1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = UINT_MAX; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 return new; 508 } 509 510 void __vm_area_free(struct vm_area_struct *vma) 511 { 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 vma_lock_free(vma); 515 kmem_cache_free(vm_area_cachep, vma); 516 } 517 518 #ifdef CONFIG_PER_VMA_LOCK 519 static void vm_area_free_rcu_cb(struct rcu_head *head) 520 { 521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 522 vm_rcu); 523 524 /* The vma should not be locked while being destroyed. */ 525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 526 __vm_area_free(vma); 527 } 528 #endif 529 530 void vm_area_free(struct vm_area_struct *vma) 531 { 532 #ifdef CONFIG_PER_VMA_LOCK 533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 534 #else 535 __vm_area_free(vma); 536 #endif 537 } 538 539 static void account_kernel_stack(struct task_struct *tsk, int account) 540 { 541 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 542 struct vm_struct *vm = task_stack_vm_area(tsk); 543 int i; 544 545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 547 account * (PAGE_SIZE / 1024)); 548 } else { 549 void *stack = task_stack_page(tsk); 550 551 /* All stack pages are in the same node. */ 552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 553 account * (THREAD_SIZE / 1024)); 554 } 555 } 556 557 void exit_task_stack_account(struct task_struct *tsk) 558 { 559 account_kernel_stack(tsk, -1); 560 561 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 562 struct vm_struct *vm; 563 int i; 564 565 vm = task_stack_vm_area(tsk); 566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 567 memcg_kmem_uncharge_page(vm->pages[i], 0); 568 } 569 } 570 571 static void release_task_stack(struct task_struct *tsk) 572 { 573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 574 return; /* Better to leak the stack than to free prematurely */ 575 576 free_thread_stack(tsk); 577 } 578 579 #ifdef CONFIG_THREAD_INFO_IN_TASK 580 void put_task_stack(struct task_struct *tsk) 581 { 582 if (refcount_dec_and_test(&tsk->stack_refcount)) 583 release_task_stack(tsk); 584 } 585 #endif 586 587 void free_task(struct task_struct *tsk) 588 { 589 #ifdef CONFIG_SECCOMP 590 WARN_ON_ONCE(tsk->seccomp.filter); 591 #endif 592 release_user_cpus_ptr(tsk); 593 scs_release(tsk); 594 595 #ifndef CONFIG_THREAD_INFO_IN_TASK 596 /* 597 * The task is finally done with both the stack and thread_info, 598 * so free both. 599 */ 600 release_task_stack(tsk); 601 #else 602 /* 603 * If the task had a separate stack allocation, it should be gone 604 * by now. 605 */ 606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 607 #endif 608 rt_mutex_debug_task_free(tsk); 609 ftrace_graph_exit_task(tsk); 610 arch_release_task_struct(tsk); 611 if (tsk->flags & PF_KTHREAD) 612 free_kthread_struct(tsk); 613 bpf_task_storage_free(tsk); 614 free_task_struct(tsk); 615 } 616 EXPORT_SYMBOL(free_task); 617 618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 619 { 620 struct file *exe_file; 621 622 exe_file = get_mm_exe_file(oldmm); 623 RCU_INIT_POINTER(mm->exe_file, exe_file); 624 /* 625 * We depend on the oldmm having properly denied write access to the 626 * exe_file already. 627 */ 628 if (exe_file && deny_write_access(exe_file)) 629 pr_warn_once("deny_write_access() failed in %s\n", __func__); 630 } 631 632 #ifdef CONFIG_MMU 633 static __latent_entropy int dup_mmap(struct mm_struct *mm, 634 struct mm_struct *oldmm) 635 { 636 struct vm_area_struct *mpnt, *tmp; 637 int retval; 638 unsigned long charge = 0; 639 LIST_HEAD(uf); 640 VMA_ITERATOR(vmi, mm, 0); 641 642 if (mmap_write_lock_killable(oldmm)) 643 return -EINTR; 644 flush_cache_dup_mm(oldmm); 645 uprobe_dup_mmap(oldmm, mm); 646 /* 647 * Not linked in yet - no deadlock potential: 648 */ 649 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 650 651 /* No ordering required: file already has been exposed. */ 652 dup_mm_exe_file(mm, oldmm); 653 654 mm->total_vm = oldmm->total_vm; 655 mm->data_vm = oldmm->data_vm; 656 mm->exec_vm = oldmm->exec_vm; 657 mm->stack_vm = oldmm->stack_vm; 658 659 /* Use __mt_dup() to efficiently build an identical maple tree. */ 660 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 661 if (unlikely(retval)) 662 goto out; 663 664 mt_clear_in_rcu(vmi.mas.tree); 665 for_each_vma(vmi, mpnt) { 666 struct file *file; 667 668 vma_start_write(mpnt); 669 if (mpnt->vm_flags & VM_DONTCOPY) { 670 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 671 mpnt->vm_end, GFP_KERNEL); 672 if (retval) 673 goto loop_out; 674 675 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 676 continue; 677 } 678 charge = 0; 679 /* 680 * Don't duplicate many vmas if we've been oom-killed (for 681 * example) 682 */ 683 if (fatal_signal_pending(current)) { 684 retval = -EINTR; 685 goto loop_out; 686 } 687 if (mpnt->vm_flags & VM_ACCOUNT) { 688 unsigned long len = vma_pages(mpnt); 689 690 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 691 goto fail_nomem; 692 charge = len; 693 } 694 tmp = vm_area_dup(mpnt); 695 if (!tmp) 696 goto fail_nomem; 697 retval = vma_dup_policy(mpnt, tmp); 698 if (retval) 699 goto fail_nomem_policy; 700 tmp->vm_mm = mm; 701 retval = dup_userfaultfd(tmp, &uf); 702 if (retval) 703 goto fail_nomem_anon_vma_fork; 704 if (tmp->vm_flags & VM_WIPEONFORK) { 705 /* 706 * VM_WIPEONFORK gets a clean slate in the child. 707 * Don't prepare anon_vma until fault since we don't 708 * copy page for current vma. 709 */ 710 tmp->anon_vma = NULL; 711 } else if (anon_vma_fork(tmp, mpnt)) 712 goto fail_nomem_anon_vma_fork; 713 vm_flags_clear(tmp, VM_LOCKED_MASK); 714 /* 715 * Copy/update hugetlb private vma information. 716 */ 717 if (is_vm_hugetlb_page(tmp)) 718 hugetlb_dup_vma_private(tmp); 719 720 /* 721 * Link the vma into the MT. After using __mt_dup(), memory 722 * allocation is not necessary here, so it cannot fail. 723 */ 724 vma_iter_bulk_store(&vmi, tmp); 725 726 mm->map_count++; 727 728 if (tmp->vm_ops && tmp->vm_ops->open) 729 tmp->vm_ops->open(tmp); 730 731 file = tmp->vm_file; 732 if (file) { 733 struct address_space *mapping = file->f_mapping; 734 735 get_file(file); 736 i_mmap_lock_write(mapping); 737 if (vma_is_shared_maywrite(tmp)) 738 mapping_allow_writable(mapping); 739 flush_dcache_mmap_lock(mapping); 740 /* insert tmp into the share list, just after mpnt */ 741 vma_interval_tree_insert_after(tmp, mpnt, 742 &mapping->i_mmap); 743 flush_dcache_mmap_unlock(mapping); 744 i_mmap_unlock_write(mapping); 745 } 746 747 if (!(tmp->vm_flags & VM_WIPEONFORK)) 748 retval = copy_page_range(tmp, mpnt); 749 750 if (retval) { 751 mpnt = vma_next(&vmi); 752 goto loop_out; 753 } 754 } 755 /* a new mm has just been created */ 756 retval = arch_dup_mmap(oldmm, mm); 757 loop_out: 758 vma_iter_free(&vmi); 759 if (!retval) { 760 mt_set_in_rcu(vmi.mas.tree); 761 ksm_fork(mm, oldmm); 762 khugepaged_fork(mm, oldmm); 763 } else if (mpnt) { 764 /* 765 * The entire maple tree has already been duplicated. If the 766 * mmap duplication fails, mark the failure point with 767 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 768 * stop releasing VMAs that have not been duplicated after this 769 * point. 770 */ 771 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 772 mas_store(&vmi.mas, XA_ZERO_ENTRY); 773 } 774 out: 775 mmap_write_unlock(mm); 776 flush_tlb_mm(oldmm); 777 mmap_write_unlock(oldmm); 778 if (!retval) 779 dup_userfaultfd_complete(&uf); 780 else 781 dup_userfaultfd_fail(&uf); 782 return retval; 783 784 fail_nomem_anon_vma_fork: 785 mpol_put(vma_policy(tmp)); 786 fail_nomem_policy: 787 vm_area_free(tmp); 788 fail_nomem: 789 retval = -ENOMEM; 790 vm_unacct_memory(charge); 791 goto loop_out; 792 } 793 794 static inline int mm_alloc_pgd(struct mm_struct *mm) 795 { 796 mm->pgd = pgd_alloc(mm); 797 if (unlikely(!mm->pgd)) 798 return -ENOMEM; 799 return 0; 800 } 801 802 static inline void mm_free_pgd(struct mm_struct *mm) 803 { 804 pgd_free(mm, mm->pgd); 805 } 806 #else 807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 808 { 809 mmap_write_lock(oldmm); 810 dup_mm_exe_file(mm, oldmm); 811 mmap_write_unlock(oldmm); 812 return 0; 813 } 814 #define mm_alloc_pgd(mm) (0) 815 #define mm_free_pgd(mm) 816 #endif /* CONFIG_MMU */ 817 818 static void check_mm(struct mm_struct *mm) 819 { 820 int i; 821 822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 823 "Please make sure 'struct resident_page_types[]' is updated as well"); 824 825 for (i = 0; i < NR_MM_COUNTERS; i++) { 826 long x = percpu_counter_sum(&mm->rss_stat[i]); 827 828 if (unlikely(x)) 829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 830 mm, resident_page_types[i], x); 831 } 832 833 if (mm_pgtables_bytes(mm)) 834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 835 mm_pgtables_bytes(mm)); 836 837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 839 #endif 840 } 841 842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 844 845 static void do_check_lazy_tlb(void *arg) 846 { 847 struct mm_struct *mm = arg; 848 849 WARN_ON_ONCE(current->active_mm == mm); 850 } 851 852 static void do_shoot_lazy_tlb(void *arg) 853 { 854 struct mm_struct *mm = arg; 855 856 if (current->active_mm == mm) { 857 WARN_ON_ONCE(current->mm); 858 current->active_mm = &init_mm; 859 switch_mm(mm, &init_mm, current); 860 } 861 } 862 863 static void cleanup_lazy_tlbs(struct mm_struct *mm) 864 { 865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 866 /* 867 * In this case, lazy tlb mms are refounted and would not reach 868 * __mmdrop until all CPUs have switched away and mmdrop()ed. 869 */ 870 return; 871 } 872 873 /* 874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 875 * requires lazy mm users to switch to another mm when the refcount 876 * drops to zero, before the mm is freed. This requires IPIs here to 877 * switch kernel threads to init_mm. 878 * 879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 880 * switch with the final userspace teardown TLB flush which leaves the 881 * mm lazy on this CPU but no others, reducing the need for additional 882 * IPIs here. There are cases where a final IPI is still required here, 883 * such as the final mmdrop being performed on a different CPU than the 884 * one exiting, or kernel threads using the mm when userspace exits. 885 * 886 * IPI overheads have not found to be expensive, but they could be 887 * reduced in a number of possible ways, for example (roughly 888 * increasing order of complexity): 889 * - The last lazy reference created by exit_mm() could instead switch 890 * to init_mm, however it's probable this will run on the same CPU 891 * immediately afterwards, so this may not reduce IPIs much. 892 * - A batch of mms requiring IPIs could be gathered and freed at once. 893 * - CPUs store active_mm where it can be remotely checked without a 894 * lock, to filter out false-positives in the cpumask. 895 * - After mm_users or mm_count reaches zero, switching away from the 896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 897 * with some batching or delaying of the final IPIs. 898 * - A delayed freeing and RCU-like quiescing sequence based on mm 899 * switching to avoid IPIs completely. 900 */ 901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 904 } 905 906 /* 907 * Called when the last reference to the mm 908 * is dropped: either by a lazy thread or by 909 * mmput. Free the page directory and the mm. 910 */ 911 void __mmdrop(struct mm_struct *mm) 912 { 913 BUG_ON(mm == &init_mm); 914 WARN_ON_ONCE(mm == current->mm); 915 916 /* Ensure no CPUs are using this as their lazy tlb mm */ 917 cleanup_lazy_tlbs(mm); 918 919 WARN_ON_ONCE(mm == current->active_mm); 920 mm_free_pgd(mm); 921 destroy_context(mm); 922 mmu_notifier_subscriptions_destroy(mm); 923 check_mm(mm); 924 put_user_ns(mm->user_ns); 925 mm_pasid_drop(mm); 926 mm_destroy_cid(mm); 927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 928 929 free_mm(mm); 930 } 931 EXPORT_SYMBOL_GPL(__mmdrop); 932 933 static void mmdrop_async_fn(struct work_struct *work) 934 { 935 struct mm_struct *mm; 936 937 mm = container_of(work, struct mm_struct, async_put_work); 938 __mmdrop(mm); 939 } 940 941 static void mmdrop_async(struct mm_struct *mm) 942 { 943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 945 schedule_work(&mm->async_put_work); 946 } 947 } 948 949 static inline void free_signal_struct(struct signal_struct *sig) 950 { 951 taskstats_tgid_free(sig); 952 sched_autogroup_exit(sig); 953 /* 954 * __mmdrop is not safe to call from softirq context on x86 due to 955 * pgd_dtor so postpone it to the async context 956 */ 957 if (sig->oom_mm) 958 mmdrop_async(sig->oom_mm); 959 kmem_cache_free(signal_cachep, sig); 960 } 961 962 static inline void put_signal_struct(struct signal_struct *sig) 963 { 964 if (refcount_dec_and_test(&sig->sigcnt)) 965 free_signal_struct(sig); 966 } 967 968 void __put_task_struct(struct task_struct *tsk) 969 { 970 WARN_ON(!tsk->exit_state); 971 WARN_ON(refcount_read(&tsk->usage)); 972 WARN_ON(tsk == current); 973 974 sched_ext_free(tsk); 975 io_uring_free(tsk); 976 cgroup_free(tsk); 977 task_numa_free(tsk, true); 978 security_task_free(tsk); 979 exit_creds(tsk); 980 delayacct_tsk_free(tsk); 981 put_signal_struct(tsk->signal); 982 sched_core_free(tsk); 983 free_task(tsk); 984 } 985 EXPORT_SYMBOL_GPL(__put_task_struct); 986 987 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 988 { 989 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 990 991 __put_task_struct(task); 992 } 993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 994 995 void __init __weak arch_task_cache_init(void) { } 996 997 /* 998 * set_max_threads 999 */ 1000 static void __init set_max_threads(unsigned int max_threads_suggested) 1001 { 1002 u64 threads; 1003 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1004 1005 /* 1006 * The number of threads shall be limited such that the thread 1007 * structures may only consume a small part of the available memory. 1008 */ 1009 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1010 threads = MAX_THREADS; 1011 else 1012 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1013 (u64) THREAD_SIZE * 8UL); 1014 1015 if (threads > max_threads_suggested) 1016 threads = max_threads_suggested; 1017 1018 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1019 } 1020 1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1022 /* Initialized by the architecture: */ 1023 int arch_task_struct_size __read_mostly; 1024 #endif 1025 1026 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1027 { 1028 /* Fetch thread_struct whitelist for the architecture. */ 1029 arch_thread_struct_whitelist(offset, size); 1030 1031 /* 1032 * Handle zero-sized whitelist or empty thread_struct, otherwise 1033 * adjust offset to position of thread_struct in task_struct. 1034 */ 1035 if (unlikely(*size == 0)) 1036 *offset = 0; 1037 else 1038 *offset += offsetof(struct task_struct, thread); 1039 } 1040 1041 void __init fork_init(void) 1042 { 1043 int i; 1044 #ifndef ARCH_MIN_TASKALIGN 1045 #define ARCH_MIN_TASKALIGN 0 1046 #endif 1047 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1048 unsigned long useroffset, usersize; 1049 1050 /* create a slab on which task_structs can be allocated */ 1051 task_struct_whitelist(&useroffset, &usersize); 1052 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1053 arch_task_struct_size, align, 1054 SLAB_PANIC|SLAB_ACCOUNT, 1055 useroffset, usersize, NULL); 1056 1057 /* do the arch specific task caches init */ 1058 arch_task_cache_init(); 1059 1060 set_max_threads(MAX_THREADS); 1061 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1065 init_task.signal->rlim[RLIMIT_NPROC]; 1066 1067 for (i = 0; i < UCOUNT_COUNTS; i++) 1068 init_user_ns.ucount_max[i] = max_threads/2; 1069 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1074 1075 #ifdef CONFIG_VMAP_STACK 1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1077 NULL, free_vm_stack_cache); 1078 #endif 1079 1080 scs_init(); 1081 1082 lockdep_init_task(&init_task); 1083 uprobes_init(); 1084 } 1085 1086 int __weak arch_dup_task_struct(struct task_struct *dst, 1087 struct task_struct *src) 1088 { 1089 *dst = *src; 1090 return 0; 1091 } 1092 1093 void set_task_stack_end_magic(struct task_struct *tsk) 1094 { 1095 unsigned long *stackend; 1096 1097 stackend = end_of_stack(tsk); 1098 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1099 } 1100 1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1102 { 1103 struct task_struct *tsk; 1104 int err; 1105 1106 if (node == NUMA_NO_NODE) 1107 node = tsk_fork_get_node(orig); 1108 tsk = alloc_task_struct_node(node); 1109 if (!tsk) 1110 return NULL; 1111 1112 err = arch_dup_task_struct(tsk, orig); 1113 if (err) 1114 goto free_tsk; 1115 1116 err = alloc_thread_stack_node(tsk, node); 1117 if (err) 1118 goto free_tsk; 1119 1120 #ifdef CONFIG_THREAD_INFO_IN_TASK 1121 refcount_set(&tsk->stack_refcount, 1); 1122 #endif 1123 account_kernel_stack(tsk, 1); 1124 1125 err = scs_prepare(tsk, node); 1126 if (err) 1127 goto free_stack; 1128 1129 #ifdef CONFIG_SECCOMP 1130 /* 1131 * We must handle setting up seccomp filters once we're under 1132 * the sighand lock in case orig has changed between now and 1133 * then. Until then, filter must be NULL to avoid messing up 1134 * the usage counts on the error path calling free_task. 1135 */ 1136 tsk->seccomp.filter = NULL; 1137 #endif 1138 1139 setup_thread_stack(tsk, orig); 1140 clear_user_return_notifier(tsk); 1141 clear_tsk_need_resched(tsk); 1142 set_task_stack_end_magic(tsk); 1143 clear_syscall_work_syscall_user_dispatch(tsk); 1144 1145 #ifdef CONFIG_STACKPROTECTOR 1146 tsk->stack_canary = get_random_canary(); 1147 #endif 1148 if (orig->cpus_ptr == &orig->cpus_mask) 1149 tsk->cpus_ptr = &tsk->cpus_mask; 1150 dup_user_cpus_ptr(tsk, orig, node); 1151 1152 /* 1153 * One for the user space visible state that goes away when reaped. 1154 * One for the scheduler. 1155 */ 1156 refcount_set(&tsk->rcu_users, 2); 1157 /* One for the rcu users */ 1158 refcount_set(&tsk->usage, 1); 1159 #ifdef CONFIG_BLK_DEV_IO_TRACE 1160 tsk->btrace_seq = 0; 1161 #endif 1162 tsk->splice_pipe = NULL; 1163 tsk->task_frag.page = NULL; 1164 tsk->wake_q.next = NULL; 1165 tsk->worker_private = NULL; 1166 1167 kcov_task_init(tsk); 1168 kmsan_task_create(tsk); 1169 kmap_local_fork(tsk); 1170 1171 #ifdef CONFIG_FAULT_INJECTION 1172 tsk->fail_nth = 0; 1173 #endif 1174 1175 #ifdef CONFIG_BLK_CGROUP 1176 tsk->throttle_disk = NULL; 1177 tsk->use_memdelay = 0; 1178 #endif 1179 1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1181 tsk->pasid_activated = 0; 1182 #endif 1183 1184 #ifdef CONFIG_MEMCG 1185 tsk->active_memcg = NULL; 1186 #endif 1187 1188 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1189 tsk->reported_split_lock = 0; 1190 #endif 1191 1192 #ifdef CONFIG_SCHED_MM_CID 1193 tsk->mm_cid = -1; 1194 tsk->last_mm_cid = -1; 1195 tsk->mm_cid_active = 0; 1196 tsk->migrate_from_cpu = -1; 1197 #endif 1198 return tsk; 1199 1200 free_stack: 1201 exit_task_stack_account(tsk); 1202 free_thread_stack(tsk); 1203 free_tsk: 1204 free_task_struct(tsk); 1205 return NULL; 1206 } 1207 1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1209 1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1211 1212 static int __init coredump_filter_setup(char *s) 1213 { 1214 default_dump_filter = 1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1216 MMF_DUMP_FILTER_MASK; 1217 return 1; 1218 } 1219 1220 __setup("coredump_filter=", coredump_filter_setup); 1221 1222 #include <linux/init_task.h> 1223 1224 static void mm_init_aio(struct mm_struct *mm) 1225 { 1226 #ifdef CONFIG_AIO 1227 spin_lock_init(&mm->ioctx_lock); 1228 mm->ioctx_table = NULL; 1229 #endif 1230 } 1231 1232 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1233 struct task_struct *p) 1234 { 1235 #ifdef CONFIG_MEMCG 1236 if (mm->owner == p) 1237 WRITE_ONCE(mm->owner, NULL); 1238 #endif 1239 } 1240 1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1242 { 1243 #ifdef CONFIG_MEMCG 1244 mm->owner = p; 1245 #endif 1246 } 1247 1248 static void mm_init_uprobes_state(struct mm_struct *mm) 1249 { 1250 #ifdef CONFIG_UPROBES 1251 mm->uprobes_state.xol_area = NULL; 1252 #endif 1253 } 1254 1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1256 struct user_namespace *user_ns) 1257 { 1258 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1259 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1260 atomic_set(&mm->mm_users, 1); 1261 atomic_set(&mm->mm_count, 1); 1262 seqcount_init(&mm->write_protect_seq); 1263 mmap_init_lock(mm); 1264 INIT_LIST_HEAD(&mm->mmlist); 1265 mm_pgtables_bytes_init(mm); 1266 mm->map_count = 0; 1267 mm->locked_vm = 0; 1268 atomic64_set(&mm->pinned_vm, 0); 1269 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1270 spin_lock_init(&mm->page_table_lock); 1271 spin_lock_init(&mm->arg_lock); 1272 mm_init_cpumask(mm); 1273 mm_init_aio(mm); 1274 mm_init_owner(mm, p); 1275 mm_pasid_init(mm); 1276 RCU_INIT_POINTER(mm->exe_file, NULL); 1277 mmu_notifier_subscriptions_init(mm); 1278 init_tlb_flush_pending(mm); 1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1280 mm->pmd_huge_pte = NULL; 1281 #endif 1282 mm_init_uprobes_state(mm); 1283 hugetlb_count_init(mm); 1284 1285 if (current->mm) { 1286 mm->flags = mmf_init_flags(current->mm->flags); 1287 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1288 } else { 1289 mm->flags = default_dump_filter; 1290 mm->def_flags = 0; 1291 } 1292 1293 if (mm_alloc_pgd(mm)) 1294 goto fail_nopgd; 1295 1296 if (init_new_context(p, mm)) 1297 goto fail_nocontext; 1298 1299 if (mm_alloc_cid(mm, p)) 1300 goto fail_cid; 1301 1302 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1303 NR_MM_COUNTERS)) 1304 goto fail_pcpu; 1305 1306 mm->user_ns = get_user_ns(user_ns); 1307 lru_gen_init_mm(mm); 1308 return mm; 1309 1310 fail_pcpu: 1311 mm_destroy_cid(mm); 1312 fail_cid: 1313 destroy_context(mm); 1314 fail_nocontext: 1315 mm_free_pgd(mm); 1316 fail_nopgd: 1317 free_mm(mm); 1318 return NULL; 1319 } 1320 1321 /* 1322 * Allocate and initialize an mm_struct. 1323 */ 1324 struct mm_struct *mm_alloc(void) 1325 { 1326 struct mm_struct *mm; 1327 1328 mm = allocate_mm(); 1329 if (!mm) 1330 return NULL; 1331 1332 memset(mm, 0, sizeof(*mm)); 1333 return mm_init(mm, current, current_user_ns()); 1334 } 1335 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1336 1337 static inline void __mmput(struct mm_struct *mm) 1338 { 1339 VM_BUG_ON(atomic_read(&mm->mm_users)); 1340 1341 uprobe_clear_state(mm); 1342 exit_aio(mm); 1343 ksm_exit(mm); 1344 khugepaged_exit(mm); /* must run before exit_mmap */ 1345 exit_mmap(mm); 1346 mm_put_huge_zero_folio(mm); 1347 set_mm_exe_file(mm, NULL); 1348 if (!list_empty(&mm->mmlist)) { 1349 spin_lock(&mmlist_lock); 1350 list_del(&mm->mmlist); 1351 spin_unlock(&mmlist_lock); 1352 } 1353 if (mm->binfmt) 1354 module_put(mm->binfmt->module); 1355 lru_gen_del_mm(mm); 1356 mmdrop(mm); 1357 } 1358 1359 /* 1360 * Decrement the use count and release all resources for an mm. 1361 */ 1362 void mmput(struct mm_struct *mm) 1363 { 1364 might_sleep(); 1365 1366 if (atomic_dec_and_test(&mm->mm_users)) 1367 __mmput(mm); 1368 } 1369 EXPORT_SYMBOL_GPL(mmput); 1370 1371 #ifdef CONFIG_MMU 1372 static void mmput_async_fn(struct work_struct *work) 1373 { 1374 struct mm_struct *mm = container_of(work, struct mm_struct, 1375 async_put_work); 1376 1377 __mmput(mm); 1378 } 1379 1380 void mmput_async(struct mm_struct *mm) 1381 { 1382 if (atomic_dec_and_test(&mm->mm_users)) { 1383 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1384 schedule_work(&mm->async_put_work); 1385 } 1386 } 1387 EXPORT_SYMBOL_GPL(mmput_async); 1388 #endif 1389 1390 /** 1391 * set_mm_exe_file - change a reference to the mm's executable file 1392 * @mm: The mm to change. 1393 * @new_exe_file: The new file to use. 1394 * 1395 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1396 * 1397 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1398 * invocations: in mmput() nobody alive left, in execve it happens before 1399 * the new mm is made visible to anyone. 1400 * 1401 * Can only fail if new_exe_file != NULL. 1402 */ 1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1404 { 1405 struct file *old_exe_file; 1406 1407 /* 1408 * It is safe to dereference the exe_file without RCU as 1409 * this function is only called if nobody else can access 1410 * this mm -- see comment above for justification. 1411 */ 1412 old_exe_file = rcu_dereference_raw(mm->exe_file); 1413 1414 if (new_exe_file) { 1415 /* 1416 * We expect the caller (i.e., sys_execve) to already denied 1417 * write access, so this is unlikely to fail. 1418 */ 1419 if (unlikely(deny_write_access(new_exe_file))) 1420 return -EACCES; 1421 get_file(new_exe_file); 1422 } 1423 rcu_assign_pointer(mm->exe_file, new_exe_file); 1424 if (old_exe_file) { 1425 allow_write_access(old_exe_file); 1426 fput(old_exe_file); 1427 } 1428 return 0; 1429 } 1430 1431 /** 1432 * replace_mm_exe_file - replace a reference to the mm's executable file 1433 * @mm: The mm to change. 1434 * @new_exe_file: The new file to use. 1435 * 1436 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1437 * 1438 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1439 */ 1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1441 { 1442 struct vm_area_struct *vma; 1443 struct file *old_exe_file; 1444 int ret = 0; 1445 1446 /* Forbid mm->exe_file change if old file still mapped. */ 1447 old_exe_file = get_mm_exe_file(mm); 1448 if (old_exe_file) { 1449 VMA_ITERATOR(vmi, mm, 0); 1450 mmap_read_lock(mm); 1451 for_each_vma(vmi, vma) { 1452 if (!vma->vm_file) 1453 continue; 1454 if (path_equal(&vma->vm_file->f_path, 1455 &old_exe_file->f_path)) { 1456 ret = -EBUSY; 1457 break; 1458 } 1459 } 1460 mmap_read_unlock(mm); 1461 fput(old_exe_file); 1462 if (ret) 1463 return ret; 1464 } 1465 1466 ret = deny_write_access(new_exe_file); 1467 if (ret) 1468 return -EACCES; 1469 get_file(new_exe_file); 1470 1471 /* set the new file */ 1472 mmap_write_lock(mm); 1473 old_exe_file = rcu_dereference_raw(mm->exe_file); 1474 rcu_assign_pointer(mm->exe_file, new_exe_file); 1475 mmap_write_unlock(mm); 1476 1477 if (old_exe_file) { 1478 allow_write_access(old_exe_file); 1479 fput(old_exe_file); 1480 } 1481 return 0; 1482 } 1483 1484 /** 1485 * get_mm_exe_file - acquire a reference to the mm's executable file 1486 * @mm: The mm of interest. 1487 * 1488 * Returns %NULL if mm has no associated executable file. 1489 * User must release file via fput(). 1490 */ 1491 struct file *get_mm_exe_file(struct mm_struct *mm) 1492 { 1493 struct file *exe_file; 1494 1495 rcu_read_lock(); 1496 exe_file = get_file_rcu(&mm->exe_file); 1497 rcu_read_unlock(); 1498 return exe_file; 1499 } 1500 1501 /** 1502 * get_task_exe_file - acquire a reference to the task's executable file 1503 * @task: The task. 1504 * 1505 * Returns %NULL if task's mm (if any) has no associated executable file or 1506 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1507 * User must release file via fput(). 1508 */ 1509 struct file *get_task_exe_file(struct task_struct *task) 1510 { 1511 struct file *exe_file = NULL; 1512 struct mm_struct *mm; 1513 1514 task_lock(task); 1515 mm = task->mm; 1516 if (mm) { 1517 if (!(task->flags & PF_KTHREAD)) 1518 exe_file = get_mm_exe_file(mm); 1519 } 1520 task_unlock(task); 1521 return exe_file; 1522 } 1523 1524 /** 1525 * get_task_mm - acquire a reference to the task's mm 1526 * @task: The task. 1527 * 1528 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1529 * this kernel workthread has transiently adopted a user mm with use_mm, 1530 * to do its AIO) is not set and if so returns a reference to it, after 1531 * bumping up the use count. User must release the mm via mmput() 1532 * after use. Typically used by /proc and ptrace. 1533 */ 1534 struct mm_struct *get_task_mm(struct task_struct *task) 1535 { 1536 struct mm_struct *mm; 1537 1538 if (task->flags & PF_KTHREAD) 1539 return NULL; 1540 1541 task_lock(task); 1542 mm = task->mm; 1543 if (mm) 1544 mmget(mm); 1545 task_unlock(task); 1546 return mm; 1547 } 1548 EXPORT_SYMBOL_GPL(get_task_mm); 1549 1550 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1551 { 1552 struct mm_struct *mm; 1553 int err; 1554 1555 err = down_read_killable(&task->signal->exec_update_lock); 1556 if (err) 1557 return ERR_PTR(err); 1558 1559 mm = get_task_mm(task); 1560 if (!mm) { 1561 mm = ERR_PTR(-ESRCH); 1562 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1563 mmput(mm); 1564 mm = ERR_PTR(-EACCES); 1565 } 1566 up_read(&task->signal->exec_update_lock); 1567 1568 return mm; 1569 } 1570 1571 static void complete_vfork_done(struct task_struct *tsk) 1572 { 1573 struct completion *vfork; 1574 1575 task_lock(tsk); 1576 vfork = tsk->vfork_done; 1577 if (likely(vfork)) { 1578 tsk->vfork_done = NULL; 1579 complete(vfork); 1580 } 1581 task_unlock(tsk); 1582 } 1583 1584 static int wait_for_vfork_done(struct task_struct *child, 1585 struct completion *vfork) 1586 { 1587 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1588 int killed; 1589 1590 cgroup_enter_frozen(); 1591 killed = wait_for_completion_state(vfork, state); 1592 cgroup_leave_frozen(false); 1593 1594 if (killed) { 1595 task_lock(child); 1596 child->vfork_done = NULL; 1597 task_unlock(child); 1598 } 1599 1600 put_task_struct(child); 1601 return killed; 1602 } 1603 1604 /* Please note the differences between mmput and mm_release. 1605 * mmput is called whenever we stop holding onto a mm_struct, 1606 * error success whatever. 1607 * 1608 * mm_release is called after a mm_struct has been removed 1609 * from the current process. 1610 * 1611 * This difference is important for error handling, when we 1612 * only half set up a mm_struct for a new process and need to restore 1613 * the old one. Because we mmput the new mm_struct before 1614 * restoring the old one. . . 1615 * Eric Biederman 10 January 1998 1616 */ 1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1618 { 1619 uprobe_free_utask(tsk); 1620 1621 /* Get rid of any cached register state */ 1622 deactivate_mm(tsk, mm); 1623 1624 /* 1625 * Signal userspace if we're not exiting with a core dump 1626 * because we want to leave the value intact for debugging 1627 * purposes. 1628 */ 1629 if (tsk->clear_child_tid) { 1630 if (atomic_read(&mm->mm_users) > 1) { 1631 /* 1632 * We don't check the error code - if userspace has 1633 * not set up a proper pointer then tough luck. 1634 */ 1635 put_user(0, tsk->clear_child_tid); 1636 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1637 1, NULL, NULL, 0, 0); 1638 } 1639 tsk->clear_child_tid = NULL; 1640 } 1641 1642 /* 1643 * All done, finally we can wake up parent and return this mm to him. 1644 * Also kthread_stop() uses this completion for synchronization. 1645 */ 1646 if (tsk->vfork_done) 1647 complete_vfork_done(tsk); 1648 } 1649 1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1651 { 1652 futex_exit_release(tsk); 1653 mm_release(tsk, mm); 1654 } 1655 1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1657 { 1658 futex_exec_release(tsk); 1659 mm_release(tsk, mm); 1660 } 1661 1662 /** 1663 * dup_mm() - duplicates an existing mm structure 1664 * @tsk: the task_struct with which the new mm will be associated. 1665 * @oldmm: the mm to duplicate. 1666 * 1667 * Allocates a new mm structure and duplicates the provided @oldmm structure 1668 * content into it. 1669 * 1670 * Return: the duplicated mm or NULL on failure. 1671 */ 1672 static struct mm_struct *dup_mm(struct task_struct *tsk, 1673 struct mm_struct *oldmm) 1674 { 1675 struct mm_struct *mm; 1676 int err; 1677 1678 mm = allocate_mm(); 1679 if (!mm) 1680 goto fail_nomem; 1681 1682 memcpy(mm, oldmm, sizeof(*mm)); 1683 1684 if (!mm_init(mm, tsk, mm->user_ns)) 1685 goto fail_nomem; 1686 1687 uprobe_start_dup_mmap(); 1688 err = dup_mmap(mm, oldmm); 1689 if (err) 1690 goto free_pt; 1691 uprobe_end_dup_mmap(); 1692 1693 mm->hiwater_rss = get_mm_rss(mm); 1694 mm->hiwater_vm = mm->total_vm; 1695 1696 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1697 goto free_pt; 1698 1699 return mm; 1700 1701 free_pt: 1702 /* don't put binfmt in mmput, we haven't got module yet */ 1703 mm->binfmt = NULL; 1704 mm_init_owner(mm, NULL); 1705 mmput(mm); 1706 if (err) 1707 uprobe_end_dup_mmap(); 1708 1709 fail_nomem: 1710 return NULL; 1711 } 1712 1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1714 { 1715 struct mm_struct *mm, *oldmm; 1716 1717 tsk->min_flt = tsk->maj_flt = 0; 1718 tsk->nvcsw = tsk->nivcsw = 0; 1719 #ifdef CONFIG_DETECT_HUNG_TASK 1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1721 tsk->last_switch_time = 0; 1722 #endif 1723 1724 tsk->mm = NULL; 1725 tsk->active_mm = NULL; 1726 1727 /* 1728 * Are we cloning a kernel thread? 1729 * 1730 * We need to steal a active VM for that.. 1731 */ 1732 oldmm = current->mm; 1733 if (!oldmm) 1734 return 0; 1735 1736 if (clone_flags & CLONE_VM) { 1737 mmget(oldmm); 1738 mm = oldmm; 1739 } else { 1740 mm = dup_mm(tsk, current->mm); 1741 if (!mm) 1742 return -ENOMEM; 1743 } 1744 1745 tsk->mm = mm; 1746 tsk->active_mm = mm; 1747 sched_mm_cid_fork(tsk); 1748 return 0; 1749 } 1750 1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1752 { 1753 struct fs_struct *fs = current->fs; 1754 if (clone_flags & CLONE_FS) { 1755 /* tsk->fs is already what we want */ 1756 spin_lock(&fs->lock); 1757 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1758 if (fs->in_exec) { 1759 spin_unlock(&fs->lock); 1760 return -EAGAIN; 1761 } 1762 fs->users++; 1763 spin_unlock(&fs->lock); 1764 return 0; 1765 } 1766 tsk->fs = copy_fs_struct(fs); 1767 if (!tsk->fs) 1768 return -ENOMEM; 1769 return 0; 1770 } 1771 1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1773 int no_files) 1774 { 1775 struct files_struct *oldf, *newf; 1776 1777 /* 1778 * A background process may not have any files ... 1779 */ 1780 oldf = current->files; 1781 if (!oldf) 1782 return 0; 1783 1784 if (no_files) { 1785 tsk->files = NULL; 1786 return 0; 1787 } 1788 1789 if (clone_flags & CLONE_FILES) { 1790 atomic_inc(&oldf->count); 1791 return 0; 1792 } 1793 1794 newf = dup_fd(oldf, NULL); 1795 if (IS_ERR(newf)) 1796 return PTR_ERR(newf); 1797 1798 tsk->files = newf; 1799 return 0; 1800 } 1801 1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1803 { 1804 struct sighand_struct *sig; 1805 1806 if (clone_flags & CLONE_SIGHAND) { 1807 refcount_inc(¤t->sighand->count); 1808 return 0; 1809 } 1810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1811 RCU_INIT_POINTER(tsk->sighand, sig); 1812 if (!sig) 1813 return -ENOMEM; 1814 1815 refcount_set(&sig->count, 1); 1816 spin_lock_irq(¤t->sighand->siglock); 1817 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1818 spin_unlock_irq(¤t->sighand->siglock); 1819 1820 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1821 if (clone_flags & CLONE_CLEAR_SIGHAND) 1822 flush_signal_handlers(tsk, 0); 1823 1824 return 0; 1825 } 1826 1827 void __cleanup_sighand(struct sighand_struct *sighand) 1828 { 1829 if (refcount_dec_and_test(&sighand->count)) { 1830 signalfd_cleanup(sighand); 1831 /* 1832 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1833 * without an RCU grace period, see __lock_task_sighand(). 1834 */ 1835 kmem_cache_free(sighand_cachep, sighand); 1836 } 1837 } 1838 1839 /* 1840 * Initialize POSIX timer handling for a thread group. 1841 */ 1842 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1843 { 1844 struct posix_cputimers *pct = &sig->posix_cputimers; 1845 unsigned long cpu_limit; 1846 1847 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1848 posix_cputimers_group_init(pct, cpu_limit); 1849 } 1850 1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1852 { 1853 struct signal_struct *sig; 1854 1855 if (clone_flags & CLONE_THREAD) 1856 return 0; 1857 1858 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1859 tsk->signal = sig; 1860 if (!sig) 1861 return -ENOMEM; 1862 1863 sig->nr_threads = 1; 1864 sig->quick_threads = 1; 1865 atomic_set(&sig->live, 1); 1866 refcount_set(&sig->sigcnt, 1); 1867 1868 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1869 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1870 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1871 1872 init_waitqueue_head(&sig->wait_chldexit); 1873 sig->curr_target = tsk; 1874 init_sigpending(&sig->shared_pending); 1875 INIT_HLIST_HEAD(&sig->multiprocess); 1876 seqlock_init(&sig->stats_lock); 1877 prev_cputime_init(&sig->prev_cputime); 1878 1879 #ifdef CONFIG_POSIX_TIMERS 1880 INIT_HLIST_HEAD(&sig->posix_timers); 1881 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1882 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1883 sig->real_timer.function = it_real_fn; 1884 #endif 1885 1886 task_lock(current->group_leader); 1887 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1888 task_unlock(current->group_leader); 1889 1890 posix_cpu_timers_init_group(sig); 1891 1892 tty_audit_fork(sig); 1893 sched_autogroup_fork(sig); 1894 1895 sig->oom_score_adj = current->signal->oom_score_adj; 1896 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1897 1898 mutex_init(&sig->cred_guard_mutex); 1899 init_rwsem(&sig->exec_update_lock); 1900 1901 return 0; 1902 } 1903 1904 static void copy_seccomp(struct task_struct *p) 1905 { 1906 #ifdef CONFIG_SECCOMP 1907 /* 1908 * Must be called with sighand->lock held, which is common to 1909 * all threads in the group. Holding cred_guard_mutex is not 1910 * needed because this new task is not yet running and cannot 1911 * be racing exec. 1912 */ 1913 assert_spin_locked(¤t->sighand->siglock); 1914 1915 /* Ref-count the new filter user, and assign it. */ 1916 get_seccomp_filter(current); 1917 p->seccomp = current->seccomp; 1918 1919 /* 1920 * Explicitly enable no_new_privs here in case it got set 1921 * between the task_struct being duplicated and holding the 1922 * sighand lock. The seccomp state and nnp must be in sync. 1923 */ 1924 if (task_no_new_privs(current)) 1925 task_set_no_new_privs(p); 1926 1927 /* 1928 * If the parent gained a seccomp mode after copying thread 1929 * flags and between before we held the sighand lock, we have 1930 * to manually enable the seccomp thread flag here. 1931 */ 1932 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1933 set_task_syscall_work(p, SECCOMP); 1934 #endif 1935 } 1936 1937 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1938 { 1939 current->clear_child_tid = tidptr; 1940 1941 return task_pid_vnr(current); 1942 } 1943 1944 static void rt_mutex_init_task(struct task_struct *p) 1945 { 1946 raw_spin_lock_init(&p->pi_lock); 1947 #ifdef CONFIG_RT_MUTEXES 1948 p->pi_waiters = RB_ROOT_CACHED; 1949 p->pi_top_task = NULL; 1950 p->pi_blocked_on = NULL; 1951 #endif 1952 } 1953 1954 static inline void init_task_pid_links(struct task_struct *task) 1955 { 1956 enum pid_type type; 1957 1958 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1959 INIT_HLIST_NODE(&task->pid_links[type]); 1960 } 1961 1962 static inline void 1963 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1964 { 1965 if (type == PIDTYPE_PID) 1966 task->thread_pid = pid; 1967 else 1968 task->signal->pids[type] = pid; 1969 } 1970 1971 static inline void rcu_copy_process(struct task_struct *p) 1972 { 1973 #ifdef CONFIG_PREEMPT_RCU 1974 p->rcu_read_lock_nesting = 0; 1975 p->rcu_read_unlock_special.s = 0; 1976 p->rcu_blocked_node = NULL; 1977 INIT_LIST_HEAD(&p->rcu_node_entry); 1978 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1979 #ifdef CONFIG_TASKS_RCU 1980 p->rcu_tasks_holdout = false; 1981 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1982 p->rcu_tasks_idle_cpu = -1; 1983 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1984 #endif /* #ifdef CONFIG_TASKS_RCU */ 1985 #ifdef CONFIG_TASKS_TRACE_RCU 1986 p->trc_reader_nesting = 0; 1987 p->trc_reader_special.s = 0; 1988 INIT_LIST_HEAD(&p->trc_holdout_list); 1989 INIT_LIST_HEAD(&p->trc_blkd_node); 1990 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1991 } 1992 1993 /** 1994 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1995 * @pid: the struct pid for which to create a pidfd 1996 * @flags: flags of the new @pidfd 1997 * @ret: Where to return the file for the pidfd. 1998 * 1999 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2000 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2001 * 2002 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2003 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2004 * pidfd file are prepared. 2005 * 2006 * If this function returns successfully the caller is responsible to either 2007 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2008 * order to install the pidfd into its file descriptor table or they must use 2009 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2010 * respectively. 2011 * 2012 * This function is useful when a pidfd must already be reserved but there 2013 * might still be points of failure afterwards and the caller wants to ensure 2014 * that no pidfd is leaked into its file descriptor table. 2015 * 2016 * Return: On success, a reserved pidfd is returned from the function and a new 2017 * pidfd file is returned in the last argument to the function. On 2018 * error, a negative error code is returned from the function and the 2019 * last argument remains unchanged. 2020 */ 2021 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2022 { 2023 int pidfd; 2024 struct file *pidfd_file; 2025 2026 pidfd = get_unused_fd_flags(O_CLOEXEC); 2027 if (pidfd < 0) 2028 return pidfd; 2029 2030 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2031 if (IS_ERR(pidfd_file)) { 2032 put_unused_fd(pidfd); 2033 return PTR_ERR(pidfd_file); 2034 } 2035 /* 2036 * anon_inode_getfile() ignores everything outside of the 2037 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2038 */ 2039 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2040 *ret = pidfd_file; 2041 return pidfd; 2042 } 2043 2044 /** 2045 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2046 * @pid: the struct pid for which to create a pidfd 2047 * @flags: flags of the new @pidfd 2048 * @ret: Where to return the pidfd. 2049 * 2050 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2051 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2052 * 2053 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2054 * task identified by @pid must be a thread-group leader. 2055 * 2056 * If this function returns successfully the caller is responsible to either 2057 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2058 * order to install the pidfd into its file descriptor table or they must use 2059 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2060 * respectively. 2061 * 2062 * This function is useful when a pidfd must already be reserved but there 2063 * might still be points of failure afterwards and the caller wants to ensure 2064 * that no pidfd is leaked into its file descriptor table. 2065 * 2066 * Return: On success, a reserved pidfd is returned from the function and a new 2067 * pidfd file is returned in the last argument to the function. On 2068 * error, a negative error code is returned from the function and the 2069 * last argument remains unchanged. 2070 */ 2071 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2072 { 2073 bool thread = flags & PIDFD_THREAD; 2074 2075 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2076 return -EINVAL; 2077 2078 return __pidfd_prepare(pid, flags, ret); 2079 } 2080 2081 static void __delayed_free_task(struct rcu_head *rhp) 2082 { 2083 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2084 2085 free_task(tsk); 2086 } 2087 2088 static __always_inline void delayed_free_task(struct task_struct *tsk) 2089 { 2090 if (IS_ENABLED(CONFIG_MEMCG)) 2091 call_rcu(&tsk->rcu, __delayed_free_task); 2092 else 2093 free_task(tsk); 2094 } 2095 2096 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2097 { 2098 /* Skip if kernel thread */ 2099 if (!tsk->mm) 2100 return; 2101 2102 /* Skip if spawning a thread or using vfork */ 2103 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2104 return; 2105 2106 /* We need to synchronize with __set_oom_adj */ 2107 mutex_lock(&oom_adj_mutex); 2108 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2109 /* Update the values in case they were changed after copy_signal */ 2110 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2111 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2112 mutex_unlock(&oom_adj_mutex); 2113 } 2114 2115 #ifdef CONFIG_RV 2116 static void rv_task_fork(struct task_struct *p) 2117 { 2118 int i; 2119 2120 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2121 p->rv[i].da_mon.monitoring = false; 2122 } 2123 #else 2124 #define rv_task_fork(p) do {} while (0) 2125 #endif 2126 2127 /* 2128 * This creates a new process as a copy of the old one, 2129 * but does not actually start it yet. 2130 * 2131 * It copies the registers, and all the appropriate 2132 * parts of the process environment (as per the clone 2133 * flags). The actual kick-off is left to the caller. 2134 */ 2135 __latent_entropy struct task_struct *copy_process( 2136 struct pid *pid, 2137 int trace, 2138 int node, 2139 struct kernel_clone_args *args) 2140 { 2141 int pidfd = -1, retval; 2142 struct task_struct *p; 2143 struct multiprocess_signals delayed; 2144 struct file *pidfile = NULL; 2145 const u64 clone_flags = args->flags; 2146 struct nsproxy *nsp = current->nsproxy; 2147 2148 /* 2149 * Don't allow sharing the root directory with processes in a different 2150 * namespace 2151 */ 2152 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2153 return ERR_PTR(-EINVAL); 2154 2155 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2156 return ERR_PTR(-EINVAL); 2157 2158 /* 2159 * Thread groups must share signals as well, and detached threads 2160 * can only be started up within the thread group. 2161 */ 2162 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2163 return ERR_PTR(-EINVAL); 2164 2165 /* 2166 * Shared signal handlers imply shared VM. By way of the above, 2167 * thread groups also imply shared VM. Blocking this case allows 2168 * for various simplifications in other code. 2169 */ 2170 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2171 return ERR_PTR(-EINVAL); 2172 2173 /* 2174 * Siblings of global init remain as zombies on exit since they are 2175 * not reaped by their parent (swapper). To solve this and to avoid 2176 * multi-rooted process trees, prevent global and container-inits 2177 * from creating siblings. 2178 */ 2179 if ((clone_flags & CLONE_PARENT) && 2180 current->signal->flags & SIGNAL_UNKILLABLE) 2181 return ERR_PTR(-EINVAL); 2182 2183 /* 2184 * If the new process will be in a different pid or user namespace 2185 * do not allow it to share a thread group with the forking task. 2186 */ 2187 if (clone_flags & CLONE_THREAD) { 2188 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2189 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2190 return ERR_PTR(-EINVAL); 2191 } 2192 2193 if (clone_flags & CLONE_PIDFD) { 2194 /* 2195 * - CLONE_DETACHED is blocked so that we can potentially 2196 * reuse it later for CLONE_PIDFD. 2197 */ 2198 if (clone_flags & CLONE_DETACHED) 2199 return ERR_PTR(-EINVAL); 2200 } 2201 2202 /* 2203 * Force any signals received before this point to be delivered 2204 * before the fork happens. Collect up signals sent to multiple 2205 * processes that happen during the fork and delay them so that 2206 * they appear to happen after the fork. 2207 */ 2208 sigemptyset(&delayed.signal); 2209 INIT_HLIST_NODE(&delayed.node); 2210 2211 spin_lock_irq(¤t->sighand->siglock); 2212 if (!(clone_flags & CLONE_THREAD)) 2213 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2214 recalc_sigpending(); 2215 spin_unlock_irq(¤t->sighand->siglock); 2216 retval = -ERESTARTNOINTR; 2217 if (task_sigpending(current)) 2218 goto fork_out; 2219 2220 retval = -ENOMEM; 2221 p = dup_task_struct(current, node); 2222 if (!p) 2223 goto fork_out; 2224 p->flags &= ~PF_KTHREAD; 2225 if (args->kthread) 2226 p->flags |= PF_KTHREAD; 2227 if (args->user_worker) { 2228 /* 2229 * Mark us a user worker, and block any signal that isn't 2230 * fatal or STOP 2231 */ 2232 p->flags |= PF_USER_WORKER; 2233 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2234 } 2235 if (args->io_thread) 2236 p->flags |= PF_IO_WORKER; 2237 2238 if (args->name) 2239 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2240 2241 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2242 /* 2243 * Clear TID on mm_release()? 2244 */ 2245 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2246 2247 ftrace_graph_init_task(p); 2248 2249 rt_mutex_init_task(p); 2250 2251 lockdep_assert_irqs_enabled(); 2252 #ifdef CONFIG_PROVE_LOCKING 2253 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2254 #endif 2255 retval = copy_creds(p, clone_flags); 2256 if (retval < 0) 2257 goto bad_fork_free; 2258 2259 retval = -EAGAIN; 2260 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2261 if (p->real_cred->user != INIT_USER && 2262 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2263 goto bad_fork_cleanup_count; 2264 } 2265 current->flags &= ~PF_NPROC_EXCEEDED; 2266 2267 /* 2268 * If multiple threads are within copy_process(), then this check 2269 * triggers too late. This doesn't hurt, the check is only there 2270 * to stop root fork bombs. 2271 */ 2272 retval = -EAGAIN; 2273 if (data_race(nr_threads >= max_threads)) 2274 goto bad_fork_cleanup_count; 2275 2276 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2277 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2278 p->flags |= PF_FORKNOEXEC; 2279 INIT_LIST_HEAD(&p->children); 2280 INIT_LIST_HEAD(&p->sibling); 2281 rcu_copy_process(p); 2282 p->vfork_done = NULL; 2283 spin_lock_init(&p->alloc_lock); 2284 2285 init_sigpending(&p->pending); 2286 2287 p->utime = p->stime = p->gtime = 0; 2288 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2289 p->utimescaled = p->stimescaled = 0; 2290 #endif 2291 prev_cputime_init(&p->prev_cputime); 2292 2293 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2294 seqcount_init(&p->vtime.seqcount); 2295 p->vtime.starttime = 0; 2296 p->vtime.state = VTIME_INACTIVE; 2297 #endif 2298 2299 #ifdef CONFIG_IO_URING 2300 p->io_uring = NULL; 2301 #endif 2302 2303 p->default_timer_slack_ns = current->timer_slack_ns; 2304 2305 #ifdef CONFIG_PSI 2306 p->psi_flags = 0; 2307 #endif 2308 2309 task_io_accounting_init(&p->ioac); 2310 acct_clear_integrals(p); 2311 2312 posix_cputimers_init(&p->posix_cputimers); 2313 tick_dep_init_task(p); 2314 2315 p->io_context = NULL; 2316 audit_set_context(p, NULL); 2317 cgroup_fork(p); 2318 if (args->kthread) { 2319 if (!set_kthread_struct(p)) 2320 goto bad_fork_cleanup_delayacct; 2321 } 2322 #ifdef CONFIG_NUMA 2323 p->mempolicy = mpol_dup(p->mempolicy); 2324 if (IS_ERR(p->mempolicy)) { 2325 retval = PTR_ERR(p->mempolicy); 2326 p->mempolicy = NULL; 2327 goto bad_fork_cleanup_delayacct; 2328 } 2329 #endif 2330 #ifdef CONFIG_CPUSETS 2331 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2332 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2333 #endif 2334 #ifdef CONFIG_TRACE_IRQFLAGS 2335 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2336 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2337 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2338 p->softirqs_enabled = 1; 2339 p->softirq_context = 0; 2340 #endif 2341 2342 p->pagefault_disabled = 0; 2343 2344 #ifdef CONFIG_LOCKDEP 2345 lockdep_init_task(p); 2346 #endif 2347 2348 #ifdef CONFIG_DEBUG_MUTEXES 2349 p->blocked_on = NULL; /* not blocked yet */ 2350 #endif 2351 #ifdef CONFIG_BCACHE 2352 p->sequential_io = 0; 2353 p->sequential_io_avg = 0; 2354 #endif 2355 #ifdef CONFIG_BPF_SYSCALL 2356 RCU_INIT_POINTER(p->bpf_storage, NULL); 2357 p->bpf_ctx = NULL; 2358 #endif 2359 2360 /* Perform scheduler related setup. Assign this task to a CPU. */ 2361 retval = sched_fork(clone_flags, p); 2362 if (retval) 2363 goto bad_fork_cleanup_policy; 2364 2365 retval = perf_event_init_task(p, clone_flags); 2366 if (retval) 2367 goto bad_fork_sched_cancel_fork; 2368 retval = audit_alloc(p); 2369 if (retval) 2370 goto bad_fork_cleanup_perf; 2371 /* copy all the process information */ 2372 shm_init_task(p); 2373 retval = security_task_alloc(p, clone_flags); 2374 if (retval) 2375 goto bad_fork_cleanup_audit; 2376 retval = copy_semundo(clone_flags, p); 2377 if (retval) 2378 goto bad_fork_cleanup_security; 2379 retval = copy_files(clone_flags, p, args->no_files); 2380 if (retval) 2381 goto bad_fork_cleanup_semundo; 2382 retval = copy_fs(clone_flags, p); 2383 if (retval) 2384 goto bad_fork_cleanup_files; 2385 retval = copy_sighand(clone_flags, p); 2386 if (retval) 2387 goto bad_fork_cleanup_fs; 2388 retval = copy_signal(clone_flags, p); 2389 if (retval) 2390 goto bad_fork_cleanup_sighand; 2391 retval = copy_mm(clone_flags, p); 2392 if (retval) 2393 goto bad_fork_cleanup_signal; 2394 retval = copy_namespaces(clone_flags, p); 2395 if (retval) 2396 goto bad_fork_cleanup_mm; 2397 retval = copy_io(clone_flags, p); 2398 if (retval) 2399 goto bad_fork_cleanup_namespaces; 2400 retval = copy_thread(p, args); 2401 if (retval) 2402 goto bad_fork_cleanup_io; 2403 2404 stackleak_task_init(p); 2405 2406 if (pid != &init_struct_pid) { 2407 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2408 args->set_tid_size); 2409 if (IS_ERR(pid)) { 2410 retval = PTR_ERR(pid); 2411 goto bad_fork_cleanup_thread; 2412 } 2413 } 2414 2415 /* 2416 * This has to happen after we've potentially unshared the file 2417 * descriptor table (so that the pidfd doesn't leak into the child 2418 * if the fd table isn't shared). 2419 */ 2420 if (clone_flags & CLONE_PIDFD) { 2421 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2422 2423 /* Note that no task has been attached to @pid yet. */ 2424 retval = __pidfd_prepare(pid, flags, &pidfile); 2425 if (retval < 0) 2426 goto bad_fork_free_pid; 2427 pidfd = retval; 2428 2429 retval = put_user(pidfd, args->pidfd); 2430 if (retval) 2431 goto bad_fork_put_pidfd; 2432 } 2433 2434 #ifdef CONFIG_BLOCK 2435 p->plug = NULL; 2436 #endif 2437 futex_init_task(p); 2438 2439 /* 2440 * sigaltstack should be cleared when sharing the same VM 2441 */ 2442 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2443 sas_ss_reset(p); 2444 2445 /* 2446 * Syscall tracing and stepping should be turned off in the 2447 * child regardless of CLONE_PTRACE. 2448 */ 2449 user_disable_single_step(p); 2450 clear_task_syscall_work(p, SYSCALL_TRACE); 2451 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2452 clear_task_syscall_work(p, SYSCALL_EMU); 2453 #endif 2454 clear_tsk_latency_tracing(p); 2455 2456 /* ok, now we should be set up.. */ 2457 p->pid = pid_nr(pid); 2458 if (clone_flags & CLONE_THREAD) { 2459 p->group_leader = current->group_leader; 2460 p->tgid = current->tgid; 2461 } else { 2462 p->group_leader = p; 2463 p->tgid = p->pid; 2464 } 2465 2466 p->nr_dirtied = 0; 2467 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2468 p->dirty_paused_when = 0; 2469 2470 p->pdeath_signal = 0; 2471 p->task_works = NULL; 2472 clear_posix_cputimers_work(p); 2473 2474 #ifdef CONFIG_KRETPROBES 2475 p->kretprobe_instances.first = NULL; 2476 #endif 2477 #ifdef CONFIG_RETHOOK 2478 p->rethooks.first = NULL; 2479 #endif 2480 2481 /* 2482 * Ensure that the cgroup subsystem policies allow the new process to be 2483 * forked. It should be noted that the new process's css_set can be changed 2484 * between here and cgroup_post_fork() if an organisation operation is in 2485 * progress. 2486 */ 2487 retval = cgroup_can_fork(p, args); 2488 if (retval) 2489 goto bad_fork_put_pidfd; 2490 2491 /* 2492 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2493 * the new task on the correct runqueue. All this *before* the task 2494 * becomes visible. 2495 * 2496 * This isn't part of ->can_fork() because while the re-cloning is 2497 * cgroup specific, it unconditionally needs to place the task on a 2498 * runqueue. 2499 */ 2500 retval = sched_cgroup_fork(p, args); 2501 if (retval) 2502 goto bad_fork_cancel_cgroup; 2503 2504 /* 2505 * From this point on we must avoid any synchronous user-space 2506 * communication until we take the tasklist-lock. In particular, we do 2507 * not want user-space to be able to predict the process start-time by 2508 * stalling fork(2) after we recorded the start_time but before it is 2509 * visible to the system. 2510 */ 2511 2512 p->start_time = ktime_get_ns(); 2513 p->start_boottime = ktime_get_boottime_ns(); 2514 2515 /* 2516 * Make it visible to the rest of the system, but dont wake it up yet. 2517 * Need tasklist lock for parent etc handling! 2518 */ 2519 write_lock_irq(&tasklist_lock); 2520 2521 /* CLONE_PARENT re-uses the old parent */ 2522 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2523 p->real_parent = current->real_parent; 2524 p->parent_exec_id = current->parent_exec_id; 2525 if (clone_flags & CLONE_THREAD) 2526 p->exit_signal = -1; 2527 else 2528 p->exit_signal = current->group_leader->exit_signal; 2529 } else { 2530 p->real_parent = current; 2531 p->parent_exec_id = current->self_exec_id; 2532 p->exit_signal = args->exit_signal; 2533 } 2534 2535 klp_copy_process(p); 2536 2537 sched_core_fork(p); 2538 2539 spin_lock(¤t->sighand->siglock); 2540 2541 rv_task_fork(p); 2542 2543 rseq_fork(p, clone_flags); 2544 2545 /* Don't start children in a dying pid namespace */ 2546 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2547 retval = -ENOMEM; 2548 goto bad_fork_core_free; 2549 } 2550 2551 /* Let kill terminate clone/fork in the middle */ 2552 if (fatal_signal_pending(current)) { 2553 retval = -EINTR; 2554 goto bad_fork_core_free; 2555 } 2556 2557 /* No more failure paths after this point. */ 2558 2559 /* 2560 * Copy seccomp details explicitly here, in case they were changed 2561 * before holding sighand lock. 2562 */ 2563 copy_seccomp(p); 2564 2565 init_task_pid_links(p); 2566 if (likely(p->pid)) { 2567 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2568 2569 init_task_pid(p, PIDTYPE_PID, pid); 2570 if (thread_group_leader(p)) { 2571 init_task_pid(p, PIDTYPE_TGID, pid); 2572 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2573 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2574 2575 if (is_child_reaper(pid)) { 2576 ns_of_pid(pid)->child_reaper = p; 2577 p->signal->flags |= SIGNAL_UNKILLABLE; 2578 } 2579 p->signal->shared_pending.signal = delayed.signal; 2580 p->signal->tty = tty_kref_get(current->signal->tty); 2581 /* 2582 * Inherit has_child_subreaper flag under the same 2583 * tasklist_lock with adding child to the process tree 2584 * for propagate_has_child_subreaper optimization. 2585 */ 2586 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2587 p->real_parent->signal->is_child_subreaper; 2588 list_add_tail(&p->sibling, &p->real_parent->children); 2589 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2590 attach_pid(p, PIDTYPE_TGID); 2591 attach_pid(p, PIDTYPE_PGID); 2592 attach_pid(p, PIDTYPE_SID); 2593 __this_cpu_inc(process_counts); 2594 } else { 2595 current->signal->nr_threads++; 2596 current->signal->quick_threads++; 2597 atomic_inc(¤t->signal->live); 2598 refcount_inc(¤t->signal->sigcnt); 2599 task_join_group_stop(p); 2600 list_add_tail_rcu(&p->thread_node, 2601 &p->signal->thread_head); 2602 } 2603 attach_pid(p, PIDTYPE_PID); 2604 nr_threads++; 2605 } 2606 total_forks++; 2607 hlist_del_init(&delayed.node); 2608 spin_unlock(¤t->sighand->siglock); 2609 syscall_tracepoint_update(p); 2610 write_unlock_irq(&tasklist_lock); 2611 2612 if (pidfile) 2613 fd_install(pidfd, pidfile); 2614 2615 proc_fork_connector(p); 2616 sched_post_fork(p); 2617 cgroup_post_fork(p, args); 2618 perf_event_fork(p); 2619 2620 trace_task_newtask(p, clone_flags); 2621 uprobe_copy_process(p, clone_flags); 2622 user_events_fork(p, clone_flags); 2623 2624 copy_oom_score_adj(clone_flags, p); 2625 2626 return p; 2627 2628 bad_fork_core_free: 2629 sched_core_free(p); 2630 spin_unlock(¤t->sighand->siglock); 2631 write_unlock_irq(&tasklist_lock); 2632 bad_fork_cancel_cgroup: 2633 cgroup_cancel_fork(p, args); 2634 bad_fork_put_pidfd: 2635 if (clone_flags & CLONE_PIDFD) { 2636 fput(pidfile); 2637 put_unused_fd(pidfd); 2638 } 2639 bad_fork_free_pid: 2640 if (pid != &init_struct_pid) 2641 free_pid(pid); 2642 bad_fork_cleanup_thread: 2643 exit_thread(p); 2644 bad_fork_cleanup_io: 2645 if (p->io_context) 2646 exit_io_context(p); 2647 bad_fork_cleanup_namespaces: 2648 exit_task_namespaces(p); 2649 bad_fork_cleanup_mm: 2650 if (p->mm) { 2651 mm_clear_owner(p->mm, p); 2652 mmput(p->mm); 2653 } 2654 bad_fork_cleanup_signal: 2655 if (!(clone_flags & CLONE_THREAD)) 2656 free_signal_struct(p->signal); 2657 bad_fork_cleanup_sighand: 2658 __cleanup_sighand(p->sighand); 2659 bad_fork_cleanup_fs: 2660 exit_fs(p); /* blocking */ 2661 bad_fork_cleanup_files: 2662 exit_files(p); /* blocking */ 2663 bad_fork_cleanup_semundo: 2664 exit_sem(p); 2665 bad_fork_cleanup_security: 2666 security_task_free(p); 2667 bad_fork_cleanup_audit: 2668 audit_free(p); 2669 bad_fork_cleanup_perf: 2670 perf_event_free_task(p); 2671 bad_fork_sched_cancel_fork: 2672 sched_cancel_fork(p); 2673 bad_fork_cleanup_policy: 2674 lockdep_free_task(p); 2675 #ifdef CONFIG_NUMA 2676 mpol_put(p->mempolicy); 2677 #endif 2678 bad_fork_cleanup_delayacct: 2679 delayacct_tsk_free(p); 2680 bad_fork_cleanup_count: 2681 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2682 exit_creds(p); 2683 bad_fork_free: 2684 WRITE_ONCE(p->__state, TASK_DEAD); 2685 exit_task_stack_account(p); 2686 put_task_stack(p); 2687 delayed_free_task(p); 2688 fork_out: 2689 spin_lock_irq(¤t->sighand->siglock); 2690 hlist_del_init(&delayed.node); 2691 spin_unlock_irq(¤t->sighand->siglock); 2692 return ERR_PTR(retval); 2693 } 2694 2695 static inline void init_idle_pids(struct task_struct *idle) 2696 { 2697 enum pid_type type; 2698 2699 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2700 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2701 init_task_pid(idle, type, &init_struct_pid); 2702 } 2703 } 2704 2705 static int idle_dummy(void *dummy) 2706 { 2707 /* This function is never called */ 2708 return 0; 2709 } 2710 2711 struct task_struct * __init fork_idle(int cpu) 2712 { 2713 struct task_struct *task; 2714 struct kernel_clone_args args = { 2715 .flags = CLONE_VM, 2716 .fn = &idle_dummy, 2717 .fn_arg = NULL, 2718 .kthread = 1, 2719 .idle = 1, 2720 }; 2721 2722 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2723 if (!IS_ERR(task)) { 2724 init_idle_pids(task); 2725 init_idle(task, cpu); 2726 } 2727 2728 return task; 2729 } 2730 2731 /* 2732 * This is like kernel_clone(), but shaved down and tailored to just 2733 * creating io_uring workers. It returns a created task, or an error pointer. 2734 * The returned task is inactive, and the caller must fire it up through 2735 * wake_up_new_task(p). All signals are blocked in the created task. 2736 */ 2737 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2738 { 2739 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2740 CLONE_IO; 2741 struct kernel_clone_args args = { 2742 .flags = ((lower_32_bits(flags) | CLONE_VM | 2743 CLONE_UNTRACED) & ~CSIGNAL), 2744 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2745 .fn = fn, 2746 .fn_arg = arg, 2747 .io_thread = 1, 2748 .user_worker = 1, 2749 }; 2750 2751 return copy_process(NULL, 0, node, &args); 2752 } 2753 2754 /* 2755 * Ok, this is the main fork-routine. 2756 * 2757 * It copies the process, and if successful kick-starts 2758 * it and waits for it to finish using the VM if required. 2759 * 2760 * args->exit_signal is expected to be checked for sanity by the caller. 2761 */ 2762 pid_t kernel_clone(struct kernel_clone_args *args) 2763 { 2764 u64 clone_flags = args->flags; 2765 struct completion vfork; 2766 struct pid *pid; 2767 struct task_struct *p; 2768 int trace = 0; 2769 pid_t nr; 2770 2771 /* 2772 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2773 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2774 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2775 * field in struct clone_args and it still doesn't make sense to have 2776 * them both point at the same memory location. Performing this check 2777 * here has the advantage that we don't need to have a separate helper 2778 * to check for legacy clone(). 2779 */ 2780 if ((clone_flags & CLONE_PIDFD) && 2781 (clone_flags & CLONE_PARENT_SETTID) && 2782 (args->pidfd == args->parent_tid)) 2783 return -EINVAL; 2784 2785 /* 2786 * Determine whether and which event to report to ptracer. When 2787 * called from kernel_thread or CLONE_UNTRACED is explicitly 2788 * requested, no event is reported; otherwise, report if the event 2789 * for the type of forking is enabled. 2790 */ 2791 if (!(clone_flags & CLONE_UNTRACED)) { 2792 if (clone_flags & CLONE_VFORK) 2793 trace = PTRACE_EVENT_VFORK; 2794 else if (args->exit_signal != SIGCHLD) 2795 trace = PTRACE_EVENT_CLONE; 2796 else 2797 trace = PTRACE_EVENT_FORK; 2798 2799 if (likely(!ptrace_event_enabled(current, trace))) 2800 trace = 0; 2801 } 2802 2803 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2804 add_latent_entropy(); 2805 2806 if (IS_ERR(p)) 2807 return PTR_ERR(p); 2808 2809 /* 2810 * Do this prior waking up the new thread - the thread pointer 2811 * might get invalid after that point, if the thread exits quickly. 2812 */ 2813 trace_sched_process_fork(current, p); 2814 2815 pid = get_task_pid(p, PIDTYPE_PID); 2816 nr = pid_vnr(pid); 2817 2818 if (clone_flags & CLONE_PARENT_SETTID) 2819 put_user(nr, args->parent_tid); 2820 2821 if (clone_flags & CLONE_VFORK) { 2822 p->vfork_done = &vfork; 2823 init_completion(&vfork); 2824 get_task_struct(p); 2825 } 2826 2827 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2828 /* lock the task to synchronize with memcg migration */ 2829 task_lock(p); 2830 lru_gen_add_mm(p->mm); 2831 task_unlock(p); 2832 } 2833 2834 wake_up_new_task(p); 2835 2836 /* forking complete and child started to run, tell ptracer */ 2837 if (unlikely(trace)) 2838 ptrace_event_pid(trace, pid); 2839 2840 if (clone_flags & CLONE_VFORK) { 2841 if (!wait_for_vfork_done(p, &vfork)) 2842 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2843 } 2844 2845 put_pid(pid); 2846 return nr; 2847 } 2848 2849 /* 2850 * Create a kernel thread. 2851 */ 2852 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2853 unsigned long flags) 2854 { 2855 struct kernel_clone_args args = { 2856 .flags = ((lower_32_bits(flags) | CLONE_VM | 2857 CLONE_UNTRACED) & ~CSIGNAL), 2858 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2859 .fn = fn, 2860 .fn_arg = arg, 2861 .name = name, 2862 .kthread = 1, 2863 }; 2864 2865 return kernel_clone(&args); 2866 } 2867 2868 /* 2869 * Create a user mode thread. 2870 */ 2871 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2872 { 2873 struct kernel_clone_args args = { 2874 .flags = ((lower_32_bits(flags) | CLONE_VM | 2875 CLONE_UNTRACED) & ~CSIGNAL), 2876 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2877 .fn = fn, 2878 .fn_arg = arg, 2879 }; 2880 2881 return kernel_clone(&args); 2882 } 2883 2884 #ifdef __ARCH_WANT_SYS_FORK 2885 SYSCALL_DEFINE0(fork) 2886 { 2887 #ifdef CONFIG_MMU 2888 struct kernel_clone_args args = { 2889 .exit_signal = SIGCHLD, 2890 }; 2891 2892 return kernel_clone(&args); 2893 #else 2894 /* can not support in nommu mode */ 2895 return -EINVAL; 2896 #endif 2897 } 2898 #endif 2899 2900 #ifdef __ARCH_WANT_SYS_VFORK 2901 SYSCALL_DEFINE0(vfork) 2902 { 2903 struct kernel_clone_args args = { 2904 .flags = CLONE_VFORK | CLONE_VM, 2905 .exit_signal = SIGCHLD, 2906 }; 2907 2908 return kernel_clone(&args); 2909 } 2910 #endif 2911 2912 #ifdef __ARCH_WANT_SYS_CLONE 2913 #ifdef CONFIG_CLONE_BACKWARDS 2914 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2915 int __user *, parent_tidptr, 2916 unsigned long, tls, 2917 int __user *, child_tidptr) 2918 #elif defined(CONFIG_CLONE_BACKWARDS2) 2919 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2920 int __user *, parent_tidptr, 2921 int __user *, child_tidptr, 2922 unsigned long, tls) 2923 #elif defined(CONFIG_CLONE_BACKWARDS3) 2924 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2925 int, stack_size, 2926 int __user *, parent_tidptr, 2927 int __user *, child_tidptr, 2928 unsigned long, tls) 2929 #else 2930 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2931 int __user *, parent_tidptr, 2932 int __user *, child_tidptr, 2933 unsigned long, tls) 2934 #endif 2935 { 2936 struct kernel_clone_args args = { 2937 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2938 .pidfd = parent_tidptr, 2939 .child_tid = child_tidptr, 2940 .parent_tid = parent_tidptr, 2941 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2942 .stack = newsp, 2943 .tls = tls, 2944 }; 2945 2946 return kernel_clone(&args); 2947 } 2948 #endif 2949 2950 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2951 struct clone_args __user *uargs, 2952 size_t usize) 2953 { 2954 int err; 2955 struct clone_args args; 2956 pid_t *kset_tid = kargs->set_tid; 2957 2958 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2959 CLONE_ARGS_SIZE_VER0); 2960 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2961 CLONE_ARGS_SIZE_VER1); 2962 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2963 CLONE_ARGS_SIZE_VER2); 2964 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2965 2966 if (unlikely(usize > PAGE_SIZE)) 2967 return -E2BIG; 2968 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2969 return -EINVAL; 2970 2971 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2972 if (err) 2973 return err; 2974 2975 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2976 return -EINVAL; 2977 2978 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2979 return -EINVAL; 2980 2981 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2982 return -EINVAL; 2983 2984 /* 2985 * Verify that higher 32bits of exit_signal are unset and that 2986 * it is a valid signal 2987 */ 2988 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2989 !valid_signal(args.exit_signal))) 2990 return -EINVAL; 2991 2992 if ((args.flags & CLONE_INTO_CGROUP) && 2993 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2994 return -EINVAL; 2995 2996 *kargs = (struct kernel_clone_args){ 2997 .flags = args.flags, 2998 .pidfd = u64_to_user_ptr(args.pidfd), 2999 .child_tid = u64_to_user_ptr(args.child_tid), 3000 .parent_tid = u64_to_user_ptr(args.parent_tid), 3001 .exit_signal = args.exit_signal, 3002 .stack = args.stack, 3003 .stack_size = args.stack_size, 3004 .tls = args.tls, 3005 .set_tid_size = args.set_tid_size, 3006 .cgroup = args.cgroup, 3007 }; 3008 3009 if (args.set_tid && 3010 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3011 (kargs->set_tid_size * sizeof(pid_t)))) 3012 return -EFAULT; 3013 3014 kargs->set_tid = kset_tid; 3015 3016 return 0; 3017 } 3018 3019 /** 3020 * clone3_stack_valid - check and prepare stack 3021 * @kargs: kernel clone args 3022 * 3023 * Verify that the stack arguments userspace gave us are sane. 3024 * In addition, set the stack direction for userspace since it's easy for us to 3025 * determine. 3026 */ 3027 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3028 { 3029 if (kargs->stack == 0) { 3030 if (kargs->stack_size > 0) 3031 return false; 3032 } else { 3033 if (kargs->stack_size == 0) 3034 return false; 3035 3036 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3037 return false; 3038 3039 #if !defined(CONFIG_STACK_GROWSUP) 3040 kargs->stack += kargs->stack_size; 3041 #endif 3042 } 3043 3044 return true; 3045 } 3046 3047 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3048 { 3049 /* Verify that no unknown flags are passed along. */ 3050 if (kargs->flags & 3051 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3052 return false; 3053 3054 /* 3055 * - make the CLONE_DETACHED bit reusable for clone3 3056 * - make the CSIGNAL bits reusable for clone3 3057 */ 3058 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3059 return false; 3060 3061 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3062 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3063 return false; 3064 3065 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3066 kargs->exit_signal) 3067 return false; 3068 3069 if (!clone3_stack_valid(kargs)) 3070 return false; 3071 3072 return true; 3073 } 3074 3075 /** 3076 * sys_clone3 - create a new process with specific properties 3077 * @uargs: argument structure 3078 * @size: size of @uargs 3079 * 3080 * clone3() is the extensible successor to clone()/clone2(). 3081 * It takes a struct as argument that is versioned by its size. 3082 * 3083 * Return: On success, a positive PID for the child process. 3084 * On error, a negative errno number. 3085 */ 3086 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3087 { 3088 int err; 3089 3090 struct kernel_clone_args kargs; 3091 pid_t set_tid[MAX_PID_NS_LEVEL]; 3092 3093 #ifdef __ARCH_BROKEN_SYS_CLONE3 3094 #warning clone3() entry point is missing, please fix 3095 return -ENOSYS; 3096 #endif 3097 3098 kargs.set_tid = set_tid; 3099 3100 err = copy_clone_args_from_user(&kargs, uargs, size); 3101 if (err) 3102 return err; 3103 3104 if (!clone3_args_valid(&kargs)) 3105 return -EINVAL; 3106 3107 return kernel_clone(&kargs); 3108 } 3109 3110 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3111 { 3112 struct task_struct *leader, *parent, *child; 3113 int res; 3114 3115 read_lock(&tasklist_lock); 3116 leader = top = top->group_leader; 3117 down: 3118 for_each_thread(leader, parent) { 3119 list_for_each_entry(child, &parent->children, sibling) { 3120 res = visitor(child, data); 3121 if (res) { 3122 if (res < 0) 3123 goto out; 3124 leader = child; 3125 goto down; 3126 } 3127 up: 3128 ; 3129 } 3130 } 3131 3132 if (leader != top) { 3133 child = leader; 3134 parent = child->real_parent; 3135 leader = parent->group_leader; 3136 goto up; 3137 } 3138 out: 3139 read_unlock(&tasklist_lock); 3140 } 3141 3142 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3143 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3144 #endif 3145 3146 static void sighand_ctor(void *data) 3147 { 3148 struct sighand_struct *sighand = data; 3149 3150 spin_lock_init(&sighand->siglock); 3151 init_waitqueue_head(&sighand->signalfd_wqh); 3152 } 3153 3154 void __init mm_cache_init(void) 3155 { 3156 unsigned int mm_size; 3157 3158 /* 3159 * The mm_cpumask is located at the end of mm_struct, and is 3160 * dynamically sized based on the maximum CPU number this system 3161 * can have, taking hotplug into account (nr_cpu_ids). 3162 */ 3163 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3164 3165 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3166 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3167 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3168 offsetof(struct mm_struct, saved_auxv), 3169 sizeof_field(struct mm_struct, saved_auxv), 3170 NULL); 3171 } 3172 3173 void __init proc_caches_init(void) 3174 { 3175 sighand_cachep = kmem_cache_create("sighand_cache", 3176 sizeof(struct sighand_struct), 0, 3177 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3178 SLAB_ACCOUNT, sighand_ctor); 3179 signal_cachep = kmem_cache_create("signal_cache", 3180 sizeof(struct signal_struct), 0, 3181 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3182 NULL); 3183 files_cachep = kmem_cache_create("files_cache", 3184 sizeof(struct files_struct), 0, 3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3186 NULL); 3187 fs_cachep = kmem_cache_create("fs_cache", 3188 sizeof(struct fs_struct), 0, 3189 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3190 NULL); 3191 3192 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3193 #ifdef CONFIG_PER_VMA_LOCK 3194 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3195 #endif 3196 mmap_init(); 3197 nsproxy_cache_init(); 3198 } 3199 3200 /* 3201 * Check constraints on flags passed to the unshare system call. 3202 */ 3203 static int check_unshare_flags(unsigned long unshare_flags) 3204 { 3205 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3206 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3207 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3208 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3209 CLONE_NEWTIME)) 3210 return -EINVAL; 3211 /* 3212 * Not implemented, but pretend it works if there is nothing 3213 * to unshare. Note that unsharing the address space or the 3214 * signal handlers also need to unshare the signal queues (aka 3215 * CLONE_THREAD). 3216 */ 3217 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3218 if (!thread_group_empty(current)) 3219 return -EINVAL; 3220 } 3221 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3222 if (refcount_read(¤t->sighand->count) > 1) 3223 return -EINVAL; 3224 } 3225 if (unshare_flags & CLONE_VM) { 3226 if (!current_is_single_threaded()) 3227 return -EINVAL; 3228 } 3229 3230 return 0; 3231 } 3232 3233 /* 3234 * Unshare the filesystem structure if it is being shared 3235 */ 3236 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3237 { 3238 struct fs_struct *fs = current->fs; 3239 3240 if (!(unshare_flags & CLONE_FS) || !fs) 3241 return 0; 3242 3243 /* don't need lock here; in the worst case we'll do useless copy */ 3244 if (fs->users == 1) 3245 return 0; 3246 3247 *new_fsp = copy_fs_struct(fs); 3248 if (!*new_fsp) 3249 return -ENOMEM; 3250 3251 return 0; 3252 } 3253 3254 /* 3255 * Unshare file descriptor table if it is being shared 3256 */ 3257 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3258 { 3259 struct files_struct *fd = current->files; 3260 3261 if ((unshare_flags & CLONE_FILES) && 3262 (fd && atomic_read(&fd->count) > 1)) { 3263 fd = dup_fd(fd, NULL); 3264 if (IS_ERR(fd)) 3265 return PTR_ERR(fd); 3266 *new_fdp = fd; 3267 } 3268 3269 return 0; 3270 } 3271 3272 /* 3273 * unshare allows a process to 'unshare' part of the process 3274 * context which was originally shared using clone. copy_* 3275 * functions used by kernel_clone() cannot be used here directly 3276 * because they modify an inactive task_struct that is being 3277 * constructed. Here we are modifying the current, active, 3278 * task_struct. 3279 */ 3280 int ksys_unshare(unsigned long unshare_flags) 3281 { 3282 struct fs_struct *fs, *new_fs = NULL; 3283 struct files_struct *new_fd = NULL; 3284 struct cred *new_cred = NULL; 3285 struct nsproxy *new_nsproxy = NULL; 3286 int do_sysvsem = 0; 3287 int err; 3288 3289 /* 3290 * If unsharing a user namespace must also unshare the thread group 3291 * and unshare the filesystem root and working directories. 3292 */ 3293 if (unshare_flags & CLONE_NEWUSER) 3294 unshare_flags |= CLONE_THREAD | CLONE_FS; 3295 /* 3296 * If unsharing vm, must also unshare signal handlers. 3297 */ 3298 if (unshare_flags & CLONE_VM) 3299 unshare_flags |= CLONE_SIGHAND; 3300 /* 3301 * If unsharing a signal handlers, must also unshare the signal queues. 3302 */ 3303 if (unshare_flags & CLONE_SIGHAND) 3304 unshare_flags |= CLONE_THREAD; 3305 /* 3306 * If unsharing namespace, must also unshare filesystem information. 3307 */ 3308 if (unshare_flags & CLONE_NEWNS) 3309 unshare_flags |= CLONE_FS; 3310 3311 err = check_unshare_flags(unshare_flags); 3312 if (err) 3313 goto bad_unshare_out; 3314 /* 3315 * CLONE_NEWIPC must also detach from the undolist: after switching 3316 * to a new ipc namespace, the semaphore arrays from the old 3317 * namespace are unreachable. 3318 */ 3319 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3320 do_sysvsem = 1; 3321 err = unshare_fs(unshare_flags, &new_fs); 3322 if (err) 3323 goto bad_unshare_out; 3324 err = unshare_fd(unshare_flags, &new_fd); 3325 if (err) 3326 goto bad_unshare_cleanup_fs; 3327 err = unshare_userns(unshare_flags, &new_cred); 3328 if (err) 3329 goto bad_unshare_cleanup_fd; 3330 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3331 new_cred, new_fs); 3332 if (err) 3333 goto bad_unshare_cleanup_cred; 3334 3335 if (new_cred) { 3336 err = set_cred_ucounts(new_cred); 3337 if (err) 3338 goto bad_unshare_cleanup_cred; 3339 } 3340 3341 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3342 if (do_sysvsem) { 3343 /* 3344 * CLONE_SYSVSEM is equivalent to sys_exit(). 3345 */ 3346 exit_sem(current); 3347 } 3348 if (unshare_flags & CLONE_NEWIPC) { 3349 /* Orphan segments in old ns (see sem above). */ 3350 exit_shm(current); 3351 shm_init_task(current); 3352 } 3353 3354 if (new_nsproxy) 3355 switch_task_namespaces(current, new_nsproxy); 3356 3357 task_lock(current); 3358 3359 if (new_fs) { 3360 fs = current->fs; 3361 spin_lock(&fs->lock); 3362 current->fs = new_fs; 3363 if (--fs->users) 3364 new_fs = NULL; 3365 else 3366 new_fs = fs; 3367 spin_unlock(&fs->lock); 3368 } 3369 3370 if (new_fd) 3371 swap(current->files, new_fd); 3372 3373 task_unlock(current); 3374 3375 if (new_cred) { 3376 /* Install the new user namespace */ 3377 commit_creds(new_cred); 3378 new_cred = NULL; 3379 } 3380 } 3381 3382 perf_event_namespaces(current); 3383 3384 bad_unshare_cleanup_cred: 3385 if (new_cred) 3386 put_cred(new_cred); 3387 bad_unshare_cleanup_fd: 3388 if (new_fd) 3389 put_files_struct(new_fd); 3390 3391 bad_unshare_cleanup_fs: 3392 if (new_fs) 3393 free_fs_struct(new_fs); 3394 3395 bad_unshare_out: 3396 return err; 3397 } 3398 3399 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3400 { 3401 return ksys_unshare(unshare_flags); 3402 } 3403 3404 /* 3405 * Helper to unshare the files of the current task. 3406 * We don't want to expose copy_files internals to 3407 * the exec layer of the kernel. 3408 */ 3409 3410 int unshare_files(void) 3411 { 3412 struct task_struct *task = current; 3413 struct files_struct *old, *copy = NULL; 3414 int error; 3415 3416 error = unshare_fd(CLONE_FILES, ©); 3417 if (error || !copy) 3418 return error; 3419 3420 old = task->files; 3421 task_lock(task); 3422 task->files = copy; 3423 task_unlock(task); 3424 put_files_struct(old); 3425 return 0; 3426 } 3427 3428 int sysctl_max_threads(const struct ctl_table *table, int write, 3429 void *buffer, size_t *lenp, loff_t *ppos) 3430 { 3431 struct ctl_table t; 3432 int ret; 3433 int threads = max_threads; 3434 int min = 1; 3435 int max = MAX_THREADS; 3436 3437 t = *table; 3438 t.data = &threads; 3439 t.extra1 = &min; 3440 t.extra2 = &max; 3441 3442 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3443 if (ret || !write) 3444 return ret; 3445 3446 max_threads = threads; 3447 3448 return 0; 3449 } 3450