xref: /linux/kernel/fork.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
56 
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
63 
64 /*
65  * Protected counters by write_lock_irq(&tasklist_lock)
66  */
67 unsigned long total_forks;	/* Handle normal Linux uptimes. */
68 int nr_threads; 		/* The idle threads do not count.. */
69 
70 int max_threads;		/* tunable limit on nr_threads */
71 
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73 
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
75 
76 int nr_processes(void)
77 {
78 	int cpu;
79 	int total = 0;
80 
81 	for_each_online_cpu(cpu)
82 		total += per_cpu(process_counts, cpu);
83 
84 	return total;
85 }
86 
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
92 
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
95 
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
98 
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
101 
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
104 
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
107 
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
110 
111 void free_task(struct task_struct *tsk)
112 {
113 	prop_local_destroy_single(&tsk->dirties);
114 	free_thread_info(tsk->stack);
115 	rt_mutex_debug_task_free(tsk);
116 	free_task_struct(tsk);
117 }
118 EXPORT_SYMBOL(free_task);
119 
120 void __put_task_struct(struct task_struct *tsk)
121 {
122 	WARN_ON(!tsk->exit_state);
123 	WARN_ON(atomic_read(&tsk->usage));
124 	WARN_ON(tsk == current);
125 
126 	security_task_free(tsk);
127 	free_uid(tsk->user);
128 	put_group_info(tsk->group_info);
129 	delayacct_tsk_free(tsk);
130 
131 	if (!profile_handoff_task(tsk))
132 		free_task(tsk);
133 }
134 
135 /*
136  * macro override instead of weak attribute alias, to workaround
137  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
138  */
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
142 
143 void __init fork_init(unsigned long mempages)
144 {
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
148 #endif
149 	/* create a slab on which task_structs can be allocated */
150 	task_struct_cachep =
151 		kmem_cache_create("task_struct", sizeof(struct task_struct),
152 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
154 
155 	/* do the arch specific task caches init */
156 	arch_task_cache_init();
157 
158 	/*
159 	 * The default maximum number of threads is set to a safe
160 	 * value: the thread structures can take up at most half
161 	 * of memory.
162 	 */
163 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
164 
165 	/*
166 	 * we need to allow at least 20 threads to boot a system
167 	 */
168 	if(max_threads < 20)
169 		max_threads = 20;
170 
171 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
174 		init_task.signal->rlim[RLIMIT_NPROC];
175 }
176 
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178 					       struct task_struct *src)
179 {
180 	*dst = *src;
181 	return 0;
182 }
183 
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
185 {
186 	struct task_struct *tsk;
187 	struct thread_info *ti;
188 	int err;
189 
190 	prepare_to_copy(orig);
191 
192 	tsk = alloc_task_struct();
193 	if (!tsk)
194 		return NULL;
195 
196 	ti = alloc_thread_info(tsk);
197 	if (!ti) {
198 		free_task_struct(tsk);
199 		return NULL;
200 	}
201 
202  	err = arch_dup_task_struct(tsk, orig);
203 	if (err)
204 		goto out;
205 
206 	tsk->stack = ti;
207 
208 	err = prop_local_init_single(&tsk->dirties);
209 	if (err)
210 		goto out;
211 
212 	setup_thread_stack(tsk, orig);
213 
214 #ifdef CONFIG_CC_STACKPROTECTOR
215 	tsk->stack_canary = get_random_int();
216 #endif
217 
218 	/* One for us, one for whoever does the "release_task()" (usually parent) */
219 	atomic_set(&tsk->usage,2);
220 	atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 	tsk->btrace_seq = 0;
223 #endif
224 	tsk->splice_pipe = NULL;
225 	return tsk;
226 
227 out:
228 	free_thread_info(ti);
229 	free_task_struct(tsk);
230 	return NULL;
231 }
232 
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
235 {
236 	struct vm_area_struct *mpnt, *tmp, **pprev;
237 	struct rb_node **rb_link, *rb_parent;
238 	int retval;
239 	unsigned long charge;
240 	struct mempolicy *pol;
241 
242 	down_write(&oldmm->mmap_sem);
243 	flush_cache_dup_mm(oldmm);
244 	/*
245 	 * Not linked in yet - no deadlock potential:
246 	 */
247 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
248 
249 	mm->locked_vm = 0;
250 	mm->mmap = NULL;
251 	mm->mmap_cache = NULL;
252 	mm->free_area_cache = oldmm->mmap_base;
253 	mm->cached_hole_size = ~0UL;
254 	mm->map_count = 0;
255 	cpus_clear(mm->cpu_vm_mask);
256 	mm->mm_rb = RB_ROOT;
257 	rb_link = &mm->mm_rb.rb_node;
258 	rb_parent = NULL;
259 	pprev = &mm->mmap;
260 
261 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262 		struct file *file;
263 
264 		if (mpnt->vm_flags & VM_DONTCOPY) {
265 			long pages = vma_pages(mpnt);
266 			mm->total_vm -= pages;
267 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268 								-pages);
269 			continue;
270 		}
271 		charge = 0;
272 		if (mpnt->vm_flags & VM_ACCOUNT) {
273 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274 			if (security_vm_enough_memory(len))
275 				goto fail_nomem;
276 			charge = len;
277 		}
278 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279 		if (!tmp)
280 			goto fail_nomem;
281 		*tmp = *mpnt;
282 		pol = mpol_dup(vma_policy(mpnt));
283 		retval = PTR_ERR(pol);
284 		if (IS_ERR(pol))
285 			goto fail_nomem_policy;
286 		vma_set_policy(tmp, pol);
287 		tmp->vm_flags &= ~VM_LOCKED;
288 		tmp->vm_mm = mm;
289 		tmp->vm_next = NULL;
290 		anon_vma_link(tmp);
291 		file = tmp->vm_file;
292 		if (file) {
293 			struct inode *inode = file->f_path.dentry->d_inode;
294 			get_file(file);
295 			if (tmp->vm_flags & VM_DENYWRITE)
296 				atomic_dec(&inode->i_writecount);
297 
298 			/* insert tmp into the share list, just after mpnt */
299 			spin_lock(&file->f_mapping->i_mmap_lock);
300 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
301 			flush_dcache_mmap_lock(file->f_mapping);
302 			vma_prio_tree_add(tmp, mpnt);
303 			flush_dcache_mmap_unlock(file->f_mapping);
304 			spin_unlock(&file->f_mapping->i_mmap_lock);
305 		}
306 
307 		/*
308 		 * Link in the new vma and copy the page table entries.
309 		 */
310 		*pprev = tmp;
311 		pprev = &tmp->vm_next;
312 
313 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
314 		rb_link = &tmp->vm_rb.rb_right;
315 		rb_parent = &tmp->vm_rb;
316 
317 		mm->map_count++;
318 		retval = copy_page_range(mm, oldmm, mpnt);
319 
320 		if (tmp->vm_ops && tmp->vm_ops->open)
321 			tmp->vm_ops->open(tmp);
322 
323 		if (retval)
324 			goto out;
325 	}
326 	/* a new mm has just been created */
327 	arch_dup_mmap(oldmm, mm);
328 	retval = 0;
329 out:
330 	up_write(&mm->mmap_sem);
331 	flush_tlb_mm(oldmm);
332 	up_write(&oldmm->mmap_sem);
333 	return retval;
334 fail_nomem_policy:
335 	kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337 	retval = -ENOMEM;
338 	vm_unacct_memory(charge);
339 	goto out;
340 }
341 
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
343 {
344 	mm->pgd = pgd_alloc(mm);
345 	if (unlikely(!mm->pgd))
346 		return -ENOMEM;
347 	return 0;
348 }
349 
350 static inline void mm_free_pgd(struct mm_struct * mm)
351 {
352 	pgd_free(mm, mm->pgd);
353 }
354 #else
355 #define dup_mmap(mm, oldmm)	(0)
356 #define mm_alloc_pgd(mm)	(0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
359 
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
361 
362 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
364 
365 #include <linux/init_task.h>
366 
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
368 {
369 	atomic_set(&mm->mm_users, 1);
370 	atomic_set(&mm->mm_count, 1);
371 	init_rwsem(&mm->mmap_sem);
372 	INIT_LIST_HEAD(&mm->mmlist);
373 	mm->flags = (current->mm) ? current->mm->flags
374 				  : MMF_DUMP_FILTER_DEFAULT;
375 	mm->core_waiters = 0;
376 	mm->nr_ptes = 0;
377 	set_mm_counter(mm, file_rss, 0);
378 	set_mm_counter(mm, anon_rss, 0);
379 	spin_lock_init(&mm->page_table_lock);
380 	rwlock_init(&mm->ioctx_list_lock);
381 	mm->ioctx_list = NULL;
382 	mm->free_area_cache = TASK_UNMAPPED_BASE;
383 	mm->cached_hole_size = ~0UL;
384 	mm_init_owner(mm, p);
385 
386 	if (likely(!mm_alloc_pgd(mm))) {
387 		mm->def_flags = 0;
388 		return mm;
389 	}
390 
391 	free_mm(mm);
392 	return NULL;
393 }
394 
395 /*
396  * Allocate and initialize an mm_struct.
397  */
398 struct mm_struct * mm_alloc(void)
399 {
400 	struct mm_struct * mm;
401 
402 	mm = allocate_mm();
403 	if (mm) {
404 		memset(mm, 0, sizeof(*mm));
405 		mm = mm_init(mm, current);
406 	}
407 	return mm;
408 }
409 
410 /*
411  * Called when the last reference to the mm
412  * is dropped: either by a lazy thread or by
413  * mmput. Free the page directory and the mm.
414  */
415 void __mmdrop(struct mm_struct *mm)
416 {
417 	BUG_ON(mm == &init_mm);
418 	mm_free_pgd(mm);
419 	destroy_context(mm);
420 	free_mm(mm);
421 }
422 EXPORT_SYMBOL_GPL(__mmdrop);
423 
424 /*
425  * Decrement the use count and release all resources for an mm.
426  */
427 void mmput(struct mm_struct *mm)
428 {
429 	might_sleep();
430 
431 	if (atomic_dec_and_test(&mm->mm_users)) {
432 		exit_aio(mm);
433 		exit_mmap(mm);
434 		set_mm_exe_file(mm, NULL);
435 		if (!list_empty(&mm->mmlist)) {
436 			spin_lock(&mmlist_lock);
437 			list_del(&mm->mmlist);
438 			spin_unlock(&mmlist_lock);
439 		}
440 		put_swap_token(mm);
441 		mmdrop(mm);
442 	}
443 }
444 EXPORT_SYMBOL_GPL(mmput);
445 
446 /**
447  * get_task_mm - acquire a reference to the task's mm
448  *
449  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
450  * this kernel workthread has transiently adopted a user mm with use_mm,
451  * to do its AIO) is not set and if so returns a reference to it, after
452  * bumping up the use count.  User must release the mm via mmput()
453  * after use.  Typically used by /proc and ptrace.
454  */
455 struct mm_struct *get_task_mm(struct task_struct *task)
456 {
457 	struct mm_struct *mm;
458 
459 	task_lock(task);
460 	mm = task->mm;
461 	if (mm) {
462 		if (task->flags & PF_BORROWED_MM)
463 			mm = NULL;
464 		else
465 			atomic_inc(&mm->mm_users);
466 	}
467 	task_unlock(task);
468 	return mm;
469 }
470 EXPORT_SYMBOL_GPL(get_task_mm);
471 
472 /* Please note the differences between mmput and mm_release.
473  * mmput is called whenever we stop holding onto a mm_struct,
474  * error success whatever.
475  *
476  * mm_release is called after a mm_struct has been removed
477  * from the current process.
478  *
479  * This difference is important for error handling, when we
480  * only half set up a mm_struct for a new process and need to restore
481  * the old one.  Because we mmput the new mm_struct before
482  * restoring the old one. . .
483  * Eric Biederman 10 January 1998
484  */
485 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
486 {
487 	struct completion *vfork_done = tsk->vfork_done;
488 
489 	/* Get rid of any cached register state */
490 	deactivate_mm(tsk, mm);
491 
492 	/* notify parent sleeping on vfork() */
493 	if (vfork_done) {
494 		tsk->vfork_done = NULL;
495 		complete(vfork_done);
496 	}
497 
498 	/*
499 	 * If we're exiting normally, clear a user-space tid field if
500 	 * requested.  We leave this alone when dying by signal, to leave
501 	 * the value intact in a core dump, and to save the unnecessary
502 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
503 	 */
504 	if (tsk->clear_child_tid
505 	    && !(tsk->flags & PF_SIGNALED)
506 	    && atomic_read(&mm->mm_users) > 1) {
507 		u32 __user * tidptr = tsk->clear_child_tid;
508 		tsk->clear_child_tid = NULL;
509 
510 		/*
511 		 * We don't check the error code - if userspace has
512 		 * not set up a proper pointer then tough luck.
513 		 */
514 		put_user(0, tidptr);
515 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
516 	}
517 }
518 
519 /*
520  * Allocate a new mm structure and copy contents from the
521  * mm structure of the passed in task structure.
522  */
523 struct mm_struct *dup_mm(struct task_struct *tsk)
524 {
525 	struct mm_struct *mm, *oldmm = current->mm;
526 	int err;
527 
528 	if (!oldmm)
529 		return NULL;
530 
531 	mm = allocate_mm();
532 	if (!mm)
533 		goto fail_nomem;
534 
535 	memcpy(mm, oldmm, sizeof(*mm));
536 
537 	/* Initializing for Swap token stuff */
538 	mm->token_priority = 0;
539 	mm->last_interval = 0;
540 
541 	if (!mm_init(mm, tsk))
542 		goto fail_nomem;
543 
544 	if (init_new_context(tsk, mm))
545 		goto fail_nocontext;
546 
547 	dup_mm_exe_file(oldmm, mm);
548 
549 	err = dup_mmap(mm, oldmm);
550 	if (err)
551 		goto free_pt;
552 
553 	mm->hiwater_rss = get_mm_rss(mm);
554 	mm->hiwater_vm = mm->total_vm;
555 
556 	return mm;
557 
558 free_pt:
559 	mmput(mm);
560 
561 fail_nomem:
562 	return NULL;
563 
564 fail_nocontext:
565 	/*
566 	 * If init_new_context() failed, we cannot use mmput() to free the mm
567 	 * because it calls destroy_context()
568 	 */
569 	mm_free_pgd(mm);
570 	free_mm(mm);
571 	return NULL;
572 }
573 
574 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
575 {
576 	struct mm_struct * mm, *oldmm;
577 	int retval;
578 
579 	tsk->min_flt = tsk->maj_flt = 0;
580 	tsk->nvcsw = tsk->nivcsw = 0;
581 
582 	tsk->mm = NULL;
583 	tsk->active_mm = NULL;
584 
585 	/*
586 	 * Are we cloning a kernel thread?
587 	 *
588 	 * We need to steal a active VM for that..
589 	 */
590 	oldmm = current->mm;
591 	if (!oldmm)
592 		return 0;
593 
594 	if (clone_flags & CLONE_VM) {
595 		atomic_inc(&oldmm->mm_users);
596 		mm = oldmm;
597 		goto good_mm;
598 	}
599 
600 	retval = -ENOMEM;
601 	mm = dup_mm(tsk);
602 	if (!mm)
603 		goto fail_nomem;
604 
605 good_mm:
606 	/* Initializing for Swap token stuff */
607 	mm->token_priority = 0;
608 	mm->last_interval = 0;
609 
610 	tsk->mm = mm;
611 	tsk->active_mm = mm;
612 	return 0;
613 
614 fail_nomem:
615 	return retval;
616 }
617 
618 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
619 {
620 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
621 	/* We don't need to lock fs - think why ;-) */
622 	if (fs) {
623 		atomic_set(&fs->count, 1);
624 		rwlock_init(&fs->lock);
625 		fs->umask = old->umask;
626 		read_lock(&old->lock);
627 		fs->root = old->root;
628 		path_get(&old->root);
629 		fs->pwd = old->pwd;
630 		path_get(&old->pwd);
631 		if (old->altroot.dentry) {
632 			fs->altroot = old->altroot;
633 			path_get(&old->altroot);
634 		} else {
635 			fs->altroot.mnt = NULL;
636 			fs->altroot.dentry = NULL;
637 		}
638 		read_unlock(&old->lock);
639 	}
640 	return fs;
641 }
642 
643 struct fs_struct *copy_fs_struct(struct fs_struct *old)
644 {
645 	return __copy_fs_struct(old);
646 }
647 
648 EXPORT_SYMBOL_GPL(copy_fs_struct);
649 
650 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
651 {
652 	if (clone_flags & CLONE_FS) {
653 		atomic_inc(&current->fs->count);
654 		return 0;
655 	}
656 	tsk->fs = __copy_fs_struct(current->fs);
657 	if (!tsk->fs)
658 		return -ENOMEM;
659 	return 0;
660 }
661 
662 static int count_open_files(struct fdtable *fdt)
663 {
664 	int size = fdt->max_fds;
665 	int i;
666 
667 	/* Find the last open fd */
668 	for (i = size/(8*sizeof(long)); i > 0; ) {
669 		if (fdt->open_fds->fds_bits[--i])
670 			break;
671 	}
672 	i = (i+1) * 8 * sizeof(long);
673 	return i;
674 }
675 
676 static struct files_struct *alloc_files(void)
677 {
678 	struct files_struct *newf;
679 	struct fdtable *fdt;
680 
681 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
682 	if (!newf)
683 		goto out;
684 
685 	atomic_set(&newf->count, 1);
686 
687 	spin_lock_init(&newf->file_lock);
688 	newf->next_fd = 0;
689 	fdt = &newf->fdtab;
690 	fdt->max_fds = NR_OPEN_DEFAULT;
691 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
692 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
693 	fdt->fd = &newf->fd_array[0];
694 	INIT_RCU_HEAD(&fdt->rcu);
695 	fdt->next = NULL;
696 	rcu_assign_pointer(newf->fdt, fdt);
697 out:
698 	return newf;
699 }
700 
701 /*
702  * Allocate a new files structure and copy contents from the
703  * passed in files structure.
704  * errorp will be valid only when the returned files_struct is NULL.
705  */
706 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
707 {
708 	struct files_struct *newf;
709 	struct file **old_fds, **new_fds;
710 	int open_files, size, i;
711 	struct fdtable *old_fdt, *new_fdt;
712 
713 	*errorp = -ENOMEM;
714 	newf = alloc_files();
715 	if (!newf)
716 		goto out;
717 
718 	spin_lock(&oldf->file_lock);
719 	old_fdt = files_fdtable(oldf);
720 	new_fdt = files_fdtable(newf);
721 	open_files = count_open_files(old_fdt);
722 
723 	/*
724 	 * Check whether we need to allocate a larger fd array and fd set.
725 	 * Note: we're not a clone task, so the open count won't change.
726 	 */
727 	if (open_files > new_fdt->max_fds) {
728 		new_fdt->max_fds = 0;
729 		spin_unlock(&oldf->file_lock);
730 		spin_lock(&newf->file_lock);
731 		*errorp = expand_files(newf, open_files-1);
732 		spin_unlock(&newf->file_lock);
733 		if (*errorp < 0)
734 			goto out_release;
735 		new_fdt = files_fdtable(newf);
736 		/*
737 		 * Reacquire the oldf lock and a pointer to its fd table
738 		 * who knows it may have a new bigger fd table. We need
739 		 * the latest pointer.
740 		 */
741 		spin_lock(&oldf->file_lock);
742 		old_fdt = files_fdtable(oldf);
743 	}
744 
745 	old_fds = old_fdt->fd;
746 	new_fds = new_fdt->fd;
747 
748 	memcpy(new_fdt->open_fds->fds_bits,
749 		old_fdt->open_fds->fds_bits, open_files/8);
750 	memcpy(new_fdt->close_on_exec->fds_bits,
751 		old_fdt->close_on_exec->fds_bits, open_files/8);
752 
753 	for (i = open_files; i != 0; i--) {
754 		struct file *f = *old_fds++;
755 		if (f) {
756 			get_file(f);
757 		} else {
758 			/*
759 			 * The fd may be claimed in the fd bitmap but not yet
760 			 * instantiated in the files array if a sibling thread
761 			 * is partway through open().  So make sure that this
762 			 * fd is available to the new process.
763 			 */
764 			FD_CLR(open_files - i, new_fdt->open_fds);
765 		}
766 		rcu_assign_pointer(*new_fds++, f);
767 	}
768 	spin_unlock(&oldf->file_lock);
769 
770 	/* compute the remainder to be cleared */
771 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
772 
773 	/* This is long word aligned thus could use a optimized version */
774 	memset(new_fds, 0, size);
775 
776 	if (new_fdt->max_fds > open_files) {
777 		int left = (new_fdt->max_fds-open_files)/8;
778 		int start = open_files / (8 * sizeof(unsigned long));
779 
780 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
781 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
782 	}
783 
784 	return newf;
785 
786 out_release:
787 	kmem_cache_free(files_cachep, newf);
788 out:
789 	return NULL;
790 }
791 
792 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
793 {
794 	struct files_struct *oldf, *newf;
795 	int error = 0;
796 
797 	/*
798 	 * A background process may not have any files ...
799 	 */
800 	oldf = current->files;
801 	if (!oldf)
802 		goto out;
803 
804 	if (clone_flags & CLONE_FILES) {
805 		atomic_inc(&oldf->count);
806 		goto out;
807 	}
808 
809 	newf = dup_fd(oldf, &error);
810 	if (!newf)
811 		goto out;
812 
813 	tsk->files = newf;
814 	error = 0;
815 out:
816 	return error;
817 }
818 
819 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
820 {
821 #ifdef CONFIG_BLOCK
822 	struct io_context *ioc = current->io_context;
823 
824 	if (!ioc)
825 		return 0;
826 	/*
827 	 * Share io context with parent, if CLONE_IO is set
828 	 */
829 	if (clone_flags & CLONE_IO) {
830 		tsk->io_context = ioc_task_link(ioc);
831 		if (unlikely(!tsk->io_context))
832 			return -ENOMEM;
833 	} else if (ioprio_valid(ioc->ioprio)) {
834 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
835 		if (unlikely(!tsk->io_context))
836 			return -ENOMEM;
837 
838 		tsk->io_context->ioprio = ioc->ioprio;
839 	}
840 #endif
841 	return 0;
842 }
843 
844 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
845 {
846 	struct sighand_struct *sig;
847 
848 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
849 		atomic_inc(&current->sighand->count);
850 		return 0;
851 	}
852 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
853 	rcu_assign_pointer(tsk->sighand, sig);
854 	if (!sig)
855 		return -ENOMEM;
856 	atomic_set(&sig->count, 1);
857 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
858 	return 0;
859 }
860 
861 void __cleanup_sighand(struct sighand_struct *sighand)
862 {
863 	if (atomic_dec_and_test(&sighand->count))
864 		kmem_cache_free(sighand_cachep, sighand);
865 }
866 
867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
868 {
869 	struct signal_struct *sig;
870 	int ret;
871 
872 	if (clone_flags & CLONE_THREAD) {
873 		atomic_inc(&current->signal->count);
874 		atomic_inc(&current->signal->live);
875 		return 0;
876 	}
877 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
878 	tsk->signal = sig;
879 	if (!sig)
880 		return -ENOMEM;
881 
882 	ret = copy_thread_group_keys(tsk);
883 	if (ret < 0) {
884 		kmem_cache_free(signal_cachep, sig);
885 		return ret;
886 	}
887 
888 	atomic_set(&sig->count, 1);
889 	atomic_set(&sig->live, 1);
890 	init_waitqueue_head(&sig->wait_chldexit);
891 	sig->flags = 0;
892 	sig->group_exit_code = 0;
893 	sig->group_exit_task = NULL;
894 	sig->group_stop_count = 0;
895 	sig->curr_target = tsk;
896 	init_sigpending(&sig->shared_pending);
897 	INIT_LIST_HEAD(&sig->posix_timers);
898 
899 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
900 	sig->it_real_incr.tv64 = 0;
901 	sig->real_timer.function = it_real_fn;
902 
903 	sig->it_virt_expires = cputime_zero;
904 	sig->it_virt_incr = cputime_zero;
905 	sig->it_prof_expires = cputime_zero;
906 	sig->it_prof_incr = cputime_zero;
907 
908 	sig->leader = 0;	/* session leadership doesn't inherit */
909 	sig->tty_old_pgrp = NULL;
910 
911 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
912 	sig->gtime = cputime_zero;
913 	sig->cgtime = cputime_zero;
914 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
915 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
916 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
917 	sig->sum_sched_runtime = 0;
918 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
919 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
920 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
921 	taskstats_tgid_init(sig);
922 
923 	task_lock(current->group_leader);
924 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
925 	task_unlock(current->group_leader);
926 
927 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
928 		/*
929 		 * New sole thread in the process gets an expiry time
930 		 * of the whole CPU time limit.
931 		 */
932 		tsk->it_prof_expires =
933 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
934 	}
935 	acct_init_pacct(&sig->pacct);
936 
937 	tty_audit_fork(sig);
938 
939 	return 0;
940 }
941 
942 void __cleanup_signal(struct signal_struct *sig)
943 {
944 	exit_thread_group_keys(sig);
945 	kmem_cache_free(signal_cachep, sig);
946 }
947 
948 static void cleanup_signal(struct task_struct *tsk)
949 {
950 	struct signal_struct *sig = tsk->signal;
951 
952 	atomic_dec(&sig->live);
953 
954 	if (atomic_dec_and_test(&sig->count))
955 		__cleanup_signal(sig);
956 }
957 
958 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
959 {
960 	unsigned long new_flags = p->flags;
961 
962 	new_flags &= ~PF_SUPERPRIV;
963 	new_flags |= PF_FORKNOEXEC;
964 	if (!(clone_flags & CLONE_PTRACE))
965 		p->ptrace = 0;
966 	p->flags = new_flags;
967 	clear_freeze_flag(p);
968 }
969 
970 asmlinkage long sys_set_tid_address(int __user *tidptr)
971 {
972 	current->clear_child_tid = tidptr;
973 
974 	return task_pid_vnr(current);
975 }
976 
977 static void rt_mutex_init_task(struct task_struct *p)
978 {
979 	spin_lock_init(&p->pi_lock);
980 #ifdef CONFIG_RT_MUTEXES
981 	plist_head_init(&p->pi_waiters, &p->pi_lock);
982 	p->pi_blocked_on = NULL;
983 #endif
984 }
985 
986 #ifdef CONFIG_MM_OWNER
987 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
988 {
989 	mm->owner = p;
990 }
991 #endif /* CONFIG_MM_OWNER */
992 
993 /*
994  * This creates a new process as a copy of the old one,
995  * but does not actually start it yet.
996  *
997  * It copies the registers, and all the appropriate
998  * parts of the process environment (as per the clone
999  * flags). The actual kick-off is left to the caller.
1000  */
1001 static struct task_struct *copy_process(unsigned long clone_flags,
1002 					unsigned long stack_start,
1003 					struct pt_regs *regs,
1004 					unsigned long stack_size,
1005 					int __user *child_tidptr,
1006 					struct pid *pid)
1007 {
1008 	int retval;
1009 	struct task_struct *p;
1010 	int cgroup_callbacks_done = 0;
1011 
1012 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1013 		return ERR_PTR(-EINVAL);
1014 
1015 	/*
1016 	 * Thread groups must share signals as well, and detached threads
1017 	 * can only be started up within the thread group.
1018 	 */
1019 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1020 		return ERR_PTR(-EINVAL);
1021 
1022 	/*
1023 	 * Shared signal handlers imply shared VM. By way of the above,
1024 	 * thread groups also imply shared VM. Blocking this case allows
1025 	 * for various simplifications in other code.
1026 	 */
1027 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1028 		return ERR_PTR(-EINVAL);
1029 
1030 	retval = security_task_create(clone_flags);
1031 	if (retval)
1032 		goto fork_out;
1033 
1034 	retval = -ENOMEM;
1035 	p = dup_task_struct(current);
1036 	if (!p)
1037 		goto fork_out;
1038 
1039 	rt_mutex_init_task(p);
1040 
1041 #ifdef CONFIG_TRACE_IRQFLAGS
1042 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045 	retval = -EAGAIN;
1046 	if (atomic_read(&p->user->processes) >=
1047 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1048 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049 		    p->user != current->nsproxy->user_ns->root_user)
1050 			goto bad_fork_free;
1051 	}
1052 
1053 	atomic_inc(&p->user->__count);
1054 	atomic_inc(&p->user->processes);
1055 	get_group_info(p->group_info);
1056 
1057 	/*
1058 	 * If multiple threads are within copy_process(), then this check
1059 	 * triggers too late. This doesn't hurt, the check is only there
1060 	 * to stop root fork bombs.
1061 	 */
1062 	if (nr_threads >= max_threads)
1063 		goto bad_fork_cleanup_count;
1064 
1065 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1066 		goto bad_fork_cleanup_count;
1067 
1068 	if (p->binfmt && !try_module_get(p->binfmt->module))
1069 		goto bad_fork_cleanup_put_domain;
1070 
1071 	p->did_exec = 0;
1072 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1073 	copy_flags(clone_flags, p);
1074 	INIT_LIST_HEAD(&p->children);
1075 	INIT_LIST_HEAD(&p->sibling);
1076 #ifdef CONFIG_PREEMPT_RCU
1077 	p->rcu_read_lock_nesting = 0;
1078 	p->rcu_flipctr_idx = 0;
1079 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1080 	p->vfork_done = NULL;
1081 	spin_lock_init(&p->alloc_lock);
1082 
1083 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1084 	init_sigpending(&p->pending);
1085 
1086 	p->utime = cputime_zero;
1087 	p->stime = cputime_zero;
1088 	p->gtime = cputime_zero;
1089 	p->utimescaled = cputime_zero;
1090 	p->stimescaled = cputime_zero;
1091 	p->prev_utime = cputime_zero;
1092 	p->prev_stime = cputime_zero;
1093 
1094 #ifdef CONFIG_DETECT_SOFTLOCKUP
1095 	p->last_switch_count = 0;
1096 	p->last_switch_timestamp = 0;
1097 #endif
1098 
1099 #ifdef CONFIG_TASK_XACCT
1100 	p->rchar = 0;		/* I/O counter: bytes read */
1101 	p->wchar = 0;		/* I/O counter: bytes written */
1102 	p->syscr = 0;		/* I/O counter: read syscalls */
1103 	p->syscw = 0;		/* I/O counter: write syscalls */
1104 #endif
1105 	task_io_accounting_init(p);
1106 	acct_clear_integrals(p);
1107 
1108 	p->it_virt_expires = cputime_zero;
1109 	p->it_prof_expires = cputime_zero;
1110 	p->it_sched_expires = 0;
1111 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1112 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1113 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1114 
1115 	p->lock_depth = -1;		/* -1 = no lock */
1116 	do_posix_clock_monotonic_gettime(&p->start_time);
1117 	p->real_start_time = p->start_time;
1118 	monotonic_to_bootbased(&p->real_start_time);
1119 #ifdef CONFIG_SECURITY
1120 	p->security = NULL;
1121 #endif
1122 	p->cap_bset = current->cap_bset;
1123 	p->io_context = NULL;
1124 	p->audit_context = NULL;
1125 	cgroup_fork(p);
1126 #ifdef CONFIG_NUMA
1127 	p->mempolicy = mpol_dup(p->mempolicy);
1128  	if (IS_ERR(p->mempolicy)) {
1129  		retval = PTR_ERR(p->mempolicy);
1130  		p->mempolicy = NULL;
1131  		goto bad_fork_cleanup_cgroup;
1132  	}
1133 	mpol_fix_fork_child_flag(p);
1134 #endif
1135 #ifdef CONFIG_TRACE_IRQFLAGS
1136 	p->irq_events = 0;
1137 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1138 	p->hardirqs_enabled = 1;
1139 #else
1140 	p->hardirqs_enabled = 0;
1141 #endif
1142 	p->hardirq_enable_ip = 0;
1143 	p->hardirq_enable_event = 0;
1144 	p->hardirq_disable_ip = _THIS_IP_;
1145 	p->hardirq_disable_event = 0;
1146 	p->softirqs_enabled = 1;
1147 	p->softirq_enable_ip = _THIS_IP_;
1148 	p->softirq_enable_event = 0;
1149 	p->softirq_disable_ip = 0;
1150 	p->softirq_disable_event = 0;
1151 	p->hardirq_context = 0;
1152 	p->softirq_context = 0;
1153 #endif
1154 #ifdef CONFIG_LOCKDEP
1155 	p->lockdep_depth = 0; /* no locks held yet */
1156 	p->curr_chain_key = 0;
1157 	p->lockdep_recursion = 0;
1158 #endif
1159 
1160 #ifdef CONFIG_DEBUG_MUTEXES
1161 	p->blocked_on = NULL; /* not blocked yet */
1162 #endif
1163 
1164 	/* Perform scheduler related setup. Assign this task to a CPU. */
1165 	sched_fork(p, clone_flags);
1166 
1167 	if ((retval = security_task_alloc(p)))
1168 		goto bad_fork_cleanup_policy;
1169 	if ((retval = audit_alloc(p)))
1170 		goto bad_fork_cleanup_security;
1171 	/* copy all the process information */
1172 	if ((retval = copy_semundo(clone_flags, p)))
1173 		goto bad_fork_cleanup_audit;
1174 	if ((retval = copy_files(clone_flags, p)))
1175 		goto bad_fork_cleanup_semundo;
1176 	if ((retval = copy_fs(clone_flags, p)))
1177 		goto bad_fork_cleanup_files;
1178 	if ((retval = copy_sighand(clone_flags, p)))
1179 		goto bad_fork_cleanup_fs;
1180 	if ((retval = copy_signal(clone_flags, p)))
1181 		goto bad_fork_cleanup_sighand;
1182 	if ((retval = copy_mm(clone_flags, p)))
1183 		goto bad_fork_cleanup_signal;
1184 	if ((retval = copy_keys(clone_flags, p)))
1185 		goto bad_fork_cleanup_mm;
1186 	if ((retval = copy_namespaces(clone_flags, p)))
1187 		goto bad_fork_cleanup_keys;
1188 	if ((retval = copy_io(clone_flags, p)))
1189 		goto bad_fork_cleanup_namespaces;
1190 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1191 	if (retval)
1192 		goto bad_fork_cleanup_io;
1193 
1194 	if (pid != &init_struct_pid) {
1195 		retval = -ENOMEM;
1196 		pid = alloc_pid(task_active_pid_ns(p));
1197 		if (!pid)
1198 			goto bad_fork_cleanup_io;
1199 
1200 		if (clone_flags & CLONE_NEWPID) {
1201 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1202 			if (retval < 0)
1203 				goto bad_fork_free_pid;
1204 		}
1205 	}
1206 
1207 	p->pid = pid_nr(pid);
1208 	p->tgid = p->pid;
1209 	if (clone_flags & CLONE_THREAD)
1210 		p->tgid = current->tgid;
1211 
1212 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1213 	/*
1214 	 * Clear TID on mm_release()?
1215 	 */
1216 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1217 #ifdef CONFIG_FUTEX
1218 	p->robust_list = NULL;
1219 #ifdef CONFIG_COMPAT
1220 	p->compat_robust_list = NULL;
1221 #endif
1222 	INIT_LIST_HEAD(&p->pi_state_list);
1223 	p->pi_state_cache = NULL;
1224 #endif
1225 	/*
1226 	 * sigaltstack should be cleared when sharing the same VM
1227 	 */
1228 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1229 		p->sas_ss_sp = p->sas_ss_size = 0;
1230 
1231 	/*
1232 	 * Syscall tracing should be turned off in the child regardless
1233 	 * of CLONE_PTRACE.
1234 	 */
1235 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1236 #ifdef TIF_SYSCALL_EMU
1237 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1238 #endif
1239 	clear_all_latency_tracing(p);
1240 
1241 	/* Our parent execution domain becomes current domain
1242 	   These must match for thread signalling to apply */
1243 	p->parent_exec_id = p->self_exec_id;
1244 
1245 	/* ok, now we should be set up.. */
1246 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1247 	p->pdeath_signal = 0;
1248 	p->exit_state = 0;
1249 
1250 	/*
1251 	 * Ok, make it visible to the rest of the system.
1252 	 * We dont wake it up yet.
1253 	 */
1254 	p->group_leader = p;
1255 	INIT_LIST_HEAD(&p->thread_group);
1256 	INIT_LIST_HEAD(&p->ptrace_children);
1257 	INIT_LIST_HEAD(&p->ptrace_list);
1258 
1259 	/* Now that the task is set up, run cgroup callbacks if
1260 	 * necessary. We need to run them before the task is visible
1261 	 * on the tasklist. */
1262 	cgroup_fork_callbacks(p);
1263 	cgroup_callbacks_done = 1;
1264 
1265 	/* Need tasklist lock for parent etc handling! */
1266 	write_lock_irq(&tasklist_lock);
1267 
1268 	/*
1269 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1270 	 * not be changed, nor will its assigned CPU.
1271 	 *
1272 	 * The cpus_allowed mask of the parent may have changed after it was
1273 	 * copied first time - so re-copy it here, then check the child's CPU
1274 	 * to ensure it is on a valid CPU (and if not, just force it back to
1275 	 * parent's CPU). This avoids alot of nasty races.
1276 	 */
1277 	p->cpus_allowed = current->cpus_allowed;
1278 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1279 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1280 			!cpu_online(task_cpu(p))))
1281 		set_task_cpu(p, smp_processor_id());
1282 
1283 	/* CLONE_PARENT re-uses the old parent */
1284 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1285 		p->real_parent = current->real_parent;
1286 	else
1287 		p->real_parent = current;
1288 	p->parent = p->real_parent;
1289 
1290 	spin_lock(&current->sighand->siglock);
1291 
1292 	/*
1293 	 * Process group and session signals need to be delivered to just the
1294 	 * parent before the fork or both the parent and the child after the
1295 	 * fork. Restart if a signal comes in before we add the new process to
1296 	 * it's process group.
1297 	 * A fatal signal pending means that current will exit, so the new
1298 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1299  	 */
1300 	recalc_sigpending();
1301 	if (signal_pending(current)) {
1302 		spin_unlock(&current->sighand->siglock);
1303 		write_unlock_irq(&tasklist_lock);
1304 		retval = -ERESTARTNOINTR;
1305 		goto bad_fork_free_pid;
1306 	}
1307 
1308 	if (clone_flags & CLONE_THREAD) {
1309 		p->group_leader = current->group_leader;
1310 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1311 
1312 		if (!cputime_eq(current->signal->it_virt_expires,
1313 				cputime_zero) ||
1314 		    !cputime_eq(current->signal->it_prof_expires,
1315 				cputime_zero) ||
1316 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1317 		    !list_empty(&current->signal->cpu_timers[0]) ||
1318 		    !list_empty(&current->signal->cpu_timers[1]) ||
1319 		    !list_empty(&current->signal->cpu_timers[2])) {
1320 			/*
1321 			 * Have child wake up on its first tick to check
1322 			 * for process CPU timers.
1323 			 */
1324 			p->it_prof_expires = jiffies_to_cputime(1);
1325 		}
1326 	}
1327 
1328 	if (likely(p->pid)) {
1329 		add_parent(p);
1330 		if (unlikely(p->ptrace & PT_PTRACED))
1331 			__ptrace_link(p, current->parent);
1332 
1333 		if (thread_group_leader(p)) {
1334 			if (clone_flags & CLONE_NEWPID)
1335 				p->nsproxy->pid_ns->child_reaper = p;
1336 
1337 			p->signal->leader_pid = pid;
1338 			p->signal->tty = current->signal->tty;
1339 			set_task_pgrp(p, task_pgrp_nr(current));
1340 			set_task_session(p, task_session_nr(current));
1341 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1342 			attach_pid(p, PIDTYPE_SID, task_session(current));
1343 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1344 			__get_cpu_var(process_counts)++;
1345 		}
1346 		attach_pid(p, PIDTYPE_PID, pid);
1347 		nr_threads++;
1348 	}
1349 
1350 	total_forks++;
1351 	spin_unlock(&current->sighand->siglock);
1352 	write_unlock_irq(&tasklist_lock);
1353 	proc_fork_connector(p);
1354 	cgroup_post_fork(p);
1355 	return p;
1356 
1357 bad_fork_free_pid:
1358 	if (pid != &init_struct_pid)
1359 		free_pid(pid);
1360 bad_fork_cleanup_io:
1361 	put_io_context(p->io_context);
1362 bad_fork_cleanup_namespaces:
1363 	exit_task_namespaces(p);
1364 bad_fork_cleanup_keys:
1365 	exit_keys(p);
1366 bad_fork_cleanup_mm:
1367 	if (p->mm)
1368 		mmput(p->mm);
1369 bad_fork_cleanup_signal:
1370 	cleanup_signal(p);
1371 bad_fork_cleanup_sighand:
1372 	__cleanup_sighand(p->sighand);
1373 bad_fork_cleanup_fs:
1374 	exit_fs(p); /* blocking */
1375 bad_fork_cleanup_files:
1376 	exit_files(p); /* blocking */
1377 bad_fork_cleanup_semundo:
1378 	exit_sem(p);
1379 bad_fork_cleanup_audit:
1380 	audit_free(p);
1381 bad_fork_cleanup_security:
1382 	security_task_free(p);
1383 bad_fork_cleanup_policy:
1384 #ifdef CONFIG_NUMA
1385 	mpol_put(p->mempolicy);
1386 bad_fork_cleanup_cgroup:
1387 #endif
1388 	cgroup_exit(p, cgroup_callbacks_done);
1389 	delayacct_tsk_free(p);
1390 	if (p->binfmt)
1391 		module_put(p->binfmt->module);
1392 bad_fork_cleanup_put_domain:
1393 	module_put(task_thread_info(p)->exec_domain->module);
1394 bad_fork_cleanup_count:
1395 	put_group_info(p->group_info);
1396 	atomic_dec(&p->user->processes);
1397 	free_uid(p->user);
1398 bad_fork_free:
1399 	free_task(p);
1400 fork_out:
1401 	return ERR_PTR(retval);
1402 }
1403 
1404 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1405 {
1406 	memset(regs, 0, sizeof(struct pt_regs));
1407 	return regs;
1408 }
1409 
1410 struct task_struct * __cpuinit fork_idle(int cpu)
1411 {
1412 	struct task_struct *task;
1413 	struct pt_regs regs;
1414 
1415 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1416 				&init_struct_pid);
1417 	if (!IS_ERR(task))
1418 		init_idle(task, cpu);
1419 
1420 	return task;
1421 }
1422 
1423 static int fork_traceflag(unsigned clone_flags)
1424 {
1425 	if (clone_flags & CLONE_UNTRACED)
1426 		return 0;
1427 	else if (clone_flags & CLONE_VFORK) {
1428 		if (current->ptrace & PT_TRACE_VFORK)
1429 			return PTRACE_EVENT_VFORK;
1430 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1431 		if (current->ptrace & PT_TRACE_CLONE)
1432 			return PTRACE_EVENT_CLONE;
1433 	} else if (current->ptrace & PT_TRACE_FORK)
1434 		return PTRACE_EVENT_FORK;
1435 
1436 	return 0;
1437 }
1438 
1439 /*
1440  *  Ok, this is the main fork-routine.
1441  *
1442  * It copies the process, and if successful kick-starts
1443  * it and waits for it to finish using the VM if required.
1444  */
1445 long do_fork(unsigned long clone_flags,
1446 	      unsigned long stack_start,
1447 	      struct pt_regs *regs,
1448 	      unsigned long stack_size,
1449 	      int __user *parent_tidptr,
1450 	      int __user *child_tidptr)
1451 {
1452 	struct task_struct *p;
1453 	int trace = 0;
1454 	long nr;
1455 
1456 	/*
1457 	 * We hope to recycle these flags after 2.6.26
1458 	 */
1459 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1460 		static int __read_mostly count = 100;
1461 
1462 		if (count > 0 && printk_ratelimit()) {
1463 			char comm[TASK_COMM_LEN];
1464 
1465 			count--;
1466 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1467 					"clone flags 0x%lx\n",
1468 				get_task_comm(comm, current),
1469 				clone_flags & CLONE_STOPPED);
1470 		}
1471 	}
1472 
1473 	if (unlikely(current->ptrace)) {
1474 		trace = fork_traceflag (clone_flags);
1475 		if (trace)
1476 			clone_flags |= CLONE_PTRACE;
1477 	}
1478 
1479 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1480 			child_tidptr, NULL);
1481 	/*
1482 	 * Do this prior waking up the new thread - the thread pointer
1483 	 * might get invalid after that point, if the thread exits quickly.
1484 	 */
1485 	if (!IS_ERR(p)) {
1486 		struct completion vfork;
1487 
1488 		nr = task_pid_vnr(p);
1489 
1490 		if (clone_flags & CLONE_PARENT_SETTID)
1491 			put_user(nr, parent_tidptr);
1492 
1493 		if (clone_flags & CLONE_VFORK) {
1494 			p->vfork_done = &vfork;
1495 			init_completion(&vfork);
1496 		}
1497 
1498 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1499 			/*
1500 			 * We'll start up with an immediate SIGSTOP.
1501 			 */
1502 			sigaddset(&p->pending.signal, SIGSTOP);
1503 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1504 		}
1505 
1506 		if (!(clone_flags & CLONE_STOPPED))
1507 			wake_up_new_task(p, clone_flags);
1508 		else
1509 			__set_task_state(p, TASK_STOPPED);
1510 
1511 		if (unlikely (trace)) {
1512 			current->ptrace_message = nr;
1513 			ptrace_notify ((trace << 8) | SIGTRAP);
1514 		}
1515 
1516 		if (clone_flags & CLONE_VFORK) {
1517 			freezer_do_not_count();
1518 			wait_for_completion(&vfork);
1519 			freezer_count();
1520 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1521 				current->ptrace_message = nr;
1522 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1523 			}
1524 		}
1525 	} else {
1526 		nr = PTR_ERR(p);
1527 	}
1528 	return nr;
1529 }
1530 
1531 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1532 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1533 #endif
1534 
1535 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1536 {
1537 	struct sighand_struct *sighand = data;
1538 
1539 	spin_lock_init(&sighand->siglock);
1540 	init_waitqueue_head(&sighand->signalfd_wqh);
1541 }
1542 
1543 void __init proc_caches_init(void)
1544 {
1545 	sighand_cachep = kmem_cache_create("sighand_cache",
1546 			sizeof(struct sighand_struct), 0,
1547 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1548 			sighand_ctor);
1549 	signal_cachep = kmem_cache_create("signal_cache",
1550 			sizeof(struct signal_struct), 0,
1551 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1552 	files_cachep = kmem_cache_create("files_cache",
1553 			sizeof(struct files_struct), 0,
1554 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1555 	fs_cachep = kmem_cache_create("fs_cache",
1556 			sizeof(struct fs_struct), 0,
1557 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1558 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1559 			sizeof(struct vm_area_struct), 0,
1560 			SLAB_PANIC, NULL);
1561 	mm_cachep = kmem_cache_create("mm_struct",
1562 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1563 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1564 }
1565 
1566 /*
1567  * Check constraints on flags passed to the unshare system call and
1568  * force unsharing of additional process context as appropriate.
1569  */
1570 static void check_unshare_flags(unsigned long *flags_ptr)
1571 {
1572 	/*
1573 	 * If unsharing a thread from a thread group, must also
1574 	 * unshare vm.
1575 	 */
1576 	if (*flags_ptr & CLONE_THREAD)
1577 		*flags_ptr |= CLONE_VM;
1578 
1579 	/*
1580 	 * If unsharing vm, must also unshare signal handlers.
1581 	 */
1582 	if (*flags_ptr & CLONE_VM)
1583 		*flags_ptr |= CLONE_SIGHAND;
1584 
1585 	/*
1586 	 * If unsharing signal handlers and the task was created
1587 	 * using CLONE_THREAD, then must unshare the thread
1588 	 */
1589 	if ((*flags_ptr & CLONE_SIGHAND) &&
1590 	    (atomic_read(&current->signal->count) > 1))
1591 		*flags_ptr |= CLONE_THREAD;
1592 
1593 	/*
1594 	 * If unsharing namespace, must also unshare filesystem information.
1595 	 */
1596 	if (*flags_ptr & CLONE_NEWNS)
1597 		*flags_ptr |= CLONE_FS;
1598 }
1599 
1600 /*
1601  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1602  */
1603 static int unshare_thread(unsigned long unshare_flags)
1604 {
1605 	if (unshare_flags & CLONE_THREAD)
1606 		return -EINVAL;
1607 
1608 	return 0;
1609 }
1610 
1611 /*
1612  * Unshare the filesystem structure if it is being shared
1613  */
1614 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1615 {
1616 	struct fs_struct *fs = current->fs;
1617 
1618 	if ((unshare_flags & CLONE_FS) &&
1619 	    (fs && atomic_read(&fs->count) > 1)) {
1620 		*new_fsp = __copy_fs_struct(current->fs);
1621 		if (!*new_fsp)
1622 			return -ENOMEM;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Unsharing of sighand is not supported yet
1630  */
1631 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1632 {
1633 	struct sighand_struct *sigh = current->sighand;
1634 
1635 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1636 		return -EINVAL;
1637 	else
1638 		return 0;
1639 }
1640 
1641 /*
1642  * Unshare vm if it is being shared
1643  */
1644 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1645 {
1646 	struct mm_struct *mm = current->mm;
1647 
1648 	if ((unshare_flags & CLONE_VM) &&
1649 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1650 		return -EINVAL;
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 /*
1657  * Unshare file descriptor table if it is being shared
1658  */
1659 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1660 {
1661 	struct files_struct *fd = current->files;
1662 	int error = 0;
1663 
1664 	if ((unshare_flags & CLONE_FILES) &&
1665 	    (fd && atomic_read(&fd->count) > 1)) {
1666 		*new_fdp = dup_fd(fd, &error);
1667 		if (!*new_fdp)
1668 			return error;
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * unshare allows a process to 'unshare' part of the process
1676  * context which was originally shared using clone.  copy_*
1677  * functions used by do_fork() cannot be used here directly
1678  * because they modify an inactive task_struct that is being
1679  * constructed. Here we are modifying the current, active,
1680  * task_struct.
1681  */
1682 asmlinkage long sys_unshare(unsigned long unshare_flags)
1683 {
1684 	int err = 0;
1685 	struct fs_struct *fs, *new_fs = NULL;
1686 	struct sighand_struct *new_sigh = NULL;
1687 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1688 	struct files_struct *fd, *new_fd = NULL;
1689 	struct nsproxy *new_nsproxy = NULL;
1690 	int do_sysvsem = 0;
1691 
1692 	check_unshare_flags(&unshare_flags);
1693 
1694 	/* Return -EINVAL for all unsupported flags */
1695 	err = -EINVAL;
1696 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1697 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1698 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1699 				CLONE_NEWNET))
1700 		goto bad_unshare_out;
1701 
1702 	/*
1703 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1704 	 * to a new ipc namespace, the semaphore arrays from the old
1705 	 * namespace are unreachable.
1706 	 */
1707 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1708 		do_sysvsem = 1;
1709 	if ((err = unshare_thread(unshare_flags)))
1710 		goto bad_unshare_out;
1711 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1712 		goto bad_unshare_cleanup_thread;
1713 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1714 		goto bad_unshare_cleanup_fs;
1715 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1716 		goto bad_unshare_cleanup_sigh;
1717 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1718 		goto bad_unshare_cleanup_vm;
1719 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1720 			new_fs)))
1721 		goto bad_unshare_cleanup_fd;
1722 
1723 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1724 		if (do_sysvsem) {
1725 			/*
1726 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1727 			 */
1728 			exit_sem(current);
1729 		}
1730 
1731 		if (new_nsproxy) {
1732 			switch_task_namespaces(current, new_nsproxy);
1733 			new_nsproxy = NULL;
1734 		}
1735 
1736 		task_lock(current);
1737 
1738 		if (new_fs) {
1739 			fs = current->fs;
1740 			current->fs = new_fs;
1741 			new_fs = fs;
1742 		}
1743 
1744 		if (new_mm) {
1745 			mm = current->mm;
1746 			active_mm = current->active_mm;
1747 			current->mm = new_mm;
1748 			current->active_mm = new_mm;
1749 			activate_mm(active_mm, new_mm);
1750 			new_mm = mm;
1751 		}
1752 
1753 		if (new_fd) {
1754 			fd = current->files;
1755 			current->files = new_fd;
1756 			new_fd = fd;
1757 		}
1758 
1759 		task_unlock(current);
1760 	}
1761 
1762 	if (new_nsproxy)
1763 		put_nsproxy(new_nsproxy);
1764 
1765 bad_unshare_cleanup_fd:
1766 	if (new_fd)
1767 		put_files_struct(new_fd);
1768 
1769 bad_unshare_cleanup_vm:
1770 	if (new_mm)
1771 		mmput(new_mm);
1772 
1773 bad_unshare_cleanup_sigh:
1774 	if (new_sigh)
1775 		if (atomic_dec_and_test(&new_sigh->count))
1776 			kmem_cache_free(sighand_cachep, new_sigh);
1777 
1778 bad_unshare_cleanup_fs:
1779 	if (new_fs)
1780 		put_fs_struct(new_fs);
1781 
1782 bad_unshare_cleanup_thread:
1783 bad_unshare_out:
1784 	return err;
1785 }
1786 
1787 /*
1788  *	Helper to unshare the files of the current task.
1789  *	We don't want to expose copy_files internals to
1790  *	the exec layer of the kernel.
1791  */
1792 
1793 int unshare_files(struct files_struct **displaced)
1794 {
1795 	struct task_struct *task = current;
1796 	struct files_struct *copy = NULL;
1797 	int error;
1798 
1799 	error = unshare_fd(CLONE_FILES, &copy);
1800 	if (error || !copy) {
1801 		*displaced = NULL;
1802 		return error;
1803 	}
1804 	*displaced = task->files;
1805 	task_lock(task);
1806 	task->files = copy;
1807 	task_unlock(task);
1808 	return 0;
1809 }
1810