xref: /linux/kernel/futex/core.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/plist.h>
38 #include <linux/memblock.h>
39 #include <linux/fault-inject.h>
40 #include <linux/slab.h>
41 
42 #include "futex.h"
43 #include "../locking/rtmutex_common.h"
44 
45 /*
46  * The base of the bucket array and its size are always used together
47  * (after initialization only in futex_hash()), so ensure that they
48  * reside in the same cacheline.
49  */
50 static struct {
51 	struct futex_hash_bucket *queues;
52 	unsigned long            hashsize;
53 } __futex_data __read_mostly __aligned(2*sizeof(long));
54 #define futex_queues   (__futex_data.queues)
55 #define futex_hashsize (__futex_data.hashsize)
56 
57 
58 /*
59  * Fault injections for futexes.
60  */
61 #ifdef CONFIG_FAIL_FUTEX
62 
63 static struct {
64 	struct fault_attr attr;
65 
66 	bool ignore_private;
67 } fail_futex = {
68 	.attr = FAULT_ATTR_INITIALIZER,
69 	.ignore_private = false,
70 };
71 
72 static int __init setup_fail_futex(char *str)
73 {
74 	return setup_fault_attr(&fail_futex.attr, str);
75 }
76 __setup("fail_futex=", setup_fail_futex);
77 
78 bool should_fail_futex(bool fshared)
79 {
80 	if (fail_futex.ignore_private && !fshared)
81 		return false;
82 
83 	return should_fail(&fail_futex.attr, 1);
84 }
85 
86 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
87 
88 static int __init fail_futex_debugfs(void)
89 {
90 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
91 	struct dentry *dir;
92 
93 	dir = fault_create_debugfs_attr("fail_futex", NULL,
94 					&fail_futex.attr);
95 	if (IS_ERR(dir))
96 		return PTR_ERR(dir);
97 
98 	debugfs_create_bool("ignore-private", mode, dir,
99 			    &fail_futex.ignore_private);
100 	return 0;
101 }
102 
103 late_initcall(fail_futex_debugfs);
104 
105 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
106 
107 #endif /* CONFIG_FAIL_FUTEX */
108 
109 /**
110  * futex_hash - Return the hash bucket in the global hash
111  * @key:	Pointer to the futex key for which the hash is calculated
112  *
113  * We hash on the keys returned from get_futex_key (see below) and return the
114  * corresponding hash bucket in the global hash.
115  */
116 struct futex_hash_bucket *futex_hash(union futex_key *key)
117 {
118 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
119 			  key->both.offset);
120 
121 	return &futex_queues[hash & (futex_hashsize - 1)];
122 }
123 
124 
125 /**
126  * futex_setup_timer - set up the sleeping hrtimer.
127  * @time:	ptr to the given timeout value
128  * @timeout:	the hrtimer_sleeper structure to be set up
129  * @flags:	futex flags
130  * @range_ns:	optional range in ns
131  *
132  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
133  *	   value given
134  */
135 struct hrtimer_sleeper *
136 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
137 		  int flags, u64 range_ns)
138 {
139 	if (!time)
140 		return NULL;
141 
142 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
143 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
144 				      HRTIMER_MODE_ABS);
145 	/*
146 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
147 	 * effectively the same as calling hrtimer_set_expires().
148 	 */
149 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
150 
151 	return timeout;
152 }
153 
154 /*
155  * Generate a machine wide unique identifier for this inode.
156  *
157  * This relies on u64 not wrapping in the life-time of the machine; which with
158  * 1ns resolution means almost 585 years.
159  *
160  * This further relies on the fact that a well formed program will not unmap
161  * the file while it has a (shared) futex waiting on it. This mapping will have
162  * a file reference which pins the mount and inode.
163  *
164  * If for some reason an inode gets evicted and read back in again, it will get
165  * a new sequence number and will _NOT_ match, even though it is the exact same
166  * file.
167  *
168  * It is important that futex_match() will never have a false-positive, esp.
169  * for PI futexes that can mess up the state. The above argues that false-negatives
170  * are only possible for malformed programs.
171  */
172 static u64 get_inode_sequence_number(struct inode *inode)
173 {
174 	static atomic64_t i_seq;
175 	u64 old;
176 
177 	/* Does the inode already have a sequence number? */
178 	old = atomic64_read(&inode->i_sequence);
179 	if (likely(old))
180 		return old;
181 
182 	for (;;) {
183 		u64 new = atomic64_add_return(1, &i_seq);
184 		if (WARN_ON_ONCE(!new))
185 			continue;
186 
187 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
188 		if (old)
189 			return old;
190 		return new;
191 	}
192 }
193 
194 /**
195  * get_futex_key() - Get parameters which are the keys for a futex
196  * @uaddr:	virtual address of the futex
197  * @flags:	FLAGS_*
198  * @key:	address where result is stored.
199  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
200  *              FUTEX_WRITE)
201  *
202  * Return: a negative error code or 0
203  *
204  * The key words are stored in @key on success.
205  *
206  * For shared mappings (when @fshared), the key is:
207  *
208  *   ( inode->i_sequence, page->index, offset_within_page )
209  *
210  * [ also see get_inode_sequence_number() ]
211  *
212  * For private mappings (or when !@fshared), the key is:
213  *
214  *   ( current->mm, address, 0 )
215  *
216  * This allows (cross process, where applicable) identification of the futex
217  * without keeping the page pinned for the duration of the FUTEX_WAIT.
218  *
219  * lock_page() might sleep, the caller should not hold a spinlock.
220  */
221 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
222 		  enum futex_access rw)
223 {
224 	unsigned long address = (unsigned long)uaddr;
225 	struct mm_struct *mm = current->mm;
226 	struct page *page;
227 	struct folio *folio;
228 	struct address_space *mapping;
229 	int err, ro = 0;
230 	bool fshared;
231 
232 	fshared = flags & FLAGS_SHARED;
233 
234 	/*
235 	 * The futex address must be "naturally" aligned.
236 	 */
237 	key->both.offset = address % PAGE_SIZE;
238 	if (unlikely((address % sizeof(u32)) != 0))
239 		return -EINVAL;
240 	address -= key->both.offset;
241 
242 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
243 		return -EFAULT;
244 
245 	if (unlikely(should_fail_futex(fshared)))
246 		return -EFAULT;
247 
248 	/*
249 	 * PROCESS_PRIVATE futexes are fast.
250 	 * As the mm cannot disappear under us and the 'key' only needs
251 	 * virtual address, we dont even have to find the underlying vma.
252 	 * Note : We do have to check 'uaddr' is a valid user address,
253 	 *        but access_ok() should be faster than find_vma()
254 	 */
255 	if (!fshared) {
256 		/*
257 		 * On no-MMU, shared futexes are treated as private, therefore
258 		 * we must not include the current process in the key. Since
259 		 * there is only one address space, the address is a unique key
260 		 * on its own.
261 		 */
262 		if (IS_ENABLED(CONFIG_MMU))
263 			key->private.mm = mm;
264 		else
265 			key->private.mm = NULL;
266 
267 		key->private.address = address;
268 		return 0;
269 	}
270 
271 again:
272 	/* Ignore any VERIFY_READ mapping (futex common case) */
273 	if (unlikely(should_fail_futex(true)))
274 		return -EFAULT;
275 
276 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
277 	/*
278 	 * If write access is not required (eg. FUTEX_WAIT), try
279 	 * and get read-only access.
280 	 */
281 	if (err == -EFAULT && rw == FUTEX_READ) {
282 		err = get_user_pages_fast(address, 1, 0, &page);
283 		ro = 1;
284 	}
285 	if (err < 0)
286 		return err;
287 	else
288 		err = 0;
289 
290 	/*
291 	 * The treatment of mapping from this point on is critical. The folio
292 	 * lock protects many things but in this context the folio lock
293 	 * stabilizes mapping, prevents inode freeing in the shared
294 	 * file-backed region case and guards against movement to swap cache.
295 	 *
296 	 * Strictly speaking the folio lock is not needed in all cases being
297 	 * considered here and folio lock forces unnecessarily serialization.
298 	 * From this point on, mapping will be re-verified if necessary and
299 	 * folio lock will be acquired only if it is unavoidable
300 	 *
301 	 * Mapping checks require the folio so it is looked up now. For
302 	 * anonymous pages, it does not matter if the folio is split
303 	 * in the future as the key is based on the address. For
304 	 * filesystem-backed pages, the precise page is required as the
305 	 * index of the page determines the key.
306 	 */
307 	folio = page_folio(page);
308 	mapping = READ_ONCE(folio->mapping);
309 
310 	/*
311 	 * If folio->mapping is NULL, then it cannot be an anonymous
312 	 * page; but it might be the ZERO_PAGE or in the gate area or
313 	 * in a special mapping (all cases which we are happy to fail);
314 	 * or it may have been a good file page when get_user_pages_fast
315 	 * found it, but truncated or holepunched or subjected to
316 	 * invalidate_complete_page2 before we got the folio lock (also
317 	 * cases which we are happy to fail).  And we hold a reference,
318 	 * so refcount care in invalidate_inode_page's remove_mapping
319 	 * prevents drop_caches from setting mapping to NULL beneath us.
320 	 *
321 	 * The case we do have to guard against is when memory pressure made
322 	 * shmem_writepage move it from filecache to swapcache beneath us:
323 	 * an unlikely race, but we do need to retry for folio->mapping.
324 	 */
325 	if (unlikely(!mapping)) {
326 		int shmem_swizzled;
327 
328 		/*
329 		 * Folio lock is required to identify which special case above
330 		 * applies. If this is really a shmem page then the folio lock
331 		 * will prevent unexpected transitions.
332 		 */
333 		folio_lock(folio);
334 		shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
335 		folio_unlock(folio);
336 		folio_put(folio);
337 
338 		if (shmem_swizzled)
339 			goto again;
340 
341 		return -EFAULT;
342 	}
343 
344 	/*
345 	 * Private mappings are handled in a simple way.
346 	 *
347 	 * If the futex key is stored in anonymous memory, then the associated
348 	 * object is the mm which is implicitly pinned by the calling process.
349 	 *
350 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
351 	 * it's a read-only handle, it's expected that futexes attach to
352 	 * the object not the particular process.
353 	 */
354 	if (folio_test_anon(folio)) {
355 		/*
356 		 * A RO anonymous page will never change and thus doesn't make
357 		 * sense for futex operations.
358 		 */
359 		if (unlikely(should_fail_futex(true)) || ro) {
360 			err = -EFAULT;
361 			goto out;
362 		}
363 
364 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
365 		key->private.mm = mm;
366 		key->private.address = address;
367 
368 	} else {
369 		struct inode *inode;
370 
371 		/*
372 		 * The associated futex object in this case is the inode and
373 		 * the folio->mapping must be traversed. Ordinarily this should
374 		 * be stabilised under folio lock but it's not strictly
375 		 * necessary in this case as we just want to pin the inode, not
376 		 * update i_pages or anything like that.
377 		 *
378 		 * The RCU read lock is taken as the inode is finally freed
379 		 * under RCU. If the mapping still matches expectations then the
380 		 * mapping->host can be safely accessed as being a valid inode.
381 		 */
382 		rcu_read_lock();
383 
384 		if (READ_ONCE(folio->mapping) != mapping) {
385 			rcu_read_unlock();
386 			folio_put(folio);
387 
388 			goto again;
389 		}
390 
391 		inode = READ_ONCE(mapping->host);
392 		if (!inode) {
393 			rcu_read_unlock();
394 			folio_put(folio);
395 
396 			goto again;
397 		}
398 
399 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
400 		key->shared.i_seq = get_inode_sequence_number(inode);
401 		key->shared.pgoff = folio->index + folio_page_idx(folio, page);
402 		rcu_read_unlock();
403 	}
404 
405 out:
406 	folio_put(folio);
407 	return err;
408 }
409 
410 /**
411  * fault_in_user_writeable() - Fault in user address and verify RW access
412  * @uaddr:	pointer to faulting user space address
413  *
414  * Slow path to fixup the fault we just took in the atomic write
415  * access to @uaddr.
416  *
417  * We have no generic implementation of a non-destructive write to the
418  * user address. We know that we faulted in the atomic pagefault
419  * disabled section so we can as well avoid the #PF overhead by
420  * calling get_user_pages() right away.
421  */
422 int fault_in_user_writeable(u32 __user *uaddr)
423 {
424 	struct mm_struct *mm = current->mm;
425 	int ret;
426 
427 	mmap_read_lock(mm);
428 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
429 			       FAULT_FLAG_WRITE, NULL);
430 	mmap_read_unlock(mm);
431 
432 	return ret < 0 ? ret : 0;
433 }
434 
435 /**
436  * futex_top_waiter() - Return the highest priority waiter on a futex
437  * @hb:		the hash bucket the futex_q's reside in
438  * @key:	the futex key (to distinguish it from other futex futex_q's)
439  *
440  * Must be called with the hb lock held.
441  */
442 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
443 {
444 	struct futex_q *this;
445 
446 	plist_for_each_entry(this, &hb->chain, list) {
447 		if (futex_match(&this->key, key))
448 			return this;
449 	}
450 	return NULL;
451 }
452 
453 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
454 {
455 	int ret;
456 
457 	pagefault_disable();
458 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
459 	pagefault_enable();
460 
461 	return ret;
462 }
463 
464 int futex_get_value_locked(u32 *dest, u32 __user *from)
465 {
466 	int ret;
467 
468 	pagefault_disable();
469 	ret = __get_user(*dest, from);
470 	pagefault_enable();
471 
472 	return ret ? -EFAULT : 0;
473 }
474 
475 /**
476  * wait_for_owner_exiting - Block until the owner has exited
477  * @ret: owner's current futex lock status
478  * @exiting:	Pointer to the exiting task
479  *
480  * Caller must hold a refcount on @exiting.
481  */
482 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
483 {
484 	if (ret != -EBUSY) {
485 		WARN_ON_ONCE(exiting);
486 		return;
487 	}
488 
489 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
490 		return;
491 
492 	mutex_lock(&exiting->futex_exit_mutex);
493 	/*
494 	 * No point in doing state checking here. If the waiter got here
495 	 * while the task was in exec()->exec_futex_release() then it can
496 	 * have any FUTEX_STATE_* value when the waiter has acquired the
497 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
498 	 * already. Highly unlikely and not a problem. Just one more round
499 	 * through the futex maze.
500 	 */
501 	mutex_unlock(&exiting->futex_exit_mutex);
502 
503 	put_task_struct(exiting);
504 }
505 
506 /**
507  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
508  * @q:	The futex_q to unqueue
509  *
510  * The q->lock_ptr must not be NULL and must be held by the caller.
511  */
512 void __futex_unqueue(struct futex_q *q)
513 {
514 	struct futex_hash_bucket *hb;
515 
516 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
517 		return;
518 	lockdep_assert_held(q->lock_ptr);
519 
520 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
521 	plist_del(&q->list, &hb->chain);
522 	futex_hb_waiters_dec(hb);
523 }
524 
525 /* The key must be already stored in q->key. */
526 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
527 	__acquires(&hb->lock)
528 {
529 	struct futex_hash_bucket *hb;
530 
531 	hb = futex_hash(&q->key);
532 
533 	/*
534 	 * Increment the counter before taking the lock so that
535 	 * a potential waker won't miss a to-be-slept task that is
536 	 * waiting for the spinlock. This is safe as all futex_q_lock()
537 	 * users end up calling futex_queue(). Similarly, for housekeeping,
538 	 * decrement the counter at futex_q_unlock() when some error has
539 	 * occurred and we don't end up adding the task to the list.
540 	 */
541 	futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
542 
543 	q->lock_ptr = &hb->lock;
544 
545 	spin_lock(&hb->lock);
546 	return hb;
547 }
548 
549 void futex_q_unlock(struct futex_hash_bucket *hb)
550 	__releases(&hb->lock)
551 {
552 	spin_unlock(&hb->lock);
553 	futex_hb_waiters_dec(hb);
554 }
555 
556 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
557 {
558 	int prio;
559 
560 	/*
561 	 * The priority used to register this element is
562 	 * - either the real thread-priority for the real-time threads
563 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
564 	 * - or MAX_RT_PRIO for non-RT threads.
565 	 * Thus, all RT-threads are woken first in priority order, and
566 	 * the others are woken last, in FIFO order.
567 	 */
568 	prio = min(current->normal_prio, MAX_RT_PRIO);
569 
570 	plist_node_init(&q->list, prio);
571 	plist_add(&q->list, &hb->chain);
572 	q->task = current;
573 }
574 
575 /**
576  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
577  * @q:	The futex_q to unqueue
578  *
579  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
580  * be paired with exactly one earlier call to futex_queue().
581  *
582  * Return:
583  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
584  *  - 0 - if the futex_q was already removed by the waking thread
585  */
586 int futex_unqueue(struct futex_q *q)
587 {
588 	spinlock_t *lock_ptr;
589 	int ret = 0;
590 
591 	/* In the common case we don't take the spinlock, which is nice. */
592 retry:
593 	/*
594 	 * q->lock_ptr can change between this read and the following spin_lock.
595 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
596 	 * optimizing lock_ptr out of the logic below.
597 	 */
598 	lock_ptr = READ_ONCE(q->lock_ptr);
599 	if (lock_ptr != NULL) {
600 		spin_lock(lock_ptr);
601 		/*
602 		 * q->lock_ptr can change between reading it and
603 		 * spin_lock(), causing us to take the wrong lock.  This
604 		 * corrects the race condition.
605 		 *
606 		 * Reasoning goes like this: if we have the wrong lock,
607 		 * q->lock_ptr must have changed (maybe several times)
608 		 * between reading it and the spin_lock().  It can
609 		 * change again after the spin_lock() but only if it was
610 		 * already changed before the spin_lock().  It cannot,
611 		 * however, change back to the original value.  Therefore
612 		 * we can detect whether we acquired the correct lock.
613 		 */
614 		if (unlikely(lock_ptr != q->lock_ptr)) {
615 			spin_unlock(lock_ptr);
616 			goto retry;
617 		}
618 		__futex_unqueue(q);
619 
620 		BUG_ON(q->pi_state);
621 
622 		spin_unlock(lock_ptr);
623 		ret = 1;
624 	}
625 
626 	return ret;
627 }
628 
629 /*
630  * PI futexes can not be requeued and must remove themselves from the hash
631  * bucket. The hash bucket lock (i.e. lock_ptr) is held.
632  */
633 void futex_unqueue_pi(struct futex_q *q)
634 {
635 	/*
636 	 * If the lock was not acquired (due to timeout or signal) then the
637 	 * rt_waiter is removed before futex_q is. If this is observed by
638 	 * an unlocker after dropping the rtmutex wait lock and before
639 	 * acquiring the hash bucket lock, then the unlocker dequeues the
640 	 * futex_q from the hash bucket list to guarantee consistent state
641 	 * vs. userspace. Therefore the dequeue here must be conditional.
642 	 */
643 	if (!plist_node_empty(&q->list))
644 		__futex_unqueue(q);
645 
646 	BUG_ON(!q->pi_state);
647 	put_pi_state(q->pi_state);
648 	q->pi_state = NULL;
649 }
650 
651 /* Constants for the pending_op argument of handle_futex_death */
652 #define HANDLE_DEATH_PENDING	true
653 #define HANDLE_DEATH_LIST	false
654 
655 /*
656  * Process a futex-list entry, check whether it's owned by the
657  * dying task, and do notification if so:
658  */
659 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
660 			      bool pi, bool pending_op)
661 {
662 	u32 uval, nval, mval;
663 	pid_t owner;
664 	int err;
665 
666 	/* Futex address must be 32bit aligned */
667 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
668 		return -1;
669 
670 retry:
671 	if (get_user(uval, uaddr))
672 		return -1;
673 
674 	/*
675 	 * Special case for regular (non PI) futexes. The unlock path in
676 	 * user space has two race scenarios:
677 	 *
678 	 * 1. The unlock path releases the user space futex value and
679 	 *    before it can execute the futex() syscall to wake up
680 	 *    waiters it is killed.
681 	 *
682 	 * 2. A woken up waiter is killed before it can acquire the
683 	 *    futex in user space.
684 	 *
685 	 * In the second case, the wake up notification could be generated
686 	 * by the unlock path in user space after setting the futex value
687 	 * to zero or by the kernel after setting the OWNER_DIED bit below.
688 	 *
689 	 * In both cases the TID validation below prevents a wakeup of
690 	 * potential waiters which can cause these waiters to block
691 	 * forever.
692 	 *
693 	 * In both cases the following conditions are met:
694 	 *
695 	 *	1) task->robust_list->list_op_pending != NULL
696 	 *	   @pending_op == true
697 	 *	2) The owner part of user space futex value == 0
698 	 *	3) Regular futex: @pi == false
699 	 *
700 	 * If these conditions are met, it is safe to attempt waking up a
701 	 * potential waiter without touching the user space futex value and
702 	 * trying to set the OWNER_DIED bit. If the futex value is zero,
703 	 * the rest of the user space mutex state is consistent, so a woken
704 	 * waiter will just take over the uncontended futex. Setting the
705 	 * OWNER_DIED bit would create inconsistent state and malfunction
706 	 * of the user space owner died handling. Otherwise, the OWNER_DIED
707 	 * bit is already set, and the woken waiter is expected to deal with
708 	 * this.
709 	 */
710 	owner = uval & FUTEX_TID_MASK;
711 
712 	if (pending_op && !pi && !owner) {
713 		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
714 			   FUTEX_BITSET_MATCH_ANY);
715 		return 0;
716 	}
717 
718 	if (owner != task_pid_vnr(curr))
719 		return 0;
720 
721 	/*
722 	 * Ok, this dying thread is truly holding a futex
723 	 * of interest. Set the OWNER_DIED bit atomically
724 	 * via cmpxchg, and if the value had FUTEX_WAITERS
725 	 * set, wake up a waiter (if any). (We have to do a
726 	 * futex_wake() even if OWNER_DIED is already set -
727 	 * to handle the rare but possible case of recursive
728 	 * thread-death.) The rest of the cleanup is done in
729 	 * userspace.
730 	 */
731 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
732 
733 	/*
734 	 * We are not holding a lock here, but we want to have
735 	 * the pagefault_disable/enable() protection because
736 	 * we want to handle the fault gracefully. If the
737 	 * access fails we try to fault in the futex with R/W
738 	 * verification via get_user_pages. get_user() above
739 	 * does not guarantee R/W access. If that fails we
740 	 * give up and leave the futex locked.
741 	 */
742 	if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
743 		switch (err) {
744 		case -EFAULT:
745 			if (fault_in_user_writeable(uaddr))
746 				return -1;
747 			goto retry;
748 
749 		case -EAGAIN:
750 			cond_resched();
751 			goto retry;
752 
753 		default:
754 			WARN_ON_ONCE(1);
755 			return err;
756 		}
757 	}
758 
759 	if (nval != uval)
760 		goto retry;
761 
762 	/*
763 	 * Wake robust non-PI futexes here. The wakeup of
764 	 * PI futexes happens in exit_pi_state():
765 	 */
766 	if (!pi && (uval & FUTEX_WAITERS)) {
767 		futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
768 			   FUTEX_BITSET_MATCH_ANY);
769 	}
770 
771 	return 0;
772 }
773 
774 /*
775  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
776  */
777 static inline int fetch_robust_entry(struct robust_list __user **entry,
778 				     struct robust_list __user * __user *head,
779 				     unsigned int *pi)
780 {
781 	unsigned long uentry;
782 
783 	if (get_user(uentry, (unsigned long __user *)head))
784 		return -EFAULT;
785 
786 	*entry = (void __user *)(uentry & ~1UL);
787 	*pi = uentry & 1;
788 
789 	return 0;
790 }
791 
792 /*
793  * Walk curr->robust_list (very carefully, it's a userspace list!)
794  * and mark any locks found there dead, and notify any waiters.
795  *
796  * We silently return on any sign of list-walking problem.
797  */
798 static void exit_robust_list(struct task_struct *curr)
799 {
800 	struct robust_list_head __user *head = curr->robust_list;
801 	struct robust_list __user *entry, *next_entry, *pending;
802 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
803 	unsigned int next_pi;
804 	unsigned long futex_offset;
805 	int rc;
806 
807 	/*
808 	 * Fetch the list head (which was registered earlier, via
809 	 * sys_set_robust_list()):
810 	 */
811 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
812 		return;
813 	/*
814 	 * Fetch the relative futex offset:
815 	 */
816 	if (get_user(futex_offset, &head->futex_offset))
817 		return;
818 	/*
819 	 * Fetch any possibly pending lock-add first, and handle it
820 	 * if it exists:
821 	 */
822 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
823 		return;
824 
825 	next_entry = NULL;	/* avoid warning with gcc */
826 	while (entry != &head->list) {
827 		/*
828 		 * Fetch the next entry in the list before calling
829 		 * handle_futex_death:
830 		 */
831 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
832 		/*
833 		 * A pending lock might already be on the list, so
834 		 * don't process it twice:
835 		 */
836 		if (entry != pending) {
837 			if (handle_futex_death((void __user *)entry + futex_offset,
838 						curr, pi, HANDLE_DEATH_LIST))
839 				return;
840 		}
841 		if (rc)
842 			return;
843 		entry = next_entry;
844 		pi = next_pi;
845 		/*
846 		 * Avoid excessively long or circular lists:
847 		 */
848 		if (!--limit)
849 			break;
850 
851 		cond_resched();
852 	}
853 
854 	if (pending) {
855 		handle_futex_death((void __user *)pending + futex_offset,
856 				   curr, pip, HANDLE_DEATH_PENDING);
857 	}
858 }
859 
860 #ifdef CONFIG_COMPAT
861 static void __user *futex_uaddr(struct robust_list __user *entry,
862 				compat_long_t futex_offset)
863 {
864 	compat_uptr_t base = ptr_to_compat(entry);
865 	void __user *uaddr = compat_ptr(base + futex_offset);
866 
867 	return uaddr;
868 }
869 
870 /*
871  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
872  */
873 static inline int
874 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
875 		   compat_uptr_t __user *head, unsigned int *pi)
876 {
877 	if (get_user(*uentry, head))
878 		return -EFAULT;
879 
880 	*entry = compat_ptr((*uentry) & ~1);
881 	*pi = (unsigned int)(*uentry) & 1;
882 
883 	return 0;
884 }
885 
886 /*
887  * Walk curr->robust_list (very carefully, it's a userspace list!)
888  * and mark any locks found there dead, and notify any waiters.
889  *
890  * We silently return on any sign of list-walking problem.
891  */
892 static void compat_exit_robust_list(struct task_struct *curr)
893 {
894 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
895 	struct robust_list __user *entry, *next_entry, *pending;
896 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
897 	unsigned int next_pi;
898 	compat_uptr_t uentry, next_uentry, upending;
899 	compat_long_t futex_offset;
900 	int rc;
901 
902 	/*
903 	 * Fetch the list head (which was registered earlier, via
904 	 * sys_set_robust_list()):
905 	 */
906 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
907 		return;
908 	/*
909 	 * Fetch the relative futex offset:
910 	 */
911 	if (get_user(futex_offset, &head->futex_offset))
912 		return;
913 	/*
914 	 * Fetch any possibly pending lock-add first, and handle it
915 	 * if it exists:
916 	 */
917 	if (compat_fetch_robust_entry(&upending, &pending,
918 			       &head->list_op_pending, &pip))
919 		return;
920 
921 	next_entry = NULL;	/* avoid warning with gcc */
922 	while (entry != (struct robust_list __user *) &head->list) {
923 		/*
924 		 * Fetch the next entry in the list before calling
925 		 * handle_futex_death:
926 		 */
927 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
928 			(compat_uptr_t __user *)&entry->next, &next_pi);
929 		/*
930 		 * A pending lock might already be on the list, so
931 		 * dont process it twice:
932 		 */
933 		if (entry != pending) {
934 			void __user *uaddr = futex_uaddr(entry, futex_offset);
935 
936 			if (handle_futex_death(uaddr, curr, pi,
937 					       HANDLE_DEATH_LIST))
938 				return;
939 		}
940 		if (rc)
941 			return;
942 		uentry = next_uentry;
943 		entry = next_entry;
944 		pi = next_pi;
945 		/*
946 		 * Avoid excessively long or circular lists:
947 		 */
948 		if (!--limit)
949 			break;
950 
951 		cond_resched();
952 	}
953 	if (pending) {
954 		void __user *uaddr = futex_uaddr(pending, futex_offset);
955 
956 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
957 	}
958 }
959 #endif
960 
961 #ifdef CONFIG_FUTEX_PI
962 
963 /*
964  * This task is holding PI mutexes at exit time => bad.
965  * Kernel cleans up PI-state, but userspace is likely hosed.
966  * (Robust-futex cleanup is separate and might save the day for userspace.)
967  */
968 static void exit_pi_state_list(struct task_struct *curr)
969 {
970 	struct list_head *next, *head = &curr->pi_state_list;
971 	struct futex_pi_state *pi_state;
972 	struct futex_hash_bucket *hb;
973 	union futex_key key = FUTEX_KEY_INIT;
974 
975 	/*
976 	 * We are a ZOMBIE and nobody can enqueue itself on
977 	 * pi_state_list anymore, but we have to be careful
978 	 * versus waiters unqueueing themselves:
979 	 */
980 	raw_spin_lock_irq(&curr->pi_lock);
981 	while (!list_empty(head)) {
982 		next = head->next;
983 		pi_state = list_entry(next, struct futex_pi_state, list);
984 		key = pi_state->key;
985 		hb = futex_hash(&key);
986 
987 		/*
988 		 * We can race against put_pi_state() removing itself from the
989 		 * list (a waiter going away). put_pi_state() will first
990 		 * decrement the reference count and then modify the list, so
991 		 * its possible to see the list entry but fail this reference
992 		 * acquire.
993 		 *
994 		 * In that case; drop the locks to let put_pi_state() make
995 		 * progress and retry the loop.
996 		 */
997 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
998 			raw_spin_unlock_irq(&curr->pi_lock);
999 			cpu_relax();
1000 			raw_spin_lock_irq(&curr->pi_lock);
1001 			continue;
1002 		}
1003 		raw_spin_unlock_irq(&curr->pi_lock);
1004 
1005 		spin_lock(&hb->lock);
1006 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1007 		raw_spin_lock(&curr->pi_lock);
1008 		/*
1009 		 * We dropped the pi-lock, so re-check whether this
1010 		 * task still owns the PI-state:
1011 		 */
1012 		if (head->next != next) {
1013 			/* retain curr->pi_lock for the loop invariant */
1014 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1015 			spin_unlock(&hb->lock);
1016 			put_pi_state(pi_state);
1017 			continue;
1018 		}
1019 
1020 		WARN_ON(pi_state->owner != curr);
1021 		WARN_ON(list_empty(&pi_state->list));
1022 		list_del_init(&pi_state->list);
1023 		pi_state->owner = NULL;
1024 
1025 		raw_spin_unlock(&curr->pi_lock);
1026 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1027 		spin_unlock(&hb->lock);
1028 
1029 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
1030 		put_pi_state(pi_state);
1031 
1032 		raw_spin_lock_irq(&curr->pi_lock);
1033 	}
1034 	raw_spin_unlock_irq(&curr->pi_lock);
1035 }
1036 #else
1037 static inline void exit_pi_state_list(struct task_struct *curr) { }
1038 #endif
1039 
1040 static void futex_cleanup(struct task_struct *tsk)
1041 {
1042 	if (unlikely(tsk->robust_list)) {
1043 		exit_robust_list(tsk);
1044 		tsk->robust_list = NULL;
1045 	}
1046 
1047 #ifdef CONFIG_COMPAT
1048 	if (unlikely(tsk->compat_robust_list)) {
1049 		compat_exit_robust_list(tsk);
1050 		tsk->compat_robust_list = NULL;
1051 	}
1052 #endif
1053 
1054 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1055 		exit_pi_state_list(tsk);
1056 }
1057 
1058 /**
1059  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1060  * @tsk:	task to set the state on
1061  *
1062  * Set the futex exit state of the task lockless. The futex waiter code
1063  * observes that state when a task is exiting and loops until the task has
1064  * actually finished the futex cleanup. The worst case for this is that the
1065  * waiter runs through the wait loop until the state becomes visible.
1066  *
1067  * This is called from the recursive fault handling path in make_task_dead().
1068  *
1069  * This is best effort. Either the futex exit code has run already or
1070  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1071  * take it over. If not, the problem is pushed back to user space. If the
1072  * futex exit code did not run yet, then an already queued waiter might
1073  * block forever, but there is nothing which can be done about that.
1074  */
1075 void futex_exit_recursive(struct task_struct *tsk)
1076 {
1077 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1078 	if (tsk->futex_state == FUTEX_STATE_EXITING)
1079 		mutex_unlock(&tsk->futex_exit_mutex);
1080 	tsk->futex_state = FUTEX_STATE_DEAD;
1081 }
1082 
1083 static void futex_cleanup_begin(struct task_struct *tsk)
1084 {
1085 	/*
1086 	 * Prevent various race issues against a concurrent incoming waiter
1087 	 * including live locks by forcing the waiter to block on
1088 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1089 	 * attach_to_pi_owner().
1090 	 */
1091 	mutex_lock(&tsk->futex_exit_mutex);
1092 
1093 	/*
1094 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1095 	 *
1096 	 * This ensures that all subsequent checks of tsk->futex_state in
1097 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1098 	 * tsk->pi_lock held.
1099 	 *
1100 	 * It guarantees also that a pi_state which was queued right before
1101 	 * the state change under tsk->pi_lock by a concurrent waiter must
1102 	 * be observed in exit_pi_state_list().
1103 	 */
1104 	raw_spin_lock_irq(&tsk->pi_lock);
1105 	tsk->futex_state = FUTEX_STATE_EXITING;
1106 	raw_spin_unlock_irq(&tsk->pi_lock);
1107 }
1108 
1109 static void futex_cleanup_end(struct task_struct *tsk, int state)
1110 {
1111 	/*
1112 	 * Lockless store. The only side effect is that an observer might
1113 	 * take another loop until it becomes visible.
1114 	 */
1115 	tsk->futex_state = state;
1116 	/*
1117 	 * Drop the exit protection. This unblocks waiters which observed
1118 	 * FUTEX_STATE_EXITING to reevaluate the state.
1119 	 */
1120 	mutex_unlock(&tsk->futex_exit_mutex);
1121 }
1122 
1123 void futex_exec_release(struct task_struct *tsk)
1124 {
1125 	/*
1126 	 * The state handling is done for consistency, but in the case of
1127 	 * exec() there is no way to prevent further damage as the PID stays
1128 	 * the same. But for the unlikely and arguably buggy case that a
1129 	 * futex is held on exec(), this provides at least as much state
1130 	 * consistency protection which is possible.
1131 	 */
1132 	futex_cleanup_begin(tsk);
1133 	futex_cleanup(tsk);
1134 	/*
1135 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1136 	 * exec a new binary.
1137 	 */
1138 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
1139 }
1140 
1141 void futex_exit_release(struct task_struct *tsk)
1142 {
1143 	futex_cleanup_begin(tsk);
1144 	futex_cleanup(tsk);
1145 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1146 }
1147 
1148 static int __init futex_init(void)
1149 {
1150 	unsigned int futex_shift;
1151 	unsigned long i;
1152 
1153 #if CONFIG_BASE_SMALL
1154 	futex_hashsize = 16;
1155 #else
1156 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1157 #endif
1158 
1159 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1160 					       futex_hashsize, 0, 0,
1161 					       &futex_shift, NULL,
1162 					       futex_hashsize, futex_hashsize);
1163 	futex_hashsize = 1UL << futex_shift;
1164 
1165 	for (i = 0; i < futex_hashsize; i++) {
1166 		atomic_set(&futex_queues[i].waiters, 0);
1167 		plist_head_init(&futex_queues[i].chain);
1168 		spin_lock_init(&futex_queues[i].lock);
1169 	}
1170 
1171 	return 0;
1172 }
1173 core_initcall(futex_init);
1174