prctl() wait / retry; don't unduly delay clone().
1533 		 */
1534 again:
1535 		wait_var_event(mm, futex_pivot_pending(mm));
1536 	}
1537 
1538 	scoped_guard(mutex, &mm->futex_hash_lock) {
1539 		struct futex_private_hash *free __free(kvfree) = NULL;
1540 		struct futex_private_hash *cur, *new;
1541 
1542 		cur = rcu_dereference_protected(mm->futex_phash,
1543 						lockdep_is_held(&mm->futex_hash_lock));
1544 		new = mm->futex_phash_new;
1545 		mm->futex_phash_new = NULL;
1546 
1547 		if (fph) {
1548 			if (cur && !new) {
1549 				/*
1550 				 * If we have an existing hash, but do not yet have
1551 				 * allocated a replacement hash, drop the initial
1552 				 * reference on the existing hash.
1553 				 */
1554 				futex_private_hash_put(cur);
1555 			}
1556 
1557 			if (new) {
1558 				/*
1559 				 * Two updates raced; throw out the lesser one.
1560 				 */
1561 				if (futex_hash_less(new, fph)) {
1562 					free = new;
1563 					new = fph;
1564 				} else {
1565 					free = fph;
1566 				}
1567 			} else {
1568 				new = fph;
1569 			}
1570 			fph = NULL;
1571 		}
1572 
1573 		if (new) {
1574 			/*
1575 			 * Will set mm->futex_phash_new on failure;
1576 			 * futex_private_hash_get() will try again.
1577 			 */
1578 			if (!__futex_pivot_hash(mm, new) && custom)
1579 				goto again;
1580 		}
1581 	}
1582 	return 0;
1583 }
1584 
1585 int futex_hash_allocate_default(void)
1586 {
1587 	unsigned int threads, buckets, current_buckets = 0;
1588 	struct futex_private_hash *fph;
1589 
1590 	if (!current->mm)
1591 		return 0;
1592 
1593 	scoped_guard(rcu) {
1594 		threads = min_t(unsigned int,
1595 				get_nr_threads(current),
1596 				num_online_cpus());
1597 
1598 		fph = rcu_dereference(current->mm->futex_phash);
1599 		if (fph) {
1600 			if (fph->custom)
1601 				return 0;
1602 
1603 			current_buckets = fph->hash_mask + 1;
1604 		}
1605 	}
1606 
1607 	/*
1608 	 * The default allocation will remain within
1609 	 *   16 <= threads * 4 <= global hash size
1610 	 */
1611 	buckets = roundup_pow_of_two(4 * threads);
1612 	buckets = clamp(buckets, 16, futex_hashmask + 1);
1613 
1614 	if (current_buckets >= buckets)
1615 		return 0;
1616 
1617 	return futex_hash_allocate(buckets, 0);
1618 }
1619 
1620 static int futex_hash_get_slots(void)
1621 {
1622 	struct futex_private_hash *fph;
1623 
1624 	guard(rcu)();
1625 	fph = rcu_dereference(current->mm->futex_phash);
1626 	if (fph && fph->hash_mask)
1627 		return fph->hash_mask + 1;
1628 	return 0;
1629 }
1630 
1631 static int futex_hash_get_immutable(void)
1632 {
1633 	struct futex_private_hash *fph;
1634 
1635 	guard(rcu)();
1636 	fph = rcu_dereference(current->mm->futex_phash);
1637 	if (fph && fph->immutable)
1638 		return 1;
1639 	if (fph && !fph->hash_mask)
1640 		return 1;
1641 	return 0;
1642 }
1643 
1644 #else
1645 
1646 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1647 {
1648 	return -EINVAL;
1649 }
1650 
1651 static int futex_hash_get_slots(void)
1652 {
1653 	return 0;
1654 }
1655 
1656 static int futex_hash_get_immutable(void)
1657 {
1658 	return 0;
1659 }
1660 #endif
1661 
1662 int futex_hash_prctl(unsigned long arg2, unsigned long arg3, unsigned long arg4)
1663 {
1664 	unsigned int flags = FH_CUSTOM;
1665 	int ret;
1666 
1667 	switch (arg2) {
1668 	case PR_FUTEX_HASH_SET_SLOTS:
1669 		if (arg4 & ~FH_FLAG_IMMUTABLE)
1670 			return -EINVAL;
1671 		if (arg4 & FH_FLAG_IMMUTABLE)
1672 			flags |= FH_IMMUTABLE;
1673 		ret = futex_hash_allocate(arg3, flags);
1674 		break;
1675 
1676 	case PR_FUTEX_HASH_GET_SLOTS:
1677 		ret = futex_hash_get_slots();
1678 		break;
1679 
1680 	case PR_FUTEX_HASH_GET_IMMUTABLE:
1681 		ret = futex_hash_get_immutable();
1682 		break;
1683 
1684 	default:
1685 		ret = -EINVAL;
1686 		break;
1687 	}
1688 	return ret;
1689 }
1690 
1691 static int __init futex_init(void)
1692 {
1693 	unsigned long hashsize, i;
1694 	unsigned int order, n;
1695 	unsigned long size;
1696 
1697 #ifdef CONFIG_BASE_SMALL
1698 	hashsize = 16;
1699 #else
1700 	hashsize = 256 * num_possible_cpus();
1701 	hashsize /= num_possible_nodes();
1702 	hashsize = max(4, hashsize);
1703 	hashsize = roundup_pow_of_two(hashsize);
1704 #endif
1705 	futex_hashshift = ilog2(hashsize);
1706 	size = sizeof(struct futex_hash_bucket) * hashsize;
1707 	order = get_order(size);
1708 
1709 	for_each_node(n) {
1710 		struct futex_hash_bucket *table;
1711 
1712 		if (order > MAX_PAGE_ORDER)
1713 			table = vmalloc_huge_node(size, GFP_KERNEL, n);
1714 		else
1715 			table = alloc_pages_exact_nid(n, size, GFP_KERNEL);
1716 
1717 		BUG_ON(!table);
1718 
1719 		for (i = 0; i < hashsize; i++)
1720 			futex_hash_bucket_init(&table[i], NULL);
1721 
1722 		futex_queues[n] = table;
1723 	}
1724 
1725 	futex_hashmask = hashsize - 1;
1726 	pr_info("futex hash table entries: %lu (%lu bytes on %d NUMA nodes, total %lu KiB, %s).\n",
1727 		hashsize, size, num_possible_nodes(), size * num_possible_nodes() / 1024,
1728 		order > MAX_PAGE_ORDER ? "vmalloc" : "linear");
1729 	return 0;
1730 }
1731 core_initcall(futex_init);
1732