xref: /linux/kernel/fork.c (revision fea966f7564205fcf5919af9bde031e753419c96)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_counter.h>
65 
66 #include <asm/pgtable.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/cacheflush.h>
71 #include <asm/tlbflush.h>
72 
73 #include <trace/events/sched.h>
74 
75 /*
76  * Protected counters by write_lock_irq(&tasklist_lock)
77  */
78 unsigned long total_forks;	/* Handle normal Linux uptimes. */
79 int nr_threads; 		/* The idle threads do not count.. */
80 
81 int max_threads;		/* tunable limit on nr_threads */
82 
83 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84 
85 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
86 
87 int nr_processes(void)
88 {
89 	int cpu;
90 	int total = 0;
91 
92 	for_each_online_cpu(cpu)
93 		total += per_cpu(process_counts, cpu);
94 
95 	return total;
96 }
97 
98 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
99 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
100 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
101 static struct kmem_cache *task_struct_cachep;
102 #endif
103 
104 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
105 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
106 {
107 #ifdef CONFIG_DEBUG_STACK_USAGE
108 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
109 #else
110 	gfp_t mask = GFP_KERNEL;
111 #endif
112 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
113 }
114 
115 static inline void free_thread_info(struct thread_info *ti)
116 {
117 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
118 }
119 #endif
120 
121 /* SLAB cache for signal_struct structures (tsk->signal) */
122 static struct kmem_cache *signal_cachep;
123 
124 /* SLAB cache for sighand_struct structures (tsk->sighand) */
125 struct kmem_cache *sighand_cachep;
126 
127 /* SLAB cache for files_struct structures (tsk->files) */
128 struct kmem_cache *files_cachep;
129 
130 /* SLAB cache for fs_struct structures (tsk->fs) */
131 struct kmem_cache *fs_cachep;
132 
133 /* SLAB cache for vm_area_struct structures */
134 struct kmem_cache *vm_area_cachep;
135 
136 /* SLAB cache for mm_struct structures (tsk->mm) */
137 static struct kmem_cache *mm_cachep;
138 
139 void free_task(struct task_struct *tsk)
140 {
141 	prop_local_destroy_single(&tsk->dirties);
142 	free_thread_info(tsk->stack);
143 	rt_mutex_debug_task_free(tsk);
144 	ftrace_graph_exit_task(tsk);
145 	free_task_struct(tsk);
146 }
147 EXPORT_SYMBOL(free_task);
148 
149 void __put_task_struct(struct task_struct *tsk)
150 {
151 	WARN_ON(!tsk->exit_state);
152 	WARN_ON(atomic_read(&tsk->usage));
153 	WARN_ON(tsk == current);
154 
155 	put_cred(tsk->real_cred);
156 	put_cred(tsk->cred);
157 	delayacct_tsk_free(tsk);
158 
159 	if (!profile_handoff_task(tsk))
160 		free_task(tsk);
161 }
162 
163 /*
164  * macro override instead of weak attribute alias, to workaround
165  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166  */
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
170 
171 void __init fork_init(unsigned long mempages)
172 {
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
176 #endif
177 	/* create a slab on which task_structs can be allocated */
178 	task_struct_cachep =
179 		kmem_cache_create("task_struct", sizeof(struct task_struct),
180 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
181 #endif
182 
183 	/* do the arch specific task caches init */
184 	arch_task_cache_init();
185 
186 	/*
187 	 * The default maximum number of threads is set to a safe
188 	 * value: the thread structures can take up at most half
189 	 * of memory.
190 	 */
191 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
192 
193 	/*
194 	 * we need to allow at least 20 threads to boot a system
195 	 */
196 	if(max_threads < 20)
197 		max_threads = 20;
198 
199 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 		init_task.signal->rlim[RLIMIT_NPROC];
203 }
204 
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 					       struct task_struct *src)
207 {
208 	*dst = *src;
209 	return 0;
210 }
211 
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 {
214 	struct task_struct *tsk;
215 	struct thread_info *ti;
216 	unsigned long *stackend;
217 
218 	int err;
219 
220 	prepare_to_copy(orig);
221 
222 	tsk = alloc_task_struct();
223 	if (!tsk)
224 		return NULL;
225 
226 	ti = alloc_thread_info(tsk);
227 	if (!ti) {
228 		free_task_struct(tsk);
229 		return NULL;
230 	}
231 
232  	err = arch_dup_task_struct(tsk, orig);
233 	if (err)
234 		goto out;
235 
236 	tsk->stack = ti;
237 
238 	err = prop_local_init_single(&tsk->dirties);
239 	if (err)
240 		goto out;
241 
242 	setup_thread_stack(tsk, orig);
243 	stackend = end_of_stack(tsk);
244 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
245 
246 #ifdef CONFIG_CC_STACKPROTECTOR
247 	tsk->stack_canary = get_random_int();
248 #endif
249 
250 	/* One for us, one for whoever does the "release_task()" (usually parent) */
251 	atomic_set(&tsk->usage,2);
252 	atomic_set(&tsk->fs_excl, 0);
253 #ifdef CONFIG_BLK_DEV_IO_TRACE
254 	tsk->btrace_seq = 0;
255 #endif
256 	tsk->splice_pipe = NULL;
257 	return tsk;
258 
259 out:
260 	free_thread_info(ti);
261 	free_task_struct(tsk);
262 	return NULL;
263 }
264 
265 #ifdef CONFIG_MMU
266 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
267 {
268 	struct vm_area_struct *mpnt, *tmp, **pprev;
269 	struct rb_node **rb_link, *rb_parent;
270 	int retval;
271 	unsigned long charge;
272 	struct mempolicy *pol;
273 
274 	down_write(&oldmm->mmap_sem);
275 	flush_cache_dup_mm(oldmm);
276 	/*
277 	 * Not linked in yet - no deadlock potential:
278 	 */
279 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
280 
281 	mm->locked_vm = 0;
282 	mm->mmap = NULL;
283 	mm->mmap_cache = NULL;
284 	mm->free_area_cache = oldmm->mmap_base;
285 	mm->cached_hole_size = ~0UL;
286 	mm->map_count = 0;
287 	cpumask_clear(mm_cpumask(mm));
288 	mm->mm_rb = RB_ROOT;
289 	rb_link = &mm->mm_rb.rb_node;
290 	rb_parent = NULL;
291 	pprev = &mm->mmap;
292 
293 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
294 		struct file *file;
295 
296 		if (mpnt->vm_flags & VM_DONTCOPY) {
297 			long pages = vma_pages(mpnt);
298 			mm->total_vm -= pages;
299 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
300 								-pages);
301 			continue;
302 		}
303 		charge = 0;
304 		if (mpnt->vm_flags & VM_ACCOUNT) {
305 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
306 			if (security_vm_enough_memory(len))
307 				goto fail_nomem;
308 			charge = len;
309 		}
310 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
311 		if (!tmp)
312 			goto fail_nomem;
313 		*tmp = *mpnt;
314 		pol = mpol_dup(vma_policy(mpnt));
315 		retval = PTR_ERR(pol);
316 		if (IS_ERR(pol))
317 			goto fail_nomem_policy;
318 		vma_set_policy(tmp, pol);
319 		tmp->vm_flags &= ~VM_LOCKED;
320 		tmp->vm_mm = mm;
321 		tmp->vm_next = NULL;
322 		anon_vma_link(tmp);
323 		file = tmp->vm_file;
324 		if (file) {
325 			struct inode *inode = file->f_path.dentry->d_inode;
326 			struct address_space *mapping = file->f_mapping;
327 
328 			get_file(file);
329 			if (tmp->vm_flags & VM_DENYWRITE)
330 				atomic_dec(&inode->i_writecount);
331 			spin_lock(&mapping->i_mmap_lock);
332 			if (tmp->vm_flags & VM_SHARED)
333 				mapping->i_mmap_writable++;
334 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
335 			flush_dcache_mmap_lock(mapping);
336 			/* insert tmp into the share list, just after mpnt */
337 			vma_prio_tree_add(tmp, mpnt);
338 			flush_dcache_mmap_unlock(mapping);
339 			spin_unlock(&mapping->i_mmap_lock);
340 		}
341 
342 		/*
343 		 * Clear hugetlb-related page reserves for children. This only
344 		 * affects MAP_PRIVATE mappings. Faults generated by the child
345 		 * are not guaranteed to succeed, even if read-only
346 		 */
347 		if (is_vm_hugetlb_page(tmp))
348 			reset_vma_resv_huge_pages(tmp);
349 
350 		/*
351 		 * Link in the new vma and copy the page table entries.
352 		 */
353 		*pprev = tmp;
354 		pprev = &tmp->vm_next;
355 
356 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
357 		rb_link = &tmp->vm_rb.rb_right;
358 		rb_parent = &tmp->vm_rb;
359 
360 		mm->map_count++;
361 		retval = copy_page_range(mm, oldmm, mpnt);
362 
363 		if (tmp->vm_ops && tmp->vm_ops->open)
364 			tmp->vm_ops->open(tmp);
365 
366 		if (retval)
367 			goto out;
368 	}
369 	/* a new mm has just been created */
370 	arch_dup_mmap(oldmm, mm);
371 	retval = 0;
372 out:
373 	up_write(&mm->mmap_sem);
374 	flush_tlb_mm(oldmm);
375 	up_write(&oldmm->mmap_sem);
376 	return retval;
377 fail_nomem_policy:
378 	kmem_cache_free(vm_area_cachep, tmp);
379 fail_nomem:
380 	retval = -ENOMEM;
381 	vm_unacct_memory(charge);
382 	goto out;
383 }
384 
385 static inline int mm_alloc_pgd(struct mm_struct * mm)
386 {
387 	mm->pgd = pgd_alloc(mm);
388 	if (unlikely(!mm->pgd))
389 		return -ENOMEM;
390 	return 0;
391 }
392 
393 static inline void mm_free_pgd(struct mm_struct * mm)
394 {
395 	pgd_free(mm, mm->pgd);
396 }
397 #else
398 #define dup_mmap(mm, oldmm)	(0)
399 #define mm_alloc_pgd(mm)	(0)
400 #define mm_free_pgd(mm)
401 #endif /* CONFIG_MMU */
402 
403 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
404 
405 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
406 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
407 
408 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
409 
410 static int __init coredump_filter_setup(char *s)
411 {
412 	default_dump_filter =
413 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
414 		MMF_DUMP_FILTER_MASK;
415 	return 1;
416 }
417 
418 __setup("coredump_filter=", coredump_filter_setup);
419 
420 #include <linux/init_task.h>
421 
422 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
423 {
424 	atomic_set(&mm->mm_users, 1);
425 	atomic_set(&mm->mm_count, 1);
426 	init_rwsem(&mm->mmap_sem);
427 	INIT_LIST_HEAD(&mm->mmlist);
428 	mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
429 	mm->core_state = NULL;
430 	mm->nr_ptes = 0;
431 	set_mm_counter(mm, file_rss, 0);
432 	set_mm_counter(mm, anon_rss, 0);
433 	spin_lock_init(&mm->page_table_lock);
434 	spin_lock_init(&mm->ioctx_lock);
435 	INIT_HLIST_HEAD(&mm->ioctx_list);
436 	mm->free_area_cache = TASK_UNMAPPED_BASE;
437 	mm->cached_hole_size = ~0UL;
438 	mm_init_owner(mm, p);
439 
440 	if (likely(!mm_alloc_pgd(mm))) {
441 		mm->def_flags = 0;
442 		mmu_notifier_mm_init(mm);
443 		return mm;
444 	}
445 
446 	free_mm(mm);
447 	return NULL;
448 }
449 
450 /*
451  * Allocate and initialize an mm_struct.
452  */
453 struct mm_struct * mm_alloc(void)
454 {
455 	struct mm_struct * mm;
456 
457 	mm = allocate_mm();
458 	if (mm) {
459 		memset(mm, 0, sizeof(*mm));
460 		mm = mm_init(mm, current);
461 	}
462 	return mm;
463 }
464 
465 /*
466  * Called when the last reference to the mm
467  * is dropped: either by a lazy thread or by
468  * mmput. Free the page directory and the mm.
469  */
470 void __mmdrop(struct mm_struct *mm)
471 {
472 	BUG_ON(mm == &init_mm);
473 	mm_free_pgd(mm);
474 	destroy_context(mm);
475 	mmu_notifier_mm_destroy(mm);
476 	free_mm(mm);
477 }
478 EXPORT_SYMBOL_GPL(__mmdrop);
479 
480 /*
481  * Decrement the use count and release all resources for an mm.
482  */
483 void mmput(struct mm_struct *mm)
484 {
485 	might_sleep();
486 
487 	if (atomic_dec_and_test(&mm->mm_users)) {
488 		exit_aio(mm);
489 		exit_mmap(mm);
490 		set_mm_exe_file(mm, NULL);
491 		if (!list_empty(&mm->mmlist)) {
492 			spin_lock(&mmlist_lock);
493 			list_del(&mm->mmlist);
494 			spin_unlock(&mmlist_lock);
495 		}
496 		put_swap_token(mm);
497 		mmdrop(mm);
498 	}
499 }
500 EXPORT_SYMBOL_GPL(mmput);
501 
502 /**
503  * get_task_mm - acquire a reference to the task's mm
504  *
505  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
506  * this kernel workthread has transiently adopted a user mm with use_mm,
507  * to do its AIO) is not set and if so returns a reference to it, after
508  * bumping up the use count.  User must release the mm via mmput()
509  * after use.  Typically used by /proc and ptrace.
510  */
511 struct mm_struct *get_task_mm(struct task_struct *task)
512 {
513 	struct mm_struct *mm;
514 
515 	task_lock(task);
516 	mm = task->mm;
517 	if (mm) {
518 		if (task->flags & PF_KTHREAD)
519 			mm = NULL;
520 		else
521 			atomic_inc(&mm->mm_users);
522 	}
523 	task_unlock(task);
524 	return mm;
525 }
526 EXPORT_SYMBOL_GPL(get_task_mm);
527 
528 /* Please note the differences between mmput and mm_release.
529  * mmput is called whenever we stop holding onto a mm_struct,
530  * error success whatever.
531  *
532  * mm_release is called after a mm_struct has been removed
533  * from the current process.
534  *
535  * This difference is important for error handling, when we
536  * only half set up a mm_struct for a new process and need to restore
537  * the old one.  Because we mmput the new mm_struct before
538  * restoring the old one. . .
539  * Eric Biederman 10 January 1998
540  */
541 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
542 {
543 	struct completion *vfork_done = tsk->vfork_done;
544 
545 	/* Get rid of any futexes when releasing the mm */
546 #ifdef CONFIG_FUTEX
547 	if (unlikely(tsk->robust_list))
548 		exit_robust_list(tsk);
549 #ifdef CONFIG_COMPAT
550 	if (unlikely(tsk->compat_robust_list))
551 		compat_exit_robust_list(tsk);
552 #endif
553 #endif
554 
555 	/* Get rid of any cached register state */
556 	deactivate_mm(tsk, mm);
557 
558 	/* notify parent sleeping on vfork() */
559 	if (vfork_done) {
560 		tsk->vfork_done = NULL;
561 		complete(vfork_done);
562 	}
563 
564 	/*
565 	 * If we're exiting normally, clear a user-space tid field if
566 	 * requested.  We leave this alone when dying by signal, to leave
567 	 * the value intact in a core dump, and to save the unnecessary
568 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
569 	 */
570 	if (tsk->clear_child_tid) {
571 		if (!(tsk->flags & PF_SIGNALED) &&
572 		    atomic_read(&mm->mm_users) > 1) {
573 			/*
574 			 * We don't check the error code - if userspace has
575 			 * not set up a proper pointer then tough luck.
576 			 */
577 			put_user(0, tsk->clear_child_tid);
578 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
579 					1, NULL, NULL, 0);
580 		}
581 		tsk->clear_child_tid = NULL;
582 	}
583 }
584 
585 /*
586  * Allocate a new mm structure and copy contents from the
587  * mm structure of the passed in task structure.
588  */
589 struct mm_struct *dup_mm(struct task_struct *tsk)
590 {
591 	struct mm_struct *mm, *oldmm = current->mm;
592 	int err;
593 
594 	if (!oldmm)
595 		return NULL;
596 
597 	mm = allocate_mm();
598 	if (!mm)
599 		goto fail_nomem;
600 
601 	memcpy(mm, oldmm, sizeof(*mm));
602 
603 	/* Initializing for Swap token stuff */
604 	mm->token_priority = 0;
605 	mm->last_interval = 0;
606 
607 	if (!mm_init(mm, tsk))
608 		goto fail_nomem;
609 
610 	if (init_new_context(tsk, mm))
611 		goto fail_nocontext;
612 
613 	dup_mm_exe_file(oldmm, mm);
614 
615 	err = dup_mmap(mm, oldmm);
616 	if (err)
617 		goto free_pt;
618 
619 	mm->hiwater_rss = get_mm_rss(mm);
620 	mm->hiwater_vm = mm->total_vm;
621 
622 	return mm;
623 
624 free_pt:
625 	mmput(mm);
626 
627 fail_nomem:
628 	return NULL;
629 
630 fail_nocontext:
631 	/*
632 	 * If init_new_context() failed, we cannot use mmput() to free the mm
633 	 * because it calls destroy_context()
634 	 */
635 	mm_free_pgd(mm);
636 	free_mm(mm);
637 	return NULL;
638 }
639 
640 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
641 {
642 	struct mm_struct * mm, *oldmm;
643 	int retval;
644 
645 	tsk->min_flt = tsk->maj_flt = 0;
646 	tsk->nvcsw = tsk->nivcsw = 0;
647 #ifdef CONFIG_DETECT_HUNG_TASK
648 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
649 #endif
650 
651 	tsk->mm = NULL;
652 	tsk->active_mm = NULL;
653 
654 	/*
655 	 * Are we cloning a kernel thread?
656 	 *
657 	 * We need to steal a active VM for that..
658 	 */
659 	oldmm = current->mm;
660 	if (!oldmm)
661 		return 0;
662 
663 	if (clone_flags & CLONE_VM) {
664 		atomic_inc(&oldmm->mm_users);
665 		mm = oldmm;
666 		goto good_mm;
667 	}
668 
669 	retval = -ENOMEM;
670 	mm = dup_mm(tsk);
671 	if (!mm)
672 		goto fail_nomem;
673 
674 good_mm:
675 	/* Initializing for Swap token stuff */
676 	mm->token_priority = 0;
677 	mm->last_interval = 0;
678 
679 	tsk->mm = mm;
680 	tsk->active_mm = mm;
681 	return 0;
682 
683 fail_nomem:
684 	return retval;
685 }
686 
687 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
688 {
689 	struct fs_struct *fs = current->fs;
690 	if (clone_flags & CLONE_FS) {
691 		/* tsk->fs is already what we want */
692 		write_lock(&fs->lock);
693 		if (fs->in_exec) {
694 			write_unlock(&fs->lock);
695 			return -EAGAIN;
696 		}
697 		fs->users++;
698 		write_unlock(&fs->lock);
699 		return 0;
700 	}
701 	tsk->fs = copy_fs_struct(fs);
702 	if (!tsk->fs)
703 		return -ENOMEM;
704 	return 0;
705 }
706 
707 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
708 {
709 	struct files_struct *oldf, *newf;
710 	int error = 0;
711 
712 	/*
713 	 * A background process may not have any files ...
714 	 */
715 	oldf = current->files;
716 	if (!oldf)
717 		goto out;
718 
719 	if (clone_flags & CLONE_FILES) {
720 		atomic_inc(&oldf->count);
721 		goto out;
722 	}
723 
724 	newf = dup_fd(oldf, &error);
725 	if (!newf)
726 		goto out;
727 
728 	tsk->files = newf;
729 	error = 0;
730 out:
731 	return error;
732 }
733 
734 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
735 {
736 #ifdef CONFIG_BLOCK
737 	struct io_context *ioc = current->io_context;
738 
739 	if (!ioc)
740 		return 0;
741 	/*
742 	 * Share io context with parent, if CLONE_IO is set
743 	 */
744 	if (clone_flags & CLONE_IO) {
745 		tsk->io_context = ioc_task_link(ioc);
746 		if (unlikely(!tsk->io_context))
747 			return -ENOMEM;
748 	} else if (ioprio_valid(ioc->ioprio)) {
749 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
750 		if (unlikely(!tsk->io_context))
751 			return -ENOMEM;
752 
753 		tsk->io_context->ioprio = ioc->ioprio;
754 	}
755 #endif
756 	return 0;
757 }
758 
759 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
760 {
761 	struct sighand_struct *sig;
762 
763 	if (clone_flags & CLONE_SIGHAND) {
764 		atomic_inc(&current->sighand->count);
765 		return 0;
766 	}
767 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
768 	rcu_assign_pointer(tsk->sighand, sig);
769 	if (!sig)
770 		return -ENOMEM;
771 	atomic_set(&sig->count, 1);
772 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
773 	return 0;
774 }
775 
776 void __cleanup_sighand(struct sighand_struct *sighand)
777 {
778 	if (atomic_dec_and_test(&sighand->count))
779 		kmem_cache_free(sighand_cachep, sighand);
780 }
781 
782 
783 /*
784  * Initialize POSIX timer handling for a thread group.
785  */
786 static void posix_cpu_timers_init_group(struct signal_struct *sig)
787 {
788 	/* Thread group counters. */
789 	thread_group_cputime_init(sig);
790 
791 	/* Expiration times and increments. */
792 	sig->it_virt_expires = cputime_zero;
793 	sig->it_virt_incr = cputime_zero;
794 	sig->it_prof_expires = cputime_zero;
795 	sig->it_prof_incr = cputime_zero;
796 
797 	/* Cached expiration times. */
798 	sig->cputime_expires.prof_exp = cputime_zero;
799 	sig->cputime_expires.virt_exp = cputime_zero;
800 	sig->cputime_expires.sched_exp = 0;
801 
802 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
803 		sig->cputime_expires.prof_exp =
804 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
805 		sig->cputimer.running = 1;
806 	}
807 
808 	/* The timer lists. */
809 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
810 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
811 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
812 }
813 
814 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
815 {
816 	struct signal_struct *sig;
817 
818 	if (clone_flags & CLONE_THREAD) {
819 		atomic_inc(&current->signal->count);
820 		atomic_inc(&current->signal->live);
821 		return 0;
822 	}
823 
824 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
825 	tsk->signal = sig;
826 	if (!sig)
827 		return -ENOMEM;
828 
829 	atomic_set(&sig->count, 1);
830 	atomic_set(&sig->live, 1);
831 	init_waitqueue_head(&sig->wait_chldexit);
832 	sig->flags = 0;
833 	if (clone_flags & CLONE_NEWPID)
834 		sig->flags |= SIGNAL_UNKILLABLE;
835 	sig->group_exit_code = 0;
836 	sig->group_exit_task = NULL;
837 	sig->group_stop_count = 0;
838 	sig->curr_target = tsk;
839 	init_sigpending(&sig->shared_pending);
840 	INIT_LIST_HEAD(&sig->posix_timers);
841 
842 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
843 	sig->it_real_incr.tv64 = 0;
844 	sig->real_timer.function = it_real_fn;
845 
846 	sig->leader = 0;	/* session leadership doesn't inherit */
847 	sig->tty_old_pgrp = NULL;
848 	sig->tty = NULL;
849 
850 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
851 	sig->gtime = cputime_zero;
852 	sig->cgtime = cputime_zero;
853 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
854 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
855 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
856 	task_io_accounting_init(&sig->ioac);
857 	sig->sum_sched_runtime = 0;
858 	taskstats_tgid_init(sig);
859 
860 	task_lock(current->group_leader);
861 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
862 	task_unlock(current->group_leader);
863 
864 	posix_cpu_timers_init_group(sig);
865 
866 	acct_init_pacct(&sig->pacct);
867 
868 	tty_audit_fork(sig);
869 
870 	return 0;
871 }
872 
873 void __cleanup_signal(struct signal_struct *sig)
874 {
875 	thread_group_cputime_free(sig);
876 	tty_kref_put(sig->tty);
877 	kmem_cache_free(signal_cachep, sig);
878 }
879 
880 static void cleanup_signal(struct task_struct *tsk)
881 {
882 	struct signal_struct *sig = tsk->signal;
883 
884 	atomic_dec(&sig->live);
885 
886 	if (atomic_dec_and_test(&sig->count))
887 		__cleanup_signal(sig);
888 }
889 
890 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
891 {
892 	unsigned long new_flags = p->flags;
893 
894 	new_flags &= ~PF_SUPERPRIV;
895 	new_flags |= PF_FORKNOEXEC;
896 	new_flags |= PF_STARTING;
897 	p->flags = new_flags;
898 	clear_freeze_flag(p);
899 }
900 
901 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
902 {
903 	current->clear_child_tid = tidptr;
904 
905 	return task_pid_vnr(current);
906 }
907 
908 static void rt_mutex_init_task(struct task_struct *p)
909 {
910 	spin_lock_init(&p->pi_lock);
911 #ifdef CONFIG_RT_MUTEXES
912 	plist_head_init(&p->pi_waiters, &p->pi_lock);
913 	p->pi_blocked_on = NULL;
914 #endif
915 }
916 
917 #ifdef CONFIG_MM_OWNER
918 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
919 {
920 	mm->owner = p;
921 }
922 #endif /* CONFIG_MM_OWNER */
923 
924 /*
925  * Initialize POSIX timer handling for a single task.
926  */
927 static void posix_cpu_timers_init(struct task_struct *tsk)
928 {
929 	tsk->cputime_expires.prof_exp = cputime_zero;
930 	tsk->cputime_expires.virt_exp = cputime_zero;
931 	tsk->cputime_expires.sched_exp = 0;
932 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
933 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
934 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
935 }
936 
937 /*
938  * This creates a new process as a copy of the old one,
939  * but does not actually start it yet.
940  *
941  * It copies the registers, and all the appropriate
942  * parts of the process environment (as per the clone
943  * flags). The actual kick-off is left to the caller.
944  */
945 static struct task_struct *copy_process(unsigned long clone_flags,
946 					unsigned long stack_start,
947 					struct pt_regs *regs,
948 					unsigned long stack_size,
949 					int __user *child_tidptr,
950 					struct pid *pid,
951 					int trace)
952 {
953 	int retval;
954 	struct task_struct *p;
955 	int cgroup_callbacks_done = 0;
956 
957 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
958 		return ERR_PTR(-EINVAL);
959 
960 	/*
961 	 * Thread groups must share signals as well, and detached threads
962 	 * can only be started up within the thread group.
963 	 */
964 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
965 		return ERR_PTR(-EINVAL);
966 
967 	/*
968 	 * Shared signal handlers imply shared VM. By way of the above,
969 	 * thread groups also imply shared VM. Blocking this case allows
970 	 * for various simplifications in other code.
971 	 */
972 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
973 		return ERR_PTR(-EINVAL);
974 
975 	retval = security_task_create(clone_flags);
976 	if (retval)
977 		goto fork_out;
978 
979 	retval = -ENOMEM;
980 	p = dup_task_struct(current);
981 	if (!p)
982 		goto fork_out;
983 
984 	ftrace_graph_init_task(p);
985 
986 	rt_mutex_init_task(p);
987 
988 #ifdef CONFIG_PROVE_LOCKING
989 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
990 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
991 #endif
992 	retval = -EAGAIN;
993 	if (atomic_read(&p->real_cred->user->processes) >=
994 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
995 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
996 		    p->real_cred->user != INIT_USER)
997 			goto bad_fork_free;
998 	}
999 
1000 	retval = copy_creds(p, clone_flags);
1001 	if (retval < 0)
1002 		goto bad_fork_free;
1003 
1004 	/*
1005 	 * If multiple threads are within copy_process(), then this check
1006 	 * triggers too late. This doesn't hurt, the check is only there
1007 	 * to stop root fork bombs.
1008 	 */
1009 	retval = -EAGAIN;
1010 	if (nr_threads >= max_threads)
1011 		goto bad_fork_cleanup_count;
1012 
1013 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1014 		goto bad_fork_cleanup_count;
1015 
1016 	if (p->binfmt && !try_module_get(p->binfmt->module))
1017 		goto bad_fork_cleanup_put_domain;
1018 
1019 	p->did_exec = 0;
1020 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1021 	copy_flags(clone_flags, p);
1022 	INIT_LIST_HEAD(&p->children);
1023 	INIT_LIST_HEAD(&p->sibling);
1024 #ifdef CONFIG_PREEMPT_RCU
1025 	p->rcu_read_lock_nesting = 0;
1026 	p->rcu_flipctr_idx = 0;
1027 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1028 	p->vfork_done = NULL;
1029 	spin_lock_init(&p->alloc_lock);
1030 
1031 	init_sigpending(&p->pending);
1032 
1033 	p->utime = cputime_zero;
1034 	p->stime = cputime_zero;
1035 	p->gtime = cputime_zero;
1036 	p->utimescaled = cputime_zero;
1037 	p->stimescaled = cputime_zero;
1038 	p->prev_utime = cputime_zero;
1039 	p->prev_stime = cputime_zero;
1040 
1041 	p->default_timer_slack_ns = current->timer_slack_ns;
1042 
1043 	task_io_accounting_init(&p->ioac);
1044 	acct_clear_integrals(p);
1045 
1046 	posix_cpu_timers_init(p);
1047 
1048 	p->lock_depth = -1;		/* -1 = no lock */
1049 	do_posix_clock_monotonic_gettime(&p->start_time);
1050 	p->real_start_time = p->start_time;
1051 	monotonic_to_bootbased(&p->real_start_time);
1052 	p->io_context = NULL;
1053 	p->audit_context = NULL;
1054 	cgroup_fork(p);
1055 #ifdef CONFIG_NUMA
1056 	p->mempolicy = mpol_dup(p->mempolicy);
1057  	if (IS_ERR(p->mempolicy)) {
1058  		retval = PTR_ERR(p->mempolicy);
1059  		p->mempolicy = NULL;
1060  		goto bad_fork_cleanup_cgroup;
1061  	}
1062 	mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065 	p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 	p->hardirqs_enabled = 1;
1068 #else
1069 	p->hardirqs_enabled = 0;
1070 #endif
1071 	p->hardirq_enable_ip = 0;
1072 	p->hardirq_enable_event = 0;
1073 	p->hardirq_disable_ip = _THIS_IP_;
1074 	p->hardirq_disable_event = 0;
1075 	p->softirqs_enabled = 1;
1076 	p->softirq_enable_ip = _THIS_IP_;
1077 	p->softirq_enable_event = 0;
1078 	p->softirq_disable_ip = 0;
1079 	p->softirq_disable_event = 0;
1080 	p->hardirq_context = 0;
1081 	p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 	p->lockdep_depth = 0; /* no locks held yet */
1085 	p->curr_chain_key = 0;
1086 	p->lockdep_recursion = 0;
1087 #endif
1088 
1089 #ifdef CONFIG_DEBUG_MUTEXES
1090 	p->blocked_on = NULL; /* not blocked yet */
1091 #endif
1092 
1093 	p->bts = NULL;
1094 
1095 	/* Perform scheduler related setup. Assign this task to a CPU. */
1096 	sched_fork(p, clone_flags);
1097 
1098 	retval = perf_counter_init_task(p);
1099 	if (retval)
1100 		goto bad_fork_cleanup_policy;
1101 
1102 	if ((retval = audit_alloc(p)))
1103 		goto bad_fork_cleanup_policy;
1104 	/* copy all the process information */
1105 	if ((retval = copy_semundo(clone_flags, p)))
1106 		goto bad_fork_cleanup_audit;
1107 	if ((retval = copy_files(clone_flags, p)))
1108 		goto bad_fork_cleanup_semundo;
1109 	if ((retval = copy_fs(clone_flags, p)))
1110 		goto bad_fork_cleanup_files;
1111 	if ((retval = copy_sighand(clone_flags, p)))
1112 		goto bad_fork_cleanup_fs;
1113 	if ((retval = copy_signal(clone_flags, p)))
1114 		goto bad_fork_cleanup_sighand;
1115 	if ((retval = copy_mm(clone_flags, p)))
1116 		goto bad_fork_cleanup_signal;
1117 	if ((retval = copy_namespaces(clone_flags, p)))
1118 		goto bad_fork_cleanup_mm;
1119 	if ((retval = copy_io(clone_flags, p)))
1120 		goto bad_fork_cleanup_namespaces;
1121 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1122 	if (retval)
1123 		goto bad_fork_cleanup_io;
1124 
1125 	if (pid != &init_struct_pid) {
1126 		retval = -ENOMEM;
1127 		pid = alloc_pid(p->nsproxy->pid_ns);
1128 		if (!pid)
1129 			goto bad_fork_cleanup_io;
1130 
1131 		if (clone_flags & CLONE_NEWPID) {
1132 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1133 			if (retval < 0)
1134 				goto bad_fork_free_pid;
1135 		}
1136 	}
1137 
1138 	p->pid = pid_nr(pid);
1139 	p->tgid = p->pid;
1140 	if (clone_flags & CLONE_THREAD)
1141 		p->tgid = current->tgid;
1142 
1143 	if (current->nsproxy != p->nsproxy) {
1144 		retval = ns_cgroup_clone(p, pid);
1145 		if (retval)
1146 			goto bad_fork_free_pid;
1147 	}
1148 
1149 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1150 	/*
1151 	 * Clear TID on mm_release()?
1152 	 */
1153 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1154 #ifdef CONFIG_FUTEX
1155 	p->robust_list = NULL;
1156 #ifdef CONFIG_COMPAT
1157 	p->compat_robust_list = NULL;
1158 #endif
1159 	INIT_LIST_HEAD(&p->pi_state_list);
1160 	p->pi_state_cache = NULL;
1161 #endif
1162 	/*
1163 	 * sigaltstack should be cleared when sharing the same VM
1164 	 */
1165 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1166 		p->sas_ss_sp = p->sas_ss_size = 0;
1167 
1168 	/*
1169 	 * Syscall tracing should be turned off in the child regardless
1170 	 * of CLONE_PTRACE.
1171 	 */
1172 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1173 #ifdef TIF_SYSCALL_EMU
1174 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1175 #endif
1176 	clear_all_latency_tracing(p);
1177 
1178 	/* ok, now we should be set up.. */
1179 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1180 	p->pdeath_signal = 0;
1181 	p->exit_state = 0;
1182 
1183 	/*
1184 	 * Ok, make it visible to the rest of the system.
1185 	 * We dont wake it up yet.
1186 	 */
1187 	p->group_leader = p;
1188 	INIT_LIST_HEAD(&p->thread_group);
1189 
1190 	/* Now that the task is set up, run cgroup callbacks if
1191 	 * necessary. We need to run them before the task is visible
1192 	 * on the tasklist. */
1193 	cgroup_fork_callbacks(p);
1194 	cgroup_callbacks_done = 1;
1195 
1196 	/* Need tasklist lock for parent etc handling! */
1197 	write_lock_irq(&tasklist_lock);
1198 
1199 	/*
1200 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1201 	 * not be changed, nor will its assigned CPU.
1202 	 *
1203 	 * The cpus_allowed mask of the parent may have changed after it was
1204 	 * copied first time - so re-copy it here, then check the child's CPU
1205 	 * to ensure it is on a valid CPU (and if not, just force it back to
1206 	 * parent's CPU). This avoids alot of nasty races.
1207 	 */
1208 	p->cpus_allowed = current->cpus_allowed;
1209 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1210 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1211 			!cpu_online(task_cpu(p))))
1212 		set_task_cpu(p, smp_processor_id());
1213 
1214 	/* CLONE_PARENT re-uses the old parent */
1215 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1216 		p->real_parent = current->real_parent;
1217 		p->parent_exec_id = current->parent_exec_id;
1218 	} else {
1219 		p->real_parent = current;
1220 		p->parent_exec_id = current->self_exec_id;
1221 	}
1222 
1223 	spin_lock(&current->sighand->siglock);
1224 
1225 	/*
1226 	 * Process group and session signals need to be delivered to just the
1227 	 * parent before the fork or both the parent and the child after the
1228 	 * fork. Restart if a signal comes in before we add the new process to
1229 	 * it's process group.
1230 	 * A fatal signal pending means that current will exit, so the new
1231 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1232  	 */
1233 	recalc_sigpending();
1234 	if (signal_pending(current)) {
1235 		spin_unlock(&current->sighand->siglock);
1236 		write_unlock_irq(&tasklist_lock);
1237 		retval = -ERESTARTNOINTR;
1238 		goto bad_fork_free_pid;
1239 	}
1240 
1241 	if (clone_flags & CLONE_THREAD) {
1242 		p->group_leader = current->group_leader;
1243 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1244 	}
1245 
1246 	if (likely(p->pid)) {
1247 		list_add_tail(&p->sibling, &p->real_parent->children);
1248 		tracehook_finish_clone(p, clone_flags, trace);
1249 
1250 		if (thread_group_leader(p)) {
1251 			if (clone_flags & CLONE_NEWPID)
1252 				p->nsproxy->pid_ns->child_reaper = p;
1253 
1254 			p->signal->leader_pid = pid;
1255 			tty_kref_put(p->signal->tty);
1256 			p->signal->tty = tty_kref_get(current->signal->tty);
1257 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1258 			attach_pid(p, PIDTYPE_SID, task_session(current));
1259 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1260 			__get_cpu_var(process_counts)++;
1261 		}
1262 		attach_pid(p, PIDTYPE_PID, pid);
1263 		nr_threads++;
1264 	}
1265 
1266 	total_forks++;
1267 	spin_unlock(&current->sighand->siglock);
1268 	write_unlock_irq(&tasklist_lock);
1269 	proc_fork_connector(p);
1270 	cgroup_post_fork(p);
1271 	perf_counter_fork(p);
1272 	return p;
1273 
1274 bad_fork_free_pid:
1275 	if (pid != &init_struct_pid)
1276 		free_pid(pid);
1277 bad_fork_cleanup_io:
1278 	put_io_context(p->io_context);
1279 bad_fork_cleanup_namespaces:
1280 	exit_task_namespaces(p);
1281 bad_fork_cleanup_mm:
1282 	if (p->mm)
1283 		mmput(p->mm);
1284 bad_fork_cleanup_signal:
1285 	cleanup_signal(p);
1286 bad_fork_cleanup_sighand:
1287 	__cleanup_sighand(p->sighand);
1288 bad_fork_cleanup_fs:
1289 	exit_fs(p); /* blocking */
1290 bad_fork_cleanup_files:
1291 	exit_files(p); /* blocking */
1292 bad_fork_cleanup_semundo:
1293 	exit_sem(p);
1294 bad_fork_cleanup_audit:
1295 	audit_free(p);
1296 bad_fork_cleanup_policy:
1297 	perf_counter_free_task(p);
1298 #ifdef CONFIG_NUMA
1299 	mpol_put(p->mempolicy);
1300 bad_fork_cleanup_cgroup:
1301 #endif
1302 	cgroup_exit(p, cgroup_callbacks_done);
1303 	delayacct_tsk_free(p);
1304 	if (p->binfmt)
1305 		module_put(p->binfmt->module);
1306 bad_fork_cleanup_put_domain:
1307 	module_put(task_thread_info(p)->exec_domain->module);
1308 bad_fork_cleanup_count:
1309 	atomic_dec(&p->cred->user->processes);
1310 	put_cred(p->real_cred);
1311 	put_cred(p->cred);
1312 bad_fork_free:
1313 	free_task(p);
1314 fork_out:
1315 	return ERR_PTR(retval);
1316 }
1317 
1318 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1319 {
1320 	memset(regs, 0, sizeof(struct pt_regs));
1321 	return regs;
1322 }
1323 
1324 struct task_struct * __cpuinit fork_idle(int cpu)
1325 {
1326 	struct task_struct *task;
1327 	struct pt_regs regs;
1328 
1329 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1330 			    &init_struct_pid, 0);
1331 	if (!IS_ERR(task))
1332 		init_idle(task, cpu);
1333 
1334 	return task;
1335 }
1336 
1337 /*
1338  *  Ok, this is the main fork-routine.
1339  *
1340  * It copies the process, and if successful kick-starts
1341  * it and waits for it to finish using the VM if required.
1342  */
1343 long do_fork(unsigned long clone_flags,
1344 	      unsigned long stack_start,
1345 	      struct pt_regs *regs,
1346 	      unsigned long stack_size,
1347 	      int __user *parent_tidptr,
1348 	      int __user *child_tidptr)
1349 {
1350 	struct task_struct *p;
1351 	int trace = 0;
1352 	long nr;
1353 
1354 	/*
1355 	 * Do some preliminary argument and permissions checking before we
1356 	 * actually start allocating stuff
1357 	 */
1358 	if (clone_flags & CLONE_NEWUSER) {
1359 		if (clone_flags & CLONE_THREAD)
1360 			return -EINVAL;
1361 		/* hopefully this check will go away when userns support is
1362 		 * complete
1363 		 */
1364 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1365 				!capable(CAP_SETGID))
1366 			return -EPERM;
1367 	}
1368 
1369 	/*
1370 	 * We hope to recycle these flags after 2.6.26
1371 	 */
1372 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1373 		static int __read_mostly count = 100;
1374 
1375 		if (count > 0 && printk_ratelimit()) {
1376 			char comm[TASK_COMM_LEN];
1377 
1378 			count--;
1379 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1380 					"clone flags 0x%lx\n",
1381 				get_task_comm(comm, current),
1382 				clone_flags & CLONE_STOPPED);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * When called from kernel_thread, don't do user tracing stuff.
1388 	 */
1389 	if (likely(user_mode(regs)))
1390 		trace = tracehook_prepare_clone(clone_flags);
1391 
1392 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1393 			 child_tidptr, NULL, trace);
1394 	/*
1395 	 * Do this prior waking up the new thread - the thread pointer
1396 	 * might get invalid after that point, if the thread exits quickly.
1397 	 */
1398 	if (!IS_ERR(p)) {
1399 		struct completion vfork;
1400 
1401 		trace_sched_process_fork(current, p);
1402 
1403 		nr = task_pid_vnr(p);
1404 
1405 		if (clone_flags & CLONE_PARENT_SETTID)
1406 			put_user(nr, parent_tidptr);
1407 
1408 		if (clone_flags & CLONE_VFORK) {
1409 			p->vfork_done = &vfork;
1410 			init_completion(&vfork);
1411 		}
1412 
1413 		audit_finish_fork(p);
1414 		tracehook_report_clone(regs, clone_flags, nr, p);
1415 
1416 		/*
1417 		 * We set PF_STARTING at creation in case tracing wants to
1418 		 * use this to distinguish a fully live task from one that
1419 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1420 		 * clear it and set the child going.
1421 		 */
1422 		p->flags &= ~PF_STARTING;
1423 
1424 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1425 			/*
1426 			 * We'll start up with an immediate SIGSTOP.
1427 			 */
1428 			sigaddset(&p->pending.signal, SIGSTOP);
1429 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1430 			__set_task_state(p, TASK_STOPPED);
1431 		} else {
1432 			wake_up_new_task(p, clone_flags);
1433 		}
1434 
1435 		tracehook_report_clone_complete(trace, regs,
1436 						clone_flags, nr, p);
1437 
1438 		if (clone_flags & CLONE_VFORK) {
1439 			freezer_do_not_count();
1440 			wait_for_completion(&vfork);
1441 			freezer_count();
1442 			tracehook_report_vfork_done(p, nr);
1443 		}
1444 	} else {
1445 		nr = PTR_ERR(p);
1446 	}
1447 	return nr;
1448 }
1449 
1450 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1451 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1452 #endif
1453 
1454 static void sighand_ctor(void *data)
1455 {
1456 	struct sighand_struct *sighand = data;
1457 
1458 	spin_lock_init(&sighand->siglock);
1459 	init_waitqueue_head(&sighand->signalfd_wqh);
1460 }
1461 
1462 void __init proc_caches_init(void)
1463 {
1464 	sighand_cachep = kmem_cache_create("sighand_cache",
1465 			sizeof(struct sighand_struct), 0,
1466 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1467 			SLAB_NOTRACK, sighand_ctor);
1468 	signal_cachep = kmem_cache_create("signal_cache",
1469 			sizeof(struct signal_struct), 0,
1470 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1471 	files_cachep = kmem_cache_create("files_cache",
1472 			sizeof(struct files_struct), 0,
1473 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1474 	fs_cachep = kmem_cache_create("fs_cache",
1475 			sizeof(struct fs_struct), 0,
1476 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1477 	mm_cachep = kmem_cache_create("mm_struct",
1478 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1479 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1480 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1481 	mmap_init();
1482 }
1483 
1484 /*
1485  * Check constraints on flags passed to the unshare system call and
1486  * force unsharing of additional process context as appropriate.
1487  */
1488 static void check_unshare_flags(unsigned long *flags_ptr)
1489 {
1490 	/*
1491 	 * If unsharing a thread from a thread group, must also
1492 	 * unshare vm.
1493 	 */
1494 	if (*flags_ptr & CLONE_THREAD)
1495 		*flags_ptr |= CLONE_VM;
1496 
1497 	/*
1498 	 * If unsharing vm, must also unshare signal handlers.
1499 	 */
1500 	if (*flags_ptr & CLONE_VM)
1501 		*flags_ptr |= CLONE_SIGHAND;
1502 
1503 	/*
1504 	 * If unsharing signal handlers and the task was created
1505 	 * using CLONE_THREAD, then must unshare the thread
1506 	 */
1507 	if ((*flags_ptr & CLONE_SIGHAND) &&
1508 	    (atomic_read(&current->signal->count) > 1))
1509 		*flags_ptr |= CLONE_THREAD;
1510 
1511 	/*
1512 	 * If unsharing namespace, must also unshare filesystem information.
1513 	 */
1514 	if (*flags_ptr & CLONE_NEWNS)
1515 		*flags_ptr |= CLONE_FS;
1516 }
1517 
1518 /*
1519  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1520  */
1521 static int unshare_thread(unsigned long unshare_flags)
1522 {
1523 	if (unshare_flags & CLONE_THREAD)
1524 		return -EINVAL;
1525 
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Unshare the filesystem structure if it is being shared
1531  */
1532 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1533 {
1534 	struct fs_struct *fs = current->fs;
1535 
1536 	if (!(unshare_flags & CLONE_FS) || !fs)
1537 		return 0;
1538 
1539 	/* don't need lock here; in the worst case we'll do useless copy */
1540 	if (fs->users == 1)
1541 		return 0;
1542 
1543 	*new_fsp = copy_fs_struct(fs);
1544 	if (!*new_fsp)
1545 		return -ENOMEM;
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Unsharing of sighand is not supported yet
1552  */
1553 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1554 {
1555 	struct sighand_struct *sigh = current->sighand;
1556 
1557 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1558 		return -EINVAL;
1559 	else
1560 		return 0;
1561 }
1562 
1563 /*
1564  * Unshare vm if it is being shared
1565  */
1566 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1567 {
1568 	struct mm_struct *mm = current->mm;
1569 
1570 	if ((unshare_flags & CLONE_VM) &&
1571 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1572 		return -EINVAL;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * Unshare file descriptor table if it is being shared
1580  */
1581 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1582 {
1583 	struct files_struct *fd = current->files;
1584 	int error = 0;
1585 
1586 	if ((unshare_flags & CLONE_FILES) &&
1587 	    (fd && atomic_read(&fd->count) > 1)) {
1588 		*new_fdp = dup_fd(fd, &error);
1589 		if (!*new_fdp)
1590 			return error;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 /*
1597  * unshare allows a process to 'unshare' part of the process
1598  * context which was originally shared using clone.  copy_*
1599  * functions used by do_fork() cannot be used here directly
1600  * because they modify an inactive task_struct that is being
1601  * constructed. Here we are modifying the current, active,
1602  * task_struct.
1603  */
1604 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1605 {
1606 	int err = 0;
1607 	struct fs_struct *fs, *new_fs = NULL;
1608 	struct sighand_struct *new_sigh = NULL;
1609 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1610 	struct files_struct *fd, *new_fd = NULL;
1611 	struct nsproxy *new_nsproxy = NULL;
1612 	int do_sysvsem = 0;
1613 
1614 	check_unshare_flags(&unshare_flags);
1615 
1616 	/* Return -EINVAL for all unsupported flags */
1617 	err = -EINVAL;
1618 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1619 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1620 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1621 		goto bad_unshare_out;
1622 
1623 	/*
1624 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1625 	 * to a new ipc namespace, the semaphore arrays from the old
1626 	 * namespace are unreachable.
1627 	 */
1628 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1629 		do_sysvsem = 1;
1630 	if ((err = unshare_thread(unshare_flags)))
1631 		goto bad_unshare_out;
1632 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1633 		goto bad_unshare_cleanup_thread;
1634 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1635 		goto bad_unshare_cleanup_fs;
1636 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1637 		goto bad_unshare_cleanup_sigh;
1638 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1639 		goto bad_unshare_cleanup_vm;
1640 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1641 			new_fs)))
1642 		goto bad_unshare_cleanup_fd;
1643 
1644 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1645 		if (do_sysvsem) {
1646 			/*
1647 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1648 			 */
1649 			exit_sem(current);
1650 		}
1651 
1652 		if (new_nsproxy) {
1653 			switch_task_namespaces(current, new_nsproxy);
1654 			new_nsproxy = NULL;
1655 		}
1656 
1657 		task_lock(current);
1658 
1659 		if (new_fs) {
1660 			fs = current->fs;
1661 			write_lock(&fs->lock);
1662 			current->fs = new_fs;
1663 			if (--fs->users)
1664 				new_fs = NULL;
1665 			else
1666 				new_fs = fs;
1667 			write_unlock(&fs->lock);
1668 		}
1669 
1670 		if (new_mm) {
1671 			mm = current->mm;
1672 			active_mm = current->active_mm;
1673 			current->mm = new_mm;
1674 			current->active_mm = new_mm;
1675 			activate_mm(active_mm, new_mm);
1676 			new_mm = mm;
1677 		}
1678 
1679 		if (new_fd) {
1680 			fd = current->files;
1681 			current->files = new_fd;
1682 			new_fd = fd;
1683 		}
1684 
1685 		task_unlock(current);
1686 	}
1687 
1688 	if (new_nsproxy)
1689 		put_nsproxy(new_nsproxy);
1690 
1691 bad_unshare_cleanup_fd:
1692 	if (new_fd)
1693 		put_files_struct(new_fd);
1694 
1695 bad_unshare_cleanup_vm:
1696 	if (new_mm)
1697 		mmput(new_mm);
1698 
1699 bad_unshare_cleanup_sigh:
1700 	if (new_sigh)
1701 		if (atomic_dec_and_test(&new_sigh->count))
1702 			kmem_cache_free(sighand_cachep, new_sigh);
1703 
1704 bad_unshare_cleanup_fs:
1705 	if (new_fs)
1706 		free_fs_struct(new_fs);
1707 
1708 bad_unshare_cleanup_thread:
1709 bad_unshare_out:
1710 	return err;
1711 }
1712 
1713 /*
1714  *	Helper to unshare the files of the current task.
1715  *	We don't want to expose copy_files internals to
1716  *	the exec layer of the kernel.
1717  */
1718 
1719 int unshare_files(struct files_struct **displaced)
1720 {
1721 	struct task_struct *task = current;
1722 	struct files_struct *copy = NULL;
1723 	int error;
1724 
1725 	error = unshare_fd(CLONE_FILES, &copy);
1726 	if (error || !copy) {
1727 		*displaced = NULL;
1728 		return error;
1729 	}
1730 	*displaced = task->files;
1731 	task_lock(task);
1732 	task->files = copy;
1733 	task_unlock(task);
1734 	return 0;
1735 }
1736