1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 315 THREADINFO_GFP & ~__GFP_ACCOUNT, 316 node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 419 /* SLAB cache for signal_struct structures (tsk->signal) */ 420 static struct kmem_cache *signal_cachep; 421 422 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 423 struct kmem_cache *sighand_cachep; 424 425 /* SLAB cache for files_struct structures (tsk->files) */ 426 struct kmem_cache *files_cachep; 427 428 /* SLAB cache for fs_struct structures (tsk->fs) */ 429 struct kmem_cache *fs_cachep; 430 431 /* SLAB cache for vm_area_struct structures */ 432 static struct kmem_cache *vm_area_cachep; 433 434 /* SLAB cache for mm_struct structures (tsk->mm) */ 435 static struct kmem_cache *mm_cachep; 436 437 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 438 { 439 struct vm_area_struct *vma; 440 441 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 442 if (!vma) 443 return NULL; 444 445 vma_init(vma, mm); 446 447 return vma; 448 } 449 450 static void vm_area_init_from(const struct vm_area_struct *src, 451 struct vm_area_struct *dest) 452 { 453 dest->vm_mm = src->vm_mm; 454 dest->vm_ops = src->vm_ops; 455 dest->vm_start = src->vm_start; 456 dest->vm_end = src->vm_end; 457 dest->anon_vma = src->anon_vma; 458 dest->vm_pgoff = src->vm_pgoff; 459 dest->vm_file = src->vm_file; 460 dest->vm_private_data = src->vm_private_data; 461 vm_flags_init(dest, src->vm_flags); 462 memcpy(&dest->vm_page_prot, &src->vm_page_prot, 463 sizeof(dest->vm_page_prot)); 464 /* 465 * src->shared.rb may be modified concurrently when called from 466 * dup_mmap(), but the clone will reinitialize it. 467 */ 468 data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared))); 469 memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx, 470 sizeof(dest->vm_userfaultfd_ctx)); 471 #ifdef CONFIG_ANON_VMA_NAME 472 dest->anon_name = src->anon_name; 473 #endif 474 #ifdef CONFIG_SWAP 475 memcpy(&dest->swap_readahead_info, &src->swap_readahead_info, 476 sizeof(dest->swap_readahead_info)); 477 #endif 478 #ifndef CONFIG_MMU 479 dest->vm_region = src->vm_region; 480 #endif 481 #ifdef CONFIG_NUMA 482 dest->vm_policy = src->vm_policy; 483 #endif 484 } 485 486 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 487 { 488 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 489 490 if (!new) 491 return NULL; 492 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 494 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 495 vm_area_init_from(orig, new); 496 vma_lock_init(new, true); 497 INIT_LIST_HEAD(&new->anon_vma_chain); 498 vma_numab_state_init(new); 499 dup_anon_vma_name(orig, new); 500 501 /* track_pfn_copy() will later take care of copying internal state. */ 502 if (unlikely(new->vm_flags & VM_PFNMAP)) 503 untrack_pfn_clear(new); 504 505 return new; 506 } 507 508 void vm_area_free(struct vm_area_struct *vma) 509 { 510 /* The vma should be detached while being destroyed. */ 511 vma_assert_detached(vma); 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 kmem_cache_free(vm_area_cachep, vma); 515 } 516 517 static void account_kernel_stack(struct task_struct *tsk, int account) 518 { 519 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 520 struct vm_struct *vm = task_stack_vm_area(tsk); 521 int i; 522 523 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 524 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 525 account * (PAGE_SIZE / 1024)); 526 } else { 527 void *stack = task_stack_page(tsk); 528 529 /* All stack pages are in the same node. */ 530 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 531 account * (THREAD_SIZE / 1024)); 532 } 533 } 534 535 void exit_task_stack_account(struct task_struct *tsk) 536 { 537 account_kernel_stack(tsk, -1); 538 539 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 540 struct vm_struct *vm; 541 int i; 542 543 vm = task_stack_vm_area(tsk); 544 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 545 memcg_kmem_uncharge_page(vm->pages[i], 0); 546 } 547 } 548 549 static void release_task_stack(struct task_struct *tsk) 550 { 551 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 552 return; /* Better to leak the stack than to free prematurely */ 553 554 free_thread_stack(tsk); 555 } 556 557 #ifdef CONFIG_THREAD_INFO_IN_TASK 558 void put_task_stack(struct task_struct *tsk) 559 { 560 if (refcount_dec_and_test(&tsk->stack_refcount)) 561 release_task_stack(tsk); 562 } 563 #endif 564 565 void free_task(struct task_struct *tsk) 566 { 567 #ifdef CONFIG_SECCOMP 568 WARN_ON_ONCE(tsk->seccomp.filter); 569 #endif 570 release_user_cpus_ptr(tsk); 571 scs_release(tsk); 572 573 #ifndef CONFIG_THREAD_INFO_IN_TASK 574 /* 575 * The task is finally done with both the stack and thread_info, 576 * so free both. 577 */ 578 release_task_stack(tsk); 579 #else 580 /* 581 * If the task had a separate stack allocation, it should be gone 582 * by now. 583 */ 584 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 585 #endif 586 rt_mutex_debug_task_free(tsk); 587 ftrace_graph_exit_task(tsk); 588 arch_release_task_struct(tsk); 589 if (tsk->flags & PF_KTHREAD) 590 free_kthread_struct(tsk); 591 bpf_task_storage_free(tsk); 592 free_task_struct(tsk); 593 } 594 EXPORT_SYMBOL(free_task); 595 596 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 597 { 598 struct file *exe_file; 599 600 exe_file = get_mm_exe_file(oldmm); 601 RCU_INIT_POINTER(mm->exe_file, exe_file); 602 /* 603 * We depend on the oldmm having properly denied write access to the 604 * exe_file already. 605 */ 606 if (exe_file && exe_file_deny_write_access(exe_file)) 607 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 608 } 609 610 #ifdef CONFIG_MMU 611 static __latent_entropy int dup_mmap(struct mm_struct *mm, 612 struct mm_struct *oldmm) 613 { 614 struct vm_area_struct *mpnt, *tmp; 615 int retval; 616 unsigned long charge = 0; 617 LIST_HEAD(uf); 618 VMA_ITERATOR(vmi, mm, 0); 619 620 if (mmap_write_lock_killable(oldmm)) 621 return -EINTR; 622 flush_cache_dup_mm(oldmm); 623 uprobe_dup_mmap(oldmm, mm); 624 /* 625 * Not linked in yet - no deadlock potential: 626 */ 627 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 628 629 /* No ordering required: file already has been exposed. */ 630 dup_mm_exe_file(mm, oldmm); 631 632 mm->total_vm = oldmm->total_vm; 633 mm->data_vm = oldmm->data_vm; 634 mm->exec_vm = oldmm->exec_vm; 635 mm->stack_vm = oldmm->stack_vm; 636 637 /* Use __mt_dup() to efficiently build an identical maple tree. */ 638 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 639 if (unlikely(retval)) 640 goto out; 641 642 mt_clear_in_rcu(vmi.mas.tree); 643 for_each_vma(vmi, mpnt) { 644 struct file *file; 645 646 vma_start_write(mpnt); 647 if (mpnt->vm_flags & VM_DONTCOPY) { 648 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 649 mpnt->vm_end, GFP_KERNEL); 650 if (retval) 651 goto loop_out; 652 653 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 654 continue; 655 } 656 charge = 0; 657 /* 658 * Don't duplicate many vmas if we've been oom-killed (for 659 * example) 660 */ 661 if (fatal_signal_pending(current)) { 662 retval = -EINTR; 663 goto loop_out; 664 } 665 if (mpnt->vm_flags & VM_ACCOUNT) { 666 unsigned long len = vma_pages(mpnt); 667 668 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 669 goto fail_nomem; 670 charge = len; 671 } 672 tmp = vm_area_dup(mpnt); 673 if (!tmp) 674 goto fail_nomem; 675 retval = vma_dup_policy(mpnt, tmp); 676 if (retval) 677 goto fail_nomem_policy; 678 tmp->vm_mm = mm; 679 retval = dup_userfaultfd(tmp, &uf); 680 if (retval) 681 goto fail_nomem_anon_vma_fork; 682 if (tmp->vm_flags & VM_WIPEONFORK) { 683 /* 684 * VM_WIPEONFORK gets a clean slate in the child. 685 * Don't prepare anon_vma until fault since we don't 686 * copy page for current vma. 687 */ 688 tmp->anon_vma = NULL; 689 } else if (anon_vma_fork(tmp, mpnt)) 690 goto fail_nomem_anon_vma_fork; 691 vm_flags_clear(tmp, VM_LOCKED_MASK); 692 /* 693 * Copy/update hugetlb private vma information. 694 */ 695 if (is_vm_hugetlb_page(tmp)) 696 hugetlb_dup_vma_private(tmp); 697 698 /* 699 * Link the vma into the MT. After using __mt_dup(), memory 700 * allocation is not necessary here, so it cannot fail. 701 */ 702 vma_iter_bulk_store(&vmi, tmp); 703 704 mm->map_count++; 705 706 if (tmp->vm_ops && tmp->vm_ops->open) 707 tmp->vm_ops->open(tmp); 708 709 file = tmp->vm_file; 710 if (file) { 711 struct address_space *mapping = file->f_mapping; 712 713 get_file(file); 714 i_mmap_lock_write(mapping); 715 if (vma_is_shared_maywrite(tmp)) 716 mapping_allow_writable(mapping); 717 flush_dcache_mmap_lock(mapping); 718 /* insert tmp into the share list, just after mpnt */ 719 vma_interval_tree_insert_after(tmp, mpnt, 720 &mapping->i_mmap); 721 flush_dcache_mmap_unlock(mapping); 722 i_mmap_unlock_write(mapping); 723 } 724 725 if (!(tmp->vm_flags & VM_WIPEONFORK)) 726 retval = copy_page_range(tmp, mpnt); 727 728 if (retval) { 729 mpnt = vma_next(&vmi); 730 goto loop_out; 731 } 732 } 733 /* a new mm has just been created */ 734 retval = arch_dup_mmap(oldmm, mm); 735 loop_out: 736 vma_iter_free(&vmi); 737 if (!retval) { 738 mt_set_in_rcu(vmi.mas.tree); 739 ksm_fork(mm, oldmm); 740 khugepaged_fork(mm, oldmm); 741 } else { 742 743 /* 744 * The entire maple tree has already been duplicated. If the 745 * mmap duplication fails, mark the failure point with 746 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 747 * stop releasing VMAs that have not been duplicated after this 748 * point. 749 */ 750 if (mpnt) { 751 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 752 mas_store(&vmi.mas, XA_ZERO_ENTRY); 753 /* Avoid OOM iterating a broken tree */ 754 set_bit(MMF_OOM_SKIP, &mm->flags); 755 } 756 /* 757 * The mm_struct is going to exit, but the locks will be dropped 758 * first. Set the mm_struct as unstable is advisable as it is 759 * not fully initialised. 760 */ 761 set_bit(MMF_UNSTABLE, &mm->flags); 762 } 763 out: 764 mmap_write_unlock(mm); 765 flush_tlb_mm(oldmm); 766 mmap_write_unlock(oldmm); 767 if (!retval) 768 dup_userfaultfd_complete(&uf); 769 else 770 dup_userfaultfd_fail(&uf); 771 return retval; 772 773 fail_nomem_anon_vma_fork: 774 mpol_put(vma_policy(tmp)); 775 fail_nomem_policy: 776 vm_area_free(tmp); 777 fail_nomem: 778 retval = -ENOMEM; 779 vm_unacct_memory(charge); 780 goto loop_out; 781 } 782 783 static inline int mm_alloc_pgd(struct mm_struct *mm) 784 { 785 mm->pgd = pgd_alloc(mm); 786 if (unlikely(!mm->pgd)) 787 return -ENOMEM; 788 return 0; 789 } 790 791 static inline void mm_free_pgd(struct mm_struct *mm) 792 { 793 pgd_free(mm, mm->pgd); 794 } 795 #else 796 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 797 { 798 mmap_write_lock(oldmm); 799 dup_mm_exe_file(mm, oldmm); 800 mmap_write_unlock(oldmm); 801 return 0; 802 } 803 #define mm_alloc_pgd(mm) (0) 804 #define mm_free_pgd(mm) 805 #endif /* CONFIG_MMU */ 806 807 #ifdef CONFIG_MM_ID 808 static DEFINE_IDA(mm_ida); 809 810 static inline int mm_alloc_id(struct mm_struct *mm) 811 { 812 int ret; 813 814 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 815 if (ret < 0) 816 return ret; 817 mm->mm_id = ret; 818 return 0; 819 } 820 821 static inline void mm_free_id(struct mm_struct *mm) 822 { 823 const mm_id_t id = mm->mm_id; 824 825 mm->mm_id = MM_ID_DUMMY; 826 if (id == MM_ID_DUMMY) 827 return; 828 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 829 return; 830 ida_free(&mm_ida, id); 831 } 832 #else /* !CONFIG_MM_ID */ 833 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 834 static inline void mm_free_id(struct mm_struct *mm) {} 835 #endif /* CONFIG_MM_ID */ 836 837 static void check_mm(struct mm_struct *mm) 838 { 839 int i; 840 841 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 842 "Please make sure 'struct resident_page_types[]' is updated as well"); 843 844 for (i = 0; i < NR_MM_COUNTERS; i++) { 845 long x = percpu_counter_sum(&mm->rss_stat[i]); 846 847 if (unlikely(x)) 848 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 849 mm, resident_page_types[i], x); 850 } 851 852 if (mm_pgtables_bytes(mm)) 853 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 854 mm_pgtables_bytes(mm)); 855 856 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 857 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 858 #endif 859 } 860 861 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 862 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 863 864 static void do_check_lazy_tlb(void *arg) 865 { 866 struct mm_struct *mm = arg; 867 868 WARN_ON_ONCE(current->active_mm == mm); 869 } 870 871 static void do_shoot_lazy_tlb(void *arg) 872 { 873 struct mm_struct *mm = arg; 874 875 if (current->active_mm == mm) { 876 WARN_ON_ONCE(current->mm); 877 current->active_mm = &init_mm; 878 switch_mm(mm, &init_mm, current); 879 } 880 } 881 882 static void cleanup_lazy_tlbs(struct mm_struct *mm) 883 { 884 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 885 /* 886 * In this case, lazy tlb mms are refounted and would not reach 887 * __mmdrop until all CPUs have switched away and mmdrop()ed. 888 */ 889 return; 890 } 891 892 /* 893 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 894 * requires lazy mm users to switch to another mm when the refcount 895 * drops to zero, before the mm is freed. This requires IPIs here to 896 * switch kernel threads to init_mm. 897 * 898 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 899 * switch with the final userspace teardown TLB flush which leaves the 900 * mm lazy on this CPU but no others, reducing the need for additional 901 * IPIs here. There are cases where a final IPI is still required here, 902 * such as the final mmdrop being performed on a different CPU than the 903 * one exiting, or kernel threads using the mm when userspace exits. 904 * 905 * IPI overheads have not found to be expensive, but they could be 906 * reduced in a number of possible ways, for example (roughly 907 * increasing order of complexity): 908 * - The last lazy reference created by exit_mm() could instead switch 909 * to init_mm, however it's probable this will run on the same CPU 910 * immediately afterwards, so this may not reduce IPIs much. 911 * - A batch of mms requiring IPIs could be gathered and freed at once. 912 * - CPUs store active_mm where it can be remotely checked without a 913 * lock, to filter out false-positives in the cpumask. 914 * - After mm_users or mm_count reaches zero, switching away from the 915 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 916 * with some batching or delaying of the final IPIs. 917 * - A delayed freeing and RCU-like quiescing sequence based on mm 918 * switching to avoid IPIs completely. 919 */ 920 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 921 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 922 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 923 } 924 925 /* 926 * Called when the last reference to the mm 927 * is dropped: either by a lazy thread or by 928 * mmput. Free the page directory and the mm. 929 */ 930 void __mmdrop(struct mm_struct *mm) 931 { 932 BUG_ON(mm == &init_mm); 933 WARN_ON_ONCE(mm == current->mm); 934 935 /* Ensure no CPUs are using this as their lazy tlb mm */ 936 cleanup_lazy_tlbs(mm); 937 938 WARN_ON_ONCE(mm == current->active_mm); 939 mm_free_pgd(mm); 940 mm_free_id(mm); 941 destroy_context(mm); 942 mmu_notifier_subscriptions_destroy(mm); 943 check_mm(mm); 944 put_user_ns(mm->user_ns); 945 mm_pasid_drop(mm); 946 mm_destroy_cid(mm); 947 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 948 949 free_mm(mm); 950 } 951 EXPORT_SYMBOL_GPL(__mmdrop); 952 953 static void mmdrop_async_fn(struct work_struct *work) 954 { 955 struct mm_struct *mm; 956 957 mm = container_of(work, struct mm_struct, async_put_work); 958 __mmdrop(mm); 959 } 960 961 static void mmdrop_async(struct mm_struct *mm) 962 { 963 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 964 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 965 schedule_work(&mm->async_put_work); 966 } 967 } 968 969 static inline void free_signal_struct(struct signal_struct *sig) 970 { 971 taskstats_tgid_free(sig); 972 sched_autogroup_exit(sig); 973 /* 974 * __mmdrop is not safe to call from softirq context on x86 due to 975 * pgd_dtor so postpone it to the async context 976 */ 977 if (sig->oom_mm) 978 mmdrop_async(sig->oom_mm); 979 kmem_cache_free(signal_cachep, sig); 980 } 981 982 static inline void put_signal_struct(struct signal_struct *sig) 983 { 984 if (refcount_dec_and_test(&sig->sigcnt)) 985 free_signal_struct(sig); 986 } 987 988 void __put_task_struct(struct task_struct *tsk) 989 { 990 WARN_ON(!tsk->exit_state); 991 WARN_ON(refcount_read(&tsk->usage)); 992 WARN_ON(tsk == current); 993 994 sched_ext_free(tsk); 995 io_uring_free(tsk); 996 cgroup_free(tsk); 997 task_numa_free(tsk, true); 998 security_task_free(tsk); 999 exit_creds(tsk); 1000 delayacct_tsk_free(tsk); 1001 put_signal_struct(tsk->signal); 1002 sched_core_free(tsk); 1003 free_task(tsk); 1004 } 1005 EXPORT_SYMBOL_GPL(__put_task_struct); 1006 1007 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 1008 { 1009 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 1010 1011 __put_task_struct(task); 1012 } 1013 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 1014 1015 void __init __weak arch_task_cache_init(void) { } 1016 1017 /* 1018 * set_max_threads 1019 */ 1020 static void __init set_max_threads(unsigned int max_threads_suggested) 1021 { 1022 u64 threads; 1023 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1024 1025 /* 1026 * The number of threads shall be limited such that the thread 1027 * structures may only consume a small part of the available memory. 1028 */ 1029 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1030 threads = MAX_THREADS; 1031 else 1032 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1033 (u64) THREAD_SIZE * 8UL); 1034 1035 if (threads > max_threads_suggested) 1036 threads = max_threads_suggested; 1037 1038 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1039 } 1040 1041 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1042 /* Initialized by the architecture: */ 1043 int arch_task_struct_size __read_mostly; 1044 #endif 1045 1046 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1047 { 1048 /* Fetch thread_struct whitelist for the architecture. */ 1049 arch_thread_struct_whitelist(offset, size); 1050 1051 /* 1052 * Handle zero-sized whitelist or empty thread_struct, otherwise 1053 * adjust offset to position of thread_struct in task_struct. 1054 */ 1055 if (unlikely(*size == 0)) 1056 *offset = 0; 1057 else 1058 *offset += offsetof(struct task_struct, thread); 1059 } 1060 1061 void __init fork_init(void) 1062 { 1063 int i; 1064 #ifndef ARCH_MIN_TASKALIGN 1065 #define ARCH_MIN_TASKALIGN 0 1066 #endif 1067 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1068 unsigned long useroffset, usersize; 1069 1070 /* create a slab on which task_structs can be allocated */ 1071 task_struct_whitelist(&useroffset, &usersize); 1072 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1073 arch_task_struct_size, align, 1074 SLAB_PANIC|SLAB_ACCOUNT, 1075 useroffset, usersize, NULL); 1076 1077 /* do the arch specific task caches init */ 1078 arch_task_cache_init(); 1079 1080 set_max_threads(MAX_THREADS); 1081 1082 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1083 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1084 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1085 init_task.signal->rlim[RLIMIT_NPROC]; 1086 1087 for (i = 0; i < UCOUNT_COUNTS; i++) 1088 init_user_ns.ucount_max[i] = max_threads/2; 1089 1090 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1091 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1092 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1093 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1094 1095 #ifdef CONFIG_VMAP_STACK 1096 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1097 NULL, free_vm_stack_cache); 1098 #endif 1099 1100 scs_init(); 1101 1102 lockdep_init_task(&init_task); 1103 uprobes_init(); 1104 } 1105 1106 int __weak arch_dup_task_struct(struct task_struct *dst, 1107 struct task_struct *src) 1108 { 1109 *dst = *src; 1110 return 0; 1111 } 1112 1113 void set_task_stack_end_magic(struct task_struct *tsk) 1114 { 1115 unsigned long *stackend; 1116 1117 stackend = end_of_stack(tsk); 1118 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1119 } 1120 1121 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1122 { 1123 struct task_struct *tsk; 1124 int err; 1125 1126 if (node == NUMA_NO_NODE) 1127 node = tsk_fork_get_node(orig); 1128 tsk = alloc_task_struct_node(node); 1129 if (!tsk) 1130 return NULL; 1131 1132 err = arch_dup_task_struct(tsk, orig); 1133 if (err) 1134 goto free_tsk; 1135 1136 err = alloc_thread_stack_node(tsk, node); 1137 if (err) 1138 goto free_tsk; 1139 1140 #ifdef CONFIG_THREAD_INFO_IN_TASK 1141 refcount_set(&tsk->stack_refcount, 1); 1142 #endif 1143 account_kernel_stack(tsk, 1); 1144 1145 err = scs_prepare(tsk, node); 1146 if (err) 1147 goto free_stack; 1148 1149 #ifdef CONFIG_SECCOMP 1150 /* 1151 * We must handle setting up seccomp filters once we're under 1152 * the sighand lock in case orig has changed between now and 1153 * then. Until then, filter must be NULL to avoid messing up 1154 * the usage counts on the error path calling free_task. 1155 */ 1156 tsk->seccomp.filter = NULL; 1157 #endif 1158 1159 setup_thread_stack(tsk, orig); 1160 clear_user_return_notifier(tsk); 1161 clear_tsk_need_resched(tsk); 1162 set_task_stack_end_magic(tsk); 1163 clear_syscall_work_syscall_user_dispatch(tsk); 1164 1165 #ifdef CONFIG_STACKPROTECTOR 1166 tsk->stack_canary = get_random_canary(); 1167 #endif 1168 if (orig->cpus_ptr == &orig->cpus_mask) 1169 tsk->cpus_ptr = &tsk->cpus_mask; 1170 dup_user_cpus_ptr(tsk, orig, node); 1171 1172 /* 1173 * One for the user space visible state that goes away when reaped. 1174 * One for the scheduler. 1175 */ 1176 refcount_set(&tsk->rcu_users, 2); 1177 /* One for the rcu users */ 1178 refcount_set(&tsk->usage, 1); 1179 #ifdef CONFIG_BLK_DEV_IO_TRACE 1180 tsk->btrace_seq = 0; 1181 #endif 1182 tsk->splice_pipe = NULL; 1183 tsk->task_frag.page = NULL; 1184 tsk->wake_q.next = NULL; 1185 tsk->worker_private = NULL; 1186 1187 kcov_task_init(tsk); 1188 kmsan_task_create(tsk); 1189 kmap_local_fork(tsk); 1190 1191 #ifdef CONFIG_FAULT_INJECTION 1192 tsk->fail_nth = 0; 1193 #endif 1194 1195 #ifdef CONFIG_BLK_CGROUP 1196 tsk->throttle_disk = NULL; 1197 tsk->use_memdelay = 0; 1198 #endif 1199 1200 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1201 tsk->pasid_activated = 0; 1202 #endif 1203 1204 #ifdef CONFIG_MEMCG 1205 tsk->active_memcg = NULL; 1206 #endif 1207 1208 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1209 tsk->reported_split_lock = 0; 1210 #endif 1211 1212 #ifdef CONFIG_SCHED_MM_CID 1213 tsk->mm_cid = -1; 1214 tsk->last_mm_cid = -1; 1215 tsk->mm_cid_active = 0; 1216 tsk->migrate_from_cpu = -1; 1217 #endif 1218 return tsk; 1219 1220 free_stack: 1221 exit_task_stack_account(tsk); 1222 free_thread_stack(tsk); 1223 free_tsk: 1224 free_task_struct(tsk); 1225 return NULL; 1226 } 1227 1228 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1229 1230 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1231 1232 static int __init coredump_filter_setup(char *s) 1233 { 1234 default_dump_filter = 1235 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1236 MMF_DUMP_FILTER_MASK; 1237 return 1; 1238 } 1239 1240 __setup("coredump_filter=", coredump_filter_setup); 1241 1242 #include <linux/init_task.h> 1243 1244 static void mm_init_aio(struct mm_struct *mm) 1245 { 1246 #ifdef CONFIG_AIO 1247 spin_lock_init(&mm->ioctx_lock); 1248 mm->ioctx_table = NULL; 1249 #endif 1250 } 1251 1252 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1253 struct task_struct *p) 1254 { 1255 #ifdef CONFIG_MEMCG 1256 if (mm->owner == p) 1257 WRITE_ONCE(mm->owner, NULL); 1258 #endif 1259 } 1260 1261 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1262 { 1263 #ifdef CONFIG_MEMCG 1264 mm->owner = p; 1265 #endif 1266 } 1267 1268 static void mm_init_uprobes_state(struct mm_struct *mm) 1269 { 1270 #ifdef CONFIG_UPROBES 1271 mm->uprobes_state.xol_area = NULL; 1272 #endif 1273 } 1274 1275 static void mmap_init_lock(struct mm_struct *mm) 1276 { 1277 init_rwsem(&mm->mmap_lock); 1278 mm_lock_seqcount_init(mm); 1279 #ifdef CONFIG_PER_VMA_LOCK 1280 rcuwait_init(&mm->vma_writer_wait); 1281 #endif 1282 } 1283 1284 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1285 struct user_namespace *user_ns) 1286 { 1287 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1288 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1289 atomic_set(&mm->mm_users, 1); 1290 atomic_set(&mm->mm_count, 1); 1291 seqcount_init(&mm->write_protect_seq); 1292 mmap_init_lock(mm); 1293 INIT_LIST_HEAD(&mm->mmlist); 1294 mm_pgtables_bytes_init(mm); 1295 mm->map_count = 0; 1296 mm->locked_vm = 0; 1297 atomic64_set(&mm->pinned_vm, 0); 1298 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1299 spin_lock_init(&mm->page_table_lock); 1300 spin_lock_init(&mm->arg_lock); 1301 mm_init_cpumask(mm); 1302 mm_init_aio(mm); 1303 mm_init_owner(mm, p); 1304 mm_pasid_init(mm); 1305 RCU_INIT_POINTER(mm->exe_file, NULL); 1306 mmu_notifier_subscriptions_init(mm); 1307 init_tlb_flush_pending(mm); 1308 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1309 mm->pmd_huge_pte = NULL; 1310 #endif 1311 mm_init_uprobes_state(mm); 1312 hugetlb_count_init(mm); 1313 1314 if (current->mm) { 1315 mm->flags = mmf_init_flags(current->mm->flags); 1316 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1317 } else { 1318 mm->flags = default_dump_filter; 1319 mm->def_flags = 0; 1320 } 1321 1322 if (mm_alloc_pgd(mm)) 1323 goto fail_nopgd; 1324 1325 if (mm_alloc_id(mm)) 1326 goto fail_noid; 1327 1328 if (init_new_context(p, mm)) 1329 goto fail_nocontext; 1330 1331 if (mm_alloc_cid(mm, p)) 1332 goto fail_cid; 1333 1334 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1335 NR_MM_COUNTERS)) 1336 goto fail_pcpu; 1337 1338 mm->user_ns = get_user_ns(user_ns); 1339 lru_gen_init_mm(mm); 1340 return mm; 1341 1342 fail_pcpu: 1343 mm_destroy_cid(mm); 1344 fail_cid: 1345 destroy_context(mm); 1346 fail_nocontext: 1347 mm_free_id(mm); 1348 fail_noid: 1349 mm_free_pgd(mm); 1350 fail_nopgd: 1351 free_mm(mm); 1352 return NULL; 1353 } 1354 1355 /* 1356 * Allocate and initialize an mm_struct. 1357 */ 1358 struct mm_struct *mm_alloc(void) 1359 { 1360 struct mm_struct *mm; 1361 1362 mm = allocate_mm(); 1363 if (!mm) 1364 return NULL; 1365 1366 memset(mm, 0, sizeof(*mm)); 1367 return mm_init(mm, current, current_user_ns()); 1368 } 1369 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1370 1371 static inline void __mmput(struct mm_struct *mm) 1372 { 1373 VM_BUG_ON(atomic_read(&mm->mm_users)); 1374 1375 uprobe_clear_state(mm); 1376 exit_aio(mm); 1377 ksm_exit(mm); 1378 khugepaged_exit(mm); /* must run before exit_mmap */ 1379 exit_mmap(mm); 1380 mm_put_huge_zero_folio(mm); 1381 set_mm_exe_file(mm, NULL); 1382 if (!list_empty(&mm->mmlist)) { 1383 spin_lock(&mmlist_lock); 1384 list_del(&mm->mmlist); 1385 spin_unlock(&mmlist_lock); 1386 } 1387 if (mm->binfmt) 1388 module_put(mm->binfmt->module); 1389 lru_gen_del_mm(mm); 1390 mmdrop(mm); 1391 } 1392 1393 /* 1394 * Decrement the use count and release all resources for an mm. 1395 */ 1396 void mmput(struct mm_struct *mm) 1397 { 1398 might_sleep(); 1399 1400 if (atomic_dec_and_test(&mm->mm_users)) 1401 __mmput(mm); 1402 } 1403 EXPORT_SYMBOL_GPL(mmput); 1404 1405 #ifdef CONFIG_MMU 1406 static void mmput_async_fn(struct work_struct *work) 1407 { 1408 struct mm_struct *mm = container_of(work, struct mm_struct, 1409 async_put_work); 1410 1411 __mmput(mm); 1412 } 1413 1414 void mmput_async(struct mm_struct *mm) 1415 { 1416 if (atomic_dec_and_test(&mm->mm_users)) { 1417 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1418 schedule_work(&mm->async_put_work); 1419 } 1420 } 1421 EXPORT_SYMBOL_GPL(mmput_async); 1422 #endif 1423 1424 /** 1425 * set_mm_exe_file - change a reference to the mm's executable file 1426 * @mm: The mm to change. 1427 * @new_exe_file: The new file to use. 1428 * 1429 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1430 * 1431 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1432 * invocations: in mmput() nobody alive left, in execve it happens before 1433 * the new mm is made visible to anyone. 1434 * 1435 * Can only fail if new_exe_file != NULL. 1436 */ 1437 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1438 { 1439 struct file *old_exe_file; 1440 1441 /* 1442 * It is safe to dereference the exe_file without RCU as 1443 * this function is only called if nobody else can access 1444 * this mm -- see comment above for justification. 1445 */ 1446 old_exe_file = rcu_dereference_raw(mm->exe_file); 1447 1448 if (new_exe_file) { 1449 /* 1450 * We expect the caller (i.e., sys_execve) to already denied 1451 * write access, so this is unlikely to fail. 1452 */ 1453 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1454 return -EACCES; 1455 get_file(new_exe_file); 1456 } 1457 rcu_assign_pointer(mm->exe_file, new_exe_file); 1458 if (old_exe_file) { 1459 exe_file_allow_write_access(old_exe_file); 1460 fput(old_exe_file); 1461 } 1462 return 0; 1463 } 1464 1465 /** 1466 * replace_mm_exe_file - replace a reference to the mm's executable file 1467 * @mm: The mm to change. 1468 * @new_exe_file: The new file to use. 1469 * 1470 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1471 * 1472 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1473 */ 1474 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1475 { 1476 struct vm_area_struct *vma; 1477 struct file *old_exe_file; 1478 int ret = 0; 1479 1480 /* Forbid mm->exe_file change if old file still mapped. */ 1481 old_exe_file = get_mm_exe_file(mm); 1482 if (old_exe_file) { 1483 VMA_ITERATOR(vmi, mm, 0); 1484 mmap_read_lock(mm); 1485 for_each_vma(vmi, vma) { 1486 if (!vma->vm_file) 1487 continue; 1488 if (path_equal(&vma->vm_file->f_path, 1489 &old_exe_file->f_path)) { 1490 ret = -EBUSY; 1491 break; 1492 } 1493 } 1494 mmap_read_unlock(mm); 1495 fput(old_exe_file); 1496 if (ret) 1497 return ret; 1498 } 1499 1500 ret = exe_file_deny_write_access(new_exe_file); 1501 if (ret) 1502 return -EACCES; 1503 get_file(new_exe_file); 1504 1505 /* set the new file */ 1506 mmap_write_lock(mm); 1507 old_exe_file = rcu_dereference_raw(mm->exe_file); 1508 rcu_assign_pointer(mm->exe_file, new_exe_file); 1509 mmap_write_unlock(mm); 1510 1511 if (old_exe_file) { 1512 exe_file_allow_write_access(old_exe_file); 1513 fput(old_exe_file); 1514 } 1515 return 0; 1516 } 1517 1518 /** 1519 * get_mm_exe_file - acquire a reference to the mm's executable file 1520 * @mm: The mm of interest. 1521 * 1522 * Returns %NULL if mm has no associated executable file. 1523 * User must release file via fput(). 1524 */ 1525 struct file *get_mm_exe_file(struct mm_struct *mm) 1526 { 1527 struct file *exe_file; 1528 1529 rcu_read_lock(); 1530 exe_file = get_file_rcu(&mm->exe_file); 1531 rcu_read_unlock(); 1532 return exe_file; 1533 } 1534 1535 /** 1536 * get_task_exe_file - acquire a reference to the task's executable file 1537 * @task: The task. 1538 * 1539 * Returns %NULL if task's mm (if any) has no associated executable file or 1540 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1541 * User must release file via fput(). 1542 */ 1543 struct file *get_task_exe_file(struct task_struct *task) 1544 { 1545 struct file *exe_file = NULL; 1546 struct mm_struct *mm; 1547 1548 if (task->flags & PF_KTHREAD) 1549 return NULL; 1550 1551 task_lock(task); 1552 mm = task->mm; 1553 if (mm) 1554 exe_file = get_mm_exe_file(mm); 1555 task_unlock(task); 1556 return exe_file; 1557 } 1558 1559 /** 1560 * get_task_mm - acquire a reference to the task's mm 1561 * @task: The task. 1562 * 1563 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1564 * this kernel workthread has transiently adopted a user mm with use_mm, 1565 * to do its AIO) is not set and if so returns a reference to it, after 1566 * bumping up the use count. User must release the mm via mmput() 1567 * after use. Typically used by /proc and ptrace. 1568 */ 1569 struct mm_struct *get_task_mm(struct task_struct *task) 1570 { 1571 struct mm_struct *mm; 1572 1573 if (task->flags & PF_KTHREAD) 1574 return NULL; 1575 1576 task_lock(task); 1577 mm = task->mm; 1578 if (mm) 1579 mmget(mm); 1580 task_unlock(task); 1581 return mm; 1582 } 1583 EXPORT_SYMBOL_GPL(get_task_mm); 1584 1585 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1586 { 1587 if (mm == current->mm) 1588 return true; 1589 if (ptrace_may_access(task, mode)) 1590 return true; 1591 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1592 return true; 1593 return false; 1594 } 1595 1596 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1597 { 1598 struct mm_struct *mm; 1599 int err; 1600 1601 err = down_read_killable(&task->signal->exec_update_lock); 1602 if (err) 1603 return ERR_PTR(err); 1604 1605 mm = get_task_mm(task); 1606 if (!mm) { 1607 mm = ERR_PTR(-ESRCH); 1608 } else if (!may_access_mm(mm, task, mode)) { 1609 mmput(mm); 1610 mm = ERR_PTR(-EACCES); 1611 } 1612 up_read(&task->signal->exec_update_lock); 1613 1614 return mm; 1615 } 1616 1617 static void complete_vfork_done(struct task_struct *tsk) 1618 { 1619 struct completion *vfork; 1620 1621 task_lock(tsk); 1622 vfork = tsk->vfork_done; 1623 if (likely(vfork)) { 1624 tsk->vfork_done = NULL; 1625 complete(vfork); 1626 } 1627 task_unlock(tsk); 1628 } 1629 1630 static int wait_for_vfork_done(struct task_struct *child, 1631 struct completion *vfork) 1632 { 1633 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1634 int killed; 1635 1636 cgroup_enter_frozen(); 1637 killed = wait_for_completion_state(vfork, state); 1638 cgroup_leave_frozen(false); 1639 1640 if (killed) { 1641 task_lock(child); 1642 child->vfork_done = NULL; 1643 task_unlock(child); 1644 } 1645 1646 put_task_struct(child); 1647 return killed; 1648 } 1649 1650 /* Please note the differences between mmput and mm_release. 1651 * mmput is called whenever we stop holding onto a mm_struct, 1652 * error success whatever. 1653 * 1654 * mm_release is called after a mm_struct has been removed 1655 * from the current process. 1656 * 1657 * This difference is important for error handling, when we 1658 * only half set up a mm_struct for a new process and need to restore 1659 * the old one. Because we mmput the new mm_struct before 1660 * restoring the old one. . . 1661 * Eric Biederman 10 January 1998 1662 */ 1663 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1664 { 1665 uprobe_free_utask(tsk); 1666 1667 /* Get rid of any cached register state */ 1668 deactivate_mm(tsk, mm); 1669 1670 /* 1671 * Signal userspace if we're not exiting with a core dump 1672 * because we want to leave the value intact for debugging 1673 * purposes. 1674 */ 1675 if (tsk->clear_child_tid) { 1676 if (atomic_read(&mm->mm_users) > 1) { 1677 /* 1678 * We don't check the error code - if userspace has 1679 * not set up a proper pointer then tough luck. 1680 */ 1681 put_user(0, tsk->clear_child_tid); 1682 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1683 1, NULL, NULL, 0, 0); 1684 } 1685 tsk->clear_child_tid = NULL; 1686 } 1687 1688 /* 1689 * All done, finally we can wake up parent and return this mm to him. 1690 * Also kthread_stop() uses this completion for synchronization. 1691 */ 1692 if (tsk->vfork_done) 1693 complete_vfork_done(tsk); 1694 } 1695 1696 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1697 { 1698 futex_exit_release(tsk); 1699 mm_release(tsk, mm); 1700 } 1701 1702 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1703 { 1704 futex_exec_release(tsk); 1705 mm_release(tsk, mm); 1706 } 1707 1708 /** 1709 * dup_mm() - duplicates an existing mm structure 1710 * @tsk: the task_struct with which the new mm will be associated. 1711 * @oldmm: the mm to duplicate. 1712 * 1713 * Allocates a new mm structure and duplicates the provided @oldmm structure 1714 * content into it. 1715 * 1716 * Return: the duplicated mm or NULL on failure. 1717 */ 1718 static struct mm_struct *dup_mm(struct task_struct *tsk, 1719 struct mm_struct *oldmm) 1720 { 1721 struct mm_struct *mm; 1722 int err; 1723 1724 mm = allocate_mm(); 1725 if (!mm) 1726 goto fail_nomem; 1727 1728 memcpy(mm, oldmm, sizeof(*mm)); 1729 1730 if (!mm_init(mm, tsk, mm->user_ns)) 1731 goto fail_nomem; 1732 1733 uprobe_start_dup_mmap(); 1734 err = dup_mmap(mm, oldmm); 1735 if (err) 1736 goto free_pt; 1737 uprobe_end_dup_mmap(); 1738 1739 mm->hiwater_rss = get_mm_rss(mm); 1740 mm->hiwater_vm = mm->total_vm; 1741 1742 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1743 goto free_pt; 1744 1745 return mm; 1746 1747 free_pt: 1748 /* don't put binfmt in mmput, we haven't got module yet */ 1749 mm->binfmt = NULL; 1750 mm_init_owner(mm, NULL); 1751 mmput(mm); 1752 if (err) 1753 uprobe_end_dup_mmap(); 1754 1755 fail_nomem: 1756 return NULL; 1757 } 1758 1759 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1760 { 1761 struct mm_struct *mm, *oldmm; 1762 1763 tsk->min_flt = tsk->maj_flt = 0; 1764 tsk->nvcsw = tsk->nivcsw = 0; 1765 #ifdef CONFIG_DETECT_HUNG_TASK 1766 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1767 tsk->last_switch_time = 0; 1768 #endif 1769 1770 tsk->mm = NULL; 1771 tsk->active_mm = NULL; 1772 1773 /* 1774 * Are we cloning a kernel thread? 1775 * 1776 * We need to steal a active VM for that.. 1777 */ 1778 oldmm = current->mm; 1779 if (!oldmm) 1780 return 0; 1781 1782 if (clone_flags & CLONE_VM) { 1783 mmget(oldmm); 1784 mm = oldmm; 1785 } else { 1786 mm = dup_mm(tsk, current->mm); 1787 if (!mm) 1788 return -ENOMEM; 1789 } 1790 1791 tsk->mm = mm; 1792 tsk->active_mm = mm; 1793 sched_mm_cid_fork(tsk); 1794 return 0; 1795 } 1796 1797 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1798 { 1799 struct fs_struct *fs = current->fs; 1800 if (clone_flags & CLONE_FS) { 1801 /* tsk->fs is already what we want */ 1802 spin_lock(&fs->lock); 1803 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1804 if (fs->in_exec) { 1805 spin_unlock(&fs->lock); 1806 return -EAGAIN; 1807 } 1808 fs->users++; 1809 spin_unlock(&fs->lock); 1810 return 0; 1811 } 1812 tsk->fs = copy_fs_struct(fs); 1813 if (!tsk->fs) 1814 return -ENOMEM; 1815 return 0; 1816 } 1817 1818 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1819 int no_files) 1820 { 1821 struct files_struct *oldf, *newf; 1822 1823 /* 1824 * A background process may not have any files ... 1825 */ 1826 oldf = current->files; 1827 if (!oldf) 1828 return 0; 1829 1830 if (no_files) { 1831 tsk->files = NULL; 1832 return 0; 1833 } 1834 1835 if (clone_flags & CLONE_FILES) { 1836 atomic_inc(&oldf->count); 1837 return 0; 1838 } 1839 1840 newf = dup_fd(oldf, NULL); 1841 if (IS_ERR(newf)) 1842 return PTR_ERR(newf); 1843 1844 tsk->files = newf; 1845 return 0; 1846 } 1847 1848 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1849 { 1850 struct sighand_struct *sig; 1851 1852 if (clone_flags & CLONE_SIGHAND) { 1853 refcount_inc(¤t->sighand->count); 1854 return 0; 1855 } 1856 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1857 RCU_INIT_POINTER(tsk->sighand, sig); 1858 if (!sig) 1859 return -ENOMEM; 1860 1861 refcount_set(&sig->count, 1); 1862 spin_lock_irq(¤t->sighand->siglock); 1863 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1864 spin_unlock_irq(¤t->sighand->siglock); 1865 1866 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1867 if (clone_flags & CLONE_CLEAR_SIGHAND) 1868 flush_signal_handlers(tsk, 0); 1869 1870 return 0; 1871 } 1872 1873 void __cleanup_sighand(struct sighand_struct *sighand) 1874 { 1875 if (refcount_dec_and_test(&sighand->count)) { 1876 signalfd_cleanup(sighand); 1877 /* 1878 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1879 * without an RCU grace period, see __lock_task_sighand(). 1880 */ 1881 kmem_cache_free(sighand_cachep, sighand); 1882 } 1883 } 1884 1885 /* 1886 * Initialize POSIX timer handling for a thread group. 1887 */ 1888 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1889 { 1890 struct posix_cputimers *pct = &sig->posix_cputimers; 1891 unsigned long cpu_limit; 1892 1893 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1894 posix_cputimers_group_init(pct, cpu_limit); 1895 } 1896 1897 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1898 { 1899 struct signal_struct *sig; 1900 1901 if (clone_flags & CLONE_THREAD) 1902 return 0; 1903 1904 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1905 tsk->signal = sig; 1906 if (!sig) 1907 return -ENOMEM; 1908 1909 sig->nr_threads = 1; 1910 sig->quick_threads = 1; 1911 atomic_set(&sig->live, 1); 1912 refcount_set(&sig->sigcnt, 1); 1913 1914 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1915 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1916 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1917 1918 init_waitqueue_head(&sig->wait_chldexit); 1919 sig->curr_target = tsk; 1920 init_sigpending(&sig->shared_pending); 1921 INIT_HLIST_HEAD(&sig->multiprocess); 1922 seqlock_init(&sig->stats_lock); 1923 prev_cputime_init(&sig->prev_cputime); 1924 1925 #ifdef CONFIG_POSIX_TIMERS 1926 INIT_HLIST_HEAD(&sig->posix_timers); 1927 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1928 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1929 #endif 1930 1931 task_lock(current->group_leader); 1932 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1933 task_unlock(current->group_leader); 1934 1935 posix_cpu_timers_init_group(sig); 1936 1937 tty_audit_fork(sig); 1938 sched_autogroup_fork(sig); 1939 1940 sig->oom_score_adj = current->signal->oom_score_adj; 1941 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1942 1943 mutex_init(&sig->cred_guard_mutex); 1944 init_rwsem(&sig->exec_update_lock); 1945 1946 return 0; 1947 } 1948 1949 static void copy_seccomp(struct task_struct *p) 1950 { 1951 #ifdef CONFIG_SECCOMP 1952 /* 1953 * Must be called with sighand->lock held, which is common to 1954 * all threads in the group. Holding cred_guard_mutex is not 1955 * needed because this new task is not yet running and cannot 1956 * be racing exec. 1957 */ 1958 assert_spin_locked(¤t->sighand->siglock); 1959 1960 /* Ref-count the new filter user, and assign it. */ 1961 get_seccomp_filter(current); 1962 p->seccomp = current->seccomp; 1963 1964 /* 1965 * Explicitly enable no_new_privs here in case it got set 1966 * between the task_struct being duplicated and holding the 1967 * sighand lock. The seccomp state and nnp must be in sync. 1968 */ 1969 if (task_no_new_privs(current)) 1970 task_set_no_new_privs(p); 1971 1972 /* 1973 * If the parent gained a seccomp mode after copying thread 1974 * flags and between before we held the sighand lock, we have 1975 * to manually enable the seccomp thread flag here. 1976 */ 1977 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1978 set_task_syscall_work(p, SECCOMP); 1979 #endif 1980 } 1981 1982 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1983 { 1984 current->clear_child_tid = tidptr; 1985 1986 return task_pid_vnr(current); 1987 } 1988 1989 static void rt_mutex_init_task(struct task_struct *p) 1990 { 1991 raw_spin_lock_init(&p->pi_lock); 1992 #ifdef CONFIG_RT_MUTEXES 1993 p->pi_waiters = RB_ROOT_CACHED; 1994 p->pi_top_task = NULL; 1995 p->pi_blocked_on = NULL; 1996 #endif 1997 } 1998 1999 static inline void init_task_pid_links(struct task_struct *task) 2000 { 2001 enum pid_type type; 2002 2003 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 2004 INIT_HLIST_NODE(&task->pid_links[type]); 2005 } 2006 2007 static inline void 2008 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 2009 { 2010 if (type == PIDTYPE_PID) 2011 task->thread_pid = pid; 2012 else 2013 task->signal->pids[type] = pid; 2014 } 2015 2016 static inline void rcu_copy_process(struct task_struct *p) 2017 { 2018 #ifdef CONFIG_PREEMPT_RCU 2019 p->rcu_read_lock_nesting = 0; 2020 p->rcu_read_unlock_special.s = 0; 2021 p->rcu_blocked_node = NULL; 2022 INIT_LIST_HEAD(&p->rcu_node_entry); 2023 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2024 #ifdef CONFIG_TASKS_RCU 2025 p->rcu_tasks_holdout = false; 2026 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2027 p->rcu_tasks_idle_cpu = -1; 2028 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 2029 #endif /* #ifdef CONFIG_TASKS_RCU */ 2030 #ifdef CONFIG_TASKS_TRACE_RCU 2031 p->trc_reader_nesting = 0; 2032 p->trc_reader_special.s = 0; 2033 INIT_LIST_HEAD(&p->trc_holdout_list); 2034 INIT_LIST_HEAD(&p->trc_blkd_node); 2035 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2036 } 2037 2038 /** 2039 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2040 * @pid: the struct pid for which to create a pidfd 2041 * @flags: flags of the new @pidfd 2042 * @ret: Where to return the file for the pidfd. 2043 * 2044 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2045 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2046 * 2047 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2048 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2049 * pidfd file are prepared. 2050 * 2051 * If this function returns successfully the caller is responsible to either 2052 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2053 * order to install the pidfd into its file descriptor table or they must use 2054 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2055 * respectively. 2056 * 2057 * This function is useful when a pidfd must already be reserved but there 2058 * might still be points of failure afterwards and the caller wants to ensure 2059 * that no pidfd is leaked into its file descriptor table. 2060 * 2061 * Return: On success, a reserved pidfd is returned from the function and a new 2062 * pidfd file is returned in the last argument to the function. On 2063 * error, a negative error code is returned from the function and the 2064 * last argument remains unchanged. 2065 */ 2066 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2067 { 2068 struct file *pidfd_file; 2069 2070 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 2071 if (pidfd < 0) 2072 return pidfd; 2073 2074 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2075 if (IS_ERR(pidfd_file)) 2076 return PTR_ERR(pidfd_file); 2077 2078 *ret = pidfd_file; 2079 return take_fd(pidfd); 2080 } 2081 2082 /** 2083 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2084 * @pid: the struct pid for which to create a pidfd 2085 * @flags: flags of the new @pidfd 2086 * @ret: Where to return the pidfd. 2087 * 2088 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2089 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2090 * 2091 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2092 * task identified by @pid must be a thread-group leader. 2093 * 2094 * If this function returns successfully the caller is responsible to either 2095 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2096 * order to install the pidfd into its file descriptor table or they must use 2097 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2098 * respectively. 2099 * 2100 * This function is useful when a pidfd must already be reserved but there 2101 * might still be points of failure afterwards and the caller wants to ensure 2102 * that no pidfd is leaked into its file descriptor table. 2103 * 2104 * Return: On success, a reserved pidfd is returned from the function and a new 2105 * pidfd file is returned in the last argument to the function. On 2106 * error, a negative error code is returned from the function and the 2107 * last argument remains unchanged. 2108 */ 2109 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2110 { 2111 bool thread = flags & PIDFD_THREAD; 2112 2113 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2114 return -EINVAL; 2115 2116 return __pidfd_prepare(pid, flags, ret); 2117 } 2118 2119 static void __delayed_free_task(struct rcu_head *rhp) 2120 { 2121 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2122 2123 free_task(tsk); 2124 } 2125 2126 static __always_inline void delayed_free_task(struct task_struct *tsk) 2127 { 2128 if (IS_ENABLED(CONFIG_MEMCG)) 2129 call_rcu(&tsk->rcu, __delayed_free_task); 2130 else 2131 free_task(tsk); 2132 } 2133 2134 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2135 { 2136 /* Skip if kernel thread */ 2137 if (!tsk->mm) 2138 return; 2139 2140 /* Skip if spawning a thread or using vfork */ 2141 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2142 return; 2143 2144 /* We need to synchronize with __set_oom_adj */ 2145 mutex_lock(&oom_adj_mutex); 2146 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2147 /* Update the values in case they were changed after copy_signal */ 2148 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2149 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2150 mutex_unlock(&oom_adj_mutex); 2151 } 2152 2153 #ifdef CONFIG_RV 2154 static void rv_task_fork(struct task_struct *p) 2155 { 2156 int i; 2157 2158 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2159 p->rv[i].da_mon.monitoring = false; 2160 } 2161 #else 2162 #define rv_task_fork(p) do {} while (0) 2163 #endif 2164 2165 /* 2166 * This creates a new process as a copy of the old one, 2167 * but does not actually start it yet. 2168 * 2169 * It copies the registers, and all the appropriate 2170 * parts of the process environment (as per the clone 2171 * flags). The actual kick-off is left to the caller. 2172 */ 2173 __latent_entropy struct task_struct *copy_process( 2174 struct pid *pid, 2175 int trace, 2176 int node, 2177 struct kernel_clone_args *args) 2178 { 2179 int pidfd = -1, retval; 2180 struct task_struct *p; 2181 struct multiprocess_signals delayed; 2182 struct file *pidfile = NULL; 2183 const u64 clone_flags = args->flags; 2184 struct nsproxy *nsp = current->nsproxy; 2185 2186 /* 2187 * Don't allow sharing the root directory with processes in a different 2188 * namespace 2189 */ 2190 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2191 return ERR_PTR(-EINVAL); 2192 2193 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2194 return ERR_PTR(-EINVAL); 2195 2196 /* 2197 * Thread groups must share signals as well, and detached threads 2198 * can only be started up within the thread group. 2199 */ 2200 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2201 return ERR_PTR(-EINVAL); 2202 2203 /* 2204 * Shared signal handlers imply shared VM. By way of the above, 2205 * thread groups also imply shared VM. Blocking this case allows 2206 * for various simplifications in other code. 2207 */ 2208 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2209 return ERR_PTR(-EINVAL); 2210 2211 /* 2212 * Siblings of global init remain as zombies on exit since they are 2213 * not reaped by their parent (swapper). To solve this and to avoid 2214 * multi-rooted process trees, prevent global and container-inits 2215 * from creating siblings. 2216 */ 2217 if ((clone_flags & CLONE_PARENT) && 2218 current->signal->flags & SIGNAL_UNKILLABLE) 2219 return ERR_PTR(-EINVAL); 2220 2221 /* 2222 * If the new process will be in a different pid or user namespace 2223 * do not allow it to share a thread group with the forking task. 2224 */ 2225 if (clone_flags & CLONE_THREAD) { 2226 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2227 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2228 return ERR_PTR(-EINVAL); 2229 } 2230 2231 if (clone_flags & CLONE_PIDFD) { 2232 /* 2233 * - CLONE_DETACHED is blocked so that we can potentially 2234 * reuse it later for CLONE_PIDFD. 2235 */ 2236 if (clone_flags & CLONE_DETACHED) 2237 return ERR_PTR(-EINVAL); 2238 } 2239 2240 /* 2241 * Force any signals received before this point to be delivered 2242 * before the fork happens. Collect up signals sent to multiple 2243 * processes that happen during the fork and delay them so that 2244 * they appear to happen after the fork. 2245 */ 2246 sigemptyset(&delayed.signal); 2247 INIT_HLIST_NODE(&delayed.node); 2248 2249 spin_lock_irq(¤t->sighand->siglock); 2250 if (!(clone_flags & CLONE_THREAD)) 2251 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2252 recalc_sigpending(); 2253 spin_unlock_irq(¤t->sighand->siglock); 2254 retval = -ERESTARTNOINTR; 2255 if (task_sigpending(current)) 2256 goto fork_out; 2257 2258 retval = -ENOMEM; 2259 p = dup_task_struct(current, node); 2260 if (!p) 2261 goto fork_out; 2262 p->flags &= ~PF_KTHREAD; 2263 if (args->kthread) 2264 p->flags |= PF_KTHREAD; 2265 if (args->user_worker) { 2266 /* 2267 * Mark us a user worker, and block any signal that isn't 2268 * fatal or STOP 2269 */ 2270 p->flags |= PF_USER_WORKER; 2271 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2272 } 2273 if (args->io_thread) 2274 p->flags |= PF_IO_WORKER; 2275 2276 if (args->name) 2277 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2278 2279 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2280 /* 2281 * Clear TID on mm_release()? 2282 */ 2283 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2284 2285 ftrace_graph_init_task(p); 2286 2287 rt_mutex_init_task(p); 2288 2289 lockdep_assert_irqs_enabled(); 2290 #ifdef CONFIG_PROVE_LOCKING 2291 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2292 #endif 2293 retval = copy_creds(p, clone_flags); 2294 if (retval < 0) 2295 goto bad_fork_free; 2296 2297 retval = -EAGAIN; 2298 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2299 if (p->real_cred->user != INIT_USER && 2300 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2301 goto bad_fork_cleanup_count; 2302 } 2303 current->flags &= ~PF_NPROC_EXCEEDED; 2304 2305 /* 2306 * If multiple threads are within copy_process(), then this check 2307 * triggers too late. This doesn't hurt, the check is only there 2308 * to stop root fork bombs. 2309 */ 2310 retval = -EAGAIN; 2311 if (data_race(nr_threads >= max_threads)) 2312 goto bad_fork_cleanup_count; 2313 2314 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2315 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2316 p->flags |= PF_FORKNOEXEC; 2317 INIT_LIST_HEAD(&p->children); 2318 INIT_LIST_HEAD(&p->sibling); 2319 rcu_copy_process(p); 2320 p->vfork_done = NULL; 2321 spin_lock_init(&p->alloc_lock); 2322 2323 init_sigpending(&p->pending); 2324 2325 p->utime = p->stime = p->gtime = 0; 2326 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2327 p->utimescaled = p->stimescaled = 0; 2328 #endif 2329 prev_cputime_init(&p->prev_cputime); 2330 2331 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2332 seqcount_init(&p->vtime.seqcount); 2333 p->vtime.starttime = 0; 2334 p->vtime.state = VTIME_INACTIVE; 2335 #endif 2336 2337 #ifdef CONFIG_IO_URING 2338 p->io_uring = NULL; 2339 #endif 2340 2341 p->default_timer_slack_ns = current->timer_slack_ns; 2342 2343 #ifdef CONFIG_PSI 2344 p->psi_flags = 0; 2345 #endif 2346 2347 task_io_accounting_init(&p->ioac); 2348 acct_clear_integrals(p); 2349 2350 posix_cputimers_init(&p->posix_cputimers); 2351 tick_dep_init_task(p); 2352 2353 p->io_context = NULL; 2354 audit_set_context(p, NULL); 2355 cgroup_fork(p); 2356 if (args->kthread) { 2357 if (!set_kthread_struct(p)) 2358 goto bad_fork_cleanup_delayacct; 2359 } 2360 #ifdef CONFIG_NUMA 2361 p->mempolicy = mpol_dup(p->mempolicy); 2362 if (IS_ERR(p->mempolicy)) { 2363 retval = PTR_ERR(p->mempolicy); 2364 p->mempolicy = NULL; 2365 goto bad_fork_cleanup_delayacct; 2366 } 2367 #endif 2368 #ifdef CONFIG_CPUSETS 2369 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2370 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2371 #endif 2372 #ifdef CONFIG_TRACE_IRQFLAGS 2373 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2374 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2375 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2376 p->softirqs_enabled = 1; 2377 p->softirq_context = 0; 2378 #endif 2379 2380 p->pagefault_disabled = 0; 2381 2382 #ifdef CONFIG_LOCKDEP 2383 lockdep_init_task(p); 2384 #endif 2385 2386 #ifdef CONFIG_DEBUG_MUTEXES 2387 p->blocked_on = NULL; /* not blocked yet */ 2388 #endif 2389 #ifdef CONFIG_BCACHE 2390 p->sequential_io = 0; 2391 p->sequential_io_avg = 0; 2392 #endif 2393 #ifdef CONFIG_BPF_SYSCALL 2394 RCU_INIT_POINTER(p->bpf_storage, NULL); 2395 p->bpf_ctx = NULL; 2396 #endif 2397 2398 /* Perform scheduler related setup. Assign this task to a CPU. */ 2399 retval = sched_fork(clone_flags, p); 2400 if (retval) 2401 goto bad_fork_cleanup_policy; 2402 2403 retval = perf_event_init_task(p, clone_flags); 2404 if (retval) 2405 goto bad_fork_sched_cancel_fork; 2406 retval = audit_alloc(p); 2407 if (retval) 2408 goto bad_fork_cleanup_perf; 2409 /* copy all the process information */ 2410 shm_init_task(p); 2411 retval = security_task_alloc(p, clone_flags); 2412 if (retval) 2413 goto bad_fork_cleanup_audit; 2414 retval = copy_semundo(clone_flags, p); 2415 if (retval) 2416 goto bad_fork_cleanup_security; 2417 retval = copy_files(clone_flags, p, args->no_files); 2418 if (retval) 2419 goto bad_fork_cleanup_semundo; 2420 retval = copy_fs(clone_flags, p); 2421 if (retval) 2422 goto bad_fork_cleanup_files; 2423 retval = copy_sighand(clone_flags, p); 2424 if (retval) 2425 goto bad_fork_cleanup_fs; 2426 retval = copy_signal(clone_flags, p); 2427 if (retval) 2428 goto bad_fork_cleanup_sighand; 2429 retval = copy_mm(clone_flags, p); 2430 if (retval) 2431 goto bad_fork_cleanup_signal; 2432 retval = copy_namespaces(clone_flags, p); 2433 if (retval) 2434 goto bad_fork_cleanup_mm; 2435 retval = copy_io(clone_flags, p); 2436 if (retval) 2437 goto bad_fork_cleanup_namespaces; 2438 retval = copy_thread(p, args); 2439 if (retval) 2440 goto bad_fork_cleanup_io; 2441 2442 stackleak_task_init(p); 2443 2444 if (pid != &init_struct_pid) { 2445 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2446 args->set_tid_size); 2447 if (IS_ERR(pid)) { 2448 retval = PTR_ERR(pid); 2449 goto bad_fork_cleanup_thread; 2450 } 2451 } 2452 2453 /* 2454 * This has to happen after we've potentially unshared the file 2455 * descriptor table (so that the pidfd doesn't leak into the child 2456 * if the fd table isn't shared). 2457 */ 2458 if (clone_flags & CLONE_PIDFD) { 2459 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2460 2461 /* 2462 * Note that no task has been attached to @pid yet indicate 2463 * that via CLONE_PIDFD. 2464 */ 2465 retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile); 2466 if (retval < 0) 2467 goto bad_fork_free_pid; 2468 pidfd = retval; 2469 2470 retval = put_user(pidfd, args->pidfd); 2471 if (retval) 2472 goto bad_fork_put_pidfd; 2473 } 2474 2475 #ifdef CONFIG_BLOCK 2476 p->plug = NULL; 2477 #endif 2478 futex_init_task(p); 2479 2480 /* 2481 * sigaltstack should be cleared when sharing the same VM 2482 */ 2483 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2484 sas_ss_reset(p); 2485 2486 /* 2487 * Syscall tracing and stepping should be turned off in the 2488 * child regardless of CLONE_PTRACE. 2489 */ 2490 user_disable_single_step(p); 2491 clear_task_syscall_work(p, SYSCALL_TRACE); 2492 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2493 clear_task_syscall_work(p, SYSCALL_EMU); 2494 #endif 2495 clear_tsk_latency_tracing(p); 2496 2497 /* ok, now we should be set up.. */ 2498 p->pid = pid_nr(pid); 2499 if (clone_flags & CLONE_THREAD) { 2500 p->group_leader = current->group_leader; 2501 p->tgid = current->tgid; 2502 } else { 2503 p->group_leader = p; 2504 p->tgid = p->pid; 2505 } 2506 2507 p->nr_dirtied = 0; 2508 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2509 p->dirty_paused_when = 0; 2510 2511 p->pdeath_signal = 0; 2512 p->task_works = NULL; 2513 clear_posix_cputimers_work(p); 2514 2515 #ifdef CONFIG_KRETPROBES 2516 p->kretprobe_instances.first = NULL; 2517 #endif 2518 #ifdef CONFIG_RETHOOK 2519 p->rethooks.first = NULL; 2520 #endif 2521 2522 /* 2523 * Ensure that the cgroup subsystem policies allow the new process to be 2524 * forked. It should be noted that the new process's css_set can be changed 2525 * between here and cgroup_post_fork() if an organisation operation is in 2526 * progress. 2527 */ 2528 retval = cgroup_can_fork(p, args); 2529 if (retval) 2530 goto bad_fork_put_pidfd; 2531 2532 /* 2533 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2534 * the new task on the correct runqueue. All this *before* the task 2535 * becomes visible. 2536 * 2537 * This isn't part of ->can_fork() because while the re-cloning is 2538 * cgroup specific, it unconditionally needs to place the task on a 2539 * runqueue. 2540 */ 2541 retval = sched_cgroup_fork(p, args); 2542 if (retval) 2543 goto bad_fork_cancel_cgroup; 2544 2545 /* 2546 * From this point on we must avoid any synchronous user-space 2547 * communication until we take the tasklist-lock. In particular, we do 2548 * not want user-space to be able to predict the process start-time by 2549 * stalling fork(2) after we recorded the start_time but before it is 2550 * visible to the system. 2551 */ 2552 2553 p->start_time = ktime_get_ns(); 2554 p->start_boottime = ktime_get_boottime_ns(); 2555 2556 /* 2557 * Make it visible to the rest of the system, but dont wake it up yet. 2558 * Need tasklist lock for parent etc handling! 2559 */ 2560 write_lock_irq(&tasklist_lock); 2561 2562 /* CLONE_PARENT re-uses the old parent */ 2563 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2564 p->real_parent = current->real_parent; 2565 p->parent_exec_id = current->parent_exec_id; 2566 if (clone_flags & CLONE_THREAD) 2567 p->exit_signal = -1; 2568 else 2569 p->exit_signal = current->group_leader->exit_signal; 2570 } else { 2571 p->real_parent = current; 2572 p->parent_exec_id = current->self_exec_id; 2573 p->exit_signal = args->exit_signal; 2574 } 2575 2576 klp_copy_process(p); 2577 2578 sched_core_fork(p); 2579 2580 spin_lock(¤t->sighand->siglock); 2581 2582 rv_task_fork(p); 2583 2584 rseq_fork(p, clone_flags); 2585 2586 /* Don't start children in a dying pid namespace */ 2587 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2588 retval = -ENOMEM; 2589 goto bad_fork_core_free; 2590 } 2591 2592 /* Let kill terminate clone/fork in the middle */ 2593 if (fatal_signal_pending(current)) { 2594 retval = -EINTR; 2595 goto bad_fork_core_free; 2596 } 2597 2598 /* No more failure paths after this point. */ 2599 2600 /* 2601 * Copy seccomp details explicitly here, in case they were changed 2602 * before holding sighand lock. 2603 */ 2604 copy_seccomp(p); 2605 2606 init_task_pid_links(p); 2607 if (likely(p->pid)) { 2608 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2609 2610 init_task_pid(p, PIDTYPE_PID, pid); 2611 if (thread_group_leader(p)) { 2612 init_task_pid(p, PIDTYPE_TGID, pid); 2613 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2614 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2615 2616 if (is_child_reaper(pid)) { 2617 ns_of_pid(pid)->child_reaper = p; 2618 p->signal->flags |= SIGNAL_UNKILLABLE; 2619 } 2620 p->signal->shared_pending.signal = delayed.signal; 2621 p->signal->tty = tty_kref_get(current->signal->tty); 2622 /* 2623 * Inherit has_child_subreaper flag under the same 2624 * tasklist_lock with adding child to the process tree 2625 * for propagate_has_child_subreaper optimization. 2626 */ 2627 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2628 p->real_parent->signal->is_child_subreaper; 2629 list_add_tail(&p->sibling, &p->real_parent->children); 2630 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2631 attach_pid(p, PIDTYPE_TGID); 2632 attach_pid(p, PIDTYPE_PGID); 2633 attach_pid(p, PIDTYPE_SID); 2634 __this_cpu_inc(process_counts); 2635 } else { 2636 current->signal->nr_threads++; 2637 current->signal->quick_threads++; 2638 atomic_inc(¤t->signal->live); 2639 refcount_inc(¤t->signal->sigcnt); 2640 task_join_group_stop(p); 2641 list_add_tail_rcu(&p->thread_node, 2642 &p->signal->thread_head); 2643 } 2644 attach_pid(p, PIDTYPE_PID); 2645 nr_threads++; 2646 } 2647 total_forks++; 2648 hlist_del_init(&delayed.node); 2649 spin_unlock(¤t->sighand->siglock); 2650 syscall_tracepoint_update(p); 2651 write_unlock_irq(&tasklist_lock); 2652 2653 if (pidfile) 2654 fd_install(pidfd, pidfile); 2655 2656 proc_fork_connector(p); 2657 sched_post_fork(p); 2658 cgroup_post_fork(p, args); 2659 perf_event_fork(p); 2660 2661 trace_task_newtask(p, clone_flags); 2662 uprobe_copy_process(p, clone_flags); 2663 user_events_fork(p, clone_flags); 2664 2665 copy_oom_score_adj(clone_flags, p); 2666 2667 return p; 2668 2669 bad_fork_core_free: 2670 sched_core_free(p); 2671 spin_unlock(¤t->sighand->siglock); 2672 write_unlock_irq(&tasklist_lock); 2673 bad_fork_cancel_cgroup: 2674 cgroup_cancel_fork(p, args); 2675 bad_fork_put_pidfd: 2676 if (clone_flags & CLONE_PIDFD) { 2677 fput(pidfile); 2678 put_unused_fd(pidfd); 2679 } 2680 bad_fork_free_pid: 2681 if (pid != &init_struct_pid) 2682 free_pid(pid); 2683 bad_fork_cleanup_thread: 2684 exit_thread(p); 2685 bad_fork_cleanup_io: 2686 if (p->io_context) 2687 exit_io_context(p); 2688 bad_fork_cleanup_namespaces: 2689 exit_task_namespaces(p); 2690 bad_fork_cleanup_mm: 2691 if (p->mm) { 2692 mm_clear_owner(p->mm, p); 2693 mmput(p->mm); 2694 } 2695 bad_fork_cleanup_signal: 2696 if (!(clone_flags & CLONE_THREAD)) 2697 free_signal_struct(p->signal); 2698 bad_fork_cleanup_sighand: 2699 __cleanup_sighand(p->sighand); 2700 bad_fork_cleanup_fs: 2701 exit_fs(p); /* blocking */ 2702 bad_fork_cleanup_files: 2703 exit_files(p); /* blocking */ 2704 bad_fork_cleanup_semundo: 2705 exit_sem(p); 2706 bad_fork_cleanup_security: 2707 security_task_free(p); 2708 bad_fork_cleanup_audit: 2709 audit_free(p); 2710 bad_fork_cleanup_perf: 2711 perf_event_free_task(p); 2712 bad_fork_sched_cancel_fork: 2713 sched_cancel_fork(p); 2714 bad_fork_cleanup_policy: 2715 lockdep_free_task(p); 2716 #ifdef CONFIG_NUMA 2717 mpol_put(p->mempolicy); 2718 #endif 2719 bad_fork_cleanup_delayacct: 2720 delayacct_tsk_free(p); 2721 bad_fork_cleanup_count: 2722 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2723 exit_creds(p); 2724 bad_fork_free: 2725 WRITE_ONCE(p->__state, TASK_DEAD); 2726 exit_task_stack_account(p); 2727 put_task_stack(p); 2728 delayed_free_task(p); 2729 fork_out: 2730 spin_lock_irq(¤t->sighand->siglock); 2731 hlist_del_init(&delayed.node); 2732 spin_unlock_irq(¤t->sighand->siglock); 2733 return ERR_PTR(retval); 2734 } 2735 2736 static inline void init_idle_pids(struct task_struct *idle) 2737 { 2738 enum pid_type type; 2739 2740 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2741 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2742 init_task_pid(idle, type, &init_struct_pid); 2743 } 2744 } 2745 2746 static int idle_dummy(void *dummy) 2747 { 2748 /* This function is never called */ 2749 return 0; 2750 } 2751 2752 struct task_struct * __init fork_idle(int cpu) 2753 { 2754 struct task_struct *task; 2755 struct kernel_clone_args args = { 2756 .flags = CLONE_VM, 2757 .fn = &idle_dummy, 2758 .fn_arg = NULL, 2759 .kthread = 1, 2760 .idle = 1, 2761 }; 2762 2763 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2764 if (!IS_ERR(task)) { 2765 init_idle_pids(task); 2766 init_idle(task, cpu); 2767 } 2768 2769 return task; 2770 } 2771 2772 /* 2773 * This is like kernel_clone(), but shaved down and tailored to just 2774 * creating io_uring workers. It returns a created task, or an error pointer. 2775 * The returned task is inactive, and the caller must fire it up through 2776 * wake_up_new_task(p). All signals are blocked in the created task. 2777 */ 2778 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2779 { 2780 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2781 CLONE_IO; 2782 struct kernel_clone_args args = { 2783 .flags = ((lower_32_bits(flags) | CLONE_VM | 2784 CLONE_UNTRACED) & ~CSIGNAL), 2785 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2786 .fn = fn, 2787 .fn_arg = arg, 2788 .io_thread = 1, 2789 .user_worker = 1, 2790 }; 2791 2792 return copy_process(NULL, 0, node, &args); 2793 } 2794 2795 /* 2796 * Ok, this is the main fork-routine. 2797 * 2798 * It copies the process, and if successful kick-starts 2799 * it and waits for it to finish using the VM if required. 2800 * 2801 * args->exit_signal is expected to be checked for sanity by the caller. 2802 */ 2803 pid_t kernel_clone(struct kernel_clone_args *args) 2804 { 2805 u64 clone_flags = args->flags; 2806 struct completion vfork; 2807 struct pid *pid; 2808 struct task_struct *p; 2809 int trace = 0; 2810 pid_t nr; 2811 2812 /* 2813 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2814 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2815 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2816 * field in struct clone_args and it still doesn't make sense to have 2817 * them both point at the same memory location. Performing this check 2818 * here has the advantage that we don't need to have a separate helper 2819 * to check for legacy clone(). 2820 */ 2821 if ((clone_flags & CLONE_PIDFD) && 2822 (clone_flags & CLONE_PARENT_SETTID) && 2823 (args->pidfd == args->parent_tid)) 2824 return -EINVAL; 2825 2826 /* 2827 * Determine whether and which event to report to ptracer. When 2828 * called from kernel_thread or CLONE_UNTRACED is explicitly 2829 * requested, no event is reported; otherwise, report if the event 2830 * for the type of forking is enabled. 2831 */ 2832 if (!(clone_flags & CLONE_UNTRACED)) { 2833 if (clone_flags & CLONE_VFORK) 2834 trace = PTRACE_EVENT_VFORK; 2835 else if (args->exit_signal != SIGCHLD) 2836 trace = PTRACE_EVENT_CLONE; 2837 else 2838 trace = PTRACE_EVENT_FORK; 2839 2840 if (likely(!ptrace_event_enabled(current, trace))) 2841 trace = 0; 2842 } 2843 2844 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2845 add_latent_entropy(); 2846 2847 if (IS_ERR(p)) 2848 return PTR_ERR(p); 2849 2850 /* 2851 * Do this prior waking up the new thread - the thread pointer 2852 * might get invalid after that point, if the thread exits quickly. 2853 */ 2854 trace_sched_process_fork(current, p); 2855 2856 pid = get_task_pid(p, PIDTYPE_PID); 2857 nr = pid_vnr(pid); 2858 2859 if (clone_flags & CLONE_PARENT_SETTID) 2860 put_user(nr, args->parent_tid); 2861 2862 if (clone_flags & CLONE_VFORK) { 2863 p->vfork_done = &vfork; 2864 init_completion(&vfork); 2865 get_task_struct(p); 2866 } 2867 2868 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2869 /* lock the task to synchronize with memcg migration */ 2870 task_lock(p); 2871 lru_gen_add_mm(p->mm); 2872 task_unlock(p); 2873 } 2874 2875 wake_up_new_task(p); 2876 2877 /* forking complete and child started to run, tell ptracer */ 2878 if (unlikely(trace)) 2879 ptrace_event_pid(trace, pid); 2880 2881 if (clone_flags & CLONE_VFORK) { 2882 if (!wait_for_vfork_done(p, &vfork)) 2883 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2884 } 2885 2886 put_pid(pid); 2887 return nr; 2888 } 2889 2890 /* 2891 * Create a kernel thread. 2892 */ 2893 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2894 unsigned long flags) 2895 { 2896 struct kernel_clone_args args = { 2897 .flags = ((lower_32_bits(flags) | CLONE_VM | 2898 CLONE_UNTRACED) & ~CSIGNAL), 2899 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2900 .fn = fn, 2901 .fn_arg = arg, 2902 .name = name, 2903 .kthread = 1, 2904 }; 2905 2906 return kernel_clone(&args); 2907 } 2908 2909 /* 2910 * Create a user mode thread. 2911 */ 2912 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2913 { 2914 struct kernel_clone_args args = { 2915 .flags = ((lower_32_bits(flags) | CLONE_VM | 2916 CLONE_UNTRACED) & ~CSIGNAL), 2917 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2918 .fn = fn, 2919 .fn_arg = arg, 2920 }; 2921 2922 return kernel_clone(&args); 2923 } 2924 2925 #ifdef __ARCH_WANT_SYS_FORK 2926 SYSCALL_DEFINE0(fork) 2927 { 2928 #ifdef CONFIG_MMU 2929 struct kernel_clone_args args = { 2930 .exit_signal = SIGCHLD, 2931 }; 2932 2933 return kernel_clone(&args); 2934 #else 2935 /* can not support in nommu mode */ 2936 return -EINVAL; 2937 #endif 2938 } 2939 #endif 2940 2941 #ifdef __ARCH_WANT_SYS_VFORK 2942 SYSCALL_DEFINE0(vfork) 2943 { 2944 struct kernel_clone_args args = { 2945 .flags = CLONE_VFORK | CLONE_VM, 2946 .exit_signal = SIGCHLD, 2947 }; 2948 2949 return kernel_clone(&args); 2950 } 2951 #endif 2952 2953 #ifdef __ARCH_WANT_SYS_CLONE 2954 #ifdef CONFIG_CLONE_BACKWARDS 2955 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2956 int __user *, parent_tidptr, 2957 unsigned long, tls, 2958 int __user *, child_tidptr) 2959 #elif defined(CONFIG_CLONE_BACKWARDS2) 2960 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2961 int __user *, parent_tidptr, 2962 int __user *, child_tidptr, 2963 unsigned long, tls) 2964 #elif defined(CONFIG_CLONE_BACKWARDS3) 2965 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2966 int, stack_size, 2967 int __user *, parent_tidptr, 2968 int __user *, child_tidptr, 2969 unsigned long, tls) 2970 #else 2971 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2972 int __user *, parent_tidptr, 2973 int __user *, child_tidptr, 2974 unsigned long, tls) 2975 #endif 2976 { 2977 struct kernel_clone_args args = { 2978 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2979 .pidfd = parent_tidptr, 2980 .child_tid = child_tidptr, 2981 .parent_tid = parent_tidptr, 2982 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2983 .stack = newsp, 2984 .tls = tls, 2985 }; 2986 2987 return kernel_clone(&args); 2988 } 2989 #endif 2990 2991 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2992 struct clone_args __user *uargs, 2993 size_t usize) 2994 { 2995 int err; 2996 struct clone_args args; 2997 pid_t *kset_tid = kargs->set_tid; 2998 2999 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3000 CLONE_ARGS_SIZE_VER0); 3001 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3002 CLONE_ARGS_SIZE_VER1); 3003 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3004 CLONE_ARGS_SIZE_VER2); 3005 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3006 3007 if (unlikely(usize > PAGE_SIZE)) 3008 return -E2BIG; 3009 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3010 return -EINVAL; 3011 3012 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3013 if (err) 3014 return err; 3015 3016 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3017 return -EINVAL; 3018 3019 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3020 return -EINVAL; 3021 3022 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3023 return -EINVAL; 3024 3025 /* 3026 * Verify that higher 32bits of exit_signal are unset and that 3027 * it is a valid signal 3028 */ 3029 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3030 !valid_signal(args.exit_signal))) 3031 return -EINVAL; 3032 3033 if ((args.flags & CLONE_INTO_CGROUP) && 3034 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3035 return -EINVAL; 3036 3037 *kargs = (struct kernel_clone_args){ 3038 .flags = args.flags, 3039 .pidfd = u64_to_user_ptr(args.pidfd), 3040 .child_tid = u64_to_user_ptr(args.child_tid), 3041 .parent_tid = u64_to_user_ptr(args.parent_tid), 3042 .exit_signal = args.exit_signal, 3043 .stack = args.stack, 3044 .stack_size = args.stack_size, 3045 .tls = args.tls, 3046 .set_tid_size = args.set_tid_size, 3047 .cgroup = args.cgroup, 3048 }; 3049 3050 if (args.set_tid && 3051 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3052 (kargs->set_tid_size * sizeof(pid_t)))) 3053 return -EFAULT; 3054 3055 kargs->set_tid = kset_tid; 3056 3057 return 0; 3058 } 3059 3060 /** 3061 * clone3_stack_valid - check and prepare stack 3062 * @kargs: kernel clone args 3063 * 3064 * Verify that the stack arguments userspace gave us are sane. 3065 * In addition, set the stack direction for userspace since it's easy for us to 3066 * determine. 3067 */ 3068 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3069 { 3070 if (kargs->stack == 0) { 3071 if (kargs->stack_size > 0) 3072 return false; 3073 } else { 3074 if (kargs->stack_size == 0) 3075 return false; 3076 3077 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3078 return false; 3079 3080 #if !defined(CONFIG_STACK_GROWSUP) 3081 kargs->stack += kargs->stack_size; 3082 #endif 3083 } 3084 3085 return true; 3086 } 3087 3088 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3089 { 3090 /* Verify that no unknown flags are passed along. */ 3091 if (kargs->flags & 3092 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3093 return false; 3094 3095 /* 3096 * - make the CLONE_DETACHED bit reusable for clone3 3097 * - make the CSIGNAL bits reusable for clone3 3098 */ 3099 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3100 return false; 3101 3102 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3103 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3104 return false; 3105 3106 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3107 kargs->exit_signal) 3108 return false; 3109 3110 if (!clone3_stack_valid(kargs)) 3111 return false; 3112 3113 return true; 3114 } 3115 3116 /** 3117 * sys_clone3 - create a new process with specific properties 3118 * @uargs: argument structure 3119 * @size: size of @uargs 3120 * 3121 * clone3() is the extensible successor to clone()/clone2(). 3122 * It takes a struct as argument that is versioned by its size. 3123 * 3124 * Return: On success, a positive PID for the child process. 3125 * On error, a negative errno number. 3126 */ 3127 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3128 { 3129 int err; 3130 3131 struct kernel_clone_args kargs; 3132 pid_t set_tid[MAX_PID_NS_LEVEL]; 3133 3134 #ifdef __ARCH_BROKEN_SYS_CLONE3 3135 #warning clone3() entry point is missing, please fix 3136 return -ENOSYS; 3137 #endif 3138 3139 kargs.set_tid = set_tid; 3140 3141 err = copy_clone_args_from_user(&kargs, uargs, size); 3142 if (err) 3143 return err; 3144 3145 if (!clone3_args_valid(&kargs)) 3146 return -EINVAL; 3147 3148 return kernel_clone(&kargs); 3149 } 3150 3151 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3152 { 3153 struct task_struct *leader, *parent, *child; 3154 int res; 3155 3156 read_lock(&tasklist_lock); 3157 leader = top = top->group_leader; 3158 down: 3159 for_each_thread(leader, parent) { 3160 list_for_each_entry(child, &parent->children, sibling) { 3161 res = visitor(child, data); 3162 if (res) { 3163 if (res < 0) 3164 goto out; 3165 leader = child; 3166 goto down; 3167 } 3168 up: 3169 ; 3170 } 3171 } 3172 3173 if (leader != top) { 3174 child = leader; 3175 parent = child->real_parent; 3176 leader = parent->group_leader; 3177 goto up; 3178 } 3179 out: 3180 read_unlock(&tasklist_lock); 3181 } 3182 3183 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3184 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3185 #endif 3186 3187 static void sighand_ctor(void *data) 3188 { 3189 struct sighand_struct *sighand = data; 3190 3191 spin_lock_init(&sighand->siglock); 3192 init_waitqueue_head(&sighand->signalfd_wqh); 3193 } 3194 3195 void __init mm_cache_init(void) 3196 { 3197 unsigned int mm_size; 3198 3199 /* 3200 * The mm_cpumask is located at the end of mm_struct, and is 3201 * dynamically sized based on the maximum CPU number this system 3202 * can have, taking hotplug into account (nr_cpu_ids). 3203 */ 3204 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3205 3206 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3207 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3208 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3209 offsetof(struct mm_struct, saved_auxv), 3210 sizeof_field(struct mm_struct, saved_auxv), 3211 NULL); 3212 } 3213 3214 void __init proc_caches_init(void) 3215 { 3216 struct kmem_cache_args args = { 3217 .use_freeptr_offset = true, 3218 .freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr), 3219 }; 3220 3221 sighand_cachep = kmem_cache_create("sighand_cache", 3222 sizeof(struct sighand_struct), 0, 3223 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3224 SLAB_ACCOUNT, sighand_ctor); 3225 signal_cachep = kmem_cache_create("signal_cache", 3226 sizeof(struct signal_struct), 0, 3227 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3228 NULL); 3229 files_cachep = kmem_cache_create("files_cache", 3230 sizeof(struct files_struct), 0, 3231 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3232 NULL); 3233 fs_cachep = kmem_cache_create("fs_cache", 3234 sizeof(struct fs_struct), 0, 3235 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3236 NULL); 3237 vm_area_cachep = kmem_cache_create("vm_area_struct", 3238 sizeof(struct vm_area_struct), &args, 3239 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3240 SLAB_ACCOUNT); 3241 mmap_init(); 3242 nsproxy_cache_init(); 3243 } 3244 3245 /* 3246 * Check constraints on flags passed to the unshare system call. 3247 */ 3248 static int check_unshare_flags(unsigned long unshare_flags) 3249 { 3250 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3251 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3252 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3253 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3254 CLONE_NEWTIME)) 3255 return -EINVAL; 3256 /* 3257 * Not implemented, but pretend it works if there is nothing 3258 * to unshare. Note that unsharing the address space or the 3259 * signal handlers also need to unshare the signal queues (aka 3260 * CLONE_THREAD). 3261 */ 3262 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3263 if (!thread_group_empty(current)) 3264 return -EINVAL; 3265 } 3266 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3267 if (refcount_read(¤t->sighand->count) > 1) 3268 return -EINVAL; 3269 } 3270 if (unshare_flags & CLONE_VM) { 3271 if (!current_is_single_threaded()) 3272 return -EINVAL; 3273 } 3274 3275 return 0; 3276 } 3277 3278 /* 3279 * Unshare the filesystem structure if it is being shared 3280 */ 3281 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3282 { 3283 struct fs_struct *fs = current->fs; 3284 3285 if (!(unshare_flags & CLONE_FS) || !fs) 3286 return 0; 3287 3288 /* don't need lock here; in the worst case we'll do useless copy */ 3289 if (fs->users == 1) 3290 return 0; 3291 3292 *new_fsp = copy_fs_struct(fs); 3293 if (!*new_fsp) 3294 return -ENOMEM; 3295 3296 return 0; 3297 } 3298 3299 /* 3300 * Unshare file descriptor table if it is being shared 3301 */ 3302 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3303 { 3304 struct files_struct *fd = current->files; 3305 3306 if ((unshare_flags & CLONE_FILES) && 3307 (fd && atomic_read(&fd->count) > 1)) { 3308 fd = dup_fd(fd, NULL); 3309 if (IS_ERR(fd)) 3310 return PTR_ERR(fd); 3311 *new_fdp = fd; 3312 } 3313 3314 return 0; 3315 } 3316 3317 /* 3318 * unshare allows a process to 'unshare' part of the process 3319 * context which was originally shared using clone. copy_* 3320 * functions used by kernel_clone() cannot be used here directly 3321 * because they modify an inactive task_struct that is being 3322 * constructed. Here we are modifying the current, active, 3323 * task_struct. 3324 */ 3325 int ksys_unshare(unsigned long unshare_flags) 3326 { 3327 struct fs_struct *fs, *new_fs = NULL; 3328 struct files_struct *new_fd = NULL; 3329 struct cred *new_cred = NULL; 3330 struct nsproxy *new_nsproxy = NULL; 3331 int do_sysvsem = 0; 3332 int err; 3333 3334 /* 3335 * If unsharing a user namespace must also unshare the thread group 3336 * and unshare the filesystem root and working directories. 3337 */ 3338 if (unshare_flags & CLONE_NEWUSER) 3339 unshare_flags |= CLONE_THREAD | CLONE_FS; 3340 /* 3341 * If unsharing vm, must also unshare signal handlers. 3342 */ 3343 if (unshare_flags & CLONE_VM) 3344 unshare_flags |= CLONE_SIGHAND; 3345 /* 3346 * If unsharing a signal handlers, must also unshare the signal queues. 3347 */ 3348 if (unshare_flags & CLONE_SIGHAND) 3349 unshare_flags |= CLONE_THREAD; 3350 /* 3351 * If unsharing namespace, must also unshare filesystem information. 3352 */ 3353 if (unshare_flags & CLONE_NEWNS) 3354 unshare_flags |= CLONE_FS; 3355 3356 err = check_unshare_flags(unshare_flags); 3357 if (err) 3358 goto bad_unshare_out; 3359 /* 3360 * CLONE_NEWIPC must also detach from the undolist: after switching 3361 * to a new ipc namespace, the semaphore arrays from the old 3362 * namespace are unreachable. 3363 */ 3364 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3365 do_sysvsem = 1; 3366 err = unshare_fs(unshare_flags, &new_fs); 3367 if (err) 3368 goto bad_unshare_out; 3369 err = unshare_fd(unshare_flags, &new_fd); 3370 if (err) 3371 goto bad_unshare_cleanup_fs; 3372 err = unshare_userns(unshare_flags, &new_cred); 3373 if (err) 3374 goto bad_unshare_cleanup_fd; 3375 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3376 new_cred, new_fs); 3377 if (err) 3378 goto bad_unshare_cleanup_cred; 3379 3380 if (new_cred) { 3381 err = set_cred_ucounts(new_cred); 3382 if (err) 3383 goto bad_unshare_cleanup_cred; 3384 } 3385 3386 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3387 if (do_sysvsem) { 3388 /* 3389 * CLONE_SYSVSEM is equivalent to sys_exit(). 3390 */ 3391 exit_sem(current); 3392 } 3393 if (unshare_flags & CLONE_NEWIPC) { 3394 /* Orphan segments in old ns (see sem above). */ 3395 exit_shm(current); 3396 shm_init_task(current); 3397 } 3398 3399 if (new_nsproxy) 3400 switch_task_namespaces(current, new_nsproxy); 3401 3402 task_lock(current); 3403 3404 if (new_fs) { 3405 fs = current->fs; 3406 spin_lock(&fs->lock); 3407 current->fs = new_fs; 3408 if (--fs->users) 3409 new_fs = NULL; 3410 else 3411 new_fs = fs; 3412 spin_unlock(&fs->lock); 3413 } 3414 3415 if (new_fd) 3416 swap(current->files, new_fd); 3417 3418 task_unlock(current); 3419 3420 if (new_cred) { 3421 /* Install the new user namespace */ 3422 commit_creds(new_cred); 3423 new_cred = NULL; 3424 } 3425 } 3426 3427 perf_event_namespaces(current); 3428 3429 bad_unshare_cleanup_cred: 3430 if (new_cred) 3431 put_cred(new_cred); 3432 bad_unshare_cleanup_fd: 3433 if (new_fd) 3434 put_files_struct(new_fd); 3435 3436 bad_unshare_cleanup_fs: 3437 if (new_fs) 3438 free_fs_struct(new_fs); 3439 3440 bad_unshare_out: 3441 return err; 3442 } 3443 3444 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3445 { 3446 return ksys_unshare(unshare_flags); 3447 } 3448 3449 /* 3450 * Helper to unshare the files of the current task. 3451 * We don't want to expose copy_files internals to 3452 * the exec layer of the kernel. 3453 */ 3454 3455 int unshare_files(void) 3456 { 3457 struct task_struct *task = current; 3458 struct files_struct *old, *copy = NULL; 3459 int error; 3460 3461 error = unshare_fd(CLONE_FILES, ©); 3462 if (error || !copy) 3463 return error; 3464 3465 old = task->files; 3466 task_lock(task); 3467 task->files = copy; 3468 task_unlock(task); 3469 put_files_struct(old); 3470 return 0; 3471 } 3472 3473 int sysctl_max_threads(const struct ctl_table *table, int write, 3474 void *buffer, size_t *lenp, loff_t *ppos) 3475 { 3476 struct ctl_table t; 3477 int ret; 3478 int threads = max_threads; 3479 int min = 1; 3480 int max = MAX_THREADS; 3481 3482 t = *table; 3483 t.data = &threads; 3484 t.extra1 = &min; 3485 t.extra2 = &max; 3486 3487 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3488 if (ret || !write) 3489 return ret; 3490 3491 max_threads = threads; 3492 3493 return 0; 3494 } 3495