xref: /linux/kernel/futex/core.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/memblock.h>
38 #include <linux/fault-inject.h>
39 #include <linux/slab.h>
40 
41 #include "futex.h"
42 #include "../locking/rtmutex_common.h"
43 
44 /*
45  * The base of the bucket array and its size are always used together
46  * (after initialization only in futex_hash()), so ensure that they
47  * reside in the same cacheline.
48  */
49 static struct {
50 	struct futex_hash_bucket *queues;
51 	unsigned long            hashsize;
52 } __futex_data __read_mostly __aligned(2*sizeof(long));
53 #define futex_queues   (__futex_data.queues)
54 #define futex_hashsize (__futex_data.hashsize)
55 
56 
57 /*
58  * Fault injections for futexes.
59  */
60 #ifdef CONFIG_FAIL_FUTEX
61 
62 static struct {
63 	struct fault_attr attr;
64 
65 	bool ignore_private;
66 } fail_futex = {
67 	.attr = FAULT_ATTR_INITIALIZER,
68 	.ignore_private = false,
69 };
70 
71 static int __init setup_fail_futex(char *str)
72 {
73 	return setup_fault_attr(&fail_futex.attr, str);
74 }
75 __setup("fail_futex=", setup_fail_futex);
76 
77 bool should_fail_futex(bool fshared)
78 {
79 	if (fail_futex.ignore_private && !fshared)
80 		return false;
81 
82 	return should_fail(&fail_futex.attr, 1);
83 }
84 
85 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
86 
87 static int __init fail_futex_debugfs(void)
88 {
89 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
90 	struct dentry *dir;
91 
92 	dir = fault_create_debugfs_attr("fail_futex", NULL,
93 					&fail_futex.attr);
94 	if (IS_ERR(dir))
95 		return PTR_ERR(dir);
96 
97 	debugfs_create_bool("ignore-private", mode, dir,
98 			    &fail_futex.ignore_private);
99 	return 0;
100 }
101 
102 late_initcall(fail_futex_debugfs);
103 
104 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
105 
106 #endif /* CONFIG_FAIL_FUTEX */
107 
108 /**
109  * futex_hash - Return the hash bucket in the global hash
110  * @key:	Pointer to the futex key for which the hash is calculated
111  *
112  * We hash on the keys returned from get_futex_key (see below) and return the
113  * corresponding hash bucket in the global hash.
114  */
115 struct futex_hash_bucket *futex_hash(union futex_key *key)
116 {
117 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
118 			  key->both.offset);
119 
120 	return &futex_queues[hash & (futex_hashsize - 1)];
121 }
122 
123 
124 /**
125  * futex_setup_timer - set up the sleeping hrtimer.
126  * @time:	ptr to the given timeout value
127  * @timeout:	the hrtimer_sleeper structure to be set up
128  * @flags:	futex flags
129  * @range_ns:	optional range in ns
130  *
131  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
132  *	   value given
133  */
134 struct hrtimer_sleeper *
135 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
136 		  int flags, u64 range_ns)
137 {
138 	if (!time)
139 		return NULL;
140 
141 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
142 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
143 				      HRTIMER_MODE_ABS);
144 	/*
145 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
146 	 * effectively the same as calling hrtimer_set_expires().
147 	 */
148 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
149 
150 	return timeout;
151 }
152 
153 /*
154  * Generate a machine wide unique identifier for this inode.
155  *
156  * This relies on u64 not wrapping in the life-time of the machine; which with
157  * 1ns resolution means almost 585 years.
158  *
159  * This further relies on the fact that a well formed program will not unmap
160  * the file while it has a (shared) futex waiting on it. This mapping will have
161  * a file reference which pins the mount and inode.
162  *
163  * If for some reason an inode gets evicted and read back in again, it will get
164  * a new sequence number and will _NOT_ match, even though it is the exact same
165  * file.
166  *
167  * It is important that futex_match() will never have a false-positive, esp.
168  * for PI futexes that can mess up the state. The above argues that false-negatives
169  * are only possible for malformed programs.
170  */
171 static u64 get_inode_sequence_number(struct inode *inode)
172 {
173 	static atomic64_t i_seq;
174 	u64 old;
175 
176 	/* Does the inode already have a sequence number? */
177 	old = atomic64_read(&inode->i_sequence);
178 	if (likely(old))
179 		return old;
180 
181 	for (;;) {
182 		u64 new = atomic64_add_return(1, &i_seq);
183 		if (WARN_ON_ONCE(!new))
184 			continue;
185 
186 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
187 		if (old)
188 			return old;
189 		return new;
190 	}
191 }
192 
193 /**
194  * get_futex_key() - Get parameters which are the keys for a futex
195  * @uaddr:	virtual address of the futex
196  * @flags:	FLAGS_*
197  * @key:	address where result is stored.
198  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
199  *              FUTEX_WRITE)
200  *
201  * Return: a negative error code or 0
202  *
203  * The key words are stored in @key on success.
204  *
205  * For shared mappings (when @fshared), the key is:
206  *
207  *   ( inode->i_sequence, page->index, offset_within_page )
208  *
209  * [ also see get_inode_sequence_number() ]
210  *
211  * For private mappings (or when !@fshared), the key is:
212  *
213  *   ( current->mm, address, 0 )
214  *
215  * This allows (cross process, where applicable) identification of the futex
216  * without keeping the page pinned for the duration of the FUTEX_WAIT.
217  *
218  * lock_page() might sleep, the caller should not hold a spinlock.
219  */
220 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
221 		  enum futex_access rw)
222 {
223 	unsigned long address = (unsigned long)uaddr;
224 	struct mm_struct *mm = current->mm;
225 	struct page *page;
226 	struct folio *folio;
227 	struct address_space *mapping;
228 	int err, ro = 0;
229 	bool fshared;
230 
231 	fshared = flags & FLAGS_SHARED;
232 
233 	/*
234 	 * The futex address must be "naturally" aligned.
235 	 */
236 	key->both.offset = address % PAGE_SIZE;
237 	if (unlikely((address % sizeof(u32)) != 0))
238 		return -EINVAL;
239 	address -= key->both.offset;
240 
241 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
242 		return -EFAULT;
243 
244 	if (unlikely(should_fail_futex(fshared)))
245 		return -EFAULT;
246 
247 	/*
248 	 * PROCESS_PRIVATE futexes are fast.
249 	 * As the mm cannot disappear under us and the 'key' only needs
250 	 * virtual address, we dont even have to find the underlying vma.
251 	 * Note : We do have to check 'uaddr' is a valid user address,
252 	 *        but access_ok() should be faster than find_vma()
253 	 */
254 	if (!fshared) {
255 		/*
256 		 * On no-MMU, shared futexes are treated as private, therefore
257 		 * we must not include the current process in the key. Since
258 		 * there is only one address space, the address is a unique key
259 		 * on its own.
260 		 */
261 		if (IS_ENABLED(CONFIG_MMU))
262 			key->private.mm = mm;
263 		else
264 			key->private.mm = NULL;
265 
266 		key->private.address = address;
267 		return 0;
268 	}
269 
270 again:
271 	/* Ignore any VERIFY_READ mapping (futex common case) */
272 	if (unlikely(should_fail_futex(true)))
273 		return -EFAULT;
274 
275 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
276 	/*
277 	 * If write access is not required (eg. FUTEX_WAIT), try
278 	 * and get read-only access.
279 	 */
280 	if (err == -EFAULT && rw == FUTEX_READ) {
281 		err = get_user_pages_fast(address, 1, 0, &page);
282 		ro = 1;
283 	}
284 	if (err < 0)
285 		return err;
286 	else
287 		err = 0;
288 
289 	/*
290 	 * The treatment of mapping from this point on is critical. The folio
291 	 * lock protects many things but in this context the folio lock
292 	 * stabilizes mapping, prevents inode freeing in the shared
293 	 * file-backed region case and guards against movement to swap cache.
294 	 *
295 	 * Strictly speaking the folio lock is not needed in all cases being
296 	 * considered here and folio lock forces unnecessarily serialization.
297 	 * From this point on, mapping will be re-verified if necessary and
298 	 * folio lock will be acquired only if it is unavoidable
299 	 *
300 	 * Mapping checks require the folio so it is looked up now. For
301 	 * anonymous pages, it does not matter if the folio is split
302 	 * in the future as the key is based on the address. For
303 	 * filesystem-backed pages, the precise page is required as the
304 	 * index of the page determines the key.
305 	 */
306 	folio = page_folio(page);
307 	mapping = READ_ONCE(folio->mapping);
308 
309 	/*
310 	 * If folio->mapping is NULL, then it cannot be an anonymous
311 	 * page; but it might be the ZERO_PAGE or in the gate area or
312 	 * in a special mapping (all cases which we are happy to fail);
313 	 * or it may have been a good file page when get_user_pages_fast
314 	 * found it, but truncated or holepunched or subjected to
315 	 * invalidate_complete_page2 before we got the folio lock (also
316 	 * cases which we are happy to fail).  And we hold a reference,
317 	 * so refcount care in invalidate_inode_page's remove_mapping
318 	 * prevents drop_caches from setting mapping to NULL beneath us.
319 	 *
320 	 * The case we do have to guard against is when memory pressure made
321 	 * shmem_writepage move it from filecache to swapcache beneath us:
322 	 * an unlikely race, but we do need to retry for folio->mapping.
323 	 */
324 	if (unlikely(!mapping)) {
325 		int shmem_swizzled;
326 
327 		/*
328 		 * Folio lock is required to identify which special case above
329 		 * applies. If this is really a shmem page then the folio lock
330 		 * will prevent unexpected transitions.
331 		 */
332 		folio_lock(folio);
333 		shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
334 		folio_unlock(folio);
335 		folio_put(folio);
336 
337 		if (shmem_swizzled)
338 			goto again;
339 
340 		return -EFAULT;
341 	}
342 
343 	/*
344 	 * Private mappings are handled in a simple way.
345 	 *
346 	 * If the futex key is stored in anonymous memory, then the associated
347 	 * object is the mm which is implicitly pinned by the calling process.
348 	 *
349 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
350 	 * it's a read-only handle, it's expected that futexes attach to
351 	 * the object not the particular process.
352 	 */
353 	if (folio_test_anon(folio)) {
354 		/*
355 		 * A RO anonymous page will never change and thus doesn't make
356 		 * sense for futex operations.
357 		 */
358 		if (unlikely(should_fail_futex(true)) || ro) {
359 			err = -EFAULT;
360 			goto out;
361 		}
362 
363 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
364 		key->private.mm = mm;
365 		key->private.address = address;
366 
367 	} else {
368 		struct inode *inode;
369 
370 		/*
371 		 * The associated futex object in this case is the inode and
372 		 * the folio->mapping must be traversed. Ordinarily this should
373 		 * be stabilised under folio lock but it's not strictly
374 		 * necessary in this case as we just want to pin the inode, not
375 		 * update i_pages or anything like that.
376 		 *
377 		 * The RCU read lock is taken as the inode is finally freed
378 		 * under RCU. If the mapping still matches expectations then the
379 		 * mapping->host can be safely accessed as being a valid inode.
380 		 */
381 		rcu_read_lock();
382 
383 		if (READ_ONCE(folio->mapping) != mapping) {
384 			rcu_read_unlock();
385 			folio_put(folio);
386 
387 			goto again;
388 		}
389 
390 		inode = READ_ONCE(mapping->host);
391 		if (!inode) {
392 			rcu_read_unlock();
393 			folio_put(folio);
394 
395 			goto again;
396 		}
397 
398 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
399 		key->shared.i_seq = get_inode_sequence_number(inode);
400 		key->shared.pgoff = folio->index + folio_page_idx(folio, page);
401 		rcu_read_unlock();
402 	}
403 
404 out:
405 	folio_put(folio);
406 	return err;
407 }
408 
409 /**
410  * fault_in_user_writeable() - Fault in user address and verify RW access
411  * @uaddr:	pointer to faulting user space address
412  *
413  * Slow path to fixup the fault we just took in the atomic write
414  * access to @uaddr.
415  *
416  * We have no generic implementation of a non-destructive write to the
417  * user address. We know that we faulted in the atomic pagefault
418  * disabled section so we can as well avoid the #PF overhead by
419  * calling get_user_pages() right away.
420  */
421 int fault_in_user_writeable(u32 __user *uaddr)
422 {
423 	struct mm_struct *mm = current->mm;
424 	int ret;
425 
426 	mmap_read_lock(mm);
427 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
428 			       FAULT_FLAG_WRITE, NULL);
429 	mmap_read_unlock(mm);
430 
431 	return ret < 0 ? ret : 0;
432 }
433 
434 /**
435  * futex_top_waiter() - Return the highest priority waiter on a futex
436  * @hb:		the hash bucket the futex_q's reside in
437  * @key:	the futex key (to distinguish it from other futex futex_q's)
438  *
439  * Must be called with the hb lock held.
440  */
441 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
442 {
443 	struct futex_q *this;
444 
445 	plist_for_each_entry(this, &hb->chain, list) {
446 		if (futex_match(&this->key, key))
447 			return this;
448 	}
449 	return NULL;
450 }
451 
452 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
453 {
454 	int ret;
455 
456 	pagefault_disable();
457 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
458 	pagefault_enable();
459 
460 	return ret;
461 }
462 
463 int futex_get_value_locked(u32 *dest, u32 __user *from)
464 {
465 	int ret;
466 
467 	pagefault_disable();
468 	ret = __get_user(*dest, from);
469 	pagefault_enable();
470 
471 	return ret ? -EFAULT : 0;
472 }
473 
474 /**
475  * wait_for_owner_exiting - Block until the owner has exited
476  * @ret: owner's current futex lock status
477  * @exiting:	Pointer to the exiting task
478  *
479  * Caller must hold a refcount on @exiting.
480  */
481 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
482 {
483 	if (ret != -EBUSY) {
484 		WARN_ON_ONCE(exiting);
485 		return;
486 	}
487 
488 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
489 		return;
490 
491 	mutex_lock(&exiting->futex_exit_mutex);
492 	/*
493 	 * No point in doing state checking here. If the waiter got here
494 	 * while the task was in exec()->exec_futex_release() then it can
495 	 * have any FUTEX_STATE_* value when the waiter has acquired the
496 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
497 	 * already. Highly unlikely and not a problem. Just one more round
498 	 * through the futex maze.
499 	 */
500 	mutex_unlock(&exiting->futex_exit_mutex);
501 
502 	put_task_struct(exiting);
503 }
504 
505 /**
506  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
507  * @q:	The futex_q to unqueue
508  *
509  * The q->lock_ptr must not be NULL and must be held by the caller.
510  */
511 void __futex_unqueue(struct futex_q *q)
512 {
513 	struct futex_hash_bucket *hb;
514 
515 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
516 		return;
517 	lockdep_assert_held(q->lock_ptr);
518 
519 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
520 	plist_del(&q->list, &hb->chain);
521 	futex_hb_waiters_dec(hb);
522 }
523 
524 /* The key must be already stored in q->key. */
525 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
526 	__acquires(&hb->lock)
527 {
528 	struct futex_hash_bucket *hb;
529 
530 	hb = futex_hash(&q->key);
531 
532 	/*
533 	 * Increment the counter before taking the lock so that
534 	 * a potential waker won't miss a to-be-slept task that is
535 	 * waiting for the spinlock. This is safe as all futex_q_lock()
536 	 * users end up calling futex_queue(). Similarly, for housekeeping,
537 	 * decrement the counter at futex_q_unlock() when some error has
538 	 * occurred and we don't end up adding the task to the list.
539 	 */
540 	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
541 
542 	q->lock_ptr = &hb->lock;
543 
544 	spin_lock(&hb->lock);
545 	return hb;
546 }
547 
548 void futex_q_unlock(struct futex_hash_bucket *hb)
549 	__releases(&hb->lock)
550 {
551 	spin_unlock(&hb->lock);
552 	futex_hb_waiters_dec(hb);
553 }
554 
555 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
556 {
557 	int prio;
558 
559 	/*
560 	 * The priority used to register this element is
561 	 * - either the real thread-priority for the real-time threads
562 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
563 	 * - or MAX_RT_PRIO for non-RT threads.
564 	 * Thus, all RT-threads are woken first in priority order, and
565 	 * the others are woken last, in FIFO order.
566 	 */
567 	prio = min(current->normal_prio, MAX_RT_PRIO);
568 
569 	plist_node_init(&q->list, prio);
570 	plist_add(&q->list, &hb->chain);
571 	q->task = current;
572 }
573 
574 /**
575  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
576  * @q:	The futex_q to unqueue
577  *
578  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
579  * be paired with exactly one earlier call to futex_queue().
580  *
581  * Return:
582  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
583  *  - 0 - if the futex_q was already removed by the waking thread
584  */
585 int futex_unqueue(struct futex_q *q)
586 {
587 	spinlock_t *lock_ptr;
588 	int ret = 0;
589 
590 	/* In the common case we don't take the spinlock, which is nice. */
591 retry:
592 	/*
593 	 * q->lock_ptr can change between this read and the following spin_lock.
594 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
595 	 * optimizing lock_ptr out of the logic below.
596 	 */
597 	lock_ptr = READ_ONCE(q->lock_ptr);
598 	if (lock_ptr != NULL) {
599 		spin_lock(lock_ptr);
600 		/*
601 		 * q->lock_ptr can change between reading it and
602 		 * spin_lock(), causing us to take the wrong lock.  This
603 		 * corrects the race condition.
604 		 *
605 		 * Reasoning goes like this: if we have the wrong lock,
606 		 * q->lock_ptr must have changed (maybe several times)
607 		 * between reading it and the spin_lock().  It can
608 		 * change again after the spin_lock() but only if it was
609 		 * already changed before the spin_lock().  It cannot,
610 		 * however, change back to the original value.  Therefore
611 		 * we can detect whether we acquired the correct lock.
612 		 */
613 		if (unlikely(lock_ptr != q->lock_ptr)) {
614 			spin_unlock(lock_ptr);
615 			goto retry;
616 		}
617 		__futex_unqueue(q);
618 
619 		BUG_ON(q->pi_state);
620 
621 		spin_unlock(lock_ptr);
622 		ret = 1;
623 	}
624 
625 	return ret;
626 }
627 
628 /*
629  * PI futexes can not be requeued and must remove themselves from the
630  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
631  */
632 void futex_unqueue_pi(struct futex_q *q)
633 {
634 	__futex_unqueue(q);
635 
636 	BUG_ON(!q->pi_state);
637 	put_pi_state(q->pi_state);
638 	q->pi_state = NULL;
639 }
640 
641 /* Constants for the pending_op argument of handle_futex_death */
642 #define HANDLE_DEATH_PENDING	true
643 #define HANDLE_DEATH_LIST	false
644 
645 /*
646  * Process a futex-list entry, check whether it's owned by the
647  * dying task, and do notification if so:
648  */
649 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
650 			      bool pi, bool pending_op)
651 {
652 	u32 uval, nval, mval;
653 	pid_t owner;
654 	int err;
655 
656 	/* Futex address must be 32bit aligned */
657 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
658 		return -1;
659 
660 retry:
661 	if (get_user(uval, uaddr))
662 		return -1;
663 
664 	/*
665 	 * Special case for regular (non PI) futexes. The unlock path in
666 	 * user space has two race scenarios:
667 	 *
668 	 * 1. The unlock path releases the user space futex value and
669 	 *    before it can execute the futex() syscall to wake up
670 	 *    waiters it is killed.
671 	 *
672 	 * 2. A woken up waiter is killed before it can acquire the
673 	 *    futex in user space.
674 	 *
675 	 * In the second case, the wake up notification could be generated
676 	 * by the unlock path in user space after setting the futex value
677 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
678 	 *
679 	 * In both cases the TID validation below prevents a wakeup of
680 	 * potential waiters which can cause these waiters to block
681 	 * forever.
682 	 *
683 	 * In both cases the following conditions are met:
684 	 *
685 	 *	1) task->robust_list->list_op_pending != NULL
686 	 *	   @pending_op == true
687 	 *	2) The owner part of user space futex value == 0
688 	 *	3) Regular futex: @pi == false
689 	 *
690 	 * If these conditions are met, it is safe to attempt waking up a
691 	 * potential waiter without touching the user space futex value and
692 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
693 	 * the rest of the user space mutex state is consistent, so a woken
694 	 * waiter will just take over the uncontended futex. Setting the
695 	 * OWNER_DIED bit would create inconsistent state and malfunction
696 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
697 	 * bit is already set, and the woken waiter is expected to deal with
698 	 * this.
699 	 */
700 	owner = uval & FUTEX_TID_MASK;
701 
702 	if (pending_op && !pi && !owner) {
703 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
704 		return 0;
705 	}
706 
707 	if (owner != task_pid_vnr(curr))
708 		return 0;
709 
710 	/*
711 	 * Ok, this dying thread is truly holding a futex
712 	 * of interest. Set the OWNER_DIED bit atomically
713 	 * via cmpxchg, and if the value had FUTEX_WAITERS
714 	 * set, wake up a waiter (if any). (We have to do a
715 	 * futex_wake() even if OWNER_DIED is already set -
716 	 * to handle the rare but possible case of recursive
717 	 * thread-death.) The rest of the cleanup is done in
718 	 * userspace.
719 	 */
720 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
721 
722 	/*
723 	 * We are not holding a lock here, but we want to have
724 	 * the pagefault_disable/enable() protection because
725 	 * we want to handle the fault gracefully. If the
726 	 * access fails we try to fault in the futex with R/W
727 	 * verification via get_user_pages. get_user() above
728 	 * does not guarantee R/W access. If that fails we
729 	 * give up and leave the futex locked.
730 	 */
731 	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
732 		switch (err) {
733 		case -EFAULT:
734 			if (fault_in_user_writeable(uaddr))
735 				return -1;
736 			goto retry;
737 
738 		case -EAGAIN:
739 			cond_resched();
740 			goto retry;
741 
742 		default:
743 			WARN_ON_ONCE(1);
744 			return err;
745 		}
746 	}
747 
748 	if (nval != uval)
749 		goto retry;
750 
751 	/*
752 	 * Wake robust non-PI futexes here. The wakeup of
753 	 * PI futexes happens in exit_pi_state():
754 	 */
755 	if (!pi && (uval & FUTEX_WAITERS))
756 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
757 
758 	return 0;
759 }
760 
761 /*
762  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
763  */
764 static inline int fetch_robust_entry(struct robust_list __user **entry,
765 				     struct robust_list __user * __user *head,
766 				     unsigned int *pi)
767 {
768 	unsigned long uentry;
769 
770 	if (get_user(uentry, (unsigned long __user *)head))
771 		return -EFAULT;
772 
773 	*entry = (void __user *)(uentry & ~1UL);
774 	*pi = uentry & 1;
775 
776 	return 0;
777 }
778 
779 /*
780  * Walk curr->robust_list (very carefully, it's a userspace list!)
781  * and mark any locks found there dead, and notify any waiters.
782  *
783  * We silently return on any sign of list-walking problem.
784  */
785 static void exit_robust_list(struct task_struct *curr)
786 {
787 	struct robust_list_head __user *head = curr->robust_list;
788 	struct robust_list __user *entry, *next_entry, *pending;
789 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
790 	unsigned int next_pi;
791 	unsigned long futex_offset;
792 	int rc;
793 
794 	/*
795 	 * Fetch the list head (which was registered earlier, via
796 	 * sys_set_robust_list()):
797 	 */
798 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
799 		return;
800 	/*
801 	 * Fetch the relative futex offset:
802 	 */
803 	if (get_user(futex_offset, &head->futex_offset))
804 		return;
805 	/*
806 	 * Fetch any possibly pending lock-add first, and handle it
807 	 * if it exists:
808 	 */
809 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
810 		return;
811 
812 	next_entry = NULL;	/* avoid warning with gcc */
813 	while (entry != &head->list) {
814 		/*
815 		 * Fetch the next entry in the list before calling
816 		 * handle_futex_death:
817 		 */
818 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
819 		/*
820 		 * A pending lock might already be on the list, so
821 		 * don't process it twice:
822 		 */
823 		if (entry != pending) {
824 			if (handle_futex_death((void __user *)entry + futex_offset,
825 						curr, pi, HANDLE_DEATH_LIST))
826 				return;
827 		}
828 		if (rc)
829 			return;
830 		entry = next_entry;
831 		pi = next_pi;
832 		/*
833 		 * Avoid excessively long or circular lists:
834 		 */
835 		if (!--limit)
836 			break;
837 
838 		cond_resched();
839 	}
840 
841 	if (pending) {
842 		handle_futex_death((void __user *)pending + futex_offset,
843 				   curr, pip, HANDLE_DEATH_PENDING);
844 	}
845 }
846 
847 #ifdef CONFIG_COMPAT
848 static void __user *futex_uaddr(struct robust_list __user *entry,
849 				compat_long_t futex_offset)
850 {
851 	compat_uptr_t base = ptr_to_compat(entry);
852 	void __user *uaddr = compat_ptr(base + futex_offset);
853 
854 	return uaddr;
855 }
856 
857 /*
858  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
859  */
860 static inline int
861 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
862 		   compat_uptr_t __user *head, unsigned int *pi)
863 {
864 	if (get_user(*uentry, head))
865 		return -EFAULT;
866 
867 	*entry = compat_ptr((*uentry) & ~1);
868 	*pi = (unsigned int)(*uentry) & 1;
869 
870 	return 0;
871 }
872 
873 /*
874  * Walk curr->robust_list (very carefully, it's a userspace list!)
875  * and mark any locks found there dead, and notify any waiters.
876  *
877  * We silently return on any sign of list-walking problem.
878  */
879 static void compat_exit_robust_list(struct task_struct *curr)
880 {
881 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
882 	struct robust_list __user *entry, *next_entry, *pending;
883 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
884 	unsigned int next_pi;
885 	compat_uptr_t uentry, next_uentry, upending;
886 	compat_long_t futex_offset;
887 	int rc;
888 
889 	/*
890 	 * Fetch the list head (which was registered earlier, via
891 	 * sys_set_robust_list()):
892 	 */
893 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
894 		return;
895 	/*
896 	 * Fetch the relative futex offset:
897 	 */
898 	if (get_user(futex_offset, &head->futex_offset))
899 		return;
900 	/*
901 	 * Fetch any possibly pending lock-add first, and handle it
902 	 * if it exists:
903 	 */
904 	if (compat_fetch_robust_entry(&upending, &pending,
905 			       &head->list_op_pending, &pip))
906 		return;
907 
908 	next_entry = NULL;	/* avoid warning with gcc */
909 	while (entry != (struct robust_list __user *) &head->list) {
910 		/*
911 		 * Fetch the next entry in the list before calling
912 		 * handle_futex_death:
913 		 */
914 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
915 			(compat_uptr_t __user *)&entry->next, &next_pi);
916 		/*
917 		 * A pending lock might already be on the list, so
918 		 * dont process it twice:
919 		 */
920 		if (entry != pending) {
921 			void __user *uaddr = futex_uaddr(entry, futex_offset);
922 
923 			if (handle_futex_death(uaddr, curr, pi,
924 					       HANDLE_DEATH_LIST))
925 				return;
926 		}
927 		if (rc)
928 			return;
929 		uentry = next_uentry;
930 		entry = next_entry;
931 		pi = next_pi;
932 		/*
933 		 * Avoid excessively long or circular lists:
934 		 */
935 		if (!--limit)
936 			break;
937 
938 		cond_resched();
939 	}
940 	if (pending) {
941 		void __user *uaddr = futex_uaddr(pending, futex_offset);
942 
943 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
944 	}
945 }
946 #endif
947 
948 #ifdef CONFIG_FUTEX_PI
949 
950 /*
951  * This task is holding PI mutexes at exit time => bad.
952  * Kernel cleans up PI-state, but userspace is likely hosed.
953  * (Robust-futex cleanup is separate and might save the day for userspace.)
954  */
955 static void exit_pi_state_list(struct task_struct *curr)
956 {
957 	struct list_head *next, *head = &curr->pi_state_list;
958 	struct futex_pi_state *pi_state;
959 	struct futex_hash_bucket *hb;
960 	union futex_key key = FUTEX_KEY_INIT;
961 
962 	/*
963 	 * We are a ZOMBIE and nobody can enqueue itself on
964 	 * pi_state_list anymore, but we have to be careful
965 	 * versus waiters unqueueing themselves:
966 	 */
967 	raw_spin_lock_irq(&curr->pi_lock);
968 	while (!list_empty(head)) {
969 		next = head->next;
970 		pi_state = list_entry(next, struct futex_pi_state, list);
971 		key = pi_state->key;
972 		hb = futex_hash(&key);
973 
974 		/*
975 		 * We can race against put_pi_state() removing itself from the
976 		 * list (a waiter going away). put_pi_state() will first
977 		 * decrement the reference count and then modify the list, so
978 		 * its possible to see the list entry but fail this reference
979 		 * acquire.
980 		 *
981 		 * In that case; drop the locks to let put_pi_state() make
982 		 * progress and retry the loop.
983 		 */
984 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
985 			raw_spin_unlock_irq(&curr->pi_lock);
986 			cpu_relax();
987 			raw_spin_lock_irq(&curr->pi_lock);
988 			continue;
989 		}
990 		raw_spin_unlock_irq(&curr->pi_lock);
991 
992 		spin_lock(&hb->lock);
993 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
994 		raw_spin_lock(&curr->pi_lock);
995 		/*
996 		 * We dropped the pi-lock, so re-check whether this
997 		 * task still owns the PI-state:
998 		 */
999 		if (head->next != next) {
1000 			/* retain curr->pi_lock for the loop invariant */
1001 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1002 			spin_unlock(&hb->lock);
1003 			put_pi_state(pi_state);
1004 			continue;
1005 		}
1006 
1007 		WARN_ON(pi_state->owner != curr);
1008 		WARN_ON(list_empty(&pi_state->list));
1009 		list_del_init(&pi_state->list);
1010 		pi_state->owner = NULL;
1011 
1012 		raw_spin_unlock(&curr->pi_lock);
1013 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1014 		spin_unlock(&hb->lock);
1015 
1016 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1017 		put_pi_state(pi_state);
1018 
1019 		raw_spin_lock_irq(&curr->pi_lock);
1020 	}
1021 	raw_spin_unlock_irq(&curr->pi_lock);
1022 }
1023 #else
1024 static inline void exit_pi_state_list(struct task_struct *curr) { }
1025 #endif
1026 
1027 static void futex_cleanup(struct task_struct *tsk)
1028 {
1029 	if (unlikely(tsk->robust_list)) {
1030 		exit_robust_list(tsk);
1031 		tsk->robust_list = NULL;
1032 	}
1033 
1034 #ifdef CONFIG_COMPAT
1035 	if (unlikely(tsk->compat_robust_list)) {
1036 		compat_exit_robust_list(tsk);
1037 		tsk->compat_robust_list = NULL;
1038 	}
1039 #endif
1040 
1041 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1042 		exit_pi_state_list(tsk);
1043 }
1044 
1045 /**
1046  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1047  * @tsk:	task to set the state on
1048  *
1049  * Set the futex exit state of the task lockless. The futex waiter code
1050  * observes that state when a task is exiting and loops until the task has
1051  * actually finished the futex cleanup. The worst case for this is that the
1052  * waiter runs through the wait loop until the state becomes visible.
1053  *
1054  * This is called from the recursive fault handling path in make_task_dead().
1055  *
1056  * This is best effort. Either the futex exit code has run already or
1057  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1058  * take it over. If not, the problem is pushed back to user space. If the
1059  * futex exit code did not run yet, then an already queued waiter might
1060  * block forever, but there is nothing which can be done about that.
1061  */
1062 void futex_exit_recursive(struct task_struct *tsk)
1063 {
1064 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1065 	if (tsk->futex_state == FUTEX_STATE_EXITING)
1066 		mutex_unlock(&tsk->futex_exit_mutex);
1067 	tsk->futex_state = FUTEX_STATE_DEAD;
1068 }
1069 
1070 static void futex_cleanup_begin(struct task_struct *tsk)
1071 {
1072 	/*
1073 	 * Prevent various race issues against a concurrent incoming waiter
1074 	 * including live locks by forcing the waiter to block on
1075 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1076 	 * attach_to_pi_owner().
1077 	 */
1078 	mutex_lock(&tsk->futex_exit_mutex);
1079 
1080 	/*
1081 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1082 	 *
1083 	 * This ensures that all subsequent checks of tsk->futex_state in
1084 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1085 	 * tsk->pi_lock held.
1086 	 *
1087 	 * It guarantees also that a pi_state which was queued right before
1088 	 * the state change under tsk->pi_lock by a concurrent waiter must
1089 	 * be observed in exit_pi_state_list().
1090 	 */
1091 	raw_spin_lock_irq(&tsk->pi_lock);
1092 	tsk->futex_state = FUTEX_STATE_EXITING;
1093 	raw_spin_unlock_irq(&tsk->pi_lock);
1094 }
1095 
1096 static void futex_cleanup_end(struct task_struct *tsk, int state)
1097 {
1098 	/*
1099 	 * Lockless store. The only side effect is that an observer might
1100 	 * take another loop until it becomes visible.
1101 	 */
1102 	tsk->futex_state = state;
1103 	/*
1104 	 * Drop the exit protection. This unblocks waiters which observed
1105 	 * FUTEX_STATE_EXITING to reevaluate the state.
1106 	 */
1107 	mutex_unlock(&tsk->futex_exit_mutex);
1108 }
1109 
1110 void futex_exec_release(struct task_struct *tsk)
1111 {
1112 	/*
1113 	 * The state handling is done for consistency, but in the case of
1114 	 * exec() there is no way to prevent further damage as the PID stays
1115 	 * the same. But for the unlikely and arguably buggy case that a
1116 	 * futex is held on exec(), this provides at least as much state
1117 	 * consistency protection which is possible.
1118 	 */
1119 	futex_cleanup_begin(tsk);
1120 	futex_cleanup(tsk);
1121 	/*
1122 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1123 	 * exec a new binary.
1124 	 */
1125 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1126 }
1127 
1128 void futex_exit_release(struct task_struct *tsk)
1129 {
1130 	futex_cleanup_begin(tsk);
1131 	futex_cleanup(tsk);
1132 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1133 }
1134 
1135 static int __init futex_init(void)
1136 {
1137 	unsigned int futex_shift;
1138 	unsigned long i;
1139 
1140 #if CONFIG_BASE_SMALL
1141 	futex_hashsize = 16;
1142 #else
1143 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1144 #endif
1145 
1146 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1147 					       futex_hashsize, 0, 0,
1148 					       &futex_shift, NULL,
1149 					       futex_hashsize, futex_hashsize);
1150 	futex_hashsize = 1UL << futex_shift;
1151 
1152 	for (i = 0; i < futex_hashsize; i++) {
1153 		atomic_set(&futex_queues[i].waiters, 0);
1154 		plist_head_init(&futex_queues[i].chain);
1155 		spin_lock_init(&futex_queues[i].lock);
1156 	}
1157 
1158 	return 0;
1159 }
1160 core_initcall(futex_init);
1161