xref: /linux/kernel/fork.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
48 
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
55 
56 /*
57  * Protected counters by write_lock_irq(&tasklist_lock)
58  */
59 unsigned long total_forks;	/* Handle normal Linux uptimes. */
60 int nr_threads; 		/* The idle threads do not count.. */
61 
62 int max_threads;		/* tunable limit on nr_threads */
63 
64 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
65 
66 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
67 
68 int nr_processes(void)
69 {
70 	int cpu;
71 	int total = 0;
72 
73 	for_each_online_cpu(cpu)
74 		total += per_cpu(process_counts, cpu);
75 
76 	return total;
77 }
78 
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84 
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 static kmem_cache_t *signal_cachep;
87 
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
90 
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
93 
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
96 
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
99 
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
102 
103 void free_task(struct task_struct *tsk)
104 {
105 	free_thread_info(tsk->thread_info);
106 	rt_mutex_debug_task_free(tsk);
107 	free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110 
111 void __put_task_struct(struct task_struct *tsk)
112 {
113 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 	WARN_ON(atomic_read(&tsk->usage));
115 	WARN_ON(tsk == current);
116 
117 	security_task_free(tsk);
118 	free_uid(tsk->user);
119 	put_group_info(tsk->group_info);
120 	delayacct_tsk_free(tsk);
121 
122 	if (!profile_handoff_task(tsk))
123 		free_task(tsk);
124 }
125 
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
131 #endif
132 	/* create a slab on which task_structs can be allocated */
133 	task_struct_cachep =
134 		kmem_cache_create("task_struct", sizeof(struct task_struct),
135 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137 
138 	/*
139 	 * The default maximum number of threads is set to a safe
140 	 * value: the thread structures can take up at most half
141 	 * of memory.
142 	 */
143 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 
145 	/*
146 	 * we need to allow at least 20 threads to boot a system
147 	 */
148 	if(max_threads < 20)
149 		max_threads = 20;
150 
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 		init_task.signal->rlim[RLIMIT_NPROC];
155 }
156 
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159 	struct task_struct *tsk;
160 	struct thread_info *ti;
161 
162 	prepare_to_copy(orig);
163 
164 	tsk = alloc_task_struct();
165 	if (!tsk)
166 		return NULL;
167 
168 	ti = alloc_thread_info(tsk);
169 	if (!ti) {
170 		free_task_struct(tsk);
171 		return NULL;
172 	}
173 
174 	*tsk = *orig;
175 	tsk->thread_info = ti;
176 	setup_thread_stack(tsk, orig);
177 
178 	/* One for us, one for whoever does the "release_task()" (usually parent) */
179 	atomic_set(&tsk->usage,2);
180 	atomic_set(&tsk->fs_excl, 0);
181 	tsk->btrace_seq = 0;
182 	tsk->splice_pipe = NULL;
183 	return tsk;
184 }
185 
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 {
189 	struct vm_area_struct *mpnt, *tmp, **pprev;
190 	struct rb_node **rb_link, *rb_parent;
191 	int retval;
192 	unsigned long charge;
193 	struct mempolicy *pol;
194 
195 	down_write(&oldmm->mmap_sem);
196 	flush_cache_mm(oldmm);
197 	/*
198 	 * Not linked in yet - no deadlock potential:
199 	 */
200 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
201 
202 	mm->locked_vm = 0;
203 	mm->mmap = NULL;
204 	mm->mmap_cache = NULL;
205 	mm->free_area_cache = oldmm->mmap_base;
206 	mm->cached_hole_size = ~0UL;
207 	mm->map_count = 0;
208 	cpus_clear(mm->cpu_vm_mask);
209 	mm->mm_rb = RB_ROOT;
210 	rb_link = &mm->mm_rb.rb_node;
211 	rb_parent = NULL;
212 	pprev = &mm->mmap;
213 
214 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
215 		struct file *file;
216 
217 		if (mpnt->vm_flags & VM_DONTCOPY) {
218 			long pages = vma_pages(mpnt);
219 			mm->total_vm -= pages;
220 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
221 								-pages);
222 			continue;
223 		}
224 		charge = 0;
225 		if (mpnt->vm_flags & VM_ACCOUNT) {
226 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
227 			if (security_vm_enough_memory(len))
228 				goto fail_nomem;
229 			charge = len;
230 		}
231 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
232 		if (!tmp)
233 			goto fail_nomem;
234 		*tmp = *mpnt;
235 		pol = mpol_copy(vma_policy(mpnt));
236 		retval = PTR_ERR(pol);
237 		if (IS_ERR(pol))
238 			goto fail_nomem_policy;
239 		vma_set_policy(tmp, pol);
240 		tmp->vm_flags &= ~VM_LOCKED;
241 		tmp->vm_mm = mm;
242 		tmp->vm_next = NULL;
243 		anon_vma_link(tmp);
244 		file = tmp->vm_file;
245 		if (file) {
246 			struct inode *inode = file->f_dentry->d_inode;
247 			get_file(file);
248 			if (tmp->vm_flags & VM_DENYWRITE)
249 				atomic_dec(&inode->i_writecount);
250 
251 			/* insert tmp into the share list, just after mpnt */
252 			spin_lock(&file->f_mapping->i_mmap_lock);
253 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
254 			flush_dcache_mmap_lock(file->f_mapping);
255 			vma_prio_tree_add(tmp, mpnt);
256 			flush_dcache_mmap_unlock(file->f_mapping);
257 			spin_unlock(&file->f_mapping->i_mmap_lock);
258 		}
259 
260 		/*
261 		 * Link in the new vma and copy the page table entries.
262 		 */
263 		*pprev = tmp;
264 		pprev = &tmp->vm_next;
265 
266 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
267 		rb_link = &tmp->vm_rb.rb_right;
268 		rb_parent = &tmp->vm_rb;
269 
270 		mm->map_count++;
271 		retval = copy_page_range(mm, oldmm, mpnt);
272 
273 		if (tmp->vm_ops && tmp->vm_ops->open)
274 			tmp->vm_ops->open(tmp);
275 
276 		if (retval)
277 			goto out;
278 	}
279 	retval = 0;
280 out:
281 	up_write(&mm->mmap_sem);
282 	flush_tlb_mm(oldmm);
283 	up_write(&oldmm->mmap_sem);
284 	return retval;
285 fail_nomem_policy:
286 	kmem_cache_free(vm_area_cachep, tmp);
287 fail_nomem:
288 	retval = -ENOMEM;
289 	vm_unacct_memory(charge);
290 	goto out;
291 }
292 
293 static inline int mm_alloc_pgd(struct mm_struct * mm)
294 {
295 	mm->pgd = pgd_alloc(mm);
296 	if (unlikely(!mm->pgd))
297 		return -ENOMEM;
298 	return 0;
299 }
300 
301 static inline void mm_free_pgd(struct mm_struct * mm)
302 {
303 	pgd_free(mm->pgd);
304 }
305 #else
306 #define dup_mmap(mm, oldmm)	(0)
307 #define mm_alloc_pgd(mm)	(0)
308 #define mm_free_pgd(mm)
309 #endif /* CONFIG_MMU */
310 
311  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
312 
313 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
314 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
315 
316 #include <linux/init_task.h>
317 
318 static struct mm_struct * mm_init(struct mm_struct * mm)
319 {
320 	atomic_set(&mm->mm_users, 1);
321 	atomic_set(&mm->mm_count, 1);
322 	init_rwsem(&mm->mmap_sem);
323 	INIT_LIST_HEAD(&mm->mmlist);
324 	mm->core_waiters = 0;
325 	mm->nr_ptes = 0;
326 	set_mm_counter(mm, file_rss, 0);
327 	set_mm_counter(mm, anon_rss, 0);
328 	spin_lock_init(&mm->page_table_lock);
329 	rwlock_init(&mm->ioctx_list_lock);
330 	mm->ioctx_list = NULL;
331 	mm->free_area_cache = TASK_UNMAPPED_BASE;
332 	mm->cached_hole_size = ~0UL;
333 
334 	if (likely(!mm_alloc_pgd(mm))) {
335 		mm->def_flags = 0;
336 		return mm;
337 	}
338 	free_mm(mm);
339 	return NULL;
340 }
341 
342 /*
343  * Allocate and initialize an mm_struct.
344  */
345 struct mm_struct * mm_alloc(void)
346 {
347 	struct mm_struct * mm;
348 
349 	mm = allocate_mm();
350 	if (mm) {
351 		memset(mm, 0, sizeof(*mm));
352 		mm = mm_init(mm);
353 	}
354 	return mm;
355 }
356 
357 /*
358  * Called when the last reference to the mm
359  * is dropped: either by a lazy thread or by
360  * mmput. Free the page directory and the mm.
361  */
362 void fastcall __mmdrop(struct mm_struct *mm)
363 {
364 	BUG_ON(mm == &init_mm);
365 	mm_free_pgd(mm);
366 	destroy_context(mm);
367 	free_mm(mm);
368 }
369 
370 /*
371  * Decrement the use count and release all resources for an mm.
372  */
373 void mmput(struct mm_struct *mm)
374 {
375 	might_sleep();
376 
377 	if (atomic_dec_and_test(&mm->mm_users)) {
378 		exit_aio(mm);
379 		exit_mmap(mm);
380 		if (!list_empty(&mm->mmlist)) {
381 			spin_lock(&mmlist_lock);
382 			list_del(&mm->mmlist);
383 			spin_unlock(&mmlist_lock);
384 		}
385 		put_swap_token(mm);
386 		mmdrop(mm);
387 	}
388 }
389 EXPORT_SYMBOL_GPL(mmput);
390 
391 /**
392  * get_task_mm - acquire a reference to the task's mm
393  *
394  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
395  * this kernel workthread has transiently adopted a user mm with use_mm,
396  * to do its AIO) is not set and if so returns a reference to it, after
397  * bumping up the use count.  User must release the mm via mmput()
398  * after use.  Typically used by /proc and ptrace.
399  */
400 struct mm_struct *get_task_mm(struct task_struct *task)
401 {
402 	struct mm_struct *mm;
403 
404 	task_lock(task);
405 	mm = task->mm;
406 	if (mm) {
407 		if (task->flags & PF_BORROWED_MM)
408 			mm = NULL;
409 		else
410 			atomic_inc(&mm->mm_users);
411 	}
412 	task_unlock(task);
413 	return mm;
414 }
415 EXPORT_SYMBOL_GPL(get_task_mm);
416 
417 /* Please note the differences between mmput and mm_release.
418  * mmput is called whenever we stop holding onto a mm_struct,
419  * error success whatever.
420  *
421  * mm_release is called after a mm_struct has been removed
422  * from the current process.
423  *
424  * This difference is important for error handling, when we
425  * only half set up a mm_struct for a new process and need to restore
426  * the old one.  Because we mmput the new mm_struct before
427  * restoring the old one. . .
428  * Eric Biederman 10 January 1998
429  */
430 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
431 {
432 	struct completion *vfork_done = tsk->vfork_done;
433 
434 	/* Get rid of any cached register state */
435 	deactivate_mm(tsk, mm);
436 
437 	/* notify parent sleeping on vfork() */
438 	if (vfork_done) {
439 		tsk->vfork_done = NULL;
440 		complete(vfork_done);
441 	}
442 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
443 		u32 __user * tidptr = tsk->clear_child_tid;
444 		tsk->clear_child_tid = NULL;
445 
446 		/*
447 		 * We don't check the error code - if userspace has
448 		 * not set up a proper pointer then tough luck.
449 		 */
450 		put_user(0, tidptr);
451 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
452 	}
453 }
454 
455 /*
456  * Allocate a new mm structure and copy contents from the
457  * mm structure of the passed in task structure.
458  */
459 static struct mm_struct *dup_mm(struct task_struct *tsk)
460 {
461 	struct mm_struct *mm, *oldmm = current->mm;
462 	int err;
463 
464 	if (!oldmm)
465 		return NULL;
466 
467 	mm = allocate_mm();
468 	if (!mm)
469 		goto fail_nomem;
470 
471 	memcpy(mm, oldmm, sizeof(*mm));
472 
473 	if (!mm_init(mm))
474 		goto fail_nomem;
475 
476 	if (init_new_context(tsk, mm))
477 		goto fail_nocontext;
478 
479 	err = dup_mmap(mm, oldmm);
480 	if (err)
481 		goto free_pt;
482 
483 	mm->hiwater_rss = get_mm_rss(mm);
484 	mm->hiwater_vm = mm->total_vm;
485 
486 	return mm;
487 
488 free_pt:
489 	mmput(mm);
490 
491 fail_nomem:
492 	return NULL;
493 
494 fail_nocontext:
495 	/*
496 	 * If init_new_context() failed, we cannot use mmput() to free the mm
497 	 * because it calls destroy_context()
498 	 */
499 	mm_free_pgd(mm);
500 	free_mm(mm);
501 	return NULL;
502 }
503 
504 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
505 {
506 	struct mm_struct * mm, *oldmm;
507 	int retval;
508 
509 	tsk->min_flt = tsk->maj_flt = 0;
510 	tsk->nvcsw = tsk->nivcsw = 0;
511 
512 	tsk->mm = NULL;
513 	tsk->active_mm = NULL;
514 
515 	/*
516 	 * Are we cloning a kernel thread?
517 	 *
518 	 * We need to steal a active VM for that..
519 	 */
520 	oldmm = current->mm;
521 	if (!oldmm)
522 		return 0;
523 
524 	if (clone_flags & CLONE_VM) {
525 		atomic_inc(&oldmm->mm_users);
526 		mm = oldmm;
527 		goto good_mm;
528 	}
529 
530 	retval = -ENOMEM;
531 	mm = dup_mm(tsk);
532 	if (!mm)
533 		goto fail_nomem;
534 
535 good_mm:
536 	tsk->mm = mm;
537 	tsk->active_mm = mm;
538 	return 0;
539 
540 fail_nomem:
541 	return retval;
542 }
543 
544 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
545 {
546 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
547 	/* We don't need to lock fs - think why ;-) */
548 	if (fs) {
549 		atomic_set(&fs->count, 1);
550 		rwlock_init(&fs->lock);
551 		fs->umask = old->umask;
552 		read_lock(&old->lock);
553 		fs->rootmnt = mntget(old->rootmnt);
554 		fs->root = dget(old->root);
555 		fs->pwdmnt = mntget(old->pwdmnt);
556 		fs->pwd = dget(old->pwd);
557 		if (old->altroot) {
558 			fs->altrootmnt = mntget(old->altrootmnt);
559 			fs->altroot = dget(old->altroot);
560 		} else {
561 			fs->altrootmnt = NULL;
562 			fs->altroot = NULL;
563 		}
564 		read_unlock(&old->lock);
565 	}
566 	return fs;
567 }
568 
569 struct fs_struct *copy_fs_struct(struct fs_struct *old)
570 {
571 	return __copy_fs_struct(old);
572 }
573 
574 EXPORT_SYMBOL_GPL(copy_fs_struct);
575 
576 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
577 {
578 	if (clone_flags & CLONE_FS) {
579 		atomic_inc(&current->fs->count);
580 		return 0;
581 	}
582 	tsk->fs = __copy_fs_struct(current->fs);
583 	if (!tsk->fs)
584 		return -ENOMEM;
585 	return 0;
586 }
587 
588 static int count_open_files(struct fdtable *fdt)
589 {
590 	int size = fdt->max_fdset;
591 	int i;
592 
593 	/* Find the last open fd */
594 	for (i = size/(8*sizeof(long)); i > 0; ) {
595 		if (fdt->open_fds->fds_bits[--i])
596 			break;
597 	}
598 	i = (i+1) * 8 * sizeof(long);
599 	return i;
600 }
601 
602 static struct files_struct *alloc_files(void)
603 {
604 	struct files_struct *newf;
605 	struct fdtable *fdt;
606 
607 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
608 	if (!newf)
609 		goto out;
610 
611 	atomic_set(&newf->count, 1);
612 
613 	spin_lock_init(&newf->file_lock);
614 	newf->next_fd = 0;
615 	fdt = &newf->fdtab;
616 	fdt->max_fds = NR_OPEN_DEFAULT;
617 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
618 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
619 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
620 	fdt->fd = &newf->fd_array[0];
621 	INIT_RCU_HEAD(&fdt->rcu);
622 	fdt->free_files = NULL;
623 	fdt->next = NULL;
624 	rcu_assign_pointer(newf->fdt, fdt);
625 out:
626 	return newf;
627 }
628 
629 /*
630  * Allocate a new files structure and copy contents from the
631  * passed in files structure.
632  * errorp will be valid only when the returned files_struct is NULL.
633  */
634 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
635 {
636 	struct files_struct *newf;
637 	struct file **old_fds, **new_fds;
638 	int open_files, size, i, expand;
639 	struct fdtable *old_fdt, *new_fdt;
640 
641 	*errorp = -ENOMEM;
642 	newf = alloc_files();
643 	if (!newf)
644 		goto out;
645 
646 	spin_lock(&oldf->file_lock);
647 	old_fdt = files_fdtable(oldf);
648 	new_fdt = files_fdtable(newf);
649 	size = old_fdt->max_fdset;
650 	open_files = count_open_files(old_fdt);
651 	expand = 0;
652 
653 	/*
654 	 * Check whether we need to allocate a larger fd array or fd set.
655 	 * Note: we're not a clone task, so the open count won't  change.
656 	 */
657 	if (open_files > new_fdt->max_fdset) {
658 		new_fdt->max_fdset = 0;
659 		expand = 1;
660 	}
661 	if (open_files > new_fdt->max_fds) {
662 		new_fdt->max_fds = 0;
663 		expand = 1;
664 	}
665 
666 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
667 	if (expand) {
668 		spin_unlock(&oldf->file_lock);
669 		spin_lock(&newf->file_lock);
670 		*errorp = expand_files(newf, open_files-1);
671 		spin_unlock(&newf->file_lock);
672 		if (*errorp < 0)
673 			goto out_release;
674 		new_fdt = files_fdtable(newf);
675 		/*
676 		 * Reacquire the oldf lock and a pointer to its fd table
677 		 * who knows it may have a new bigger fd table. We need
678 		 * the latest pointer.
679 		 */
680 		spin_lock(&oldf->file_lock);
681 		old_fdt = files_fdtable(oldf);
682 	}
683 
684 	old_fds = old_fdt->fd;
685 	new_fds = new_fdt->fd;
686 
687 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
688 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
689 
690 	for (i = open_files; i != 0; i--) {
691 		struct file *f = *old_fds++;
692 		if (f) {
693 			get_file(f);
694 		} else {
695 			/*
696 			 * The fd may be claimed in the fd bitmap but not yet
697 			 * instantiated in the files array if a sibling thread
698 			 * is partway through open().  So make sure that this
699 			 * fd is available to the new process.
700 			 */
701 			FD_CLR(open_files - i, new_fdt->open_fds);
702 		}
703 		rcu_assign_pointer(*new_fds++, f);
704 	}
705 	spin_unlock(&oldf->file_lock);
706 
707 	/* compute the remainder to be cleared */
708 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
709 
710 	/* This is long word aligned thus could use a optimized version */
711 	memset(new_fds, 0, size);
712 
713 	if (new_fdt->max_fdset > open_files) {
714 		int left = (new_fdt->max_fdset-open_files)/8;
715 		int start = open_files / (8 * sizeof(unsigned long));
716 
717 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
718 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
719 	}
720 
721 out:
722 	return newf;
723 
724 out_release:
725 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
726 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
727 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
728 	kmem_cache_free(files_cachep, newf);
729 	return NULL;
730 }
731 
732 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
733 {
734 	struct files_struct *oldf, *newf;
735 	int error = 0;
736 
737 	/*
738 	 * A background process may not have any files ...
739 	 */
740 	oldf = current->files;
741 	if (!oldf)
742 		goto out;
743 
744 	if (clone_flags & CLONE_FILES) {
745 		atomic_inc(&oldf->count);
746 		goto out;
747 	}
748 
749 	/*
750 	 * Note: we may be using current for both targets (See exec.c)
751 	 * This works because we cache current->files (old) as oldf. Don't
752 	 * break this.
753 	 */
754 	tsk->files = NULL;
755 	newf = dup_fd(oldf, &error);
756 	if (!newf)
757 		goto out;
758 
759 	tsk->files = newf;
760 	error = 0;
761 out:
762 	return error;
763 }
764 
765 /*
766  *	Helper to unshare the files of the current task.
767  *	We don't want to expose copy_files internals to
768  *	the exec layer of the kernel.
769  */
770 
771 int unshare_files(void)
772 {
773 	struct files_struct *files  = current->files;
774 	int rc;
775 
776 	BUG_ON(!files);
777 
778 	/* This can race but the race causes us to copy when we don't
779 	   need to and drop the copy */
780 	if(atomic_read(&files->count) == 1)
781 	{
782 		atomic_inc(&files->count);
783 		return 0;
784 	}
785 	rc = copy_files(0, current);
786 	if(rc)
787 		current->files = files;
788 	return rc;
789 }
790 
791 EXPORT_SYMBOL(unshare_files);
792 
793 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
794 {
795 	struct sighand_struct *sig;
796 
797 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
798 		atomic_inc(&current->sighand->count);
799 		return 0;
800 	}
801 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
802 	rcu_assign_pointer(tsk->sighand, sig);
803 	if (!sig)
804 		return -ENOMEM;
805 	atomic_set(&sig->count, 1);
806 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
807 	return 0;
808 }
809 
810 void __cleanup_sighand(struct sighand_struct *sighand)
811 {
812 	if (atomic_dec_and_test(&sighand->count))
813 		kmem_cache_free(sighand_cachep, sighand);
814 }
815 
816 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
817 {
818 	struct signal_struct *sig;
819 	int ret;
820 
821 	if (clone_flags & CLONE_THREAD) {
822 		atomic_inc(&current->signal->count);
823 		atomic_inc(&current->signal->live);
824 		taskstats_tgid_alloc(current->signal);
825 		return 0;
826 	}
827 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
828 	tsk->signal = sig;
829 	if (!sig)
830 		return -ENOMEM;
831 
832 	ret = copy_thread_group_keys(tsk);
833 	if (ret < 0) {
834 		kmem_cache_free(signal_cachep, sig);
835 		return ret;
836 	}
837 
838 	atomic_set(&sig->count, 1);
839 	atomic_set(&sig->live, 1);
840 	init_waitqueue_head(&sig->wait_chldexit);
841 	sig->flags = 0;
842 	sig->group_exit_code = 0;
843 	sig->group_exit_task = NULL;
844 	sig->group_stop_count = 0;
845 	sig->curr_target = NULL;
846 	init_sigpending(&sig->shared_pending);
847 	INIT_LIST_HEAD(&sig->posix_timers);
848 
849 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
850 	sig->it_real_incr.tv64 = 0;
851 	sig->real_timer.function = it_real_fn;
852 	sig->tsk = tsk;
853 
854 	sig->it_virt_expires = cputime_zero;
855 	sig->it_virt_incr = cputime_zero;
856 	sig->it_prof_expires = cputime_zero;
857 	sig->it_prof_incr = cputime_zero;
858 
859 	sig->leader = 0;	/* session leadership doesn't inherit */
860 	sig->tty_old_pgrp = 0;
861 
862 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
863 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
864 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
865 	sig->sched_time = 0;
866 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
867 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
868 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
869 	taskstats_tgid_init(sig);
870 
871 	task_lock(current->group_leader);
872 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
873 	task_unlock(current->group_leader);
874 
875 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
876 		/*
877 		 * New sole thread in the process gets an expiry time
878 		 * of the whole CPU time limit.
879 		 */
880 		tsk->it_prof_expires =
881 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
882 	}
883 	acct_init_pacct(&sig->pacct);
884 
885 	return 0;
886 }
887 
888 void __cleanup_signal(struct signal_struct *sig)
889 {
890 	exit_thread_group_keys(sig);
891 	taskstats_tgid_free(sig);
892 	kmem_cache_free(signal_cachep, sig);
893 }
894 
895 static inline void cleanup_signal(struct task_struct *tsk)
896 {
897 	struct signal_struct *sig = tsk->signal;
898 
899 	atomic_dec(&sig->live);
900 
901 	if (atomic_dec_and_test(&sig->count))
902 		__cleanup_signal(sig);
903 }
904 
905 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
906 {
907 	unsigned long new_flags = p->flags;
908 
909 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
910 	new_flags |= PF_FORKNOEXEC;
911 	if (!(clone_flags & CLONE_PTRACE))
912 		p->ptrace = 0;
913 	p->flags = new_flags;
914 }
915 
916 asmlinkage long sys_set_tid_address(int __user *tidptr)
917 {
918 	current->clear_child_tid = tidptr;
919 
920 	return current->pid;
921 }
922 
923 static inline void rt_mutex_init_task(struct task_struct *p)
924 {
925 #ifdef CONFIG_RT_MUTEXES
926 	spin_lock_init(&p->pi_lock);
927 	plist_head_init(&p->pi_waiters, &p->pi_lock);
928 	p->pi_blocked_on = NULL;
929 #endif
930 }
931 
932 /*
933  * This creates a new process as a copy of the old one,
934  * but does not actually start it yet.
935  *
936  * It copies the registers, and all the appropriate
937  * parts of the process environment (as per the clone
938  * flags). The actual kick-off is left to the caller.
939  */
940 static struct task_struct *copy_process(unsigned long clone_flags,
941 					unsigned long stack_start,
942 					struct pt_regs *regs,
943 					unsigned long stack_size,
944 					int __user *parent_tidptr,
945 					int __user *child_tidptr,
946 					int pid)
947 {
948 	int retval;
949 	struct task_struct *p = NULL;
950 
951 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
952 		return ERR_PTR(-EINVAL);
953 
954 	/*
955 	 * Thread groups must share signals as well, and detached threads
956 	 * can only be started up within the thread group.
957 	 */
958 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
959 		return ERR_PTR(-EINVAL);
960 
961 	/*
962 	 * Shared signal handlers imply shared VM. By way of the above,
963 	 * thread groups also imply shared VM. Blocking this case allows
964 	 * for various simplifications in other code.
965 	 */
966 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
967 		return ERR_PTR(-EINVAL);
968 
969 	retval = security_task_create(clone_flags);
970 	if (retval)
971 		goto fork_out;
972 
973 	retval = -ENOMEM;
974 	p = dup_task_struct(current);
975 	if (!p)
976 		goto fork_out;
977 
978 #ifdef CONFIG_TRACE_IRQFLAGS
979 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
980 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
981 #endif
982 	retval = -EAGAIN;
983 	if (atomic_read(&p->user->processes) >=
984 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
985 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
986 				p->user != &root_user)
987 			goto bad_fork_free;
988 	}
989 
990 	atomic_inc(&p->user->__count);
991 	atomic_inc(&p->user->processes);
992 	get_group_info(p->group_info);
993 
994 	/*
995 	 * If multiple threads are within copy_process(), then this check
996 	 * triggers too late. This doesn't hurt, the check is only there
997 	 * to stop root fork bombs.
998 	 */
999 	if (nr_threads >= max_threads)
1000 		goto bad_fork_cleanup_count;
1001 
1002 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1003 		goto bad_fork_cleanup_count;
1004 
1005 	if (p->binfmt && !try_module_get(p->binfmt->module))
1006 		goto bad_fork_cleanup_put_domain;
1007 
1008 	p->did_exec = 0;
1009 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1010 	copy_flags(clone_flags, p);
1011 	p->pid = pid;
1012 	retval = -EFAULT;
1013 	if (clone_flags & CLONE_PARENT_SETTID)
1014 		if (put_user(p->pid, parent_tidptr))
1015 			goto bad_fork_cleanup_delays_binfmt;
1016 
1017 	INIT_LIST_HEAD(&p->children);
1018 	INIT_LIST_HEAD(&p->sibling);
1019 	p->vfork_done = NULL;
1020 	spin_lock_init(&p->alloc_lock);
1021 
1022 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1023 	init_sigpending(&p->pending);
1024 
1025 	p->utime = cputime_zero;
1026 	p->stime = cputime_zero;
1027  	p->sched_time = 0;
1028 	p->rchar = 0;		/* I/O counter: bytes read */
1029 	p->wchar = 0;		/* I/O counter: bytes written */
1030 	p->syscr = 0;		/* I/O counter: read syscalls */
1031 	p->syscw = 0;		/* I/O counter: write syscalls */
1032 	acct_clear_integrals(p);
1033 
1034  	p->it_virt_expires = cputime_zero;
1035 	p->it_prof_expires = cputime_zero;
1036  	p->it_sched_expires = 0;
1037  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1038  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1039  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1040 
1041 	p->lock_depth = -1;		/* -1 = no lock */
1042 	do_posix_clock_monotonic_gettime(&p->start_time);
1043 	p->security = NULL;
1044 	p->io_context = NULL;
1045 	p->io_wait = NULL;
1046 	p->audit_context = NULL;
1047 	cpuset_fork(p);
1048 #ifdef CONFIG_NUMA
1049  	p->mempolicy = mpol_copy(p->mempolicy);
1050  	if (IS_ERR(p->mempolicy)) {
1051  		retval = PTR_ERR(p->mempolicy);
1052  		p->mempolicy = NULL;
1053  		goto bad_fork_cleanup_cpuset;
1054  	}
1055 	mpol_fix_fork_child_flag(p);
1056 #endif
1057 #ifdef CONFIG_TRACE_IRQFLAGS
1058 	p->irq_events = 0;
1059 	p->hardirqs_enabled = 0;
1060 	p->hardirq_enable_ip = 0;
1061 	p->hardirq_enable_event = 0;
1062 	p->hardirq_disable_ip = _THIS_IP_;
1063 	p->hardirq_disable_event = 0;
1064 	p->softirqs_enabled = 1;
1065 	p->softirq_enable_ip = _THIS_IP_;
1066 	p->softirq_enable_event = 0;
1067 	p->softirq_disable_ip = 0;
1068 	p->softirq_disable_event = 0;
1069 	p->hardirq_context = 0;
1070 	p->softirq_context = 0;
1071 #endif
1072 #ifdef CONFIG_LOCKDEP
1073 	p->lockdep_depth = 0; /* no locks held yet */
1074 	p->curr_chain_key = 0;
1075 	p->lockdep_recursion = 0;
1076 #endif
1077 
1078 	rt_mutex_init_task(p);
1079 
1080 #ifdef CONFIG_DEBUG_MUTEXES
1081 	p->blocked_on = NULL; /* not blocked yet */
1082 #endif
1083 
1084 	p->tgid = p->pid;
1085 	if (clone_flags & CLONE_THREAD)
1086 		p->tgid = current->tgid;
1087 
1088 	if ((retval = security_task_alloc(p)))
1089 		goto bad_fork_cleanup_policy;
1090 	if ((retval = audit_alloc(p)))
1091 		goto bad_fork_cleanup_security;
1092 	/* copy all the process information */
1093 	if ((retval = copy_semundo(clone_flags, p)))
1094 		goto bad_fork_cleanup_audit;
1095 	if ((retval = copy_files(clone_flags, p)))
1096 		goto bad_fork_cleanup_semundo;
1097 	if ((retval = copy_fs(clone_flags, p)))
1098 		goto bad_fork_cleanup_files;
1099 	if ((retval = copy_sighand(clone_flags, p)))
1100 		goto bad_fork_cleanup_fs;
1101 	if ((retval = copy_signal(clone_flags, p)))
1102 		goto bad_fork_cleanup_sighand;
1103 	if ((retval = copy_mm(clone_flags, p)))
1104 		goto bad_fork_cleanup_signal;
1105 	if ((retval = copy_keys(clone_flags, p)))
1106 		goto bad_fork_cleanup_mm;
1107 	if ((retval = copy_namespace(clone_flags, p)))
1108 		goto bad_fork_cleanup_keys;
1109 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1110 	if (retval)
1111 		goto bad_fork_cleanup_namespace;
1112 
1113 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1114 	/*
1115 	 * Clear TID on mm_release()?
1116 	 */
1117 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1118 	p->robust_list = NULL;
1119 #ifdef CONFIG_COMPAT
1120 	p->compat_robust_list = NULL;
1121 #endif
1122 	INIT_LIST_HEAD(&p->pi_state_list);
1123 	p->pi_state_cache = NULL;
1124 
1125 	/*
1126 	 * sigaltstack should be cleared when sharing the same VM
1127 	 */
1128 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1129 		p->sas_ss_sp = p->sas_ss_size = 0;
1130 
1131 	/*
1132 	 * Syscall tracing should be turned off in the child regardless
1133 	 * of CLONE_PTRACE.
1134 	 */
1135 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1136 #ifdef TIF_SYSCALL_EMU
1137 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1138 #endif
1139 
1140 	/* Our parent execution domain becomes current domain
1141 	   These must match for thread signalling to apply */
1142 
1143 	p->parent_exec_id = p->self_exec_id;
1144 
1145 	/* ok, now we should be set up.. */
1146 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1147 	p->pdeath_signal = 0;
1148 	p->exit_state = 0;
1149 
1150 	/*
1151 	 * Ok, make it visible to the rest of the system.
1152 	 * We dont wake it up yet.
1153 	 */
1154 	p->group_leader = p;
1155 	INIT_LIST_HEAD(&p->thread_group);
1156 	INIT_LIST_HEAD(&p->ptrace_children);
1157 	INIT_LIST_HEAD(&p->ptrace_list);
1158 
1159 	/* Perform scheduler related setup. Assign this task to a CPU. */
1160 	sched_fork(p, clone_flags);
1161 
1162 	/* Need tasklist lock for parent etc handling! */
1163 	write_lock_irq(&tasklist_lock);
1164 
1165 	/*
1166 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1167 	 * not be changed, nor will its assigned CPU.
1168 	 *
1169 	 * The cpus_allowed mask of the parent may have changed after it was
1170 	 * copied first time - so re-copy it here, then check the child's CPU
1171 	 * to ensure it is on a valid CPU (and if not, just force it back to
1172 	 * parent's CPU). This avoids alot of nasty races.
1173 	 */
1174 	p->cpus_allowed = current->cpus_allowed;
1175 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1176 			!cpu_online(task_cpu(p))))
1177 		set_task_cpu(p, smp_processor_id());
1178 
1179 	/* CLONE_PARENT re-uses the old parent */
1180 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1181 		p->real_parent = current->real_parent;
1182 	else
1183 		p->real_parent = current;
1184 	p->parent = p->real_parent;
1185 
1186 	spin_lock(&current->sighand->siglock);
1187 
1188 	/*
1189 	 * Process group and session signals need to be delivered to just the
1190 	 * parent before the fork or both the parent and the child after the
1191 	 * fork. Restart if a signal comes in before we add the new process to
1192 	 * it's process group.
1193 	 * A fatal signal pending means that current will exit, so the new
1194 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1195  	 */
1196  	recalc_sigpending();
1197 	if (signal_pending(current)) {
1198 		spin_unlock(&current->sighand->siglock);
1199 		write_unlock_irq(&tasklist_lock);
1200 		retval = -ERESTARTNOINTR;
1201 		goto bad_fork_cleanup_namespace;
1202 	}
1203 
1204 	if (clone_flags & CLONE_THREAD) {
1205 		p->group_leader = current->group_leader;
1206 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1207 
1208 		if (!cputime_eq(current->signal->it_virt_expires,
1209 				cputime_zero) ||
1210 		    !cputime_eq(current->signal->it_prof_expires,
1211 				cputime_zero) ||
1212 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1213 		    !list_empty(&current->signal->cpu_timers[0]) ||
1214 		    !list_empty(&current->signal->cpu_timers[1]) ||
1215 		    !list_empty(&current->signal->cpu_timers[2])) {
1216 			/*
1217 			 * Have child wake up on its first tick to check
1218 			 * for process CPU timers.
1219 			 */
1220 			p->it_prof_expires = jiffies_to_cputime(1);
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * inherit ioprio
1226 	 */
1227 	p->ioprio = current->ioprio;
1228 
1229 	if (likely(p->pid)) {
1230 		add_parent(p);
1231 		if (unlikely(p->ptrace & PT_PTRACED))
1232 			__ptrace_link(p, current->parent);
1233 
1234 		if (thread_group_leader(p)) {
1235 			p->signal->tty = current->signal->tty;
1236 			p->signal->pgrp = process_group(current);
1237 			p->signal->session = current->signal->session;
1238 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1239 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1240 
1241 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1242 			__get_cpu_var(process_counts)++;
1243 		}
1244 		attach_pid(p, PIDTYPE_PID, p->pid);
1245 		nr_threads++;
1246 	}
1247 
1248 	total_forks++;
1249 	spin_unlock(&current->sighand->siglock);
1250 	write_unlock_irq(&tasklist_lock);
1251 	proc_fork_connector(p);
1252 	return p;
1253 
1254 bad_fork_cleanup_namespace:
1255 	exit_namespace(p);
1256 bad_fork_cleanup_keys:
1257 	exit_keys(p);
1258 bad_fork_cleanup_mm:
1259 	if (p->mm)
1260 		mmput(p->mm);
1261 bad_fork_cleanup_signal:
1262 	cleanup_signal(p);
1263 bad_fork_cleanup_sighand:
1264 	__cleanup_sighand(p->sighand);
1265 bad_fork_cleanup_fs:
1266 	exit_fs(p); /* blocking */
1267 bad_fork_cleanup_files:
1268 	exit_files(p); /* blocking */
1269 bad_fork_cleanup_semundo:
1270 	exit_sem(p);
1271 bad_fork_cleanup_audit:
1272 	audit_free(p);
1273 bad_fork_cleanup_security:
1274 	security_task_free(p);
1275 bad_fork_cleanup_policy:
1276 #ifdef CONFIG_NUMA
1277 	mpol_free(p->mempolicy);
1278 bad_fork_cleanup_cpuset:
1279 #endif
1280 	cpuset_exit(p);
1281 bad_fork_cleanup_delays_binfmt:
1282 	delayacct_tsk_free(p);
1283 	if (p->binfmt)
1284 		module_put(p->binfmt->module);
1285 bad_fork_cleanup_put_domain:
1286 	module_put(task_thread_info(p)->exec_domain->module);
1287 bad_fork_cleanup_count:
1288 	put_group_info(p->group_info);
1289 	atomic_dec(&p->user->processes);
1290 	free_uid(p->user);
1291 bad_fork_free:
1292 	free_task(p);
1293 fork_out:
1294 	return ERR_PTR(retval);
1295 }
1296 
1297 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1298 {
1299 	memset(regs, 0, sizeof(struct pt_regs));
1300 	return regs;
1301 }
1302 
1303 struct task_struct * __devinit fork_idle(int cpu)
1304 {
1305 	struct task_struct *task;
1306 	struct pt_regs regs;
1307 
1308 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1309 	if (!task)
1310 		return ERR_PTR(-ENOMEM);
1311 	init_idle(task, cpu);
1312 
1313 	return task;
1314 }
1315 
1316 static inline int fork_traceflag (unsigned clone_flags)
1317 {
1318 	if (clone_flags & CLONE_UNTRACED)
1319 		return 0;
1320 	else if (clone_flags & CLONE_VFORK) {
1321 		if (current->ptrace & PT_TRACE_VFORK)
1322 			return PTRACE_EVENT_VFORK;
1323 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1324 		if (current->ptrace & PT_TRACE_CLONE)
1325 			return PTRACE_EVENT_CLONE;
1326 	} else if (current->ptrace & PT_TRACE_FORK)
1327 		return PTRACE_EVENT_FORK;
1328 
1329 	return 0;
1330 }
1331 
1332 /*
1333  *  Ok, this is the main fork-routine.
1334  *
1335  * It copies the process, and if successful kick-starts
1336  * it and waits for it to finish using the VM if required.
1337  */
1338 long do_fork(unsigned long clone_flags,
1339 	      unsigned long stack_start,
1340 	      struct pt_regs *regs,
1341 	      unsigned long stack_size,
1342 	      int __user *parent_tidptr,
1343 	      int __user *child_tidptr)
1344 {
1345 	struct task_struct *p;
1346 	int trace = 0;
1347 	struct pid *pid = alloc_pid();
1348 	long nr;
1349 
1350 	if (!pid)
1351 		return -EAGAIN;
1352 	nr = pid->nr;
1353 	if (unlikely(current->ptrace)) {
1354 		trace = fork_traceflag (clone_flags);
1355 		if (trace)
1356 			clone_flags |= CLONE_PTRACE;
1357 	}
1358 
1359 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1360 	/*
1361 	 * Do this prior waking up the new thread - the thread pointer
1362 	 * might get invalid after that point, if the thread exits quickly.
1363 	 */
1364 	if (!IS_ERR(p)) {
1365 		struct completion vfork;
1366 
1367 		if (clone_flags & CLONE_VFORK) {
1368 			p->vfork_done = &vfork;
1369 			init_completion(&vfork);
1370 		}
1371 
1372 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1373 			/*
1374 			 * We'll start up with an immediate SIGSTOP.
1375 			 */
1376 			sigaddset(&p->pending.signal, SIGSTOP);
1377 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1378 		}
1379 
1380 		if (!(clone_flags & CLONE_STOPPED))
1381 			wake_up_new_task(p, clone_flags);
1382 		else
1383 			p->state = TASK_STOPPED;
1384 
1385 		if (unlikely (trace)) {
1386 			current->ptrace_message = nr;
1387 			ptrace_notify ((trace << 8) | SIGTRAP);
1388 		}
1389 
1390 		if (clone_flags & CLONE_VFORK) {
1391 			wait_for_completion(&vfork);
1392 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1393 				current->ptrace_message = nr;
1394 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1395 			}
1396 		}
1397 	} else {
1398 		free_pid(pid);
1399 		nr = PTR_ERR(p);
1400 	}
1401 	return nr;
1402 }
1403 
1404 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1405 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1406 #endif
1407 
1408 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1409 {
1410 	struct sighand_struct *sighand = data;
1411 
1412 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1413 					SLAB_CTOR_CONSTRUCTOR)
1414 		spin_lock_init(&sighand->siglock);
1415 }
1416 
1417 void __init proc_caches_init(void)
1418 {
1419 	sighand_cachep = kmem_cache_create("sighand_cache",
1420 			sizeof(struct sighand_struct), 0,
1421 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1422 			sighand_ctor, NULL);
1423 	signal_cachep = kmem_cache_create("signal_cache",
1424 			sizeof(struct signal_struct), 0,
1425 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1426 	files_cachep = kmem_cache_create("files_cache",
1427 			sizeof(struct files_struct), 0,
1428 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1429 	fs_cachep = kmem_cache_create("fs_cache",
1430 			sizeof(struct fs_struct), 0,
1431 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1432 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1433 			sizeof(struct vm_area_struct), 0,
1434 			SLAB_PANIC, NULL, NULL);
1435 	mm_cachep = kmem_cache_create("mm_struct",
1436 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1437 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1438 }
1439 
1440 
1441 /*
1442  * Check constraints on flags passed to the unshare system call and
1443  * force unsharing of additional process context as appropriate.
1444  */
1445 static inline void check_unshare_flags(unsigned long *flags_ptr)
1446 {
1447 	/*
1448 	 * If unsharing a thread from a thread group, must also
1449 	 * unshare vm.
1450 	 */
1451 	if (*flags_ptr & CLONE_THREAD)
1452 		*flags_ptr |= CLONE_VM;
1453 
1454 	/*
1455 	 * If unsharing vm, must also unshare signal handlers.
1456 	 */
1457 	if (*flags_ptr & CLONE_VM)
1458 		*flags_ptr |= CLONE_SIGHAND;
1459 
1460 	/*
1461 	 * If unsharing signal handlers and the task was created
1462 	 * using CLONE_THREAD, then must unshare the thread
1463 	 */
1464 	if ((*flags_ptr & CLONE_SIGHAND) &&
1465 	    (atomic_read(&current->signal->count) > 1))
1466 		*flags_ptr |= CLONE_THREAD;
1467 
1468 	/*
1469 	 * If unsharing namespace, must also unshare filesystem information.
1470 	 */
1471 	if (*flags_ptr & CLONE_NEWNS)
1472 		*flags_ptr |= CLONE_FS;
1473 }
1474 
1475 /*
1476  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1477  */
1478 static int unshare_thread(unsigned long unshare_flags)
1479 {
1480 	if (unshare_flags & CLONE_THREAD)
1481 		return -EINVAL;
1482 
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Unshare the filesystem structure if it is being shared
1488  */
1489 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1490 {
1491 	struct fs_struct *fs = current->fs;
1492 
1493 	if ((unshare_flags & CLONE_FS) &&
1494 	    (fs && atomic_read(&fs->count) > 1)) {
1495 		*new_fsp = __copy_fs_struct(current->fs);
1496 		if (!*new_fsp)
1497 			return -ENOMEM;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /*
1504  * Unshare the namespace structure if it is being shared
1505  */
1506 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1507 {
1508 	struct namespace *ns = current->namespace;
1509 
1510 	if ((unshare_flags & CLONE_NEWNS) &&
1511 	    (ns && atomic_read(&ns->count) > 1)) {
1512 		if (!capable(CAP_SYS_ADMIN))
1513 			return -EPERM;
1514 
1515 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1516 		if (!*new_nsp)
1517 			return -ENOMEM;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1525  * supported yet
1526  */
1527 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1528 {
1529 	struct sighand_struct *sigh = current->sighand;
1530 
1531 	if ((unshare_flags & CLONE_SIGHAND) &&
1532 	    (sigh && atomic_read(&sigh->count) > 1))
1533 		return -EINVAL;
1534 	else
1535 		return 0;
1536 }
1537 
1538 /*
1539  * Unshare vm if it is being shared
1540  */
1541 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1542 {
1543 	struct mm_struct *mm = current->mm;
1544 
1545 	if ((unshare_flags & CLONE_VM) &&
1546 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1547 		return -EINVAL;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 /*
1554  * Unshare file descriptor table if it is being shared
1555  */
1556 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1557 {
1558 	struct files_struct *fd = current->files;
1559 	int error = 0;
1560 
1561 	if ((unshare_flags & CLONE_FILES) &&
1562 	    (fd && atomic_read(&fd->count) > 1)) {
1563 		*new_fdp = dup_fd(fd, &error);
1564 		if (!*new_fdp)
1565 			return error;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1573  * supported yet
1574  */
1575 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1576 {
1577 	if (unshare_flags & CLONE_SYSVSEM)
1578 		return -EINVAL;
1579 
1580 	return 0;
1581 }
1582 
1583 /*
1584  * unshare allows a process to 'unshare' part of the process
1585  * context which was originally shared using clone.  copy_*
1586  * functions used by do_fork() cannot be used here directly
1587  * because they modify an inactive task_struct that is being
1588  * constructed. Here we are modifying the current, active,
1589  * task_struct.
1590  */
1591 asmlinkage long sys_unshare(unsigned long unshare_flags)
1592 {
1593 	int err = 0;
1594 	struct fs_struct *fs, *new_fs = NULL;
1595 	struct namespace *ns, *new_ns = NULL;
1596 	struct sighand_struct *sigh, *new_sigh = NULL;
1597 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1598 	struct files_struct *fd, *new_fd = NULL;
1599 	struct sem_undo_list *new_ulist = NULL;
1600 
1601 	check_unshare_flags(&unshare_flags);
1602 
1603 	/* Return -EINVAL for all unsupported flags */
1604 	err = -EINVAL;
1605 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1606 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1607 		goto bad_unshare_out;
1608 
1609 	if ((err = unshare_thread(unshare_flags)))
1610 		goto bad_unshare_out;
1611 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1612 		goto bad_unshare_cleanup_thread;
1613 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1614 		goto bad_unshare_cleanup_fs;
1615 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1616 		goto bad_unshare_cleanup_ns;
1617 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1618 		goto bad_unshare_cleanup_sigh;
1619 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1620 		goto bad_unshare_cleanup_vm;
1621 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1622 		goto bad_unshare_cleanup_fd;
1623 
1624 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1625 
1626 		task_lock(current);
1627 
1628 		if (new_fs) {
1629 			fs = current->fs;
1630 			current->fs = new_fs;
1631 			new_fs = fs;
1632 		}
1633 
1634 		if (new_ns) {
1635 			ns = current->namespace;
1636 			current->namespace = new_ns;
1637 			new_ns = ns;
1638 		}
1639 
1640 		if (new_sigh) {
1641 			sigh = current->sighand;
1642 			rcu_assign_pointer(current->sighand, new_sigh);
1643 			new_sigh = sigh;
1644 		}
1645 
1646 		if (new_mm) {
1647 			mm = current->mm;
1648 			active_mm = current->active_mm;
1649 			current->mm = new_mm;
1650 			current->active_mm = new_mm;
1651 			activate_mm(active_mm, new_mm);
1652 			new_mm = mm;
1653 		}
1654 
1655 		if (new_fd) {
1656 			fd = current->files;
1657 			current->files = new_fd;
1658 			new_fd = fd;
1659 		}
1660 
1661 		task_unlock(current);
1662 	}
1663 
1664 bad_unshare_cleanup_fd:
1665 	if (new_fd)
1666 		put_files_struct(new_fd);
1667 
1668 bad_unshare_cleanup_vm:
1669 	if (new_mm)
1670 		mmput(new_mm);
1671 
1672 bad_unshare_cleanup_sigh:
1673 	if (new_sigh)
1674 		if (atomic_dec_and_test(&new_sigh->count))
1675 			kmem_cache_free(sighand_cachep, new_sigh);
1676 
1677 bad_unshare_cleanup_ns:
1678 	if (new_ns)
1679 		put_namespace(new_ns);
1680 
1681 bad_unshare_cleanup_fs:
1682 	if (new_fs)
1683 		put_fs_struct(new_fs);
1684 
1685 bad_unshare_cleanup_thread:
1686 bad_unshare_out:
1687 	return err;
1688 }
1689