1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Fast Userspace Mutexes (which I call "Futexes!"). 4 * (C) Rusty Russell, IBM 2002 5 * 6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar 7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved 8 * 9 * Removed page pinning, fix privately mapped COW pages and other cleanups 10 * (C) Copyright 2003, 2004 Jamie Lokier 11 * 12 * Robust futex support started by Ingo Molnar 13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved 14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes. 15 * 16 * PI-futex support started by Ingo Molnar and Thomas Gleixner 17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 19 * 20 * PRIVATE futexes by Eric Dumazet 21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> 22 * 23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> 24 * Copyright (C) IBM Corporation, 2009 25 * Thanks to Thomas Gleixner for conceptual design and careful reviews. 26 * 27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly 28 * enough at me, Linus for the original (flawed) idea, Matthew 29 * Kirkwood for proof-of-concept implementation. 30 * 31 * "The futexes are also cursed." 32 * "But they come in a choice of three flavours!" 33 */ 34 #include <linux/compat.h> 35 #include <linux/jhash.h> 36 #include <linux/pagemap.h> 37 #include <linux/debugfs.h> 38 #include <linux/plist.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/memblock.h> 42 #include <linux/fault-inject.h> 43 #include <linux/slab.h> 44 #include <linux/prctl.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mmap_lock.h> 47 48 #include "futex.h" 49 #include "../locking/rtmutex_common.h" 50 51 /* 52 * The base of the bucket array and its size are always used together 53 * (after initialization only in futex_hash()), so ensure that they 54 * reside in the same cacheline. 55 */ 56 static struct { 57 unsigned long hashmask; 58 unsigned int hashshift; 59 struct futex_hash_bucket *queues[MAX_NUMNODES]; 60 } __futex_data __read_mostly __aligned(2*sizeof(long)); 61 62 #define futex_hashmask (__futex_data.hashmask) 63 #define futex_hashshift (__futex_data.hashshift) 64 #define futex_queues (__futex_data.queues) 65 66 struct futex_private_hash { 67 int state; 68 unsigned int hash_mask; 69 struct rcu_head rcu; 70 void *mm; 71 bool custom; 72 bool immutable; 73 struct futex_hash_bucket queues[]; 74 }; 75 76 /* 77 * Fault injections for futexes. 78 */ 79 #ifdef CONFIG_FAIL_FUTEX 80 81 static struct { 82 struct fault_attr attr; 83 84 bool ignore_private; 85 } fail_futex = { 86 .attr = FAULT_ATTR_INITIALIZER, 87 .ignore_private = false, 88 }; 89 90 static int __init setup_fail_futex(char *str) 91 { 92 return setup_fault_attr(&fail_futex.attr, str); 93 } 94 __setup("fail_futex=", setup_fail_futex); 95 96 bool should_fail_futex(bool fshared) 97 { 98 if (fail_futex.ignore_private && !fshared) 99 return false; 100 101 return should_fail(&fail_futex.attr, 1); 102 } 103 104 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 105 106 static int __init fail_futex_debugfs(void) 107 { 108 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 109 struct dentry *dir; 110 111 dir = fault_create_debugfs_attr("fail_futex", NULL, 112 &fail_futex.attr); 113 if (IS_ERR(dir)) 114 return PTR_ERR(dir); 115 116 debugfs_create_bool("ignore-private", mode, dir, 117 &fail_futex.ignore_private); 118 return 0; 119 } 120 121 late_initcall(fail_futex_debugfs); 122 123 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 124 125 #endif /* CONFIG_FAIL_FUTEX */ 126 127 static struct futex_hash_bucket * 128 __futex_hash(union futex_key *key, struct futex_private_hash *fph); 129 130 #ifdef CONFIG_FUTEX_PRIVATE_HASH 131 static bool futex_ref_get(struct futex_private_hash *fph); 132 static bool futex_ref_put(struct futex_private_hash *fph); 133 static bool futex_ref_is_dead(struct futex_private_hash *fph); 134 135 enum { FR_PERCPU = 0, FR_ATOMIC }; 136 137 static inline bool futex_key_is_private(union futex_key *key) 138 { 139 /* 140 * Relies on get_futex_key() to set either bit for shared 141 * futexes -- see comment with union futex_key. 142 */ 143 return !(key->both.offset & (FUT_OFF_INODE | FUT_OFF_MMSHARED)); 144 } 145 146 bool futex_private_hash_get(struct futex_private_hash *fph) 147 { 148 if (fph->immutable) 149 return true; 150 return futex_ref_get(fph); 151 } 152 153 void futex_private_hash_put(struct futex_private_hash *fph) 154 { 155 if (fph->immutable) 156 return; 157 if (futex_ref_put(fph)) 158 wake_up_var(fph->mm); 159 } 160 161 /** 162 * futex_hash_get - Get an additional reference for the local hash. 163 * @hb: ptr to the private local hash. 164 * 165 * Obtain an additional reference for the already obtained hash bucket. The 166 * caller must already own an reference. 167 */ 168 void futex_hash_get(struct futex_hash_bucket *hb) 169 { 170 struct futex_private_hash *fph = hb->priv; 171 172 if (!fph) 173 return; 174 WARN_ON_ONCE(!futex_private_hash_get(fph)); 175 } 176 177 void futex_hash_put(struct futex_hash_bucket *hb) 178 { 179 struct futex_private_hash *fph = hb->priv; 180 181 if (!fph) 182 return; 183 futex_private_hash_put(fph); 184 } 185 186 static struct futex_hash_bucket * 187 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph) 188 { 189 u32 hash; 190 191 if (!futex_key_is_private(key)) 192 return NULL; 193 194 if (!fph) 195 fph = rcu_dereference(key->private.mm->futex_phash); 196 if (!fph || !fph->hash_mask) 197 return NULL; 198 199 hash = jhash2((void *)&key->private.address, 200 sizeof(key->private.address) / 4, 201 key->both.offset); 202 return &fph->queues[hash & fph->hash_mask]; 203 } 204 205 static void futex_rehash_private(struct futex_private_hash *old, 206 struct futex_private_hash *new) 207 { 208 struct futex_hash_bucket *hb_old, *hb_new; 209 unsigned int slots = old->hash_mask + 1; 210 unsigned int i; 211 212 for (i = 0; i < slots; i++) { 213 struct futex_q *this, *tmp; 214 215 hb_old = &old->queues[i]; 216 217 spin_lock(&hb_old->lock); 218 plist_for_each_entry_safe(this, tmp, &hb_old->chain, list) { 219 220 plist_del(&this->list, &hb_old->chain); 221 futex_hb_waiters_dec(hb_old); 222 223 WARN_ON_ONCE(this->lock_ptr != &hb_old->lock); 224 225 hb_new = __futex_hash(&this->key, new); 226 futex_hb_waiters_inc(hb_new); 227 /* 228 * The new pointer isn't published yet but an already 229 * moved user can be unqueued due to timeout or signal. 230 */ 231 spin_lock_nested(&hb_new->lock, SINGLE_DEPTH_NESTING); 232 plist_add(&this->list, &hb_new->chain); 233 this->lock_ptr = &hb_new->lock; 234 spin_unlock(&hb_new->lock); 235 } 236 spin_unlock(&hb_old->lock); 237 } 238 } 239 240 static bool __futex_pivot_hash(struct mm_struct *mm, 241 struct futex_private_hash *new) 242 { 243 struct futex_private_hash *fph; 244 245 WARN_ON_ONCE(mm->futex_phash_new); 246 247 fph = rcu_dereference_protected(mm->futex_phash, 248 lockdep_is_held(&mm->futex_hash_lock)); 249 if (fph) { 250 if (!futex_ref_is_dead(fph)) { 251 mm->futex_phash_new = new; 252 return false; 253 } 254 255 futex_rehash_private(fph, new); 256 } 257 new->state = FR_PERCPU; 258 scoped_guard(rcu) { 259 mm->futex_batches = get_state_synchronize_rcu(); 260 rcu_assign_pointer(mm->futex_phash, new); 261 } 262 kvfree_rcu(fph, rcu); 263 return true; 264 } 265 266 static void futex_pivot_hash(struct mm_struct *mm) 267 { 268 scoped_guard(mutex, &mm->futex_hash_lock) { 269 struct futex_private_hash *fph; 270 271 fph = mm->futex_phash_new; 272 if (fph) { 273 mm->futex_phash_new = NULL; 274 __futex_pivot_hash(mm, fph); 275 } 276 } 277 } 278 279 struct futex_private_hash *futex_private_hash(void) 280 { 281 struct mm_struct *mm = current->mm; 282 /* 283 * Ideally we don't loop. If there is a replacement in progress 284 * then a new private hash is already prepared and a reference can't be 285 * obtained once the last user dropped it's. 286 * In that case we block on mm_struct::futex_hash_lock and either have 287 * to perform the replacement or wait while someone else is doing the 288 * job. Eitherway, on the second iteration we acquire a reference on the 289 * new private hash or loop again because a new replacement has been 290 * requested. 291 */ 292 again: 293 scoped_guard(rcu) { 294 struct futex_private_hash *fph; 295 296 fph = rcu_dereference(mm->futex_phash); 297 if (!fph) 298 return NULL; 299 300 if (futex_private_hash_get(fph)) 301 return fph; 302 } 303 futex_pivot_hash(mm); 304 goto again; 305 } 306 307 struct futex_hash_bucket *futex_hash(union futex_key *key) 308 { 309 struct futex_private_hash *fph; 310 struct futex_hash_bucket *hb; 311 312 again: 313 scoped_guard(rcu) { 314 hb = __futex_hash(key, NULL); 315 fph = hb->priv; 316 317 if (!fph || futex_private_hash_get(fph)) 318 return hb; 319 } 320 futex_pivot_hash(key->private.mm); 321 goto again; 322 } 323 324 #else /* !CONFIG_FUTEX_PRIVATE_HASH */ 325 326 static struct futex_hash_bucket * 327 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph) 328 { 329 return NULL; 330 } 331 332 struct futex_hash_bucket *futex_hash(union futex_key *key) 333 { 334 return __futex_hash(key, NULL); 335 } 336 337 #endif /* CONFIG_FUTEX_PRIVATE_HASH */ 338 339 #ifdef CONFIG_FUTEX_MPOL 340 341 static int __futex_key_to_node(struct mm_struct *mm, unsigned long addr) 342 { 343 struct vm_area_struct *vma = vma_lookup(mm, addr); 344 struct mempolicy *mpol; 345 int node = FUTEX_NO_NODE; 346 347 if (!vma) 348 return FUTEX_NO_NODE; 349 350 mpol = vma_policy(vma); 351 if (!mpol) 352 return FUTEX_NO_NODE; 353 354 switch (mpol->mode) { 355 case MPOL_PREFERRED: 356 node = first_node(mpol->nodes); 357 break; 358 case MPOL_PREFERRED_MANY: 359 case MPOL_BIND: 360 if (mpol->home_node != NUMA_NO_NODE) 361 node = mpol->home_node; 362 break; 363 default: 364 break; 365 } 366 367 return node; 368 } 369 370 static int futex_key_to_node_opt(struct mm_struct *mm, unsigned long addr) 371 { 372 int seq, node; 373 374 guard(rcu)(); 375 376 if (!mmap_lock_speculate_try_begin(mm, &seq)) 377 return -EBUSY; 378 379 node = __futex_key_to_node(mm, addr); 380 381 if (mmap_lock_speculate_retry(mm, seq)) 382 return -EAGAIN; 383 384 return node; 385 } 386 387 static int futex_mpol(struct mm_struct *mm, unsigned long addr) 388 { 389 int node; 390 391 node = futex_key_to_node_opt(mm, addr); 392 if (node >= FUTEX_NO_NODE) 393 return node; 394 395 guard(mmap_read_lock)(mm); 396 return __futex_key_to_node(mm, addr); 397 } 398 399 #else /* !CONFIG_FUTEX_MPOL */ 400 401 static int futex_mpol(struct mm_struct *mm, unsigned long addr) 402 { 403 return FUTEX_NO_NODE; 404 } 405 406 #endif /* CONFIG_FUTEX_MPOL */ 407 408 /** 409 * __futex_hash - Return the hash bucket 410 * @key: Pointer to the futex key for which the hash is calculated 411 * @fph: Pointer to private hash if known 412 * 413 * We hash on the keys returned from get_futex_key (see below) and return the 414 * corresponding hash bucket. 415 * If the FUTEX is PROCESS_PRIVATE then a per-process hash bucket (from the 416 * private hash) is returned if existing. Otherwise a hash bucket from the 417 * global hash is returned. 418 */ 419 static struct futex_hash_bucket * 420 __futex_hash(union futex_key *key, struct futex_private_hash *fph) 421 { 422 int node = key->both.node; 423 u32 hash; 424 425 if (node == FUTEX_NO_NODE) { 426 struct futex_hash_bucket *hb; 427 428 hb = __futex_hash_private(key, fph); 429 if (hb) 430 return hb; 431 } 432 433 hash = jhash2((u32 *)key, 434 offsetof(typeof(*key), both.offset) / sizeof(u32), 435 key->both.offset); 436 437 if (node == FUTEX_NO_NODE) { 438 /* 439 * In case of !FLAGS_NUMA, use some unused hash bits to pick a 440 * node -- this ensures regular futexes are interleaved across 441 * the nodes and avoids having to allocate multiple 442 * hash-tables. 443 * 444 * NOTE: this isn't perfectly uniform, but it is fast and 445 * handles sparse node masks. 446 */ 447 node = (hash >> futex_hashshift) % nr_node_ids; 448 if (!node_possible(node)) { 449 node = find_next_bit_wrap(node_possible_map.bits, 450 nr_node_ids, node); 451 } 452 } 453 454 return &futex_queues[node][hash & futex_hashmask]; 455 } 456 457 /** 458 * futex_setup_timer - set up the sleeping hrtimer. 459 * @time: ptr to the given timeout value 460 * @timeout: the hrtimer_sleeper structure to be set up 461 * @flags: futex flags 462 * @range_ns: optional range in ns 463 * 464 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout 465 * value given 466 */ 467 struct hrtimer_sleeper * 468 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, 469 int flags, u64 range_ns) 470 { 471 if (!time) 472 return NULL; 473 474 hrtimer_setup_sleeper_on_stack(timeout, 475 (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC, 476 HRTIMER_MODE_ABS); 477 /* 478 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is 479 * effectively the same as calling hrtimer_set_expires(). 480 */ 481 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); 482 483 return timeout; 484 } 485 486 /* 487 * Generate a machine wide unique identifier for this inode. 488 * 489 * This relies on u64 not wrapping in the life-time of the machine; which with 490 * 1ns resolution means almost 585 years. 491 * 492 * This further relies on the fact that a well formed program will not unmap 493 * the file while it has a (shared) futex waiting on it. This mapping will have 494 * a file reference which pins the mount and inode. 495 * 496 * If for some reason an inode gets evicted and read back in again, it will get 497 * a new sequence number and will _NOT_ match, even though it is the exact same 498 * file. 499 * 500 * It is important that futex_match() will never have a false-positive, esp. 501 * for PI futexes that can mess up the state. The above argues that false-negatives 502 * are only possible for malformed programs. 503 */ 504 static u64 get_inode_sequence_number(struct inode *inode) 505 { 506 static atomic64_t i_seq; 507 u64 old; 508 509 /* Does the inode already have a sequence number? */ 510 old = atomic64_read(&inode->i_sequence); 511 if (likely(old)) 512 return old; 513 514 for (;;) { 515 u64 new = atomic64_inc_return(&i_seq); 516 if (WARN_ON_ONCE(!new)) 517 continue; 518 519 old = 0; 520 if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new)) 521 return old; 522 return new; 523 } 524 } 525 526 /** 527 * get_futex_key() - Get parameters which are the keys for a futex 528 * @uaddr: virtual address of the futex 529 * @flags: FLAGS_* 530 * @key: address where result is stored. 531 * @rw: mapping needs to be read/write (values: FUTEX_READ, 532 * FUTEX_WRITE) 533 * 534 * Return: a negative error code or 0 535 * 536 * The key words are stored in @key on success. 537 * 538 * For shared mappings (when @fshared), the key is: 539 * 540 * ( inode->i_sequence, page offset within mapping, offset_within_page ) 541 * 542 * [ also see get_inode_sequence_number() ] 543 * 544 * For private mappings (or when !@fshared), the key is: 545 * 546 * ( current->mm, address, 0 ) 547 * 548 * This allows (cross process, where applicable) identification of the futex 549 * without keeping the page pinned for the duration of the FUTEX_WAIT. 550 * 551 * lock_page() might sleep, the caller should not hold a spinlock. 552 */ 553 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key, 554 enum futex_access rw) 555 { 556 unsigned long address = (unsigned long)uaddr; 557 struct mm_struct *mm = current->mm; 558 struct page *page; 559 struct folio *folio; 560 struct address_space *mapping; 561 int node, err, size, ro = 0; 562 bool node_updated = false; 563 bool fshared; 564 565 fshared = flags & FLAGS_SHARED; 566 size = futex_size(flags); 567 if (flags & FLAGS_NUMA) 568 size *= 2; 569 570 /* 571 * The futex address must be "naturally" aligned. 572 */ 573 key->both.offset = address % PAGE_SIZE; 574 if (unlikely((address % size) != 0)) 575 return -EINVAL; 576 address -= key->both.offset; 577 578 if (unlikely(!access_ok(uaddr, size))) 579 return -EFAULT; 580 581 if (unlikely(should_fail_futex(fshared))) 582 return -EFAULT; 583 584 node = FUTEX_NO_NODE; 585 586 if (flags & FLAGS_NUMA) { 587 u32 __user *naddr = (void *)uaddr + size / 2; 588 589 if (futex_get_value(&node, naddr)) 590 return -EFAULT; 591 592 if ((node != FUTEX_NO_NODE) && 593 ((unsigned int)node >= MAX_NUMNODES || !node_possible(node))) 594 return -EINVAL; 595 } 596 597 if (node == FUTEX_NO_NODE && (flags & FLAGS_MPOL)) { 598 node = futex_mpol(mm, address); 599 node_updated = true; 600 } 601 602 if (flags & FLAGS_NUMA) { 603 u32 __user *naddr = (void *)uaddr + size / 2; 604 605 if (node == FUTEX_NO_NODE) { 606 node = numa_node_id(); 607 node_updated = true; 608 } 609 if (node_updated && futex_put_value(node, naddr)) 610 return -EFAULT; 611 } 612 613 key->both.node = node; 614 615 /* 616 * PROCESS_PRIVATE futexes are fast. 617 * As the mm cannot disappear under us and the 'key' only needs 618 * virtual address, we dont even have to find the underlying vma. 619 * Note : We do have to check 'uaddr' is a valid user address, 620 * but access_ok() should be faster than find_vma() 621 */ 622 if (!fshared) { 623 /* 624 * On no-MMU, shared futexes are treated as private, therefore 625 * we must not include the current process in the key. Since 626 * there is only one address space, the address is a unique key 627 * on its own. 628 */ 629 if (IS_ENABLED(CONFIG_MMU)) 630 key->private.mm = mm; 631 else 632 key->private.mm = NULL; 633 634 key->private.address = address; 635 return 0; 636 } 637 638 again: 639 /* Ignore any VERIFY_READ mapping (futex common case) */ 640 if (unlikely(should_fail_futex(true))) 641 return -EFAULT; 642 643 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); 644 /* 645 * If write access is not required (eg. FUTEX_WAIT), try 646 * and get read-only access. 647 */ 648 if (err == -EFAULT && rw == FUTEX_READ) { 649 err = get_user_pages_fast(address, 1, 0, &page); 650 ro = 1; 651 } 652 if (err < 0) 653 return err; 654 else 655 err = 0; 656 657 /* 658 * The treatment of mapping from this point on is critical. The folio 659 * lock protects many things but in this context the folio lock 660 * stabilizes mapping, prevents inode freeing in the shared 661 * file-backed region case and guards against movement to swap cache. 662 * 663 * Strictly speaking the folio lock is not needed in all cases being 664 * considered here and folio lock forces unnecessarily serialization. 665 * From this point on, mapping will be re-verified if necessary and 666 * folio lock will be acquired only if it is unavoidable 667 * 668 * Mapping checks require the folio so it is looked up now. For 669 * anonymous pages, it does not matter if the folio is split 670 * in the future as the key is based on the address. For 671 * filesystem-backed pages, the precise page is required as the 672 * index of the page determines the key. 673 */ 674 folio = page_folio(page); 675 mapping = READ_ONCE(folio->mapping); 676 677 /* 678 * If folio->mapping is NULL, then it cannot be an anonymous 679 * page; but it might be the ZERO_PAGE or in the gate area or 680 * in a special mapping (all cases which we are happy to fail); 681 * or it may have been a good file page when get_user_pages_fast 682 * found it, but truncated or holepunched or subjected to 683 * invalidate_complete_page2 before we got the folio lock (also 684 * cases which we are happy to fail). And we hold a reference, 685 * so refcount care in invalidate_inode_page's remove_mapping 686 * prevents drop_caches from setting mapping to NULL beneath us. 687 * 688 * The case we do have to guard against is when memory pressure made 689 * shmem_writepage move it from filecache to swapcache beneath us: 690 * an unlikely race, but we do need to retry for folio->mapping. 691 */ 692 if (unlikely(!mapping)) { 693 int shmem_swizzled; 694 695 /* 696 * Folio lock is required to identify which special case above 697 * applies. If this is really a shmem page then the folio lock 698 * will prevent unexpected transitions. 699 */ 700 folio_lock(folio); 701 shmem_swizzled = folio_test_swapcache(folio) || folio->mapping; 702 folio_unlock(folio); 703 folio_put(folio); 704 705 if (shmem_swizzled) 706 goto again; 707 708 return -EFAULT; 709 } 710 711 /* 712 * Private mappings are handled in a simple way. 713 * 714 * If the futex key is stored in anonymous memory, then the associated 715 * object is the mm which is implicitly pinned by the calling process. 716 * 717 * NOTE: When userspace waits on a MAP_SHARED mapping, even if 718 * it's a read-only handle, it's expected that futexes attach to 719 * the object not the particular process. 720 */ 721 if (folio_test_anon(folio)) { 722 /* 723 * A RO anonymous page will never change and thus doesn't make 724 * sense for futex operations. 725 */ 726 if (unlikely(should_fail_futex(true)) || ro) { 727 err = -EFAULT; 728 goto out; 729 } 730 731 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ 732 key->private.mm = mm; 733 key->private.address = address; 734 735 } else { 736 struct inode *inode; 737 738 /* 739 * The associated futex object in this case is the inode and 740 * the folio->mapping must be traversed. Ordinarily this should 741 * be stabilised under folio lock but it's not strictly 742 * necessary in this case as we just want to pin the inode, not 743 * update i_pages or anything like that. 744 * 745 * The RCU read lock is taken as the inode is finally freed 746 * under RCU. If the mapping still matches expectations then the 747 * mapping->host can be safely accessed as being a valid inode. 748 */ 749 rcu_read_lock(); 750 751 if (READ_ONCE(folio->mapping) != mapping) { 752 rcu_read_unlock(); 753 folio_put(folio); 754 755 goto again; 756 } 757 758 inode = READ_ONCE(mapping->host); 759 if (!inode) { 760 rcu_read_unlock(); 761 folio_put(folio); 762 763 goto again; 764 } 765 766 key->both.offset |= FUT_OFF_INODE; /* inode-based key */ 767 key->shared.i_seq = get_inode_sequence_number(inode); 768 key->shared.pgoff = page_pgoff(folio, page); 769 rcu_read_unlock(); 770 } 771 772 out: 773 folio_put(folio); 774 return err; 775 } 776 777 /** 778 * fault_in_user_writeable() - Fault in user address and verify RW access 779 * @uaddr: pointer to faulting user space address 780 * 781 * Slow path to fixup the fault we just took in the atomic write 782 * access to @uaddr. 783 * 784 * We have no generic implementation of a non-destructive write to the 785 * user address. We know that we faulted in the atomic pagefault 786 * disabled section so we can as well avoid the #PF overhead by 787 * calling get_user_pages() right away. 788 */ 789 int fault_in_user_writeable(u32 __user *uaddr) 790 { 791 struct mm_struct *mm = current->mm; 792 int ret; 793 794 mmap_read_lock(mm); 795 ret = fixup_user_fault(mm, (unsigned long)uaddr, 796 FAULT_FLAG_WRITE, NULL); 797 mmap_read_unlock(mm); 798 799 return ret < 0 ? ret : 0; 800 } 801 802 /** 803 * futex_top_waiter() - Return the highest priority waiter on a futex 804 * @hb: the hash bucket the futex_q's reside in 805 * @key: the futex key (to distinguish it from other futex futex_q's) 806 * 807 * Must be called with the hb lock held. 808 */ 809 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key) 810 { 811 struct futex_q *this; 812 813 plist_for_each_entry(this, &hb->chain, list) { 814 if (futex_match(&this->key, key)) 815 return this; 816 } 817 return NULL; 818 } 819 820 /** 821 * wait_for_owner_exiting - Block until the owner has exited 822 * @ret: owner's current futex lock status 823 * @exiting: Pointer to the exiting task 824 * 825 * Caller must hold a refcount on @exiting. 826 */ 827 void wait_for_owner_exiting(int ret, struct task_struct *exiting) 828 { 829 if (ret != -EBUSY) { 830 WARN_ON_ONCE(exiting); 831 return; 832 } 833 834 if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) 835 return; 836 837 mutex_lock(&exiting->futex_exit_mutex); 838 /* 839 * No point in doing state checking here. If the waiter got here 840 * while the task was in exec()->exec_futex_release() then it can 841 * have any FUTEX_STATE_* value when the waiter has acquired the 842 * mutex. OK, if running, EXITING or DEAD if it reached exit() 843 * already. Highly unlikely and not a problem. Just one more round 844 * through the futex maze. 845 */ 846 mutex_unlock(&exiting->futex_exit_mutex); 847 848 put_task_struct(exiting); 849 } 850 851 /** 852 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket 853 * @q: The futex_q to unqueue 854 * 855 * The q->lock_ptr must not be NULL and must be held by the caller. 856 */ 857 void __futex_unqueue(struct futex_q *q) 858 { 859 struct futex_hash_bucket *hb; 860 861 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) 862 return; 863 lockdep_assert_held(q->lock_ptr); 864 865 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); 866 plist_del(&q->list, &hb->chain); 867 futex_hb_waiters_dec(hb); 868 } 869 870 /* The key must be already stored in q->key. */ 871 void futex_q_lock(struct futex_q *q, struct futex_hash_bucket *hb) 872 __acquires(&hb->lock) 873 { 874 /* 875 * Increment the counter before taking the lock so that 876 * a potential waker won't miss a to-be-slept task that is 877 * waiting for the spinlock. This is safe as all futex_q_lock() 878 * users end up calling futex_queue(). Similarly, for housekeeping, 879 * decrement the counter at futex_q_unlock() when some error has 880 * occurred and we don't end up adding the task to the list. 881 */ 882 futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */ 883 884 q->lock_ptr = &hb->lock; 885 886 spin_lock(&hb->lock); 887 } 888 889 void futex_q_unlock(struct futex_hash_bucket *hb) 890 __releases(&hb->lock) 891 { 892 futex_hb_waiters_dec(hb); 893 spin_unlock(&hb->lock); 894 } 895 896 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb, 897 struct task_struct *task) 898 { 899 int prio; 900 901 /* 902 * The priority used to register this element is 903 * - either the real thread-priority for the real-time threads 904 * (i.e. threads with a priority lower than MAX_RT_PRIO) 905 * - or MAX_RT_PRIO for non-RT threads. 906 * Thus, all RT-threads are woken first in priority order, and 907 * the others are woken last, in FIFO order. 908 */ 909 prio = min(current->normal_prio, MAX_RT_PRIO); 910 911 plist_node_init(&q->list, prio); 912 plist_add(&q->list, &hb->chain); 913 q->task = task; 914 } 915 916 /** 917 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket 918 * @q: The futex_q to unqueue 919 * 920 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must 921 * be paired with exactly one earlier call to futex_queue(). 922 * 923 * Return: 924 * - 1 - if the futex_q was still queued (and we removed unqueued it); 925 * - 0 - if the futex_q was already removed by the waking thread 926 */ 927 int futex_unqueue(struct futex_q *q) 928 { 929 spinlock_t *lock_ptr; 930 int ret = 0; 931 932 /* RCU so lock_ptr is not going away during locking. */ 933 guard(rcu)(); 934 /* In the common case we don't take the spinlock, which is nice. */ 935 retry: 936 /* 937 * q->lock_ptr can change between this read and the following spin_lock. 938 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and 939 * optimizing lock_ptr out of the logic below. 940 */ 941 lock_ptr = READ_ONCE(q->lock_ptr); 942 if (lock_ptr != NULL) { 943 spin_lock(lock_ptr); 944 /* 945 * q->lock_ptr can change between reading it and 946 * spin_lock(), causing us to take the wrong lock. This 947 * corrects the race condition. 948 * 949 * Reasoning goes like this: if we have the wrong lock, 950 * q->lock_ptr must have changed (maybe several times) 951 * between reading it and the spin_lock(). It can 952 * change again after the spin_lock() but only if it was 953 * already changed before the spin_lock(). It cannot, 954 * however, change back to the original value. Therefore 955 * we can detect whether we acquired the correct lock. 956 */ 957 if (unlikely(lock_ptr != q->lock_ptr)) { 958 spin_unlock(lock_ptr); 959 goto retry; 960 } 961 __futex_unqueue(q); 962 963 BUG_ON(q->pi_state); 964 965 spin_unlock(lock_ptr); 966 ret = 1; 967 } 968 969 return ret; 970 } 971 972 void futex_q_lockptr_lock(struct futex_q *q) 973 { 974 spinlock_t *lock_ptr; 975 976 /* 977 * See futex_unqueue() why lock_ptr can change. 978 */ 979 guard(rcu)(); 980 retry: 981 lock_ptr = READ_ONCE(q->lock_ptr); 982 spin_lock(lock_ptr); 983 984 if (unlikely(lock_ptr != q->lock_ptr)) { 985 spin_unlock(lock_ptr); 986 goto retry; 987 } 988 } 989 990 /* 991 * PI futexes can not be requeued and must remove themselves from the hash 992 * bucket. The hash bucket lock (i.e. lock_ptr) is held. 993 */ 994 void futex_unqueue_pi(struct futex_q *q) 995 { 996 /* 997 * If the lock was not acquired (due to timeout or signal) then the 998 * rt_waiter is removed before futex_q is. If this is observed by 999 * an unlocker after dropping the rtmutex wait lock and before 1000 * acquiring the hash bucket lock, then the unlocker dequeues the 1001 * futex_q from the hash bucket list to guarantee consistent state 1002 * vs. userspace. Therefore the dequeue here must be conditional. 1003 */ 1004 if (!plist_node_empty(&q->list)) 1005 __futex_unqueue(q); 1006 1007 BUG_ON(!q->pi_state); 1008 put_pi_state(q->pi_state); 1009 q->pi_state = NULL; 1010 } 1011 1012 /* Constants for the pending_op argument of handle_futex_death */ 1013 #define HANDLE_DEATH_PENDING true 1014 #define HANDLE_DEATH_LIST false 1015 1016 /* 1017 * Process a futex-list entry, check whether it's owned by the 1018 * dying task, and do notification if so: 1019 */ 1020 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, 1021 bool pi, bool pending_op) 1022 { 1023 u32 uval, nval, mval; 1024 pid_t owner; 1025 int err; 1026 1027 /* Futex address must be 32bit aligned */ 1028 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) 1029 return -1; 1030 1031 retry: 1032 if (get_user(uval, uaddr)) 1033 return -1; 1034 1035 /* 1036 * Special case for regular (non PI) futexes. The unlock path in 1037 * user space has two race scenarios: 1038 * 1039 * 1. The unlock path releases the user space futex value and 1040 * before it can execute the futex() syscall to wake up 1041 * waiters it is killed. 1042 * 1043 * 2. A woken up waiter is killed before it can acquire the 1044 * futex in user space. 1045 * 1046 * In the second case, the wake up notification could be generated 1047 * by the unlock path in user space after setting the futex value 1048 * to zero or by the kernel after setting the OWNER_DIED bit below. 1049 * 1050 * In both cases the TID validation below prevents a wakeup of 1051 * potential waiters which can cause these waiters to block 1052 * forever. 1053 * 1054 * In both cases the following conditions are met: 1055 * 1056 * 1) task->robust_list->list_op_pending != NULL 1057 * @pending_op == true 1058 * 2) The owner part of user space futex value == 0 1059 * 3) Regular futex: @pi == false 1060 * 1061 * If these conditions are met, it is safe to attempt waking up a 1062 * potential waiter without touching the user space futex value and 1063 * trying to set the OWNER_DIED bit. If the futex value is zero, 1064 * the rest of the user space mutex state is consistent, so a woken 1065 * waiter will just take over the uncontended futex. Setting the 1066 * OWNER_DIED bit would create inconsistent state and malfunction 1067 * of the user space owner died handling. Otherwise, the OWNER_DIED 1068 * bit is already set, and the woken waiter is expected to deal with 1069 * this. 1070 */ 1071 owner = uval & FUTEX_TID_MASK; 1072 1073 if (pending_op && !pi && !owner) { 1074 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1, 1075 FUTEX_BITSET_MATCH_ANY); 1076 return 0; 1077 } 1078 1079 if (owner != task_pid_vnr(curr)) 1080 return 0; 1081 1082 /* 1083 * Ok, this dying thread is truly holding a futex 1084 * of interest. Set the OWNER_DIED bit atomically 1085 * via cmpxchg, and if the value had FUTEX_WAITERS 1086 * set, wake up a waiter (if any). (We have to do a 1087 * futex_wake() even if OWNER_DIED is already set - 1088 * to handle the rare but possible case of recursive 1089 * thread-death.) The rest of the cleanup is done in 1090 * userspace. 1091 */ 1092 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; 1093 1094 /* 1095 * We are not holding a lock here, but we want to have 1096 * the pagefault_disable/enable() protection because 1097 * we want to handle the fault gracefully. If the 1098 * access fails we try to fault in the futex with R/W 1099 * verification via get_user_pages. get_user() above 1100 * does not guarantee R/W access. If that fails we 1101 * give up and leave the futex locked. 1102 */ 1103 if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) { 1104 switch (err) { 1105 case -EFAULT: 1106 if (fault_in_user_writeable(uaddr)) 1107 return -1; 1108 goto retry; 1109 1110 case -EAGAIN: 1111 cond_resched(); 1112 goto retry; 1113 1114 default: 1115 WARN_ON_ONCE(1); 1116 return err; 1117 } 1118 } 1119 1120 if (nval != uval) 1121 goto retry; 1122 1123 /* 1124 * Wake robust non-PI futexes here. The wakeup of 1125 * PI futexes happens in exit_pi_state(): 1126 */ 1127 if (!pi && (uval & FUTEX_WAITERS)) { 1128 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1, 1129 FUTEX_BITSET_MATCH_ANY); 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* 1136 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 1137 */ 1138 static inline int fetch_robust_entry(struct robust_list __user **entry, 1139 struct robust_list __user * __user *head, 1140 unsigned int *pi) 1141 { 1142 unsigned long uentry; 1143 1144 if (get_user(uentry, (unsigned long __user *)head)) 1145 return -EFAULT; 1146 1147 *entry = (void __user *)(uentry & ~1UL); 1148 *pi = uentry & 1; 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * Walk curr->robust_list (very carefully, it's a userspace list!) 1155 * and mark any locks found there dead, and notify any waiters. 1156 * 1157 * We silently return on any sign of list-walking problem. 1158 */ 1159 static void exit_robust_list(struct task_struct *curr) 1160 { 1161 struct robust_list_head __user *head = curr->robust_list; 1162 struct robust_list __user *entry, *next_entry, *pending; 1163 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 1164 unsigned int next_pi; 1165 unsigned long futex_offset; 1166 int rc; 1167 1168 /* 1169 * Fetch the list head (which was registered earlier, via 1170 * sys_set_robust_list()): 1171 */ 1172 if (fetch_robust_entry(&entry, &head->list.next, &pi)) 1173 return; 1174 /* 1175 * Fetch the relative futex offset: 1176 */ 1177 if (get_user(futex_offset, &head->futex_offset)) 1178 return; 1179 /* 1180 * Fetch any possibly pending lock-add first, and handle it 1181 * if it exists: 1182 */ 1183 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) 1184 return; 1185 1186 next_entry = NULL; /* avoid warning with gcc */ 1187 while (entry != &head->list) { 1188 /* 1189 * Fetch the next entry in the list before calling 1190 * handle_futex_death: 1191 */ 1192 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); 1193 /* 1194 * A pending lock might already be on the list, so 1195 * don't process it twice: 1196 */ 1197 if (entry != pending) { 1198 if (handle_futex_death((void __user *)entry + futex_offset, 1199 curr, pi, HANDLE_DEATH_LIST)) 1200 return; 1201 } 1202 if (rc) 1203 return; 1204 entry = next_entry; 1205 pi = next_pi; 1206 /* 1207 * Avoid excessively long or circular lists: 1208 */ 1209 if (!--limit) 1210 break; 1211 1212 cond_resched(); 1213 } 1214 1215 if (pending) { 1216 handle_futex_death((void __user *)pending + futex_offset, 1217 curr, pip, HANDLE_DEATH_PENDING); 1218 } 1219 } 1220 1221 #ifdef CONFIG_COMPAT 1222 static void __user *futex_uaddr(struct robust_list __user *entry, 1223 compat_long_t futex_offset) 1224 { 1225 compat_uptr_t base = ptr_to_compat(entry); 1226 void __user *uaddr = compat_ptr(base + futex_offset); 1227 1228 return uaddr; 1229 } 1230 1231 /* 1232 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 1233 */ 1234 static inline int 1235 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, 1236 compat_uptr_t __user *head, unsigned int *pi) 1237 { 1238 if (get_user(*uentry, head)) 1239 return -EFAULT; 1240 1241 *entry = compat_ptr((*uentry) & ~1); 1242 *pi = (unsigned int)(*uentry) & 1; 1243 1244 return 0; 1245 } 1246 1247 /* 1248 * Walk curr->robust_list (very carefully, it's a userspace list!) 1249 * and mark any locks found there dead, and notify any waiters. 1250 * 1251 * We silently return on any sign of list-walking problem. 1252 */ 1253 static void compat_exit_robust_list(struct task_struct *curr) 1254 { 1255 struct compat_robust_list_head __user *head = curr->compat_robust_list; 1256 struct robust_list __user *entry, *next_entry, *pending; 1257 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 1258 unsigned int next_pi; 1259 compat_uptr_t uentry, next_uentry, upending; 1260 compat_long_t futex_offset; 1261 int rc; 1262 1263 /* 1264 * Fetch the list head (which was registered earlier, via 1265 * sys_set_robust_list()): 1266 */ 1267 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) 1268 return; 1269 /* 1270 * Fetch the relative futex offset: 1271 */ 1272 if (get_user(futex_offset, &head->futex_offset)) 1273 return; 1274 /* 1275 * Fetch any possibly pending lock-add first, and handle it 1276 * if it exists: 1277 */ 1278 if (compat_fetch_robust_entry(&upending, &pending, 1279 &head->list_op_pending, &pip)) 1280 return; 1281 1282 next_entry = NULL; /* avoid warning with gcc */ 1283 while (entry != (struct robust_list __user *) &head->list) { 1284 /* 1285 * Fetch the next entry in the list before calling 1286 * handle_futex_death: 1287 */ 1288 rc = compat_fetch_robust_entry(&next_uentry, &next_entry, 1289 (compat_uptr_t __user *)&entry->next, &next_pi); 1290 /* 1291 * A pending lock might already be on the list, so 1292 * dont process it twice: 1293 */ 1294 if (entry != pending) { 1295 void __user *uaddr = futex_uaddr(entry, futex_offset); 1296 1297 if (handle_futex_death(uaddr, curr, pi, 1298 HANDLE_DEATH_LIST)) 1299 return; 1300 } 1301 if (rc) 1302 return; 1303 uentry = next_uentry; 1304 entry = next_entry; 1305 pi = next_pi; 1306 /* 1307 * Avoid excessively long or circular lists: 1308 */ 1309 if (!--limit) 1310 break; 1311 1312 cond_resched(); 1313 } 1314 if (pending) { 1315 void __user *uaddr = futex_uaddr(pending, futex_offset); 1316 1317 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); 1318 } 1319 } 1320 #endif 1321 1322 #ifdef CONFIG_FUTEX_PI 1323 1324 /* 1325 * This task is holding PI mutexes at exit time => bad. 1326 * Kernel cleans up PI-state, but userspace is likely hosed. 1327 * (Robust-futex cleanup is separate and might save the day for userspace.) 1328 */ 1329 static void exit_pi_state_list(struct task_struct *curr) 1330 { 1331 struct list_head *next, *head = &curr->pi_state_list; 1332 struct futex_pi_state *pi_state; 1333 union futex_key key = FUTEX_KEY_INIT; 1334 1335 /* 1336 * The mutex mm_struct::futex_hash_lock might be acquired. 1337 */ 1338 might_sleep(); 1339 /* 1340 * Ensure the hash remains stable (no resize) during the while loop 1341 * below. The hb pointer is acquired under the pi_lock so we can't block 1342 * on the mutex. 1343 */ 1344 WARN_ON(curr != current); 1345 guard(private_hash)(); 1346 /* 1347 * We are a ZOMBIE and nobody can enqueue itself on 1348 * pi_state_list anymore, but we have to be careful 1349 * versus waiters unqueueing themselves: 1350 */ 1351 raw_spin_lock_irq(&curr->pi_lock); 1352 while (!list_empty(head)) { 1353 next = head->next; 1354 pi_state = list_entry(next, struct futex_pi_state, list); 1355 key = pi_state->key; 1356 if (1) { 1357 CLASS(hb, hb)(&key); 1358 1359 /* 1360 * We can race against put_pi_state() removing itself from the 1361 * list (a waiter going away). put_pi_state() will first 1362 * decrement the reference count and then modify the list, so 1363 * its possible to see the list entry but fail this reference 1364 * acquire. 1365 * 1366 * In that case; drop the locks to let put_pi_state() make 1367 * progress and retry the loop. 1368 */ 1369 if (!refcount_inc_not_zero(&pi_state->refcount)) { 1370 raw_spin_unlock_irq(&curr->pi_lock); 1371 cpu_relax(); 1372 raw_spin_lock_irq(&curr->pi_lock); 1373 continue; 1374 } 1375 raw_spin_unlock_irq(&curr->pi_lock); 1376 1377 spin_lock(&hb->lock); 1378 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); 1379 raw_spin_lock(&curr->pi_lock); 1380 /* 1381 * We dropped the pi-lock, so re-check whether this 1382 * task still owns the PI-state: 1383 */ 1384 if (head->next != next) { 1385 /* retain curr->pi_lock for the loop invariant */ 1386 raw_spin_unlock(&pi_state->pi_mutex.wait_lock); 1387 spin_unlock(&hb->lock); 1388 put_pi_state(pi_state); 1389 continue; 1390 } 1391 1392 WARN_ON(pi_state->owner != curr); 1393 WARN_ON(list_empty(&pi_state->list)); 1394 list_del_init(&pi_state->list); 1395 pi_state->owner = NULL; 1396 1397 raw_spin_unlock(&curr->pi_lock); 1398 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); 1399 spin_unlock(&hb->lock); 1400 } 1401 1402 rt_mutex_futex_unlock(&pi_state->pi_mutex); 1403 put_pi_state(pi_state); 1404 1405 raw_spin_lock_irq(&curr->pi_lock); 1406 } 1407 raw_spin_unlock_irq(&curr->pi_lock); 1408 } 1409 #else 1410 static inline void exit_pi_state_list(struct task_struct *curr) { } 1411 #endif 1412 1413 static void futex_cleanup(struct task_struct *tsk) 1414 { 1415 if (unlikely(tsk->robust_list)) { 1416 exit_robust_list(tsk); 1417 tsk->robust_list = NULL; 1418 } 1419 1420 #ifdef CONFIG_COMPAT 1421 if (unlikely(tsk->compat_robust_list)) { 1422 compat_exit_robust_list(tsk); 1423 tsk->compat_robust_list = NULL; 1424 } 1425 #endif 1426 1427 if (unlikely(!list_empty(&tsk->pi_state_list))) 1428 exit_pi_state_list(tsk); 1429 } 1430 1431 /** 1432 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD 1433 * @tsk: task to set the state on 1434 * 1435 * Set the futex exit state of the task lockless. The futex waiter code 1436 * observes that state when a task is exiting and loops until the task has 1437 * actually finished the futex cleanup. The worst case for this is that the 1438 * waiter runs through the wait loop until the state becomes visible. 1439 * 1440 * This is called from the recursive fault handling path in make_task_dead(). 1441 * 1442 * This is best effort. Either the futex exit code has run already or 1443 * not. If the OWNER_DIED bit has been set on the futex then the waiter can 1444 * take it over. If not, the problem is pushed back to user space. If the 1445 * futex exit code did not run yet, then an already queued waiter might 1446 * block forever, but there is nothing which can be done about that. 1447 */ 1448 void futex_exit_recursive(struct task_struct *tsk) 1449 { 1450 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ 1451 if (tsk->futex_state == FUTEX_STATE_EXITING) 1452 mutex_unlock(&tsk->futex_exit_mutex); 1453 tsk->futex_state = FUTEX_STATE_DEAD; 1454 } 1455 1456 static void futex_cleanup_begin(struct task_struct *tsk) 1457 { 1458 /* 1459 * Prevent various race issues against a concurrent incoming waiter 1460 * including live locks by forcing the waiter to block on 1461 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in 1462 * attach_to_pi_owner(). 1463 */ 1464 mutex_lock(&tsk->futex_exit_mutex); 1465 1466 /* 1467 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. 1468 * 1469 * This ensures that all subsequent checks of tsk->futex_state in 1470 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with 1471 * tsk->pi_lock held. 1472 * 1473 * It guarantees also that a pi_state which was queued right before 1474 * the state change under tsk->pi_lock by a concurrent waiter must 1475 * be observed in exit_pi_state_list(). 1476 */ 1477 raw_spin_lock_irq(&tsk->pi_lock); 1478 tsk->futex_state = FUTEX_STATE_EXITING; 1479 raw_spin_unlock_irq(&tsk->pi_lock); 1480 } 1481 1482 static void futex_cleanup_end(struct task_struct *tsk, int state) 1483 { 1484 /* 1485 * Lockless store. The only side effect is that an observer might 1486 * take another loop until it becomes visible. 1487 */ 1488 tsk->futex_state = state; 1489 /* 1490 * Drop the exit protection. This unblocks waiters which observed 1491 * FUTEX_STATE_EXITING to reevaluate the state. 1492 */ 1493 mutex_unlock(&tsk->futex_exit_mutex); 1494 } 1495 1496 void futex_exec_release(struct task_struct *tsk) 1497 { 1498 /* 1499 * The state handling is done for consistency, but in the case of 1500 * exec() there is no way to prevent further damage as the PID stays 1501 * the same. But for the unlikely and arguably buggy case that a 1502 * futex is held on exec(), this provides at least as much state 1503 * consistency protection which is possible. 1504 */ 1505 futex_cleanup_begin(tsk); 1506 futex_cleanup(tsk); 1507 /* 1508 * Reset the state to FUTEX_STATE_OK. The task is alive and about 1509 * exec a new binary. 1510 */ 1511 futex_cleanup_end(tsk, FUTEX_STATE_OK); 1512 } 1513 1514 void futex_exit_release(struct task_struct *tsk) 1515 { 1516 futex_cleanup_begin(tsk); 1517 futex_cleanup(tsk); 1518 futex_cleanup_end(tsk, FUTEX_STATE_DEAD); 1519 } 1520 1521 static void futex_hash_bucket_init(struct futex_hash_bucket *fhb, 1522 struct futex_private_hash *fph) 1523 { 1524 #ifdef CONFIG_FUTEX_PRIVATE_HASH 1525 fhb->priv = fph; 1526 #endif 1527 atomic_set(&fhb->waiters, 0); 1528 plist_head_init(&fhb->chain); 1529 spin_lock_init(&fhb->lock); 1530 } 1531 1532 #define FH_CUSTOM 0x01 1533 #define FH_IMMUTABLE 0x02 1534 1535 #ifdef CONFIG_FUTEX_PRIVATE_HASH 1536 1537 /* 1538 * futex-ref 1539 * 1540 * Heavily inspired by percpu-rwsem/percpu-refcount; not reusing any of that 1541 * code because it just doesn't fit right. 1542 * 1543 * Dual counter, per-cpu / atomic approach like percpu-refcount, except it 1544 * re-initializes the state automatically, such that the fph swizzle is also a 1545 * transition back to per-cpu. 1546 */ 1547 1548 static void futex_ref_rcu(struct rcu_head *head); 1549 1550 static void __futex_ref_atomic_begin(struct futex_private_hash *fph) 1551 { 1552 struct mm_struct *mm = fph->mm; 1553 1554 /* 1555 * The counter we're about to switch to must have fully switched; 1556 * otherwise it would be impossible for it to have reported success 1557 * from futex_ref_is_dead(). 1558 */ 1559 WARN_ON_ONCE(atomic_long_read(&mm->futex_atomic) != 0); 1560 1561 /* 1562 * Set the atomic to the bias value such that futex_ref_{get,put}() 1563 * will never observe 0. Will be fixed up in __futex_ref_atomic_end() 1564 * when folding in the percpu count. 1565 */ 1566 atomic_long_set(&mm->futex_atomic, LONG_MAX); 1567 smp_store_release(&fph->state, FR_ATOMIC); 1568 1569 call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu); 1570 } 1571 1572 static void __futex_ref_atomic_end(struct futex_private_hash *fph) 1573 { 1574 struct mm_struct *mm = fph->mm; 1575 unsigned int count = 0; 1576 long ret; 1577 int cpu; 1578 1579 /* 1580 * Per __futex_ref_atomic_begin() the state of the fph must be ATOMIC 1581 * and per this RCU callback, everybody must now observe this state and 1582 * use the atomic variable. 1583 */ 1584 WARN_ON_ONCE(fph->state != FR_ATOMIC); 1585 1586 /* 1587 * Therefore the per-cpu counter is now stable, sum and reset. 1588 */ 1589 for_each_possible_cpu(cpu) { 1590 unsigned int *ptr = per_cpu_ptr(mm->futex_ref, cpu); 1591 count += *ptr; 1592 *ptr = 0; 1593 } 1594 1595 /* 1596 * Re-init for the next cycle. 1597 */ 1598 this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */ 1599 1600 /* 1601 * Add actual count, subtract bias and initial refcount. 1602 * 1603 * The moment this atomic operation happens, futex_ref_is_dead() can 1604 * become true. 1605 */ 1606 ret = atomic_long_add_return(count - LONG_MAX - 1, &mm->futex_atomic); 1607 if (!ret) 1608 wake_up_var(mm); 1609 1610 WARN_ON_ONCE(ret < 0); 1611 mmput_async(mm); 1612 } 1613 1614 static void futex_ref_rcu(struct rcu_head *head) 1615 { 1616 struct mm_struct *mm = container_of(head, struct mm_struct, futex_rcu); 1617 struct futex_private_hash *fph = rcu_dereference_raw(mm->futex_phash); 1618 1619 if (fph->state == FR_PERCPU) { 1620 /* 1621 * Per this extra grace-period, everybody must now observe 1622 * fph as the current fph and no previously observed fph's 1623 * are in-flight. 1624 * 1625 * Notably, nobody will now rely on the atomic 1626 * futex_ref_is_dead() state anymore so we can begin the 1627 * migration of the per-cpu counter into the atomic. 1628 */ 1629 __futex_ref_atomic_begin(fph); 1630 return; 1631 } 1632 1633 __futex_ref_atomic_end(fph); 1634 } 1635 1636 /* 1637 * Drop the initial refcount and transition to atomics. 1638 */ 1639 static void futex_ref_drop(struct futex_private_hash *fph) 1640 { 1641 struct mm_struct *mm = fph->mm; 1642 1643 /* 1644 * Can only transition the current fph; 1645 */ 1646 WARN_ON_ONCE(rcu_dereference_raw(mm->futex_phash) != fph); 1647 /* 1648 * We enqueue at least one RCU callback. Ensure mm stays if the task 1649 * exits before the transition is completed. 1650 */ 1651 mmget(mm); 1652 1653 /* 1654 * In order to avoid the following scenario: 1655 * 1656 * futex_hash() __futex_pivot_hash() 1657 * guard(rcu); guard(mm->futex_hash_lock); 1658 * fph = mm->futex_phash; 1659 * rcu_assign_pointer(&mm->futex_phash, new); 1660 * futex_hash_allocate() 1661 * futex_ref_drop() 1662 * fph->state = FR_ATOMIC; 1663 * atomic_set(, BIAS); 1664 * 1665 * futex_private_hash_get(fph); // OOPS 1666 * 1667 * Where an old fph (which is FR_ATOMIC) and should fail on 1668 * inc_not_zero, will succeed because a new transition is started and 1669 * the atomic is bias'ed away from 0. 1670 * 1671 * There must be at least one full grace-period between publishing a 1672 * new fph and trying to replace it. 1673 */ 1674 if (poll_state_synchronize_rcu(mm->futex_batches)) { 1675 /* 1676 * There was a grace-period, we can begin now. 1677 */ 1678 __futex_ref_atomic_begin(fph); 1679 return; 1680 } 1681 1682 call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu); 1683 } 1684 1685 static bool futex_ref_get(struct futex_private_hash *fph) 1686 { 1687 struct mm_struct *mm = fph->mm; 1688 1689 guard(rcu)(); 1690 1691 if (smp_load_acquire(&fph->state) == FR_PERCPU) { 1692 this_cpu_inc(*mm->futex_ref); 1693 return true; 1694 } 1695 1696 return atomic_long_inc_not_zero(&mm->futex_atomic); 1697 } 1698 1699 static bool futex_ref_put(struct futex_private_hash *fph) 1700 { 1701 struct mm_struct *mm = fph->mm; 1702 1703 guard(rcu)(); 1704 1705 if (smp_load_acquire(&fph->state) == FR_PERCPU) { 1706 this_cpu_dec(*mm->futex_ref); 1707 return false; 1708 } 1709 1710 return atomic_long_dec_and_test(&mm->futex_atomic); 1711 } 1712 1713 static bool futex_ref_is_dead(struct futex_private_hash *fph) 1714 { 1715 struct mm_struct *mm = fph->mm; 1716 1717 guard(rcu)(); 1718 1719 if (smp_load_acquire(&fph->state) == FR_PERCPU) 1720 return false; 1721 1722 return atomic_long_read(&mm->futex_atomic) == 0; 1723 } 1724 1725 int futex_mm_init(struct mm_struct *mm) 1726 { 1727 mutex_init(&mm->futex_hash_lock); 1728 RCU_INIT_POINTER(mm->futex_phash, NULL); 1729 mm->futex_phash_new = NULL; 1730 /* futex-ref */ 1731 atomic_long_set(&mm->futex_atomic, 0); 1732 mm->futex_batches = get_state_synchronize_rcu(); 1733 mm->futex_ref = alloc_percpu(unsigned int); 1734 if (!mm->futex_ref) 1735 return -ENOMEM; 1736 this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */ 1737 return 0; 1738 } 1739 1740 void futex_hash_free(struct mm_struct *mm) 1741 { 1742 struct futex_private_hash *fph; 1743 1744 free_percpu(mm->futex_ref); 1745 kvfree(mm->futex_phash_new); 1746 fph = rcu_dereference_raw(mm->futex_phash); 1747 if (fph) 1748 kvfree(fph); 1749 } 1750 1751 static bool futex_pivot_pending(struct mm_struct *mm) 1752 { 1753 struct futex_private_hash *fph; 1754 1755 guard(rcu)(); 1756 1757 if (!mm->futex_phash_new) 1758 return true; 1759 1760 fph = rcu_dereference(mm->futex_phash); 1761 return futex_ref_is_dead(fph); 1762 } 1763 1764 static bool futex_hash_less(struct futex_private_hash *a, 1765 struct futex_private_hash *b) 1766 { 1767 /* user provided always wins */ 1768 if (!a->custom && b->custom) 1769 return true; 1770 if (a->custom && !b->custom) 1771 return false; 1772 1773 /* zero-sized hash wins */ 1774 if (!b->hash_mask) 1775 return true; 1776 if (!a->hash_mask) 1777 return false; 1778 1779 /* keep the biggest */ 1780 if (a->hash_mask < b->hash_mask) 1781 return true; 1782 if (a->hash_mask > b->hash_mask) 1783 return false; 1784 1785 return false; /* equal */ 1786 } 1787 1788 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags) 1789 { 1790 struct mm_struct *mm = current->mm; 1791 struct futex_private_hash *fph; 1792 bool custom = flags & FH_CUSTOM; 1793 int i; 1794 1795 if (hash_slots && (hash_slots == 1 || !is_power_of_2(hash_slots))) 1796 return -EINVAL; 1797 1798 /* 1799 * Once we've disabled the global hash there is no way back. 1800 */ 1801 scoped_guard(rcu) { 1802 fph = rcu_dereference(mm->futex_phash); 1803 if (fph && (!fph->hash_mask || fph->immutable)) { 1804 if (custom) 1805 return -EBUSY; 1806 return 0; 1807 } 1808 } 1809 1810 fph = kvzalloc(struct_size(fph, queues, hash_slots), 1811 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1812 if (!fph) 1813 return -ENOMEM; 1814 1815 fph->hash_mask = hash_slots ? hash_slots - 1 : 0; 1816 fph->custom = custom; 1817 fph->immutable = !!(flags & FH_IMMUTABLE); 1818 fph->mm = mm; 1819 1820 for (i = 0; i < hash_slots; i++) 1821 futex_hash_bucket_init(&fph->queues[i], fph); 1822 1823 if (custom) { 1824 /* 1825 * Only let prctl() wait / retry; don't unduly delay clone(). 1826 */ 1827 again: 1828 wait_var_event(mm, futex_pivot_pending(mm)); 1829 } 1830 1831 scoped_guard(mutex, &mm->futex_hash_lock) { 1832 struct futex_private_hash *free __free(kvfree) = NULL; 1833 struct futex_private_hash *cur, *new; 1834 1835 cur = rcu_dereference_protected(mm->futex_phash, 1836 lockdep_is_held(&mm->futex_hash_lock)); 1837 new = mm->futex_phash_new; 1838 mm->futex_phash_new = NULL; 1839 1840 if (fph) { 1841 if (cur && (!cur->hash_mask || cur->immutable)) { 1842 /* 1843 * If two threads simultaneously request the global 1844 * hash then the first one performs the switch, 1845 * the second one returns here. 1846 */ 1847 free = fph; 1848 mm->futex_phash_new = new; 1849 return -EBUSY; 1850 } 1851 if (cur && !new) { 1852 /* 1853 * If we have an existing hash, but do not yet have 1854 * allocated a replacement hash, drop the initial 1855 * reference on the existing hash. 1856 */ 1857 futex_ref_drop(cur); 1858 } 1859 1860 if (new) { 1861 /* 1862 * Two updates raced; throw out the lesser one. 1863 */ 1864 if (futex_hash_less(new, fph)) { 1865 free = new; 1866 new = fph; 1867 } else { 1868 free = fph; 1869 } 1870 } else { 1871 new = fph; 1872 } 1873 fph = NULL; 1874 } 1875 1876 if (new) { 1877 /* 1878 * Will set mm->futex_phash_new on failure; 1879 * futex_private_hash_get() will try again. 1880 */ 1881 if (!__futex_pivot_hash(mm, new) && custom) 1882 goto again; 1883 } 1884 } 1885 return 0; 1886 } 1887 1888 int futex_hash_allocate_default(void) 1889 { 1890 unsigned int threads, buckets, current_buckets = 0; 1891 struct futex_private_hash *fph; 1892 1893 if (!current->mm) 1894 return 0; 1895 1896 scoped_guard(rcu) { 1897 threads = min_t(unsigned int, 1898 get_nr_threads(current), 1899 num_online_cpus()); 1900 1901 fph = rcu_dereference(current->mm->futex_phash); 1902 if (fph) { 1903 if (fph->custom) 1904 return 0; 1905 1906 current_buckets = fph->hash_mask + 1; 1907 } 1908 } 1909 1910 /* 1911 * The default allocation will remain within 1912 * 16 <= threads * 4 <= global hash size 1913 */ 1914 buckets = roundup_pow_of_two(4 * threads); 1915 buckets = clamp(buckets, 16, futex_hashmask + 1); 1916 1917 if (current_buckets >= buckets) 1918 return 0; 1919 1920 return futex_hash_allocate(buckets, 0); 1921 } 1922 1923 static int futex_hash_get_slots(void) 1924 { 1925 struct futex_private_hash *fph; 1926 1927 guard(rcu)(); 1928 fph = rcu_dereference(current->mm->futex_phash); 1929 if (fph && fph->hash_mask) 1930 return fph->hash_mask + 1; 1931 return 0; 1932 } 1933 1934 static int futex_hash_get_immutable(void) 1935 { 1936 struct futex_private_hash *fph; 1937 1938 guard(rcu)(); 1939 fph = rcu_dereference(current->mm->futex_phash); 1940 if (fph && fph->immutable) 1941 return 1; 1942 if (fph && !fph->hash_mask) 1943 return 1; 1944 return 0; 1945 } 1946 1947 #else 1948 1949 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags) 1950 { 1951 return -EINVAL; 1952 } 1953 1954 static int futex_hash_get_slots(void) 1955 { 1956 return 0; 1957 } 1958 1959 static int futex_hash_get_immutable(void) 1960 { 1961 return 0; 1962 } 1963 #endif 1964 1965 int futex_hash_prctl(unsigned long arg2, unsigned long arg3, unsigned long arg4) 1966 { 1967 unsigned int flags = FH_CUSTOM; 1968 int ret; 1969 1970 switch (arg2) { 1971 case PR_FUTEX_HASH_SET_SLOTS: 1972 if (arg4 & ~FH_FLAG_IMMUTABLE) 1973 return -EINVAL; 1974 if (arg4 & FH_FLAG_IMMUTABLE) 1975 flags |= FH_IMMUTABLE; 1976 ret = futex_hash_allocate(arg3, flags); 1977 break; 1978 1979 case PR_FUTEX_HASH_GET_SLOTS: 1980 ret = futex_hash_get_slots(); 1981 break; 1982 1983 case PR_FUTEX_HASH_GET_IMMUTABLE: 1984 ret = futex_hash_get_immutable(); 1985 break; 1986 1987 default: 1988 ret = -EINVAL; 1989 break; 1990 } 1991 return ret; 1992 } 1993 1994 static int __init futex_init(void) 1995 { 1996 unsigned long hashsize, i; 1997 unsigned int order, n; 1998 unsigned long size; 1999 2000 #ifdef CONFIG_BASE_SMALL 2001 hashsize = 16; 2002 #else 2003 hashsize = 256 * num_possible_cpus(); 2004 hashsize /= num_possible_nodes(); 2005 hashsize = max(4, hashsize); 2006 hashsize = roundup_pow_of_two(hashsize); 2007 #endif 2008 futex_hashshift = ilog2(hashsize); 2009 size = sizeof(struct futex_hash_bucket) * hashsize; 2010 order = get_order(size); 2011 2012 for_each_node(n) { 2013 struct futex_hash_bucket *table; 2014 2015 if (order > MAX_PAGE_ORDER) 2016 table = vmalloc_huge_node(size, GFP_KERNEL, n); 2017 else 2018 table = alloc_pages_exact_nid(n, size, GFP_KERNEL); 2019 2020 BUG_ON(!table); 2021 2022 for (i = 0; i < hashsize; i++) 2023 futex_hash_bucket_init(&table[i], NULL); 2024 2025 futex_queues[n] = table; 2026 } 2027 2028 futex_hashmask = hashsize - 1; 2029 pr_info("futex hash table entries: %lu (%lu bytes on %d NUMA nodes, total %lu KiB, %s).\n", 2030 hashsize, size, num_possible_nodes(), size * num_possible_nodes() / 1024, 2031 order > MAX_PAGE_ORDER ? "vmalloc" : "linear"); 2032 return 0; 2033 } 2034 core_initcall(futex_init); 2035