1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Fast Userspace Mutexes (which I call "Futexes!"). 4 * (C) Rusty Russell, IBM 2002 5 * 6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar 7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved 8 * 9 * Removed page pinning, fix privately mapped COW pages and other cleanups 10 * (C) Copyright 2003, 2004 Jamie Lokier 11 * 12 * Robust futex support started by Ingo Molnar 13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved 14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes. 15 * 16 * PI-futex support started by Ingo Molnar and Thomas Gleixner 17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 19 * 20 * PRIVATE futexes by Eric Dumazet 21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> 22 * 23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> 24 * Copyright (C) IBM Corporation, 2009 25 * Thanks to Thomas Gleixner for conceptual design and careful reviews. 26 * 27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly 28 * enough at me, Linus for the original (flawed) idea, Matthew 29 * Kirkwood for proof-of-concept implementation. 30 * 31 * "The futexes are also cursed." 32 * "But they come in a choice of three flavours!" 33 */ 34 #include <linux/compat.h> 35 #include <linux/jhash.h> 36 #include <linux/pagemap.h> 37 #include <linux/debugfs.h> 38 #include <linux/plist.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/memblock.h> 42 #include <linux/fault-inject.h> 43 #include <linux/slab.h> 44 #include <linux/prctl.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mmap_lock.h> 47 48 #include "futex.h" 49 #include "../locking/rtmutex_common.h" 50 51 /* 52 * The base of the bucket array and its size are always used together 53 * (after initialization only in futex_hash()), so ensure that they 54 * reside in the same cacheline. 55 */ 56 static struct { 57 unsigned long hashmask; 58 unsigned int hashshift; 59 struct futex_hash_bucket *queues[MAX_NUMNODES]; 60 } __futex_data __read_mostly __aligned(2*sizeof(long)); 61 62 #define futex_hashmask (__futex_data.hashmask) 63 #define futex_hashshift (__futex_data.hashshift) 64 #define futex_queues (__futex_data.queues) 65 66 struct futex_private_hash { 67 int state; 68 unsigned int hash_mask; 69 struct rcu_head rcu; 70 void *mm; 71 bool custom; 72 struct futex_hash_bucket queues[]; 73 }; 74 75 /* 76 * Fault injections for futexes. 77 */ 78 #ifdef CONFIG_FAIL_FUTEX 79 80 static struct { 81 struct fault_attr attr; 82 83 bool ignore_private; 84 } fail_futex = { 85 .attr = FAULT_ATTR_INITIALIZER, 86 .ignore_private = false, 87 }; 88 89 static int __init setup_fail_futex(char *str) 90 { 91 return setup_fault_attr(&fail_futex.attr, str); 92 } 93 __setup("fail_futex=", setup_fail_futex); 94 95 bool should_fail_futex(bool fshared) 96 { 97 if (fail_futex.ignore_private && !fshared) 98 return false; 99 100 return should_fail(&fail_futex.attr, 1); 101 } 102 103 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 104 105 static int __init fail_futex_debugfs(void) 106 { 107 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 108 struct dentry *dir; 109 110 dir = fault_create_debugfs_attr("fail_futex", NULL, 111 &fail_futex.attr); 112 if (IS_ERR(dir)) 113 return PTR_ERR(dir); 114 115 debugfs_create_bool("ignore-private", mode, dir, 116 &fail_futex.ignore_private); 117 return 0; 118 } 119 120 late_initcall(fail_futex_debugfs); 121 122 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 123 124 #endif /* CONFIG_FAIL_FUTEX */ 125 126 static struct futex_hash_bucket * 127 __futex_hash(union futex_key *key, struct futex_private_hash *fph); 128 129 #ifdef CONFIG_FUTEX_PRIVATE_HASH 130 static bool futex_ref_get(struct futex_private_hash *fph); 131 static bool futex_ref_put(struct futex_private_hash *fph); 132 static bool futex_ref_is_dead(struct futex_private_hash *fph); 133 134 enum { FR_PERCPU = 0, FR_ATOMIC }; 135 136 static inline bool futex_key_is_private(union futex_key *key) 137 { 138 /* 139 * Relies on get_futex_key() to set either bit for shared 140 * futexes -- see comment with union futex_key. 141 */ 142 return !(key->both.offset & (FUT_OFF_INODE | FUT_OFF_MMSHARED)); 143 } 144 145 static bool futex_private_hash_get(struct futex_private_hash *fph) 146 { 147 return futex_ref_get(fph); 148 } 149 150 void futex_private_hash_put(struct futex_private_hash *fph) 151 { 152 if (futex_ref_put(fph)) 153 wake_up_var(fph->mm); 154 } 155 156 /** 157 * futex_hash_get - Get an additional reference for the local hash. 158 * @hb: ptr to the private local hash. 159 * 160 * Obtain an additional reference for the already obtained hash bucket. The 161 * caller must already own an reference. 162 */ 163 void futex_hash_get(struct futex_hash_bucket *hb) 164 { 165 struct futex_private_hash *fph = hb->priv; 166 167 if (!fph) 168 return; 169 WARN_ON_ONCE(!futex_private_hash_get(fph)); 170 } 171 172 void futex_hash_put(struct futex_hash_bucket *hb) 173 { 174 struct futex_private_hash *fph = hb->priv; 175 176 if (!fph) 177 return; 178 futex_private_hash_put(fph); 179 } 180 181 static struct futex_hash_bucket * 182 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph) 183 { 184 u32 hash; 185 186 if (!futex_key_is_private(key)) 187 return NULL; 188 189 if (!fph) 190 fph = rcu_dereference(key->private.mm->futex_phash); 191 if (!fph || !fph->hash_mask) 192 return NULL; 193 194 hash = jhash2((void *)&key->private.address, 195 sizeof(key->private.address) / 4, 196 key->both.offset); 197 return &fph->queues[hash & fph->hash_mask]; 198 } 199 200 static void futex_rehash_private(struct futex_private_hash *old, 201 struct futex_private_hash *new) 202 { 203 struct futex_hash_bucket *hb_old, *hb_new; 204 unsigned int slots = old->hash_mask + 1; 205 unsigned int i; 206 207 for (i = 0; i < slots; i++) { 208 struct futex_q *this, *tmp; 209 210 hb_old = &old->queues[i]; 211 212 spin_lock(&hb_old->lock); 213 plist_for_each_entry_safe(this, tmp, &hb_old->chain, list) { 214 215 plist_del(&this->list, &hb_old->chain); 216 futex_hb_waiters_dec(hb_old); 217 218 WARN_ON_ONCE(this->lock_ptr != &hb_old->lock); 219 220 hb_new = __futex_hash(&this->key, new); 221 futex_hb_waiters_inc(hb_new); 222 /* 223 * The new pointer isn't published yet but an already 224 * moved user can be unqueued due to timeout or signal. 225 */ 226 spin_lock_nested(&hb_new->lock, SINGLE_DEPTH_NESTING); 227 plist_add(&this->list, &hb_new->chain); 228 this->lock_ptr = &hb_new->lock; 229 spin_unlock(&hb_new->lock); 230 } 231 spin_unlock(&hb_old->lock); 232 } 233 } 234 235 static bool __futex_pivot_hash(struct mm_struct *mm, 236 struct futex_private_hash *new) 237 { 238 struct futex_private_hash *fph; 239 240 WARN_ON_ONCE(mm->futex_phash_new); 241 242 fph = rcu_dereference_protected(mm->futex_phash, 243 lockdep_is_held(&mm->futex_hash_lock)); 244 if (fph) { 245 if (!futex_ref_is_dead(fph)) { 246 mm->futex_phash_new = new; 247 return false; 248 } 249 250 futex_rehash_private(fph, new); 251 } 252 new->state = FR_PERCPU; 253 scoped_guard(rcu) { 254 mm->futex_batches = get_state_synchronize_rcu(); 255 rcu_assign_pointer(mm->futex_phash, new); 256 } 257 kvfree_rcu(fph, rcu); 258 return true; 259 } 260 261 static void futex_pivot_hash(struct mm_struct *mm) 262 { 263 scoped_guard(mutex, &mm->futex_hash_lock) { 264 struct futex_private_hash *fph; 265 266 fph = mm->futex_phash_new; 267 if (fph) { 268 mm->futex_phash_new = NULL; 269 __futex_pivot_hash(mm, fph); 270 } 271 } 272 } 273 274 struct futex_private_hash *futex_private_hash(void) 275 { 276 struct mm_struct *mm = current->mm; 277 /* 278 * Ideally we don't loop. If there is a replacement in progress 279 * then a new private hash is already prepared and a reference can't be 280 * obtained once the last user dropped it's. 281 * In that case we block on mm_struct::futex_hash_lock and either have 282 * to perform the replacement or wait while someone else is doing the 283 * job. Eitherway, on the second iteration we acquire a reference on the 284 * new private hash or loop again because a new replacement has been 285 * requested. 286 */ 287 again: 288 scoped_guard(rcu) { 289 struct futex_private_hash *fph; 290 291 fph = rcu_dereference(mm->futex_phash); 292 if (!fph) 293 return NULL; 294 295 if (futex_private_hash_get(fph)) 296 return fph; 297 } 298 futex_pivot_hash(mm); 299 goto again; 300 } 301 302 struct futex_hash_bucket *futex_hash(union futex_key *key) 303 { 304 struct futex_private_hash *fph; 305 struct futex_hash_bucket *hb; 306 307 again: 308 scoped_guard(rcu) { 309 hb = __futex_hash(key, NULL); 310 fph = hb->priv; 311 312 if (!fph || futex_private_hash_get(fph)) 313 return hb; 314 } 315 futex_pivot_hash(key->private.mm); 316 goto again; 317 } 318 319 #else /* !CONFIG_FUTEX_PRIVATE_HASH */ 320 321 static struct futex_hash_bucket * 322 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph) 323 { 324 return NULL; 325 } 326 327 struct futex_hash_bucket *futex_hash(union futex_key *key) 328 { 329 return __futex_hash(key, NULL); 330 } 331 332 #endif /* CONFIG_FUTEX_PRIVATE_HASH */ 333 334 #ifdef CONFIG_FUTEX_MPOL 335 336 static int __futex_key_to_node(struct mm_struct *mm, unsigned long addr) 337 { 338 struct vm_area_struct *vma = vma_lookup(mm, addr); 339 struct mempolicy *mpol; 340 int node = FUTEX_NO_NODE; 341 342 if (!vma) 343 return FUTEX_NO_NODE; 344 345 mpol = vma_policy(vma); 346 if (!mpol) 347 return FUTEX_NO_NODE; 348 349 switch (mpol->mode) { 350 case MPOL_PREFERRED: 351 node = first_node(mpol->nodes); 352 break; 353 case MPOL_PREFERRED_MANY: 354 case MPOL_BIND: 355 if (mpol->home_node != NUMA_NO_NODE) 356 node = mpol->home_node; 357 break; 358 default: 359 break; 360 } 361 362 return node; 363 } 364 365 static int futex_key_to_node_opt(struct mm_struct *mm, unsigned long addr) 366 { 367 int seq, node; 368 369 guard(rcu)(); 370 371 if (!mmap_lock_speculate_try_begin(mm, &seq)) 372 return -EBUSY; 373 374 node = __futex_key_to_node(mm, addr); 375 376 if (mmap_lock_speculate_retry(mm, seq)) 377 return -EAGAIN; 378 379 return node; 380 } 381 382 static int futex_mpol(struct mm_struct *mm, unsigned long addr) 383 { 384 int node; 385 386 node = futex_key_to_node_opt(mm, addr); 387 if (node >= FUTEX_NO_NODE) 388 return node; 389 390 guard(mmap_read_lock)(mm); 391 return __futex_key_to_node(mm, addr); 392 } 393 394 #else /* !CONFIG_FUTEX_MPOL */ 395 396 static int futex_mpol(struct mm_struct *mm, unsigned long addr) 397 { 398 return FUTEX_NO_NODE; 399 } 400 401 #endif /* CONFIG_FUTEX_MPOL */ 402 403 /** 404 * __futex_hash - Return the hash bucket 405 * @key: Pointer to the futex key for which the hash is calculated 406 * @fph: Pointer to private hash if known 407 * 408 * We hash on the keys returned from get_futex_key (see below) and return the 409 * corresponding hash bucket. 410 * If the FUTEX is PROCESS_PRIVATE then a per-process hash bucket (from the 411 * private hash) is returned if existing. Otherwise a hash bucket from the 412 * global hash is returned. 413 */ 414 static struct futex_hash_bucket * 415 __futex_hash(union futex_key *key, struct futex_private_hash *fph) 416 { 417 int node = key->both.node; 418 u32 hash; 419 420 if (node == FUTEX_NO_NODE) { 421 struct futex_hash_bucket *hb; 422 423 hb = __futex_hash_private(key, fph); 424 if (hb) 425 return hb; 426 } 427 428 hash = jhash2((u32 *)key, 429 offsetof(typeof(*key), both.offset) / sizeof(u32), 430 key->both.offset); 431 432 if (node == FUTEX_NO_NODE) { 433 /* 434 * In case of !FLAGS_NUMA, use some unused hash bits to pick a 435 * node -- this ensures regular futexes are interleaved across 436 * the nodes and avoids having to allocate multiple 437 * hash-tables. 438 * 439 * NOTE: this isn't perfectly uniform, but it is fast and 440 * handles sparse node masks. 441 */ 442 node = (hash >> futex_hashshift) % nr_node_ids; 443 if (!node_possible(node)) { 444 node = find_next_bit_wrap(node_possible_map.bits, 445 nr_node_ids, node); 446 } 447 } 448 449 return &futex_queues[node][hash & futex_hashmask]; 450 } 451 452 /** 453 * futex_setup_timer - set up the sleeping hrtimer. 454 * @time: ptr to the given timeout value 455 * @timeout: the hrtimer_sleeper structure to be set up 456 * @flags: futex flags 457 * @range_ns: optional range in ns 458 * 459 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout 460 * value given 461 */ 462 struct hrtimer_sleeper * 463 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, 464 int flags, u64 range_ns) 465 { 466 if (!time) 467 return NULL; 468 469 hrtimer_setup_sleeper_on_stack(timeout, 470 (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC, 471 HRTIMER_MODE_ABS); 472 /* 473 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is 474 * effectively the same as calling hrtimer_set_expires(). 475 */ 476 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); 477 478 return timeout; 479 } 480 481 /* 482 * Generate a machine wide unique identifier for this inode. 483 * 484 * This relies on u64 not wrapping in the life-time of the machine; which with 485 * 1ns resolution means almost 585 years. 486 * 487 * This further relies on the fact that a well formed program will not unmap 488 * the file while it has a (shared) futex waiting on it. This mapping will have 489 * a file reference which pins the mount and inode. 490 * 491 * If for some reason an inode gets evicted and read back in again, it will get 492 * a new sequence number and will _NOT_ match, even though it is the exact same 493 * file. 494 * 495 * It is important that futex_match() will never have a false-positive, esp. 496 * for PI futexes that can mess up the state. The above argues that false-negatives 497 * are only possible for malformed programs. 498 */ 499 static u64 get_inode_sequence_number(struct inode *inode) 500 { 501 static atomic64_t i_seq; 502 u64 old; 503 504 /* Does the inode already have a sequence number? */ 505 old = atomic64_read(&inode->i_sequence); 506 if (likely(old)) 507 return old; 508 509 for (;;) { 510 u64 new = atomic64_inc_return(&i_seq); 511 if (WARN_ON_ONCE(!new)) 512 continue; 513 514 old = 0; 515 if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new)) 516 return old; 517 return new; 518 } 519 } 520 521 /** 522 * get_futex_key() - Get parameters which are the keys for a futex 523 * @uaddr: virtual address of the futex 524 * @flags: FLAGS_* 525 * @key: address where result is stored. 526 * @rw: mapping needs to be read/write (values: FUTEX_READ, 527 * FUTEX_WRITE) 528 * 529 * Return: a negative error code or 0 530 * 531 * The key words are stored in @key on success. 532 * 533 * For shared mappings (when @fshared), the key is: 534 * 535 * ( inode->i_sequence, page offset within mapping, offset_within_page ) 536 * 537 * [ also see get_inode_sequence_number() ] 538 * 539 * For private mappings (or when !@fshared), the key is: 540 * 541 * ( current->mm, address, 0 ) 542 * 543 * This allows (cross process, where applicable) identification of the futex 544 * without keeping the page pinned for the duration of the FUTEX_WAIT. 545 * 546 * lock_page() might sleep, the caller should not hold a spinlock. 547 */ 548 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key, 549 enum futex_access rw) 550 { 551 unsigned long address = (unsigned long)uaddr; 552 struct mm_struct *mm = current->mm; 553 struct page *page; 554 struct folio *folio; 555 struct address_space *mapping; 556 int node, err, size, ro = 0; 557 bool node_updated = false; 558 bool fshared; 559 560 fshared = flags & FLAGS_SHARED; 561 size = futex_size(flags); 562 if (flags & FLAGS_NUMA) 563 size *= 2; 564 565 /* 566 * The futex address must be "naturally" aligned. 567 */ 568 key->both.offset = address % PAGE_SIZE; 569 if (unlikely((address % size) != 0)) 570 return -EINVAL; 571 address -= key->both.offset; 572 573 if (unlikely(!access_ok(uaddr, size))) 574 return -EFAULT; 575 576 if (unlikely(should_fail_futex(fshared))) 577 return -EFAULT; 578 579 node = FUTEX_NO_NODE; 580 581 if (flags & FLAGS_NUMA) { 582 u32 __user *naddr = (void *)uaddr + size / 2; 583 584 if (futex_get_value(&node, naddr)) 585 return -EFAULT; 586 587 if ((node != FUTEX_NO_NODE) && 588 ((unsigned int)node >= MAX_NUMNODES || !node_possible(node))) 589 return -EINVAL; 590 } 591 592 if (node == FUTEX_NO_NODE && (flags & FLAGS_MPOL)) { 593 node = futex_mpol(mm, address); 594 node_updated = true; 595 } 596 597 if (flags & FLAGS_NUMA) { 598 u32 __user *naddr = (void *)uaddr + size / 2; 599 600 if (node == FUTEX_NO_NODE) { 601 node = numa_node_id(); 602 node_updated = true; 603 } 604 if (node_updated && futex_put_value(node, naddr)) 605 return -EFAULT; 606 } 607 608 key->both.node = node; 609 610 /* 611 * PROCESS_PRIVATE futexes are fast. 612 * As the mm cannot disappear under us and the 'key' only needs 613 * virtual address, we dont even have to find the underlying vma. 614 * Note : We do have to check 'uaddr' is a valid user address, 615 * but access_ok() should be faster than find_vma() 616 */ 617 if (!fshared) { 618 /* 619 * On no-MMU, shared futexes are treated as private, therefore 620 * we must not include the current process in the key. Since 621 * there is only one address space, the address is a unique key 622 * on its own. 623 */ 624 if (IS_ENABLED(CONFIG_MMU)) 625 key->private.mm = mm; 626 else 627 key->private.mm = NULL; 628 629 key->private.address = address; 630 return 0; 631 } 632 633 again: 634 /* Ignore any VERIFY_READ mapping (futex common case) */ 635 if (unlikely(should_fail_futex(true))) 636 return -EFAULT; 637 638 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); 639 /* 640 * If write access is not required (eg. FUTEX_WAIT), try 641 * and get read-only access. 642 */ 643 if (err == -EFAULT && rw == FUTEX_READ) { 644 err = get_user_pages_fast(address, 1, 0, &page); 645 ro = 1; 646 } 647 if (err < 0) 648 return err; 649 else 650 err = 0; 651 652 /* 653 * The treatment of mapping from this point on is critical. The folio 654 * lock protects many things but in this context the folio lock 655 * stabilizes mapping, prevents inode freeing in the shared 656 * file-backed region case and guards against movement to swap cache. 657 * 658 * Strictly speaking the folio lock is not needed in all cases being 659 * considered here and folio lock forces unnecessarily serialization. 660 * From this point on, mapping will be re-verified if necessary and 661 * folio lock will be acquired only if it is unavoidable 662 * 663 * Mapping checks require the folio so it is looked up now. For 664 * anonymous pages, it does not matter if the folio is split 665 * in the future as the key is based on the address. For 666 * filesystem-backed pages, the precise page is required as the 667 * index of the page determines the key. 668 */ 669 folio = page_folio(page); 670 mapping = READ_ONCE(folio->mapping); 671 672 /* 673 * If folio->mapping is NULL, then it cannot be an anonymous 674 * page; but it might be the ZERO_PAGE or in the gate area or 675 * in a special mapping (all cases which we are happy to fail); 676 * or it may have been a good file page when get_user_pages_fast 677 * found it, but truncated or holepunched or subjected to 678 * invalidate_complete_page2 before we got the folio lock (also 679 * cases which we are happy to fail). And we hold a reference, 680 * so refcount care in invalidate_inode_page's remove_mapping 681 * prevents drop_caches from setting mapping to NULL beneath us. 682 * 683 * The case we do have to guard against is when memory pressure made 684 * shmem_writepage move it from filecache to swapcache beneath us: 685 * an unlikely race, but we do need to retry for folio->mapping. 686 */ 687 if (unlikely(!mapping)) { 688 int shmem_swizzled; 689 690 /* 691 * Folio lock is required to identify which special case above 692 * applies. If this is really a shmem page then the folio lock 693 * will prevent unexpected transitions. 694 */ 695 folio_lock(folio); 696 shmem_swizzled = folio_test_swapcache(folio) || folio->mapping; 697 folio_unlock(folio); 698 folio_put(folio); 699 700 if (shmem_swizzled) 701 goto again; 702 703 return -EFAULT; 704 } 705 706 /* 707 * Private mappings are handled in a simple way. 708 * 709 * If the futex key is stored in anonymous memory, then the associated 710 * object is the mm which is implicitly pinned by the calling process. 711 * 712 * NOTE: When userspace waits on a MAP_SHARED mapping, even if 713 * it's a read-only handle, it's expected that futexes attach to 714 * the object not the particular process. 715 */ 716 if (folio_test_anon(folio)) { 717 /* 718 * A RO anonymous page will never change and thus doesn't make 719 * sense for futex operations. 720 */ 721 if (unlikely(should_fail_futex(true)) || ro) { 722 err = -EFAULT; 723 goto out; 724 } 725 726 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ 727 key->private.mm = mm; 728 key->private.address = address; 729 730 } else { 731 struct inode *inode; 732 733 /* 734 * The associated futex object in this case is the inode and 735 * the folio->mapping must be traversed. Ordinarily this should 736 * be stabilised under folio lock but it's not strictly 737 * necessary in this case as we just want to pin the inode, not 738 * update i_pages or anything like that. 739 * 740 * The RCU read lock is taken as the inode is finally freed 741 * under RCU. If the mapping still matches expectations then the 742 * mapping->host can be safely accessed as being a valid inode. 743 */ 744 rcu_read_lock(); 745 746 if (READ_ONCE(folio->mapping) != mapping) { 747 rcu_read_unlock(); 748 folio_put(folio); 749 750 goto again; 751 } 752 753 inode = READ_ONCE(mapping->host); 754 if (!inode) { 755 rcu_read_unlock(); 756 folio_put(folio); 757 758 goto again; 759 } 760 761 key->both.offset |= FUT_OFF_INODE; /* inode-based key */ 762 key->shared.i_seq = get_inode_sequence_number(inode); 763 key->shared.pgoff = page_pgoff(folio, page); 764 rcu_read_unlock(); 765 } 766 767 out: 768 folio_put(folio); 769 return err; 770 } 771 772 /** 773 * fault_in_user_writeable() - Fault in user address and verify RW access 774 * @uaddr: pointer to faulting user space address 775 * 776 * Slow path to fixup the fault we just took in the atomic write 777 * access to @uaddr. 778 * 779 * We have no generic implementation of a non-destructive write to the 780 * user address. We know that we faulted in the atomic pagefault 781 * disabled section so we can as well avoid the #PF overhead by 782 * calling get_user_pages() right away. 783 */ 784 int fault_in_user_writeable(u32 __user *uaddr) 785 { 786 struct mm_struct *mm = current->mm; 787 int ret; 788 789 mmap_read_lock(mm); 790 ret = fixup_user_fault(mm, (unsigned long)uaddr, 791 FAULT_FLAG_WRITE, NULL); 792 mmap_read_unlock(mm); 793 794 return ret < 0 ? ret : 0; 795 } 796 797 /** 798 * futex_top_waiter() - Return the highest priority waiter on a futex 799 * @hb: the hash bucket the futex_q's reside in 800 * @key: the futex key (to distinguish it from other futex futex_q's) 801 * 802 * Must be called with the hb lock held. 803 */ 804 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key) 805 { 806 struct futex_q *this; 807 808 plist_for_each_entry(this, &hb->chain, list) { 809 if (futex_match(&this->key, key)) 810 return this; 811 } 812 return NULL; 813 } 814 815 /** 816 * wait_for_owner_exiting - Block until the owner has exited 817 * @ret: owner's current futex lock status 818 * @exiting: Pointer to the exiting task 819 * 820 * Caller must hold a refcount on @exiting. 821 */ 822 void wait_for_owner_exiting(int ret, struct task_struct *exiting) 823 { 824 if (ret != -EBUSY) { 825 WARN_ON_ONCE(exiting); 826 return; 827 } 828 829 if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) 830 return; 831 832 mutex_lock(&exiting->futex_exit_mutex); 833 /* 834 * No point in doing state checking here. If the waiter got here 835 * while the task was in exec()->exec_futex_release() then it can 836 * have any FUTEX_STATE_* value when the waiter has acquired the 837 * mutex. OK, if running, EXITING or DEAD if it reached exit() 838 * already. Highly unlikely and not a problem. Just one more round 839 * through the futex maze. 840 */ 841 mutex_unlock(&exiting->futex_exit_mutex); 842 843 put_task_struct(exiting); 844 } 845 846 /** 847 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket 848 * @q: The futex_q to unqueue 849 * 850 * The q->lock_ptr must not be NULL and must be held by the caller. 851 */ 852 void __futex_unqueue(struct futex_q *q) 853 { 854 struct futex_hash_bucket *hb; 855 856 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) 857 return; 858 lockdep_assert_held(q->lock_ptr); 859 860 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); 861 plist_del(&q->list, &hb->chain); 862 futex_hb_waiters_dec(hb); 863 } 864 865 /* The key must be already stored in q->key. */ 866 void futex_q_lock(struct futex_q *q, struct futex_hash_bucket *hb) 867 __acquires(&hb->lock) 868 { 869 /* 870 * Increment the counter before taking the lock so that 871 * a potential waker won't miss a to-be-slept task that is 872 * waiting for the spinlock. This is safe as all futex_q_lock() 873 * users end up calling futex_queue(). Similarly, for housekeeping, 874 * decrement the counter at futex_q_unlock() when some error has 875 * occurred and we don't end up adding the task to the list. 876 */ 877 futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */ 878 879 q->lock_ptr = &hb->lock; 880 881 spin_lock(&hb->lock); 882 } 883 884 void futex_q_unlock(struct futex_hash_bucket *hb) 885 __releases(&hb->lock) 886 { 887 futex_hb_waiters_dec(hb); 888 spin_unlock(&hb->lock); 889 } 890 891 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb, 892 struct task_struct *task) 893 { 894 int prio; 895 896 /* 897 * The priority used to register this element is 898 * - either the real thread-priority for the real-time threads 899 * (i.e. threads with a priority lower than MAX_RT_PRIO) 900 * - or MAX_RT_PRIO for non-RT threads. 901 * Thus, all RT-threads are woken first in priority order, and 902 * the others are woken last, in FIFO order. 903 */ 904 prio = min(current->normal_prio, MAX_RT_PRIO); 905 906 plist_node_init(&q->list, prio); 907 plist_add(&q->list, &hb->chain); 908 q->task = task; 909 } 910 911 /** 912 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket 913 * @q: The futex_q to unqueue 914 * 915 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must 916 * be paired with exactly one earlier call to futex_queue(). 917 * 918 * Return: 919 * - 1 - if the futex_q was still queued (and we removed unqueued it); 920 * - 0 - if the futex_q was already removed by the waking thread 921 */ 922 int futex_unqueue(struct futex_q *q) 923 { 924 spinlock_t *lock_ptr; 925 int ret = 0; 926 927 /* RCU so lock_ptr is not going away during locking. */ 928 guard(rcu)(); 929 /* In the common case we don't take the spinlock, which is nice. */ 930 retry: 931 /* 932 * q->lock_ptr can change between this read and the following spin_lock. 933 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and 934 * optimizing lock_ptr out of the logic below. 935 */ 936 lock_ptr = READ_ONCE(q->lock_ptr); 937 if (lock_ptr != NULL) { 938 spin_lock(lock_ptr); 939 /* 940 * q->lock_ptr can change between reading it and 941 * spin_lock(), causing us to take the wrong lock. This 942 * corrects the race condition. 943 * 944 * Reasoning goes like this: if we have the wrong lock, 945 * q->lock_ptr must have changed (maybe several times) 946 * between reading it and the spin_lock(). It can 947 * change again after the spin_lock() but only if it was 948 * already changed before the spin_lock(). It cannot, 949 * however, change back to the original value. Therefore 950 * we can detect whether we acquired the correct lock. 951 */ 952 if (unlikely(lock_ptr != q->lock_ptr)) { 953 spin_unlock(lock_ptr); 954 goto retry; 955 } 956 __futex_unqueue(q); 957 958 BUG_ON(q->pi_state); 959 960 spin_unlock(lock_ptr); 961 ret = 1; 962 } 963 964 return ret; 965 } 966 967 void futex_q_lockptr_lock(struct futex_q *q) 968 { 969 spinlock_t *lock_ptr; 970 971 /* 972 * See futex_unqueue() why lock_ptr can change. 973 */ 974 guard(rcu)(); 975 retry: 976 lock_ptr = READ_ONCE(q->lock_ptr); 977 spin_lock(lock_ptr); 978 979 if (unlikely(lock_ptr != q->lock_ptr)) { 980 spin_unlock(lock_ptr); 981 goto retry; 982 } 983 } 984 985 /* 986 * PI futexes can not be requeued and must remove themselves from the hash 987 * bucket. The hash bucket lock (i.e. lock_ptr) is held. 988 */ 989 void futex_unqueue_pi(struct futex_q *q) 990 { 991 /* 992 * If the lock was not acquired (due to timeout or signal) then the 993 * rt_waiter is removed before futex_q is. If this is observed by 994 * an unlocker after dropping the rtmutex wait lock and before 995 * acquiring the hash bucket lock, then the unlocker dequeues the 996 * futex_q from the hash bucket list to guarantee consistent state 997 * vs. userspace. Therefore the dequeue here must be conditional. 998 */ 999 if (!plist_node_empty(&q->list)) 1000 __futex_unqueue(q); 1001 1002 BUG_ON(!q->pi_state); 1003 put_pi_state(q->pi_state); 1004 q->pi_state = NULL; 1005 } 1006 1007 /* Constants for the pending_op argument of handle_futex_death */ 1008 #define HANDLE_DEATH_PENDING true 1009 #define HANDLE_DEATH_LIST false 1010 1011 /* 1012 * Process a futex-list entry, check whether it's owned by the 1013 * dying task, and do notification if so: 1014 */ 1015 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, 1016 bool pi, bool pending_op) 1017 { 1018 u32 uval, nval, mval; 1019 pid_t owner; 1020 int err; 1021 1022 /* Futex address must be 32bit aligned */ 1023 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) 1024 return -1; 1025 1026 retry: 1027 if (get_user(uval, uaddr)) 1028 return -1; 1029 1030 /* 1031 * Special case for regular (non PI) futexes. The unlock path in 1032 * user space has two race scenarios: 1033 * 1034 * 1. The unlock path releases the user space futex value and 1035 * before it can execute the futex() syscall to wake up 1036 * waiters it is killed. 1037 * 1038 * 2. A woken up waiter is killed before it can acquire the 1039 * futex in user space. 1040 * 1041 * In the second case, the wake up notification could be generated 1042 * by the unlock path in user space after setting the futex value 1043 * to zero or by the kernel after setting the OWNER_DIED bit below. 1044 * 1045 * In both cases the TID validation below prevents a wakeup of 1046 * potential waiters which can cause these waiters to block 1047 * forever. 1048 * 1049 * In both cases the following conditions are met: 1050 * 1051 * 1) task->robust_list->list_op_pending != NULL 1052 * @pending_op == true 1053 * 2) The owner part of user space futex value == 0 1054 * 3) Regular futex: @pi == false 1055 * 1056 * If these conditions are met, it is safe to attempt waking up a 1057 * potential waiter without touching the user space futex value and 1058 * trying to set the OWNER_DIED bit. If the futex value is zero, 1059 * the rest of the user space mutex state is consistent, so a woken 1060 * waiter will just take over the uncontended futex. Setting the 1061 * OWNER_DIED bit would create inconsistent state and malfunction 1062 * of the user space owner died handling. Otherwise, the OWNER_DIED 1063 * bit is already set, and the woken waiter is expected to deal with 1064 * this. 1065 */ 1066 owner = uval & FUTEX_TID_MASK; 1067 1068 if (pending_op && !pi && !owner) { 1069 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1, 1070 FUTEX_BITSET_MATCH_ANY); 1071 return 0; 1072 } 1073 1074 if (owner != task_pid_vnr(curr)) 1075 return 0; 1076 1077 /* 1078 * Ok, this dying thread is truly holding a futex 1079 * of interest. Set the OWNER_DIED bit atomically 1080 * via cmpxchg, and if the value had FUTEX_WAITERS 1081 * set, wake up a waiter (if any). (We have to do a 1082 * futex_wake() even if OWNER_DIED is already set - 1083 * to handle the rare but possible case of recursive 1084 * thread-death.) The rest of the cleanup is done in 1085 * userspace. 1086 */ 1087 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; 1088 1089 /* 1090 * We are not holding a lock here, but we want to have 1091 * the pagefault_disable/enable() protection because 1092 * we want to handle the fault gracefully. If the 1093 * access fails we try to fault in the futex with R/W 1094 * verification via get_user_pages. get_user() above 1095 * does not guarantee R/W access. If that fails we 1096 * give up and leave the futex locked. 1097 */ 1098 if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) { 1099 switch (err) { 1100 case -EFAULT: 1101 if (fault_in_user_writeable(uaddr)) 1102 return -1; 1103 goto retry; 1104 1105 case -EAGAIN: 1106 cond_resched(); 1107 goto retry; 1108 1109 default: 1110 WARN_ON_ONCE(1); 1111 return err; 1112 } 1113 } 1114 1115 if (nval != uval) 1116 goto retry; 1117 1118 /* 1119 * Wake robust non-PI futexes here. The wakeup of 1120 * PI futexes happens in exit_pi_state(): 1121 */ 1122 if (!pi && (uval & FUTEX_WAITERS)) { 1123 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1, 1124 FUTEX_BITSET_MATCH_ANY); 1125 } 1126 1127 return 0; 1128 } 1129 1130 /* 1131 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 1132 */ 1133 static inline int fetch_robust_entry(struct robust_list __user **entry, 1134 struct robust_list __user * __user *head, 1135 unsigned int *pi) 1136 { 1137 unsigned long uentry; 1138 1139 if (get_user(uentry, (unsigned long __user *)head)) 1140 return -EFAULT; 1141 1142 *entry = (void __user *)(uentry & ~1UL); 1143 *pi = uentry & 1; 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * Walk curr->robust_list (very carefully, it's a userspace list!) 1150 * and mark any locks found there dead, and notify any waiters. 1151 * 1152 * We silently return on any sign of list-walking problem. 1153 */ 1154 static void exit_robust_list(struct task_struct *curr) 1155 { 1156 struct robust_list_head __user *head = curr->robust_list; 1157 struct robust_list __user *entry, *next_entry, *pending; 1158 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 1159 unsigned int next_pi; 1160 unsigned long futex_offset; 1161 int rc; 1162 1163 /* 1164 * Fetch the list head (which was registered earlier, via 1165 * sys_set_robust_list()): 1166 */ 1167 if (fetch_robust_entry(&entry, &head->list.next, &pi)) 1168 return; 1169 /* 1170 * Fetch the relative futex offset: 1171 */ 1172 if (get_user(futex_offset, &head->futex_offset)) 1173 return; 1174 /* 1175 * Fetch any possibly pending lock-add first, and handle it 1176 * if it exists: 1177 */ 1178 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) 1179 return; 1180 1181 next_entry = NULL; /* avoid warning with gcc */ 1182 while (entry != &head->list) { 1183 /* 1184 * Fetch the next entry in the list before calling 1185 * handle_futex_death: 1186 */ 1187 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); 1188 /* 1189 * A pending lock might already be on the list, so 1190 * don't process it twice: 1191 */ 1192 if (entry != pending) { 1193 if (handle_futex_death((void __user *)entry + futex_offset, 1194 curr, pi, HANDLE_DEATH_LIST)) 1195 return; 1196 } 1197 if (rc) 1198 return; 1199 entry = next_entry; 1200 pi = next_pi; 1201 /* 1202 * Avoid excessively long or circular lists: 1203 */ 1204 if (!--limit) 1205 break; 1206 1207 cond_resched(); 1208 } 1209 1210 if (pending) { 1211 handle_futex_death((void __user *)pending + futex_offset, 1212 curr, pip, HANDLE_DEATH_PENDING); 1213 } 1214 } 1215 1216 #ifdef CONFIG_COMPAT 1217 static void __user *futex_uaddr(struct robust_list __user *entry, 1218 compat_long_t futex_offset) 1219 { 1220 compat_uptr_t base = ptr_to_compat(entry); 1221 void __user *uaddr = compat_ptr(base + futex_offset); 1222 1223 return uaddr; 1224 } 1225 1226 /* 1227 * Fetch a robust-list pointer. Bit 0 signals PI futexes: 1228 */ 1229 static inline int 1230 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, 1231 compat_uptr_t __user *head, unsigned int *pi) 1232 { 1233 if (get_user(*uentry, head)) 1234 return -EFAULT; 1235 1236 *entry = compat_ptr((*uentry) & ~1); 1237 *pi = (unsigned int)(*uentry) & 1; 1238 1239 return 0; 1240 } 1241 1242 /* 1243 * Walk curr->robust_list (very carefully, it's a userspace list!) 1244 * and mark any locks found there dead, and notify any waiters. 1245 * 1246 * We silently return on any sign of list-walking problem. 1247 */ 1248 static void compat_exit_robust_list(struct task_struct *curr) 1249 { 1250 struct compat_robust_list_head __user *head = curr->compat_robust_list; 1251 struct robust_list __user *entry, *next_entry, *pending; 1252 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; 1253 unsigned int next_pi; 1254 compat_uptr_t uentry, next_uentry, upending; 1255 compat_long_t futex_offset; 1256 int rc; 1257 1258 /* 1259 * Fetch the list head (which was registered earlier, via 1260 * sys_set_robust_list()): 1261 */ 1262 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) 1263 return; 1264 /* 1265 * Fetch the relative futex offset: 1266 */ 1267 if (get_user(futex_offset, &head->futex_offset)) 1268 return; 1269 /* 1270 * Fetch any possibly pending lock-add first, and handle it 1271 * if it exists: 1272 */ 1273 if (compat_fetch_robust_entry(&upending, &pending, 1274 &head->list_op_pending, &pip)) 1275 return; 1276 1277 next_entry = NULL; /* avoid warning with gcc */ 1278 while (entry != (struct robust_list __user *) &head->list) { 1279 /* 1280 * Fetch the next entry in the list before calling 1281 * handle_futex_death: 1282 */ 1283 rc = compat_fetch_robust_entry(&next_uentry, &next_entry, 1284 (compat_uptr_t __user *)&entry->next, &next_pi); 1285 /* 1286 * A pending lock might already be on the list, so 1287 * dont process it twice: 1288 */ 1289 if (entry != pending) { 1290 void __user *uaddr = futex_uaddr(entry, futex_offset); 1291 1292 if (handle_futex_death(uaddr, curr, pi, 1293 HANDLE_DEATH_LIST)) 1294 return; 1295 } 1296 if (rc) 1297 return; 1298 uentry = next_uentry; 1299 entry = next_entry; 1300 pi = next_pi; 1301 /* 1302 * Avoid excessively long or circular lists: 1303 */ 1304 if (!--limit) 1305 break; 1306 1307 cond_resched(); 1308 } 1309 if (pending) { 1310 void __user *uaddr = futex_uaddr(pending, futex_offset); 1311 1312 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); 1313 } 1314 } 1315 #endif 1316 1317 #ifdef CONFIG_FUTEX_PI 1318 1319 /* 1320 * This task is holding PI mutexes at exit time => bad. 1321 * Kernel cleans up PI-state, but userspace is likely hosed. 1322 * (Robust-futex cleanup is separate and might save the day for userspace.) 1323 */ 1324 static void exit_pi_state_list(struct task_struct *curr) 1325 { 1326 struct list_head *next, *head = &curr->pi_state_list; 1327 struct futex_pi_state *pi_state; 1328 union futex_key key = FUTEX_KEY_INIT; 1329 1330 /* 1331 * The mutex mm_struct::futex_hash_lock might be acquired. 1332 */ 1333 might_sleep(); 1334 /* 1335 * Ensure the hash remains stable (no resize) during the while loop 1336 * below. The hb pointer is acquired under the pi_lock so we can't block 1337 * on the mutex. 1338 */ 1339 WARN_ON(curr != current); 1340 guard(private_hash)(); 1341 /* 1342 * We are a ZOMBIE and nobody can enqueue itself on 1343 * pi_state_list anymore, but we have to be careful 1344 * versus waiters unqueueing themselves: 1345 */ 1346 raw_spin_lock_irq(&curr->pi_lock); 1347 while (!list_empty(head)) { 1348 next = head->next; 1349 pi_state = list_entry(next, struct futex_pi_state, list); 1350 key = pi_state->key; 1351 if (1) { 1352 CLASS(hb, hb)(&key); 1353 1354 /* 1355 * We can race against put_pi_state() removing itself from the 1356 * list (a waiter going away). put_pi_state() will first 1357 * decrement the reference count and then modify the list, so 1358 * its possible to see the list entry but fail this reference 1359 * acquire. 1360 * 1361 * In that case; drop the locks to let put_pi_state() make 1362 * progress and retry the loop. 1363 */ 1364 if (!refcount_inc_not_zero(&pi_state->refcount)) { 1365 raw_spin_unlock_irq(&curr->pi_lock); 1366 cpu_relax(); 1367 raw_spin_lock_irq(&curr->pi_lock); 1368 continue; 1369 } 1370 raw_spin_unlock_irq(&curr->pi_lock); 1371 1372 spin_lock(&hb->lock); 1373 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); 1374 raw_spin_lock(&curr->pi_lock); 1375 /* 1376 * We dropped the pi-lock, so re-check whether this 1377 * task still owns the PI-state: 1378 */ 1379 if (head->next != next) { 1380 /* retain curr->pi_lock for the loop invariant */ 1381 raw_spin_unlock(&pi_state->pi_mutex.wait_lock); 1382 spin_unlock(&hb->lock); 1383 put_pi_state(pi_state); 1384 continue; 1385 } 1386 1387 WARN_ON(pi_state->owner != curr); 1388 WARN_ON(list_empty(&pi_state->list)); 1389 list_del_init(&pi_state->list); 1390 pi_state->owner = NULL; 1391 1392 raw_spin_unlock(&curr->pi_lock); 1393 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); 1394 spin_unlock(&hb->lock); 1395 } 1396 1397 rt_mutex_futex_unlock(&pi_state->pi_mutex); 1398 put_pi_state(pi_state); 1399 1400 raw_spin_lock_irq(&curr->pi_lock); 1401 } 1402 raw_spin_unlock_irq(&curr->pi_lock); 1403 } 1404 #else 1405 static inline void exit_pi_state_list(struct task_struct *curr) { } 1406 #endif 1407 1408 static void futex_cleanup(struct task_struct *tsk) 1409 { 1410 if (unlikely(tsk->robust_list)) { 1411 exit_robust_list(tsk); 1412 tsk->robust_list = NULL; 1413 } 1414 1415 #ifdef CONFIG_COMPAT 1416 if (unlikely(tsk->compat_robust_list)) { 1417 compat_exit_robust_list(tsk); 1418 tsk->compat_robust_list = NULL; 1419 } 1420 #endif 1421 1422 if (unlikely(!list_empty(&tsk->pi_state_list))) 1423 exit_pi_state_list(tsk); 1424 } 1425 1426 /** 1427 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD 1428 * @tsk: task to set the state on 1429 * 1430 * Set the futex exit state of the task lockless. The futex waiter code 1431 * observes that state when a task is exiting and loops until the task has 1432 * actually finished the futex cleanup. The worst case for this is that the 1433 * waiter runs through the wait loop until the state becomes visible. 1434 * 1435 * This is called from the recursive fault handling path in make_task_dead(). 1436 * 1437 * This is best effort. Either the futex exit code has run already or 1438 * not. If the OWNER_DIED bit has been set on the futex then the waiter can 1439 * take it over. If not, the problem is pushed back to user space. If the 1440 * futex exit code did not run yet, then an already queued waiter might 1441 * block forever, but there is nothing which can be done about that. 1442 */ 1443 void futex_exit_recursive(struct task_struct *tsk) 1444 { 1445 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ 1446 if (tsk->futex_state == FUTEX_STATE_EXITING) 1447 mutex_unlock(&tsk->futex_exit_mutex); 1448 tsk->futex_state = FUTEX_STATE_DEAD; 1449 } 1450 1451 static void futex_cleanup_begin(struct task_struct *tsk) 1452 { 1453 /* 1454 * Prevent various race issues against a concurrent incoming waiter 1455 * including live locks by forcing the waiter to block on 1456 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in 1457 * attach_to_pi_owner(). 1458 */ 1459 mutex_lock(&tsk->futex_exit_mutex); 1460 1461 /* 1462 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. 1463 * 1464 * This ensures that all subsequent checks of tsk->futex_state in 1465 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with 1466 * tsk->pi_lock held. 1467 * 1468 * It guarantees also that a pi_state which was queued right before 1469 * the state change under tsk->pi_lock by a concurrent waiter must 1470 * be observed in exit_pi_state_list(). 1471 */ 1472 raw_spin_lock_irq(&tsk->pi_lock); 1473 tsk->futex_state = FUTEX_STATE_EXITING; 1474 raw_spin_unlock_irq(&tsk->pi_lock); 1475 } 1476 1477 static void futex_cleanup_end(struct task_struct *tsk, int state) 1478 { 1479 /* 1480 * Lockless store. The only side effect is that an observer might 1481 * take another loop until it becomes visible. 1482 */ 1483 tsk->futex_state = state; 1484 /* 1485 * Drop the exit protection. This unblocks waiters which observed 1486 * FUTEX_STATE_EXITING to reevaluate the state. 1487 */ 1488 mutex_unlock(&tsk->futex_exit_mutex); 1489 } 1490 1491 void futex_exec_release(struct task_struct *tsk) 1492 { 1493 /* 1494 * The state handling is done for consistency, but in the case of 1495 * exec() there is no way to prevent further damage as the PID stays 1496 * the same. But for the unlikely and arguably buggy case that a 1497 * futex is held on exec(), this provides at least as much state 1498 * consistency protection which is possible. 1499 */ 1500 futex_cleanup_begin(tsk); 1501 futex_cleanup(tsk); 1502 /* 1503 * Reset the state to FUTEX_STATE_OK. The task is alive and about 1504 * exec a new binary. 1505 */ 1506 futex_cleanup_end(tsk, FUTEX_STATE_OK); 1507 } 1508 1509 void futex_exit_release(struct task_struct *tsk) 1510 { 1511 futex_cleanup_begin(tsk); 1512 futex_cleanup(tsk); 1513 futex_cleanup_end(tsk, FUTEX_STATE_DEAD); 1514 } 1515 1516 static void futex_hash_bucket_init(struct futex_hash_bucket *fhb, 1517 struct futex_private_hash *fph) 1518 { 1519 #ifdef CONFIG_FUTEX_PRIVATE_HASH 1520 fhb->priv = fph; 1521 #endif 1522 atomic_set(&fhb->waiters, 0); 1523 plist_head_init(&fhb->chain); 1524 spin_lock_init(&fhb->lock); 1525 } 1526 1527 #define FH_CUSTOM 0x01 1528 1529 #ifdef CONFIG_FUTEX_PRIVATE_HASH 1530 1531 /* 1532 * futex-ref 1533 * 1534 * Heavily inspired by percpu-rwsem/percpu-refcount; not reusing any of that 1535 * code because it just doesn't fit right. 1536 * 1537 * Dual counter, per-cpu / atomic approach like percpu-refcount, except it 1538 * re-initializes the state automatically, such that the fph swizzle is also a 1539 * transition back to per-cpu. 1540 */ 1541 1542 static void futex_ref_rcu(struct rcu_head *head); 1543 1544 static void __futex_ref_atomic_begin(struct futex_private_hash *fph) 1545 { 1546 struct mm_struct *mm = fph->mm; 1547 1548 /* 1549 * The counter we're about to switch to must have fully switched; 1550 * otherwise it would be impossible for it to have reported success 1551 * from futex_ref_is_dead(). 1552 */ 1553 WARN_ON_ONCE(atomic_long_read(&mm->futex_atomic) != 0); 1554 1555 /* 1556 * Set the atomic to the bias value such that futex_ref_{get,put}() 1557 * will never observe 0. Will be fixed up in __futex_ref_atomic_end() 1558 * when folding in the percpu count. 1559 */ 1560 atomic_long_set(&mm->futex_atomic, LONG_MAX); 1561 smp_store_release(&fph->state, FR_ATOMIC); 1562 1563 call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu); 1564 } 1565 1566 static void __futex_ref_atomic_end(struct futex_private_hash *fph) 1567 { 1568 struct mm_struct *mm = fph->mm; 1569 unsigned int count = 0; 1570 long ret; 1571 int cpu; 1572 1573 /* 1574 * Per __futex_ref_atomic_begin() the state of the fph must be ATOMIC 1575 * and per this RCU callback, everybody must now observe this state and 1576 * use the atomic variable. 1577 */ 1578 WARN_ON_ONCE(fph->state != FR_ATOMIC); 1579 1580 /* 1581 * Therefore the per-cpu counter is now stable, sum and reset. 1582 */ 1583 for_each_possible_cpu(cpu) { 1584 unsigned int *ptr = per_cpu_ptr(mm->futex_ref, cpu); 1585 count += *ptr; 1586 *ptr = 0; 1587 } 1588 1589 /* 1590 * Re-init for the next cycle. 1591 */ 1592 this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */ 1593 1594 /* 1595 * Add actual count, subtract bias and initial refcount. 1596 * 1597 * The moment this atomic operation happens, futex_ref_is_dead() can 1598 * become true. 1599 */ 1600 ret = atomic_long_add_return(count - LONG_MAX - 1, &mm->futex_atomic); 1601 if (!ret) 1602 wake_up_var(mm); 1603 1604 WARN_ON_ONCE(ret < 0); 1605 mmput_async(mm); 1606 } 1607 1608 static void futex_ref_rcu(struct rcu_head *head) 1609 { 1610 struct mm_struct *mm = container_of(head, struct mm_struct, futex_rcu); 1611 struct futex_private_hash *fph = rcu_dereference_raw(mm->futex_phash); 1612 1613 if (fph->state == FR_PERCPU) { 1614 /* 1615 * Per this extra grace-period, everybody must now observe 1616 * fph as the current fph and no previously observed fph's 1617 * are in-flight. 1618 * 1619 * Notably, nobody will now rely on the atomic 1620 * futex_ref_is_dead() state anymore so we can begin the 1621 * migration of the per-cpu counter into the atomic. 1622 */ 1623 __futex_ref_atomic_begin(fph); 1624 return; 1625 } 1626 1627 __futex_ref_atomic_end(fph); 1628 } 1629 1630 /* 1631 * Drop the initial refcount and transition to atomics. 1632 */ 1633 static void futex_ref_drop(struct futex_private_hash *fph) 1634 { 1635 struct mm_struct *mm = fph->mm; 1636 1637 /* 1638 * Can only transition the current fph; 1639 */ 1640 WARN_ON_ONCE(rcu_dereference_raw(mm->futex_phash) != fph); 1641 /* 1642 * We enqueue at least one RCU callback. Ensure mm stays if the task 1643 * exits before the transition is completed. 1644 */ 1645 mmget(mm); 1646 1647 /* 1648 * In order to avoid the following scenario: 1649 * 1650 * futex_hash() __futex_pivot_hash() 1651 * guard(rcu); guard(mm->futex_hash_lock); 1652 * fph = mm->futex_phash; 1653 * rcu_assign_pointer(&mm->futex_phash, new); 1654 * futex_hash_allocate() 1655 * futex_ref_drop() 1656 * fph->state = FR_ATOMIC; 1657 * atomic_set(, BIAS); 1658 * 1659 * futex_private_hash_get(fph); // OOPS 1660 * 1661 * Where an old fph (which is FR_ATOMIC) and should fail on 1662 * inc_not_zero, will succeed because a new transition is started and 1663 * the atomic is bias'ed away from 0. 1664 * 1665 * There must be at least one full grace-period between publishing a 1666 * new fph and trying to replace it. 1667 */ 1668 if (poll_state_synchronize_rcu(mm->futex_batches)) { 1669 /* 1670 * There was a grace-period, we can begin now. 1671 */ 1672 __futex_ref_atomic_begin(fph); 1673 return; 1674 } 1675 1676 call_rcu_hurry(&mm->futex_rcu, futex_ref_rcu); 1677 } 1678 1679 static bool futex_ref_get(struct futex_private_hash *fph) 1680 { 1681 struct mm_struct *mm = fph->mm; 1682 1683 guard(rcu)(); 1684 1685 if (smp_load_acquire(&fph->state) == FR_PERCPU) { 1686 this_cpu_inc(*mm->futex_ref); 1687 return true; 1688 } 1689 1690 return atomic_long_inc_not_zero(&mm->futex_atomic); 1691 } 1692 1693 static bool futex_ref_put(struct futex_private_hash *fph) 1694 { 1695 struct mm_struct *mm = fph->mm; 1696 1697 guard(rcu)(); 1698 1699 if (smp_load_acquire(&fph->state) == FR_PERCPU) { 1700 this_cpu_dec(*mm->futex_ref); 1701 return false; 1702 } 1703 1704 return atomic_long_dec_and_test(&mm->futex_atomic); 1705 } 1706 1707 static bool futex_ref_is_dead(struct futex_private_hash *fph) 1708 { 1709 struct mm_struct *mm = fph->mm; 1710 1711 guard(rcu)(); 1712 1713 if (smp_load_acquire(&fph->state) == FR_PERCPU) 1714 return false; 1715 1716 return atomic_long_read(&mm->futex_atomic) == 0; 1717 } 1718 1719 int futex_mm_init(struct mm_struct *mm) 1720 { 1721 mutex_init(&mm->futex_hash_lock); 1722 RCU_INIT_POINTER(mm->futex_phash, NULL); 1723 mm->futex_phash_new = NULL; 1724 /* futex-ref */ 1725 atomic_long_set(&mm->futex_atomic, 0); 1726 mm->futex_batches = get_state_synchronize_rcu(); 1727 mm->futex_ref = alloc_percpu(unsigned int); 1728 if (!mm->futex_ref) 1729 return -ENOMEM; 1730 this_cpu_inc(*mm->futex_ref); /* 0 -> 1 */ 1731 return 0; 1732 } 1733 1734 void futex_hash_free(struct mm_struct *mm) 1735 { 1736 struct futex_private_hash *fph; 1737 1738 free_percpu(mm->futex_ref); 1739 kvfree(mm->futex_phash_new); 1740 fph = rcu_dereference_raw(mm->futex_phash); 1741 if (fph) 1742 kvfree(fph); 1743 } 1744 1745 static bool futex_pivot_pending(struct mm_struct *mm) 1746 { 1747 struct futex_private_hash *fph; 1748 1749 guard(rcu)(); 1750 1751 if (!mm->futex_phash_new) 1752 return true; 1753 1754 fph = rcu_dereference(mm->futex_phash); 1755 return futex_ref_is_dead(fph); 1756 } 1757 1758 static bool futex_hash_less(struct futex_private_hash *a, 1759 struct futex_private_hash *b) 1760 { 1761 /* user provided always wins */ 1762 if (!a->custom && b->custom) 1763 return true; 1764 if (a->custom && !b->custom) 1765 return false; 1766 1767 /* zero-sized hash wins */ 1768 if (!b->hash_mask) 1769 return true; 1770 if (!a->hash_mask) 1771 return false; 1772 1773 /* keep the biggest */ 1774 if (a->hash_mask < b->hash_mask) 1775 return true; 1776 if (a->hash_mask > b->hash_mask) 1777 return false; 1778 1779 return false; /* equal */ 1780 } 1781 1782 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags) 1783 { 1784 struct mm_struct *mm = current->mm; 1785 struct futex_private_hash *fph; 1786 bool custom = flags & FH_CUSTOM; 1787 int i; 1788 1789 if (hash_slots && (hash_slots == 1 || !is_power_of_2(hash_slots))) 1790 return -EINVAL; 1791 1792 /* 1793 * Once we've disabled the global hash there is no way back. 1794 */ 1795 scoped_guard(rcu) { 1796 fph = rcu_dereference(mm->futex_phash); 1797 if (fph && !fph->hash_mask) { 1798 if (custom) 1799 return -EBUSY; 1800 return 0; 1801 } 1802 } 1803 1804 fph = kvzalloc(struct_size(fph, queues, hash_slots), 1805 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1806 if (!fph) 1807 return -ENOMEM; 1808 1809 fph->hash_mask = hash_slots ? hash_slots - 1 : 0; 1810 fph->custom = custom; 1811 fph->mm = mm; 1812 1813 for (i = 0; i < hash_slots; i++) 1814 futex_hash_bucket_init(&fph->queues[i], fph); 1815 1816 if (custom) { 1817 /* 1818 * Only let prctl() wait / retry; don't unduly delay clone(). 1819 */ 1820 again: 1821 wait_var_event(mm, futex_pivot_pending(mm)); 1822 } 1823 1824 scoped_guard(mutex, &mm->futex_hash_lock) { 1825 struct futex_private_hash *free __free(kvfree) = NULL; 1826 struct futex_private_hash *cur, *new; 1827 1828 cur = rcu_dereference_protected(mm->futex_phash, 1829 lockdep_is_held(&mm->futex_hash_lock)); 1830 new = mm->futex_phash_new; 1831 mm->futex_phash_new = NULL; 1832 1833 if (fph) { 1834 if (cur && !cur->hash_mask) { 1835 /* 1836 * If two threads simultaneously request the global 1837 * hash then the first one performs the switch, 1838 * the second one returns here. 1839 */ 1840 free = fph; 1841 mm->futex_phash_new = new; 1842 return -EBUSY; 1843 } 1844 if (cur && !new) { 1845 /* 1846 * If we have an existing hash, but do not yet have 1847 * allocated a replacement hash, drop the initial 1848 * reference on the existing hash. 1849 */ 1850 futex_ref_drop(cur); 1851 } 1852 1853 if (new) { 1854 /* 1855 * Two updates raced; throw out the lesser one. 1856 */ 1857 if (futex_hash_less(new, fph)) { 1858 free = new; 1859 new = fph; 1860 } else { 1861 free = fph; 1862 } 1863 } else { 1864 new = fph; 1865 } 1866 fph = NULL; 1867 } 1868 1869 if (new) { 1870 /* 1871 * Will set mm->futex_phash_new on failure; 1872 * futex_private_hash_get() will try again. 1873 */ 1874 if (!__futex_pivot_hash(mm, new) && custom) 1875 goto again; 1876 } 1877 } 1878 return 0; 1879 } 1880 1881 int futex_hash_allocate_default(void) 1882 { 1883 unsigned int threads, buckets, current_buckets = 0; 1884 struct futex_private_hash *fph; 1885 1886 if (!current->mm) 1887 return 0; 1888 1889 scoped_guard(rcu) { 1890 threads = min_t(unsigned int, 1891 get_nr_threads(current), 1892 num_online_cpus()); 1893 1894 fph = rcu_dereference(current->mm->futex_phash); 1895 if (fph) { 1896 if (fph->custom) 1897 return 0; 1898 1899 current_buckets = fph->hash_mask + 1; 1900 } 1901 } 1902 1903 /* 1904 * The default allocation will remain within 1905 * 16 <= threads * 4 <= global hash size 1906 */ 1907 buckets = roundup_pow_of_two(4 * threads); 1908 buckets = clamp(buckets, 16, futex_hashmask + 1); 1909 1910 if (current_buckets >= buckets) 1911 return 0; 1912 1913 return futex_hash_allocate(buckets, 0); 1914 } 1915 1916 static int futex_hash_get_slots(void) 1917 { 1918 struct futex_private_hash *fph; 1919 1920 guard(rcu)(); 1921 fph = rcu_dereference(current->mm->futex_phash); 1922 if (fph && fph->hash_mask) 1923 return fph->hash_mask + 1; 1924 return 0; 1925 } 1926 1927 #else 1928 1929 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags) 1930 { 1931 return -EINVAL; 1932 } 1933 1934 static int futex_hash_get_slots(void) 1935 { 1936 return 0; 1937 } 1938 1939 #endif 1940 1941 int futex_hash_prctl(unsigned long arg2, unsigned long arg3, unsigned long arg4) 1942 { 1943 unsigned int flags = FH_CUSTOM; 1944 int ret; 1945 1946 switch (arg2) { 1947 case PR_FUTEX_HASH_SET_SLOTS: 1948 if (arg4) 1949 return -EINVAL; 1950 ret = futex_hash_allocate(arg3, flags); 1951 break; 1952 1953 case PR_FUTEX_HASH_GET_SLOTS: 1954 ret = futex_hash_get_slots(); 1955 break; 1956 1957 default: 1958 ret = -EINVAL; 1959 break; 1960 } 1961 return ret; 1962 } 1963 1964 static int __init futex_init(void) 1965 { 1966 unsigned long hashsize, i; 1967 unsigned int order, n; 1968 unsigned long size; 1969 1970 #ifdef CONFIG_BASE_SMALL 1971 hashsize = 16; 1972 #else 1973 hashsize = 256 * num_possible_cpus(); 1974 hashsize /= num_possible_nodes(); 1975 hashsize = max(4, hashsize); 1976 hashsize = roundup_pow_of_two(hashsize); 1977 #endif 1978 futex_hashshift = ilog2(hashsize); 1979 size = sizeof(struct futex_hash_bucket) * hashsize; 1980 order = get_order(size); 1981 1982 for_each_node(n) { 1983 struct futex_hash_bucket *table; 1984 1985 if (order > MAX_PAGE_ORDER) 1986 table = vmalloc_huge_node(size, GFP_KERNEL, n); 1987 else 1988 table = alloc_pages_exact_nid(n, size, GFP_KERNEL); 1989 1990 BUG_ON(!table); 1991 1992 for (i = 0; i < hashsize; i++) 1993 futex_hash_bucket_init(&table[i], NULL); 1994 1995 futex_queues[n] = table; 1996 } 1997 1998 futex_hashmask = hashsize - 1; 1999 pr_info("futex hash table entries: %lu (%lu bytes on %d NUMA nodes, total %lu KiB, %s).\n", 2000 hashsize, size, num_possible_nodes(), size * num_possible_nodes() / 1024, 2001 order > MAX_PAGE_ORDER ? "vmalloc" : "linear"); 2002 return 0; 2003 } 2004 core_initcall(futex_init); 2005