xref: /linux/kernel/fork.c (revision ef815d2cba782e96b9aad9483523d474ed41c62a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(old_vmi, oldmm, 0);
654 	VMA_ITERATOR(vmi, mm, 0);
655 
656 	uprobe_start_dup_mmap();
657 	if (mmap_write_lock_killable(oldmm)) {
658 		retval = -EINTR;
659 		goto fail_uprobe_end;
660 	}
661 	flush_cache_dup_mm(oldmm);
662 	uprobe_dup_mmap(oldmm, mm);
663 	/*
664 	 * Not linked in yet - no deadlock potential:
665 	 */
666 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 
668 	/* No ordering required: file already has been exposed. */
669 	dup_mm_exe_file(mm, oldmm);
670 
671 	mm->total_vm = oldmm->total_vm;
672 	mm->data_vm = oldmm->data_vm;
673 	mm->exec_vm = oldmm->exec_vm;
674 	mm->stack_vm = oldmm->stack_vm;
675 
676 	retval = ksm_fork(mm, oldmm);
677 	if (retval)
678 		goto out;
679 	khugepaged_fork(mm, oldmm);
680 
681 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 	if (retval)
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(old_vmi, mpnt) {
687 		struct file *file;
688 
689 		vma_start_write(mpnt);
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 			continue;
693 		}
694 		charge = 0;
695 		/*
696 		 * Don't duplicate many vmas if we've been oom-killed (for
697 		 * example)
698 		 */
699 		if (fatal_signal_pending(current)) {
700 			retval = -EINTR;
701 			goto loop_out;
702 		}
703 		if (mpnt->vm_flags & VM_ACCOUNT) {
704 			unsigned long len = vma_pages(mpnt);
705 
706 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 				goto fail_nomem;
708 			charge = len;
709 		}
710 		tmp = vm_area_dup(mpnt);
711 		if (!tmp)
712 			goto fail_nomem;
713 		retval = vma_dup_policy(mpnt, tmp);
714 		if (retval)
715 			goto fail_nomem_policy;
716 		tmp->vm_mm = mm;
717 		retval = dup_userfaultfd(tmp, &uf);
718 		if (retval)
719 			goto fail_nomem_anon_vma_fork;
720 		if (tmp->vm_flags & VM_WIPEONFORK) {
721 			/*
722 			 * VM_WIPEONFORK gets a clean slate in the child.
723 			 * Don't prepare anon_vma until fault since we don't
724 			 * copy page for current vma.
725 			 */
726 			tmp->anon_vma = NULL;
727 		} else if (anon_vma_fork(tmp, mpnt))
728 			goto fail_nomem_anon_vma_fork;
729 		vm_flags_clear(tmp, VM_LOCKED_MASK);
730 		file = tmp->vm_file;
731 		if (file) {
732 			struct address_space *mapping = file->f_mapping;
733 
734 			get_file(file);
735 			i_mmap_lock_write(mapping);
736 			if (tmp->vm_flags & VM_SHARED)
737 				mapping_allow_writable(mapping);
738 			flush_dcache_mmap_lock(mapping);
739 			/* insert tmp into the share list, just after mpnt */
740 			vma_interval_tree_insert_after(tmp, mpnt,
741 					&mapping->i_mmap);
742 			flush_dcache_mmap_unlock(mapping);
743 			i_mmap_unlock_write(mapping);
744 		}
745 
746 		/*
747 		 * Copy/update hugetlb private vma information.
748 		 */
749 		if (is_vm_hugetlb_page(tmp))
750 			hugetlb_dup_vma_private(tmp);
751 
752 		/* Link the vma into the MT */
753 		if (vma_iter_bulk_store(&vmi, tmp))
754 			goto fail_nomem_vmi_store;
755 
756 		mm->map_count++;
757 		if (!(tmp->vm_flags & VM_WIPEONFORK))
758 			retval = copy_page_range(tmp, mpnt);
759 
760 		if (tmp->vm_ops && tmp->vm_ops->open)
761 			tmp->vm_ops->open(tmp);
762 
763 		if (retval)
764 			goto loop_out;
765 	}
766 	/* a new mm has just been created */
767 	retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 	vma_iter_free(&vmi);
770 	if (!retval)
771 		mt_set_in_rcu(vmi.mas.tree);
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_vmi_store:
782 	unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	int i;
913 
914 	BUG_ON(mm == &init_mm);
915 	WARN_ON_ONCE(mm == current->mm);
916 
917 	/* Ensure no CPUs are using this as their lazy tlb mm */
918 	cleanup_lazy_tlbs(mm);
919 
920 	WARN_ON_ONCE(mm == current->active_mm);
921 	mm_free_pgd(mm);
922 	destroy_context(mm);
923 	mmu_notifier_subscriptions_destroy(mm);
924 	check_mm(mm);
925 	put_user_ns(mm->user_ns);
926 	mm_pasid_drop(mm);
927 	mm_destroy_cid(mm);
928 
929 	for (i = 0; i < NR_MM_COUNTERS; i++)
930 		percpu_counter_destroy(&mm->rss_stat[i]);
931 	free_mm(mm);
932 }
933 EXPORT_SYMBOL_GPL(__mmdrop);
934 
935 static void mmdrop_async_fn(struct work_struct *work)
936 {
937 	struct mm_struct *mm;
938 
939 	mm = container_of(work, struct mm_struct, async_put_work);
940 	__mmdrop(mm);
941 }
942 
943 static void mmdrop_async(struct mm_struct *mm)
944 {
945 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
946 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
947 		schedule_work(&mm->async_put_work);
948 	}
949 }
950 
951 static inline void free_signal_struct(struct signal_struct *sig)
952 {
953 	taskstats_tgid_free(sig);
954 	sched_autogroup_exit(sig);
955 	/*
956 	 * __mmdrop is not safe to call from softirq context on x86 due to
957 	 * pgd_dtor so postpone it to the async context
958 	 */
959 	if (sig->oom_mm)
960 		mmdrop_async(sig->oom_mm);
961 	kmem_cache_free(signal_cachep, sig);
962 }
963 
964 static inline void put_signal_struct(struct signal_struct *sig)
965 {
966 	if (refcount_dec_and_test(&sig->sigcnt))
967 		free_signal_struct(sig);
968 }
969 
970 void __put_task_struct(struct task_struct *tsk)
971 {
972 	WARN_ON(!tsk->exit_state);
973 	WARN_ON(refcount_read(&tsk->usage));
974 	WARN_ON(tsk == current);
975 
976 	io_uring_free(tsk);
977 	cgroup_free(tsk);
978 	task_numa_free(tsk, true);
979 	security_task_free(tsk);
980 	exit_creds(tsk);
981 	delayacct_tsk_free(tsk);
982 	put_signal_struct(tsk->signal);
983 	sched_core_free(tsk);
984 	free_task(tsk);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct);
987 
988 void __init __weak arch_task_cache_init(void) { }
989 
990 /*
991  * set_max_threads
992  */
993 static void set_max_threads(unsigned int max_threads_suggested)
994 {
995 	u64 threads;
996 	unsigned long nr_pages = totalram_pages();
997 
998 	/*
999 	 * The number of threads shall be limited such that the thread
1000 	 * structures may only consume a small part of the available memory.
1001 	 */
1002 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1003 		threads = MAX_THREADS;
1004 	else
1005 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1006 				    (u64) THREAD_SIZE * 8UL);
1007 
1008 	if (threads > max_threads_suggested)
1009 		threads = max_threads_suggested;
1010 
1011 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1012 }
1013 
1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1015 /* Initialized by the architecture: */
1016 int arch_task_struct_size __read_mostly;
1017 #endif
1018 
1019 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1021 {
1022 	/* Fetch thread_struct whitelist for the architecture. */
1023 	arch_thread_struct_whitelist(offset, size);
1024 
1025 	/*
1026 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 	 * adjust offset to position of thread_struct in task_struct.
1028 	 */
1029 	if (unlikely(*size == 0))
1030 		*offset = 0;
1031 	else
1032 		*offset += offsetof(struct task_struct, thread);
1033 }
1034 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1035 
1036 void __init fork_init(void)
1037 {
1038 	int i;
1039 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1040 #ifndef ARCH_MIN_TASKALIGN
1041 #define ARCH_MIN_TASKALIGN	0
1042 #endif
1043 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044 	unsigned long useroffset, usersize;
1045 
1046 	/* create a slab on which task_structs can be allocated */
1047 	task_struct_whitelist(&useroffset, &usersize);
1048 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049 			arch_task_struct_size, align,
1050 			SLAB_PANIC|SLAB_ACCOUNT,
1051 			useroffset, usersize, NULL);
1052 #endif
1053 
1054 	/* do the arch specific task caches init */
1055 	arch_task_cache_init();
1056 
1057 	set_max_threads(MAX_THREADS);
1058 
1059 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062 		init_task.signal->rlim[RLIMIT_NPROC];
1063 
1064 	for (i = 0; i < UCOUNT_COUNTS; i++)
1065 		init_user_ns.ucount_max[i] = max_threads/2;
1066 
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1071 
1072 #ifdef CONFIG_VMAP_STACK
1073 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074 			  NULL, free_vm_stack_cache);
1075 #endif
1076 
1077 	scs_init();
1078 
1079 	lockdep_init_task(&init_task);
1080 	uprobes_init();
1081 }
1082 
1083 int __weak arch_dup_task_struct(struct task_struct *dst,
1084 					       struct task_struct *src)
1085 {
1086 	*dst = *src;
1087 	return 0;
1088 }
1089 
1090 void set_task_stack_end_magic(struct task_struct *tsk)
1091 {
1092 	unsigned long *stackend;
1093 
1094 	stackend = end_of_stack(tsk);
1095 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1096 }
1097 
1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1099 {
1100 	struct task_struct *tsk;
1101 	int err;
1102 
1103 	if (node == NUMA_NO_NODE)
1104 		node = tsk_fork_get_node(orig);
1105 	tsk = alloc_task_struct_node(node);
1106 	if (!tsk)
1107 		return NULL;
1108 
1109 	err = arch_dup_task_struct(tsk, orig);
1110 	if (err)
1111 		goto free_tsk;
1112 
1113 	err = alloc_thread_stack_node(tsk, node);
1114 	if (err)
1115 		goto free_tsk;
1116 
1117 #ifdef CONFIG_THREAD_INFO_IN_TASK
1118 	refcount_set(&tsk->stack_refcount, 1);
1119 #endif
1120 	account_kernel_stack(tsk, 1);
1121 
1122 	err = scs_prepare(tsk, node);
1123 	if (err)
1124 		goto free_stack;
1125 
1126 #ifdef CONFIG_SECCOMP
1127 	/*
1128 	 * We must handle setting up seccomp filters once we're under
1129 	 * the sighand lock in case orig has changed between now and
1130 	 * then. Until then, filter must be NULL to avoid messing up
1131 	 * the usage counts on the error path calling free_task.
1132 	 */
1133 	tsk->seccomp.filter = NULL;
1134 #endif
1135 
1136 	setup_thread_stack(tsk, orig);
1137 	clear_user_return_notifier(tsk);
1138 	clear_tsk_need_resched(tsk);
1139 	set_task_stack_end_magic(tsk);
1140 	clear_syscall_work_syscall_user_dispatch(tsk);
1141 
1142 #ifdef CONFIG_STACKPROTECTOR
1143 	tsk->stack_canary = get_random_canary();
1144 #endif
1145 	if (orig->cpus_ptr == &orig->cpus_mask)
1146 		tsk->cpus_ptr = &tsk->cpus_mask;
1147 	dup_user_cpus_ptr(tsk, orig, node);
1148 
1149 	/*
1150 	 * One for the user space visible state that goes away when reaped.
1151 	 * One for the scheduler.
1152 	 */
1153 	refcount_set(&tsk->rcu_users, 2);
1154 	/* One for the rcu users */
1155 	refcount_set(&tsk->usage, 1);
1156 #ifdef CONFIG_BLK_DEV_IO_TRACE
1157 	tsk->btrace_seq = 0;
1158 #endif
1159 	tsk->splice_pipe = NULL;
1160 	tsk->task_frag.page = NULL;
1161 	tsk->wake_q.next = NULL;
1162 	tsk->worker_private = NULL;
1163 
1164 	kcov_task_init(tsk);
1165 	kmsan_task_create(tsk);
1166 	kmap_local_fork(tsk);
1167 
1168 #ifdef CONFIG_FAULT_INJECTION
1169 	tsk->fail_nth = 0;
1170 #endif
1171 
1172 #ifdef CONFIG_BLK_CGROUP
1173 	tsk->throttle_disk = NULL;
1174 	tsk->use_memdelay = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_IOMMU_SVA
1178 	tsk->pasid_activated = 0;
1179 #endif
1180 
1181 #ifdef CONFIG_MEMCG
1182 	tsk->active_memcg = NULL;
1183 #endif
1184 
1185 #ifdef CONFIG_CPU_SUP_INTEL
1186 	tsk->reported_split_lock = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_SCHED_MM_CID
1190 	tsk->mm_cid = -1;
1191 	tsk->last_mm_cid = -1;
1192 	tsk->mm_cid_active = 0;
1193 	tsk->migrate_from_cpu = -1;
1194 #endif
1195 	return tsk;
1196 
1197 free_stack:
1198 	exit_task_stack_account(tsk);
1199 	free_thread_stack(tsk);
1200 free_tsk:
1201 	free_task_struct(tsk);
1202 	return NULL;
1203 }
1204 
1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1206 
1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1208 
1209 static int __init coredump_filter_setup(char *s)
1210 {
1211 	default_dump_filter =
1212 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1213 		MMF_DUMP_FILTER_MASK;
1214 	return 1;
1215 }
1216 
1217 __setup("coredump_filter=", coredump_filter_setup);
1218 
1219 #include <linux/init_task.h>
1220 
1221 static void mm_init_aio(struct mm_struct *mm)
1222 {
1223 #ifdef CONFIG_AIO
1224 	spin_lock_init(&mm->ioctx_lock);
1225 	mm->ioctx_table = NULL;
1226 #endif
1227 }
1228 
1229 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1230 					   struct task_struct *p)
1231 {
1232 #ifdef CONFIG_MEMCG
1233 	if (mm->owner == p)
1234 		WRITE_ONCE(mm->owner, NULL);
1235 #endif
1236 }
1237 
1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241 	mm->owner = p;
1242 #endif
1243 }
1244 
1245 static void mm_init_uprobes_state(struct mm_struct *mm)
1246 {
1247 #ifdef CONFIG_UPROBES
1248 	mm->uprobes_state.xol_area = NULL;
1249 #endif
1250 }
1251 
1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1253 	struct user_namespace *user_ns)
1254 {
1255 	int i;
1256 
1257 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259 	atomic_set(&mm->mm_users, 1);
1260 	atomic_set(&mm->mm_count, 1);
1261 	seqcount_init(&mm->write_protect_seq);
1262 	mmap_init_lock(mm);
1263 	INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265 	mm->mm_lock_seq = 0;
1266 #endif
1267 	mm_pgtables_bytes_init(mm);
1268 	mm->map_count = 0;
1269 	mm->locked_vm = 0;
1270 	atomic64_set(&mm->pinned_vm, 0);
1271 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272 	spin_lock_init(&mm->page_table_lock);
1273 	spin_lock_init(&mm->arg_lock);
1274 	mm_init_cpumask(mm);
1275 	mm_init_aio(mm);
1276 	mm_init_owner(mm, p);
1277 	mm_pasid_init(mm);
1278 	RCU_INIT_POINTER(mm->exe_file, NULL);
1279 	mmu_notifier_subscriptions_init(mm);
1280 	init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1282 	mm->pmd_huge_pte = NULL;
1283 #endif
1284 	mm_init_uprobes_state(mm);
1285 	hugetlb_count_init(mm);
1286 
1287 	if (current->mm) {
1288 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1289 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290 	} else {
1291 		mm->flags = default_dump_filter;
1292 		mm->def_flags = 0;
1293 	}
1294 
1295 	if (mm_alloc_pgd(mm))
1296 		goto fail_nopgd;
1297 
1298 	if (init_new_context(p, mm))
1299 		goto fail_nocontext;
1300 
1301 	if (mm_alloc_cid(mm))
1302 		goto fail_cid;
1303 
1304 	for (i = 0; i < NR_MM_COUNTERS; i++)
1305 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1306 			goto fail_pcpu;
1307 
1308 	mm->user_ns = get_user_ns(user_ns);
1309 	lru_gen_init_mm(mm);
1310 	return mm;
1311 
1312 fail_pcpu:
1313 	while (i > 0)
1314 		percpu_counter_destroy(&mm->rss_stat[--i]);
1315 	mm_destroy_cid(mm);
1316 fail_cid:
1317 	destroy_context(mm);
1318 fail_nocontext:
1319 	mm_free_pgd(mm);
1320 fail_nopgd:
1321 	free_mm(mm);
1322 	return NULL;
1323 }
1324 
1325 /*
1326  * Allocate and initialize an mm_struct.
1327  */
1328 struct mm_struct *mm_alloc(void)
1329 {
1330 	struct mm_struct *mm;
1331 
1332 	mm = allocate_mm();
1333 	if (!mm)
1334 		return NULL;
1335 
1336 	memset(mm, 0, sizeof(*mm));
1337 	return mm_init(mm, current, current_user_ns());
1338 }
1339 
1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342 	VM_BUG_ON(atomic_read(&mm->mm_users));
1343 
1344 	uprobe_clear_state(mm);
1345 	exit_aio(mm);
1346 	ksm_exit(mm);
1347 	khugepaged_exit(mm); /* must run before exit_mmap */
1348 	exit_mmap(mm);
1349 	mm_put_huge_zero_page(mm);
1350 	set_mm_exe_file(mm, NULL);
1351 	if (!list_empty(&mm->mmlist)) {
1352 		spin_lock(&mmlist_lock);
1353 		list_del(&mm->mmlist);
1354 		spin_unlock(&mmlist_lock);
1355 	}
1356 	if (mm->binfmt)
1357 		module_put(mm->binfmt->module);
1358 	lru_gen_del_mm(mm);
1359 	mmdrop(mm);
1360 }
1361 
1362 /*
1363  * Decrement the use count and release all resources for an mm.
1364  */
1365 void mmput(struct mm_struct *mm)
1366 {
1367 	might_sleep();
1368 
1369 	if (atomic_dec_and_test(&mm->mm_users))
1370 		__mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373 
1374 #ifdef CONFIG_MMU
1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377 	struct mm_struct *mm = container_of(work, struct mm_struct,
1378 					    async_put_work);
1379 
1380 	__mmput(mm);
1381 }
1382 
1383 void mmput_async(struct mm_struct *mm)
1384 {
1385 	if (atomic_dec_and_test(&mm->mm_users)) {
1386 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 		schedule_work(&mm->async_put_work);
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392 
1393 /**
1394  * set_mm_exe_file - change a reference to the mm's executable file
1395  *
1396  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397  *
1398  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1399  * invocations: in mmput() nobody alive left, in execve it happens before
1400  * the new mm is made visible to anyone.
1401  *
1402  * Can only fail if new_exe_file != NULL.
1403  */
1404 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405 {
1406 	struct file *old_exe_file;
1407 
1408 	/*
1409 	 * It is safe to dereference the exe_file without RCU as
1410 	 * this function is only called if nobody else can access
1411 	 * this mm -- see comment above for justification.
1412 	 */
1413 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1414 
1415 	if (new_exe_file) {
1416 		/*
1417 		 * We expect the caller (i.e., sys_execve) to already denied
1418 		 * write access, so this is unlikely to fail.
1419 		 */
1420 		if (unlikely(deny_write_access(new_exe_file)))
1421 			return -EACCES;
1422 		get_file(new_exe_file);
1423 	}
1424 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1425 	if (old_exe_file) {
1426 		allow_write_access(old_exe_file);
1427 		fput(old_exe_file);
1428 	}
1429 	return 0;
1430 }
1431 
1432 /**
1433  * replace_mm_exe_file - replace a reference to the mm's executable file
1434  *
1435  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1436  *
1437  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1438  */
1439 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1440 {
1441 	struct vm_area_struct *vma;
1442 	struct file *old_exe_file;
1443 	int ret = 0;
1444 
1445 	/* Forbid mm->exe_file change if old file still mapped. */
1446 	old_exe_file = get_mm_exe_file(mm);
1447 	if (old_exe_file) {
1448 		VMA_ITERATOR(vmi, mm, 0);
1449 		mmap_read_lock(mm);
1450 		for_each_vma(vmi, vma) {
1451 			if (!vma->vm_file)
1452 				continue;
1453 			if (path_equal(&vma->vm_file->f_path,
1454 				       &old_exe_file->f_path)) {
1455 				ret = -EBUSY;
1456 				break;
1457 			}
1458 		}
1459 		mmap_read_unlock(mm);
1460 		fput(old_exe_file);
1461 		if (ret)
1462 			return ret;
1463 	}
1464 
1465 	ret = deny_write_access(new_exe_file);
1466 	if (ret)
1467 		return -EACCES;
1468 	get_file(new_exe_file);
1469 
1470 	/* set the new file */
1471 	mmap_write_lock(mm);
1472 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1473 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1474 	mmap_write_unlock(mm);
1475 
1476 	if (old_exe_file) {
1477 		allow_write_access(old_exe_file);
1478 		fput(old_exe_file);
1479 	}
1480 	return 0;
1481 }
1482 
1483 /**
1484  * get_mm_exe_file - acquire a reference to the mm's executable file
1485  *
1486  * Returns %NULL if mm has no associated executable file.
1487  * User must release file via fput().
1488  */
1489 struct file *get_mm_exe_file(struct mm_struct *mm)
1490 {
1491 	struct file *exe_file;
1492 
1493 	rcu_read_lock();
1494 	exe_file = rcu_dereference(mm->exe_file);
1495 	if (exe_file && !get_file_rcu(exe_file))
1496 		exe_file = NULL;
1497 	rcu_read_unlock();
1498 	return exe_file;
1499 }
1500 
1501 /**
1502  * get_task_exe_file - acquire a reference to the task's executable file
1503  *
1504  * Returns %NULL if task's mm (if any) has no associated executable file or
1505  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1506  * User must release file via fput().
1507  */
1508 struct file *get_task_exe_file(struct task_struct *task)
1509 {
1510 	struct file *exe_file = NULL;
1511 	struct mm_struct *mm;
1512 
1513 	task_lock(task);
1514 	mm = task->mm;
1515 	if (mm) {
1516 		if (!(task->flags & PF_KTHREAD))
1517 			exe_file = get_mm_exe_file(mm);
1518 	}
1519 	task_unlock(task);
1520 	return exe_file;
1521 }
1522 
1523 /**
1524  * get_task_mm - acquire a reference to the task's mm
1525  *
1526  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1527  * this kernel workthread has transiently adopted a user mm with use_mm,
1528  * to do its AIO) is not set and if so returns a reference to it, after
1529  * bumping up the use count.  User must release the mm via mmput()
1530  * after use.  Typically used by /proc and ptrace.
1531  */
1532 struct mm_struct *get_task_mm(struct task_struct *task)
1533 {
1534 	struct mm_struct *mm;
1535 
1536 	task_lock(task);
1537 	mm = task->mm;
1538 	if (mm) {
1539 		if (task->flags & PF_KTHREAD)
1540 			mm = NULL;
1541 		else
1542 			mmget(mm);
1543 	}
1544 	task_unlock(task);
1545 	return mm;
1546 }
1547 EXPORT_SYMBOL_GPL(get_task_mm);
1548 
1549 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1550 {
1551 	struct mm_struct *mm;
1552 	int err;
1553 
1554 	err =  down_read_killable(&task->signal->exec_update_lock);
1555 	if (err)
1556 		return ERR_PTR(err);
1557 
1558 	mm = get_task_mm(task);
1559 	if (mm && mm != current->mm &&
1560 			!ptrace_may_access(task, mode)) {
1561 		mmput(mm);
1562 		mm = ERR_PTR(-EACCES);
1563 	}
1564 	up_read(&task->signal->exec_update_lock);
1565 
1566 	return mm;
1567 }
1568 
1569 static void complete_vfork_done(struct task_struct *tsk)
1570 {
1571 	struct completion *vfork;
1572 
1573 	task_lock(tsk);
1574 	vfork = tsk->vfork_done;
1575 	if (likely(vfork)) {
1576 		tsk->vfork_done = NULL;
1577 		complete(vfork);
1578 	}
1579 	task_unlock(tsk);
1580 }
1581 
1582 static int wait_for_vfork_done(struct task_struct *child,
1583 				struct completion *vfork)
1584 {
1585 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1586 	int killed;
1587 
1588 	cgroup_enter_frozen();
1589 	killed = wait_for_completion_state(vfork, state);
1590 	cgroup_leave_frozen(false);
1591 
1592 	if (killed) {
1593 		task_lock(child);
1594 		child->vfork_done = NULL;
1595 		task_unlock(child);
1596 	}
1597 
1598 	put_task_struct(child);
1599 	return killed;
1600 }
1601 
1602 /* Please note the differences between mmput and mm_release.
1603  * mmput is called whenever we stop holding onto a mm_struct,
1604  * error success whatever.
1605  *
1606  * mm_release is called after a mm_struct has been removed
1607  * from the current process.
1608  *
1609  * This difference is important for error handling, when we
1610  * only half set up a mm_struct for a new process and need to restore
1611  * the old one.  Because we mmput the new mm_struct before
1612  * restoring the old one. . .
1613  * Eric Biederman 10 January 1998
1614  */
1615 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1616 {
1617 	uprobe_free_utask(tsk);
1618 
1619 	/* Get rid of any cached register state */
1620 	deactivate_mm(tsk, mm);
1621 
1622 	/*
1623 	 * Signal userspace if we're not exiting with a core dump
1624 	 * because we want to leave the value intact for debugging
1625 	 * purposes.
1626 	 */
1627 	if (tsk->clear_child_tid) {
1628 		if (atomic_read(&mm->mm_users) > 1) {
1629 			/*
1630 			 * We don't check the error code - if userspace has
1631 			 * not set up a proper pointer then tough luck.
1632 			 */
1633 			put_user(0, tsk->clear_child_tid);
1634 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1635 					1, NULL, NULL, 0, 0);
1636 		}
1637 		tsk->clear_child_tid = NULL;
1638 	}
1639 
1640 	/*
1641 	 * All done, finally we can wake up parent and return this mm to him.
1642 	 * Also kthread_stop() uses this completion for synchronization.
1643 	 */
1644 	if (tsk->vfork_done)
1645 		complete_vfork_done(tsk);
1646 }
1647 
1648 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1649 {
1650 	futex_exit_release(tsk);
1651 	mm_release(tsk, mm);
1652 }
1653 
1654 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 	futex_exec_release(tsk);
1657 	mm_release(tsk, mm);
1658 }
1659 
1660 /**
1661  * dup_mm() - duplicates an existing mm structure
1662  * @tsk: the task_struct with which the new mm will be associated.
1663  * @oldmm: the mm to duplicate.
1664  *
1665  * Allocates a new mm structure and duplicates the provided @oldmm structure
1666  * content into it.
1667  *
1668  * Return: the duplicated mm or NULL on failure.
1669  */
1670 static struct mm_struct *dup_mm(struct task_struct *tsk,
1671 				struct mm_struct *oldmm)
1672 {
1673 	struct mm_struct *mm;
1674 	int err;
1675 
1676 	mm = allocate_mm();
1677 	if (!mm)
1678 		goto fail_nomem;
1679 
1680 	memcpy(mm, oldmm, sizeof(*mm));
1681 
1682 	if (!mm_init(mm, tsk, mm->user_ns))
1683 		goto fail_nomem;
1684 
1685 	err = dup_mmap(mm, oldmm);
1686 	if (err)
1687 		goto free_pt;
1688 
1689 	mm->hiwater_rss = get_mm_rss(mm);
1690 	mm->hiwater_vm = mm->total_vm;
1691 
1692 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1693 		goto free_pt;
1694 
1695 	return mm;
1696 
1697 free_pt:
1698 	/* don't put binfmt in mmput, we haven't got module yet */
1699 	mm->binfmt = NULL;
1700 	mm_init_owner(mm, NULL);
1701 	mmput(mm);
1702 
1703 fail_nomem:
1704 	return NULL;
1705 }
1706 
1707 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1708 {
1709 	struct mm_struct *mm, *oldmm;
1710 
1711 	tsk->min_flt = tsk->maj_flt = 0;
1712 	tsk->nvcsw = tsk->nivcsw = 0;
1713 #ifdef CONFIG_DETECT_HUNG_TASK
1714 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1715 	tsk->last_switch_time = 0;
1716 #endif
1717 
1718 	tsk->mm = NULL;
1719 	tsk->active_mm = NULL;
1720 
1721 	/*
1722 	 * Are we cloning a kernel thread?
1723 	 *
1724 	 * We need to steal a active VM for that..
1725 	 */
1726 	oldmm = current->mm;
1727 	if (!oldmm)
1728 		return 0;
1729 
1730 	if (clone_flags & CLONE_VM) {
1731 		mmget(oldmm);
1732 		mm = oldmm;
1733 	} else {
1734 		mm = dup_mm(tsk, current->mm);
1735 		if (!mm)
1736 			return -ENOMEM;
1737 	}
1738 
1739 	tsk->mm = mm;
1740 	tsk->active_mm = mm;
1741 	sched_mm_cid_fork(tsk);
1742 	return 0;
1743 }
1744 
1745 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1746 {
1747 	struct fs_struct *fs = current->fs;
1748 	if (clone_flags & CLONE_FS) {
1749 		/* tsk->fs is already what we want */
1750 		spin_lock(&fs->lock);
1751 		if (fs->in_exec) {
1752 			spin_unlock(&fs->lock);
1753 			return -EAGAIN;
1754 		}
1755 		fs->users++;
1756 		spin_unlock(&fs->lock);
1757 		return 0;
1758 	}
1759 	tsk->fs = copy_fs_struct(fs);
1760 	if (!tsk->fs)
1761 		return -ENOMEM;
1762 	return 0;
1763 }
1764 
1765 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1766 		      int no_files)
1767 {
1768 	struct files_struct *oldf, *newf;
1769 	int error = 0;
1770 
1771 	/*
1772 	 * A background process may not have any files ...
1773 	 */
1774 	oldf = current->files;
1775 	if (!oldf)
1776 		goto out;
1777 
1778 	if (no_files) {
1779 		tsk->files = NULL;
1780 		goto out;
1781 	}
1782 
1783 	if (clone_flags & CLONE_FILES) {
1784 		atomic_inc(&oldf->count);
1785 		goto out;
1786 	}
1787 
1788 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1789 	if (!newf)
1790 		goto out;
1791 
1792 	tsk->files = newf;
1793 	error = 0;
1794 out:
1795 	return error;
1796 }
1797 
1798 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1799 {
1800 	struct sighand_struct *sig;
1801 
1802 	if (clone_flags & CLONE_SIGHAND) {
1803 		refcount_inc(&current->sighand->count);
1804 		return 0;
1805 	}
1806 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1807 	RCU_INIT_POINTER(tsk->sighand, sig);
1808 	if (!sig)
1809 		return -ENOMEM;
1810 
1811 	refcount_set(&sig->count, 1);
1812 	spin_lock_irq(&current->sighand->siglock);
1813 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1814 	spin_unlock_irq(&current->sighand->siglock);
1815 
1816 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1817 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1818 		flush_signal_handlers(tsk, 0);
1819 
1820 	return 0;
1821 }
1822 
1823 void __cleanup_sighand(struct sighand_struct *sighand)
1824 {
1825 	if (refcount_dec_and_test(&sighand->count)) {
1826 		signalfd_cleanup(sighand);
1827 		/*
1828 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1829 		 * without an RCU grace period, see __lock_task_sighand().
1830 		 */
1831 		kmem_cache_free(sighand_cachep, sighand);
1832 	}
1833 }
1834 
1835 /*
1836  * Initialize POSIX timer handling for a thread group.
1837  */
1838 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1839 {
1840 	struct posix_cputimers *pct = &sig->posix_cputimers;
1841 	unsigned long cpu_limit;
1842 
1843 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1844 	posix_cputimers_group_init(pct, cpu_limit);
1845 }
1846 
1847 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1848 {
1849 	struct signal_struct *sig;
1850 
1851 	if (clone_flags & CLONE_THREAD)
1852 		return 0;
1853 
1854 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1855 	tsk->signal = sig;
1856 	if (!sig)
1857 		return -ENOMEM;
1858 
1859 	sig->nr_threads = 1;
1860 	sig->quick_threads = 1;
1861 	atomic_set(&sig->live, 1);
1862 	refcount_set(&sig->sigcnt, 1);
1863 
1864 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1865 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1866 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1867 
1868 	init_waitqueue_head(&sig->wait_chldexit);
1869 	sig->curr_target = tsk;
1870 	init_sigpending(&sig->shared_pending);
1871 	INIT_HLIST_HEAD(&sig->multiprocess);
1872 	seqlock_init(&sig->stats_lock);
1873 	prev_cputime_init(&sig->prev_cputime);
1874 
1875 #ifdef CONFIG_POSIX_TIMERS
1876 	INIT_LIST_HEAD(&sig->posix_timers);
1877 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1878 	sig->real_timer.function = it_real_fn;
1879 #endif
1880 
1881 	task_lock(current->group_leader);
1882 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1883 	task_unlock(current->group_leader);
1884 
1885 	posix_cpu_timers_init_group(sig);
1886 
1887 	tty_audit_fork(sig);
1888 	sched_autogroup_fork(sig);
1889 
1890 	sig->oom_score_adj = current->signal->oom_score_adj;
1891 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1892 
1893 	mutex_init(&sig->cred_guard_mutex);
1894 	init_rwsem(&sig->exec_update_lock);
1895 
1896 	return 0;
1897 }
1898 
1899 static void copy_seccomp(struct task_struct *p)
1900 {
1901 #ifdef CONFIG_SECCOMP
1902 	/*
1903 	 * Must be called with sighand->lock held, which is common to
1904 	 * all threads in the group. Holding cred_guard_mutex is not
1905 	 * needed because this new task is not yet running and cannot
1906 	 * be racing exec.
1907 	 */
1908 	assert_spin_locked(&current->sighand->siglock);
1909 
1910 	/* Ref-count the new filter user, and assign it. */
1911 	get_seccomp_filter(current);
1912 	p->seccomp = current->seccomp;
1913 
1914 	/*
1915 	 * Explicitly enable no_new_privs here in case it got set
1916 	 * between the task_struct being duplicated and holding the
1917 	 * sighand lock. The seccomp state and nnp must be in sync.
1918 	 */
1919 	if (task_no_new_privs(current))
1920 		task_set_no_new_privs(p);
1921 
1922 	/*
1923 	 * If the parent gained a seccomp mode after copying thread
1924 	 * flags and between before we held the sighand lock, we have
1925 	 * to manually enable the seccomp thread flag here.
1926 	 */
1927 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1928 		set_task_syscall_work(p, SECCOMP);
1929 #endif
1930 }
1931 
1932 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1933 {
1934 	current->clear_child_tid = tidptr;
1935 
1936 	return task_pid_vnr(current);
1937 }
1938 
1939 static void rt_mutex_init_task(struct task_struct *p)
1940 {
1941 	raw_spin_lock_init(&p->pi_lock);
1942 #ifdef CONFIG_RT_MUTEXES
1943 	p->pi_waiters = RB_ROOT_CACHED;
1944 	p->pi_top_task = NULL;
1945 	p->pi_blocked_on = NULL;
1946 #endif
1947 }
1948 
1949 static inline void init_task_pid_links(struct task_struct *task)
1950 {
1951 	enum pid_type type;
1952 
1953 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1954 		INIT_HLIST_NODE(&task->pid_links[type]);
1955 }
1956 
1957 static inline void
1958 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1959 {
1960 	if (type == PIDTYPE_PID)
1961 		task->thread_pid = pid;
1962 	else
1963 		task->signal->pids[type] = pid;
1964 }
1965 
1966 static inline void rcu_copy_process(struct task_struct *p)
1967 {
1968 #ifdef CONFIG_PREEMPT_RCU
1969 	p->rcu_read_lock_nesting = 0;
1970 	p->rcu_read_unlock_special.s = 0;
1971 	p->rcu_blocked_node = NULL;
1972 	INIT_LIST_HEAD(&p->rcu_node_entry);
1973 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1974 #ifdef CONFIG_TASKS_RCU
1975 	p->rcu_tasks_holdout = false;
1976 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1977 	p->rcu_tasks_idle_cpu = -1;
1978 #endif /* #ifdef CONFIG_TASKS_RCU */
1979 #ifdef CONFIG_TASKS_TRACE_RCU
1980 	p->trc_reader_nesting = 0;
1981 	p->trc_reader_special.s = 0;
1982 	INIT_LIST_HEAD(&p->trc_holdout_list);
1983 	INIT_LIST_HEAD(&p->trc_blkd_node);
1984 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1985 }
1986 
1987 struct pid *pidfd_pid(const struct file *file)
1988 {
1989 	if (file->f_op == &pidfd_fops)
1990 		return file->private_data;
1991 
1992 	return ERR_PTR(-EBADF);
1993 }
1994 
1995 static int pidfd_release(struct inode *inode, struct file *file)
1996 {
1997 	struct pid *pid = file->private_data;
1998 
1999 	file->private_data = NULL;
2000 	put_pid(pid);
2001 	return 0;
2002 }
2003 
2004 #ifdef CONFIG_PROC_FS
2005 /**
2006  * pidfd_show_fdinfo - print information about a pidfd
2007  * @m: proc fdinfo file
2008  * @f: file referencing a pidfd
2009  *
2010  * Pid:
2011  * This function will print the pid that a given pidfd refers to in the
2012  * pid namespace of the procfs instance.
2013  * If the pid namespace of the process is not a descendant of the pid
2014  * namespace of the procfs instance 0 will be shown as its pid. This is
2015  * similar to calling getppid() on a process whose parent is outside of
2016  * its pid namespace.
2017  *
2018  * NSpid:
2019  * If pid namespaces are supported then this function will also print
2020  * the pid of a given pidfd refers to for all descendant pid namespaces
2021  * starting from the current pid namespace of the instance, i.e. the
2022  * Pid field and the first entry in the NSpid field will be identical.
2023  * If the pid namespace of the process is not a descendant of the pid
2024  * namespace of the procfs instance 0 will be shown as its first NSpid
2025  * entry and no others will be shown.
2026  * Note that this differs from the Pid and NSpid fields in
2027  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2028  * the  pid namespace of the procfs instance. The difference becomes
2029  * obvious when sending around a pidfd between pid namespaces from a
2030  * different branch of the tree, i.e. where no ancestral relation is
2031  * present between the pid namespaces:
2032  * - create two new pid namespaces ns1 and ns2 in the initial pid
2033  *   namespace (also take care to create new mount namespaces in the
2034  *   new pid namespace and mount procfs)
2035  * - create a process with a pidfd in ns1
2036  * - send pidfd from ns1 to ns2
2037  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2038  *   have exactly one entry, which is 0
2039  */
2040 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2041 {
2042 	struct pid *pid = f->private_data;
2043 	struct pid_namespace *ns;
2044 	pid_t nr = -1;
2045 
2046 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2047 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2048 		nr = pid_nr_ns(pid, ns);
2049 	}
2050 
2051 	seq_put_decimal_ll(m, "Pid:\t", nr);
2052 
2053 #ifdef CONFIG_PID_NS
2054 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2055 	if (nr > 0) {
2056 		int i;
2057 
2058 		/* If nr is non-zero it means that 'pid' is valid and that
2059 		 * ns, i.e. the pid namespace associated with the procfs
2060 		 * instance, is in the pid namespace hierarchy of pid.
2061 		 * Start at one below the already printed level.
2062 		 */
2063 		for (i = ns->level + 1; i <= pid->level; i++)
2064 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2065 	}
2066 #endif
2067 	seq_putc(m, '\n');
2068 }
2069 #endif
2070 
2071 /*
2072  * Poll support for process exit notification.
2073  */
2074 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2075 {
2076 	struct pid *pid = file->private_data;
2077 	__poll_t poll_flags = 0;
2078 
2079 	poll_wait(file, &pid->wait_pidfd, pts);
2080 
2081 	/*
2082 	 * Inform pollers only when the whole thread group exits.
2083 	 * If the thread group leader exits before all other threads in the
2084 	 * group, then poll(2) should block, similar to the wait(2) family.
2085 	 */
2086 	if (thread_group_exited(pid))
2087 		poll_flags = EPOLLIN | EPOLLRDNORM;
2088 
2089 	return poll_flags;
2090 }
2091 
2092 const struct file_operations pidfd_fops = {
2093 	.release = pidfd_release,
2094 	.poll = pidfd_poll,
2095 #ifdef CONFIG_PROC_FS
2096 	.show_fdinfo = pidfd_show_fdinfo,
2097 #endif
2098 };
2099 
2100 /**
2101  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2102  * @pid:   the struct pid for which to create a pidfd
2103  * @flags: flags of the new @pidfd
2104  * @pidfd: the pidfd to return
2105  *
2106  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2107  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2108 
2109  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2110  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2111  * pidfd file are prepared.
2112  *
2113  * If this function returns successfully the caller is responsible to either
2114  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2115  * order to install the pidfd into its file descriptor table or they must use
2116  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2117  * respectively.
2118  *
2119  * This function is useful when a pidfd must already be reserved but there
2120  * might still be points of failure afterwards and the caller wants to ensure
2121  * that no pidfd is leaked into its file descriptor table.
2122  *
2123  * Return: On success, a reserved pidfd is returned from the function and a new
2124  *         pidfd file is returned in the last argument to the function. On
2125  *         error, a negative error code is returned from the function and the
2126  *         last argument remains unchanged.
2127  */
2128 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2129 {
2130 	int pidfd;
2131 	struct file *pidfd_file;
2132 
2133 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2134 		return -EINVAL;
2135 
2136 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2137 	if (pidfd < 0)
2138 		return pidfd;
2139 
2140 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2141 					flags | O_RDWR | O_CLOEXEC);
2142 	if (IS_ERR(pidfd_file)) {
2143 		put_unused_fd(pidfd);
2144 		return PTR_ERR(pidfd_file);
2145 	}
2146 	get_pid(pid); /* held by pidfd_file now */
2147 	*ret = pidfd_file;
2148 	return pidfd;
2149 }
2150 
2151 /**
2152  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2153  * @pid:   the struct pid for which to create a pidfd
2154  * @flags: flags of the new @pidfd
2155  * @pidfd: the pidfd to return
2156  *
2157  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2158  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2159  *
2160  * The helper verifies that @pid is used as a thread group leader.
2161  *
2162  * If this function returns successfully the caller is responsible to either
2163  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2164  * order to install the pidfd into its file descriptor table or they must use
2165  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2166  * respectively.
2167  *
2168  * This function is useful when a pidfd must already be reserved but there
2169  * might still be points of failure afterwards and the caller wants to ensure
2170  * that no pidfd is leaked into its file descriptor table.
2171  *
2172  * Return: On success, a reserved pidfd is returned from the function and a new
2173  *         pidfd file is returned in the last argument to the function. On
2174  *         error, a negative error code is returned from the function and the
2175  *         last argument remains unchanged.
2176  */
2177 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2178 {
2179 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2180 		return -EINVAL;
2181 
2182 	return __pidfd_prepare(pid, flags, ret);
2183 }
2184 
2185 static void __delayed_free_task(struct rcu_head *rhp)
2186 {
2187 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2188 
2189 	free_task(tsk);
2190 }
2191 
2192 static __always_inline void delayed_free_task(struct task_struct *tsk)
2193 {
2194 	if (IS_ENABLED(CONFIG_MEMCG))
2195 		call_rcu(&tsk->rcu, __delayed_free_task);
2196 	else
2197 		free_task(tsk);
2198 }
2199 
2200 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2201 {
2202 	/* Skip if kernel thread */
2203 	if (!tsk->mm)
2204 		return;
2205 
2206 	/* Skip if spawning a thread or using vfork */
2207 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2208 		return;
2209 
2210 	/* We need to synchronize with __set_oom_adj */
2211 	mutex_lock(&oom_adj_mutex);
2212 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2213 	/* Update the values in case they were changed after copy_signal */
2214 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2215 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2216 	mutex_unlock(&oom_adj_mutex);
2217 }
2218 
2219 #ifdef CONFIG_RV
2220 static void rv_task_fork(struct task_struct *p)
2221 {
2222 	int i;
2223 
2224 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2225 		p->rv[i].da_mon.monitoring = false;
2226 }
2227 #else
2228 #define rv_task_fork(p) do {} while (0)
2229 #endif
2230 
2231 /*
2232  * This creates a new process as a copy of the old one,
2233  * but does not actually start it yet.
2234  *
2235  * It copies the registers, and all the appropriate
2236  * parts of the process environment (as per the clone
2237  * flags). The actual kick-off is left to the caller.
2238  */
2239 __latent_entropy struct task_struct *copy_process(
2240 					struct pid *pid,
2241 					int trace,
2242 					int node,
2243 					struct kernel_clone_args *args)
2244 {
2245 	int pidfd = -1, retval;
2246 	struct task_struct *p;
2247 	struct multiprocess_signals delayed;
2248 	struct file *pidfile = NULL;
2249 	const u64 clone_flags = args->flags;
2250 	struct nsproxy *nsp = current->nsproxy;
2251 
2252 	/*
2253 	 * Don't allow sharing the root directory with processes in a different
2254 	 * namespace
2255 	 */
2256 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2257 		return ERR_PTR(-EINVAL);
2258 
2259 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2260 		return ERR_PTR(-EINVAL);
2261 
2262 	/*
2263 	 * Thread groups must share signals as well, and detached threads
2264 	 * can only be started up within the thread group.
2265 	 */
2266 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2267 		return ERR_PTR(-EINVAL);
2268 
2269 	/*
2270 	 * Shared signal handlers imply shared VM. By way of the above,
2271 	 * thread groups also imply shared VM. Blocking this case allows
2272 	 * for various simplifications in other code.
2273 	 */
2274 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2275 		return ERR_PTR(-EINVAL);
2276 
2277 	/*
2278 	 * Siblings of global init remain as zombies on exit since they are
2279 	 * not reaped by their parent (swapper). To solve this and to avoid
2280 	 * multi-rooted process trees, prevent global and container-inits
2281 	 * from creating siblings.
2282 	 */
2283 	if ((clone_flags & CLONE_PARENT) &&
2284 				current->signal->flags & SIGNAL_UNKILLABLE)
2285 		return ERR_PTR(-EINVAL);
2286 
2287 	/*
2288 	 * If the new process will be in a different pid or user namespace
2289 	 * do not allow it to share a thread group with the forking task.
2290 	 */
2291 	if (clone_flags & CLONE_THREAD) {
2292 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2293 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2294 			return ERR_PTR(-EINVAL);
2295 	}
2296 
2297 	if (clone_flags & CLONE_PIDFD) {
2298 		/*
2299 		 * - CLONE_DETACHED is blocked so that we can potentially
2300 		 *   reuse it later for CLONE_PIDFD.
2301 		 * - CLONE_THREAD is blocked until someone really needs it.
2302 		 */
2303 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2304 			return ERR_PTR(-EINVAL);
2305 	}
2306 
2307 	/*
2308 	 * Force any signals received before this point to be delivered
2309 	 * before the fork happens.  Collect up signals sent to multiple
2310 	 * processes that happen during the fork and delay them so that
2311 	 * they appear to happen after the fork.
2312 	 */
2313 	sigemptyset(&delayed.signal);
2314 	INIT_HLIST_NODE(&delayed.node);
2315 
2316 	spin_lock_irq(&current->sighand->siglock);
2317 	if (!(clone_flags & CLONE_THREAD))
2318 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2319 	recalc_sigpending();
2320 	spin_unlock_irq(&current->sighand->siglock);
2321 	retval = -ERESTARTNOINTR;
2322 	if (task_sigpending(current))
2323 		goto fork_out;
2324 
2325 	retval = -ENOMEM;
2326 	p = dup_task_struct(current, node);
2327 	if (!p)
2328 		goto fork_out;
2329 	p->flags &= ~PF_KTHREAD;
2330 	if (args->kthread)
2331 		p->flags |= PF_KTHREAD;
2332 	if (args->user_worker) {
2333 		/*
2334 		 * Mark us a user worker, and block any signal that isn't
2335 		 * fatal or STOP
2336 		 */
2337 		p->flags |= PF_USER_WORKER;
2338 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2339 	}
2340 	if (args->io_thread)
2341 		p->flags |= PF_IO_WORKER;
2342 
2343 	if (args->name)
2344 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2345 
2346 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2347 	/*
2348 	 * Clear TID on mm_release()?
2349 	 */
2350 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2351 
2352 	ftrace_graph_init_task(p);
2353 
2354 	rt_mutex_init_task(p);
2355 
2356 	lockdep_assert_irqs_enabled();
2357 #ifdef CONFIG_PROVE_LOCKING
2358 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2359 #endif
2360 	retval = copy_creds(p, clone_flags);
2361 	if (retval < 0)
2362 		goto bad_fork_free;
2363 
2364 	retval = -EAGAIN;
2365 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2366 		if (p->real_cred->user != INIT_USER &&
2367 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2368 			goto bad_fork_cleanup_count;
2369 	}
2370 	current->flags &= ~PF_NPROC_EXCEEDED;
2371 
2372 	/*
2373 	 * If multiple threads are within copy_process(), then this check
2374 	 * triggers too late. This doesn't hurt, the check is only there
2375 	 * to stop root fork bombs.
2376 	 */
2377 	retval = -EAGAIN;
2378 	if (data_race(nr_threads >= max_threads))
2379 		goto bad_fork_cleanup_count;
2380 
2381 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2382 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2383 	p->flags |= PF_FORKNOEXEC;
2384 	INIT_LIST_HEAD(&p->children);
2385 	INIT_LIST_HEAD(&p->sibling);
2386 	rcu_copy_process(p);
2387 	p->vfork_done = NULL;
2388 	spin_lock_init(&p->alloc_lock);
2389 
2390 	init_sigpending(&p->pending);
2391 
2392 	p->utime = p->stime = p->gtime = 0;
2393 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2394 	p->utimescaled = p->stimescaled = 0;
2395 #endif
2396 	prev_cputime_init(&p->prev_cputime);
2397 
2398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2399 	seqcount_init(&p->vtime.seqcount);
2400 	p->vtime.starttime = 0;
2401 	p->vtime.state = VTIME_INACTIVE;
2402 #endif
2403 
2404 #ifdef CONFIG_IO_URING
2405 	p->io_uring = NULL;
2406 #endif
2407 
2408 #if defined(SPLIT_RSS_COUNTING)
2409 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2410 #endif
2411 
2412 	p->default_timer_slack_ns = current->timer_slack_ns;
2413 
2414 #ifdef CONFIG_PSI
2415 	p->psi_flags = 0;
2416 #endif
2417 
2418 	task_io_accounting_init(&p->ioac);
2419 	acct_clear_integrals(p);
2420 
2421 	posix_cputimers_init(&p->posix_cputimers);
2422 
2423 	p->io_context = NULL;
2424 	audit_set_context(p, NULL);
2425 	cgroup_fork(p);
2426 	if (args->kthread) {
2427 		if (!set_kthread_struct(p))
2428 			goto bad_fork_cleanup_delayacct;
2429 	}
2430 #ifdef CONFIG_NUMA
2431 	p->mempolicy = mpol_dup(p->mempolicy);
2432 	if (IS_ERR(p->mempolicy)) {
2433 		retval = PTR_ERR(p->mempolicy);
2434 		p->mempolicy = NULL;
2435 		goto bad_fork_cleanup_delayacct;
2436 	}
2437 #endif
2438 #ifdef CONFIG_CPUSETS
2439 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2440 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2441 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2442 #endif
2443 #ifdef CONFIG_TRACE_IRQFLAGS
2444 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2445 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2446 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2447 	p->softirqs_enabled		= 1;
2448 	p->softirq_context		= 0;
2449 #endif
2450 
2451 	p->pagefault_disabled = 0;
2452 
2453 #ifdef CONFIG_LOCKDEP
2454 	lockdep_init_task(p);
2455 #endif
2456 
2457 #ifdef CONFIG_DEBUG_MUTEXES
2458 	p->blocked_on = NULL; /* not blocked yet */
2459 #endif
2460 #ifdef CONFIG_BCACHE
2461 	p->sequential_io	= 0;
2462 	p->sequential_io_avg	= 0;
2463 #endif
2464 #ifdef CONFIG_BPF_SYSCALL
2465 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2466 	p->bpf_ctx = NULL;
2467 #endif
2468 
2469 	/* Perform scheduler related setup. Assign this task to a CPU. */
2470 	retval = sched_fork(clone_flags, p);
2471 	if (retval)
2472 		goto bad_fork_cleanup_policy;
2473 
2474 	retval = perf_event_init_task(p, clone_flags);
2475 	if (retval)
2476 		goto bad_fork_cleanup_policy;
2477 	retval = audit_alloc(p);
2478 	if (retval)
2479 		goto bad_fork_cleanup_perf;
2480 	/* copy all the process information */
2481 	shm_init_task(p);
2482 	retval = security_task_alloc(p, clone_flags);
2483 	if (retval)
2484 		goto bad_fork_cleanup_audit;
2485 	retval = copy_semundo(clone_flags, p);
2486 	if (retval)
2487 		goto bad_fork_cleanup_security;
2488 	retval = copy_files(clone_flags, p, args->no_files);
2489 	if (retval)
2490 		goto bad_fork_cleanup_semundo;
2491 	retval = copy_fs(clone_flags, p);
2492 	if (retval)
2493 		goto bad_fork_cleanup_files;
2494 	retval = copy_sighand(clone_flags, p);
2495 	if (retval)
2496 		goto bad_fork_cleanup_fs;
2497 	retval = copy_signal(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_sighand;
2500 	retval = copy_mm(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_signal;
2503 	retval = copy_namespaces(clone_flags, p);
2504 	if (retval)
2505 		goto bad_fork_cleanup_mm;
2506 	retval = copy_io(clone_flags, p);
2507 	if (retval)
2508 		goto bad_fork_cleanup_namespaces;
2509 	retval = copy_thread(p, args);
2510 	if (retval)
2511 		goto bad_fork_cleanup_io;
2512 
2513 	stackleak_task_init(p);
2514 
2515 	if (pid != &init_struct_pid) {
2516 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2517 				args->set_tid_size);
2518 		if (IS_ERR(pid)) {
2519 			retval = PTR_ERR(pid);
2520 			goto bad_fork_cleanup_thread;
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * This has to happen after we've potentially unshared the file
2526 	 * descriptor table (so that the pidfd doesn't leak into the child
2527 	 * if the fd table isn't shared).
2528 	 */
2529 	if (clone_flags & CLONE_PIDFD) {
2530 		/* Note that no task has been attached to @pid yet. */
2531 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2532 		if (retval < 0)
2533 			goto bad_fork_free_pid;
2534 		pidfd = retval;
2535 
2536 		retval = put_user(pidfd, args->pidfd);
2537 		if (retval)
2538 			goto bad_fork_put_pidfd;
2539 	}
2540 
2541 #ifdef CONFIG_BLOCK
2542 	p->plug = NULL;
2543 #endif
2544 	futex_init_task(p);
2545 
2546 	/*
2547 	 * sigaltstack should be cleared when sharing the same VM
2548 	 */
2549 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2550 		sas_ss_reset(p);
2551 
2552 	/*
2553 	 * Syscall tracing and stepping should be turned off in the
2554 	 * child regardless of CLONE_PTRACE.
2555 	 */
2556 	user_disable_single_step(p);
2557 	clear_task_syscall_work(p, SYSCALL_TRACE);
2558 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2559 	clear_task_syscall_work(p, SYSCALL_EMU);
2560 #endif
2561 	clear_tsk_latency_tracing(p);
2562 
2563 	/* ok, now we should be set up.. */
2564 	p->pid = pid_nr(pid);
2565 	if (clone_flags & CLONE_THREAD) {
2566 		p->group_leader = current->group_leader;
2567 		p->tgid = current->tgid;
2568 	} else {
2569 		p->group_leader = p;
2570 		p->tgid = p->pid;
2571 	}
2572 
2573 	p->nr_dirtied = 0;
2574 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2575 	p->dirty_paused_when = 0;
2576 
2577 	p->pdeath_signal = 0;
2578 	INIT_LIST_HEAD(&p->thread_group);
2579 	p->task_works = NULL;
2580 	clear_posix_cputimers_work(p);
2581 
2582 #ifdef CONFIG_KRETPROBES
2583 	p->kretprobe_instances.first = NULL;
2584 #endif
2585 #ifdef CONFIG_RETHOOK
2586 	p->rethooks.first = NULL;
2587 #endif
2588 
2589 	/*
2590 	 * Ensure that the cgroup subsystem policies allow the new process to be
2591 	 * forked. It should be noted that the new process's css_set can be changed
2592 	 * between here and cgroup_post_fork() if an organisation operation is in
2593 	 * progress.
2594 	 */
2595 	retval = cgroup_can_fork(p, args);
2596 	if (retval)
2597 		goto bad_fork_put_pidfd;
2598 
2599 	/*
2600 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2601 	 * the new task on the correct runqueue. All this *before* the task
2602 	 * becomes visible.
2603 	 *
2604 	 * This isn't part of ->can_fork() because while the re-cloning is
2605 	 * cgroup specific, it unconditionally needs to place the task on a
2606 	 * runqueue.
2607 	 */
2608 	sched_cgroup_fork(p, args);
2609 
2610 	/*
2611 	 * From this point on we must avoid any synchronous user-space
2612 	 * communication until we take the tasklist-lock. In particular, we do
2613 	 * not want user-space to be able to predict the process start-time by
2614 	 * stalling fork(2) after we recorded the start_time but before it is
2615 	 * visible to the system.
2616 	 */
2617 
2618 	p->start_time = ktime_get_ns();
2619 	p->start_boottime = ktime_get_boottime_ns();
2620 
2621 	/*
2622 	 * Make it visible to the rest of the system, but dont wake it up yet.
2623 	 * Need tasklist lock for parent etc handling!
2624 	 */
2625 	write_lock_irq(&tasklist_lock);
2626 
2627 	/* CLONE_PARENT re-uses the old parent */
2628 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2629 		p->real_parent = current->real_parent;
2630 		p->parent_exec_id = current->parent_exec_id;
2631 		if (clone_flags & CLONE_THREAD)
2632 			p->exit_signal = -1;
2633 		else
2634 			p->exit_signal = current->group_leader->exit_signal;
2635 	} else {
2636 		p->real_parent = current;
2637 		p->parent_exec_id = current->self_exec_id;
2638 		p->exit_signal = args->exit_signal;
2639 	}
2640 
2641 	klp_copy_process(p);
2642 
2643 	sched_core_fork(p);
2644 
2645 	spin_lock(&current->sighand->siglock);
2646 
2647 	rv_task_fork(p);
2648 
2649 	rseq_fork(p, clone_flags);
2650 
2651 	/* Don't start children in a dying pid namespace */
2652 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2653 		retval = -ENOMEM;
2654 		goto bad_fork_cancel_cgroup;
2655 	}
2656 
2657 	/* Let kill terminate clone/fork in the middle */
2658 	if (fatal_signal_pending(current)) {
2659 		retval = -EINTR;
2660 		goto bad_fork_cancel_cgroup;
2661 	}
2662 
2663 	/* No more failure paths after this point. */
2664 
2665 	/*
2666 	 * Copy seccomp details explicitly here, in case they were changed
2667 	 * before holding sighand lock.
2668 	 */
2669 	copy_seccomp(p);
2670 
2671 	init_task_pid_links(p);
2672 	if (likely(p->pid)) {
2673 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2674 
2675 		init_task_pid(p, PIDTYPE_PID, pid);
2676 		if (thread_group_leader(p)) {
2677 			init_task_pid(p, PIDTYPE_TGID, pid);
2678 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2679 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2680 
2681 			if (is_child_reaper(pid)) {
2682 				ns_of_pid(pid)->child_reaper = p;
2683 				p->signal->flags |= SIGNAL_UNKILLABLE;
2684 			}
2685 			p->signal->shared_pending.signal = delayed.signal;
2686 			p->signal->tty = tty_kref_get(current->signal->tty);
2687 			/*
2688 			 * Inherit has_child_subreaper flag under the same
2689 			 * tasklist_lock with adding child to the process tree
2690 			 * for propagate_has_child_subreaper optimization.
2691 			 */
2692 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2693 							 p->real_parent->signal->is_child_subreaper;
2694 			list_add_tail(&p->sibling, &p->real_parent->children);
2695 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2696 			attach_pid(p, PIDTYPE_TGID);
2697 			attach_pid(p, PIDTYPE_PGID);
2698 			attach_pid(p, PIDTYPE_SID);
2699 			__this_cpu_inc(process_counts);
2700 		} else {
2701 			current->signal->nr_threads++;
2702 			current->signal->quick_threads++;
2703 			atomic_inc(&current->signal->live);
2704 			refcount_inc(&current->signal->sigcnt);
2705 			task_join_group_stop(p);
2706 			list_add_tail_rcu(&p->thread_group,
2707 					  &p->group_leader->thread_group);
2708 			list_add_tail_rcu(&p->thread_node,
2709 					  &p->signal->thread_head);
2710 		}
2711 		attach_pid(p, PIDTYPE_PID);
2712 		nr_threads++;
2713 	}
2714 	total_forks++;
2715 	hlist_del_init(&delayed.node);
2716 	spin_unlock(&current->sighand->siglock);
2717 	syscall_tracepoint_update(p);
2718 	write_unlock_irq(&tasklist_lock);
2719 
2720 	if (pidfile)
2721 		fd_install(pidfd, pidfile);
2722 
2723 	proc_fork_connector(p);
2724 	sched_post_fork(p);
2725 	cgroup_post_fork(p, args);
2726 	perf_event_fork(p);
2727 
2728 	trace_task_newtask(p, clone_flags);
2729 	uprobe_copy_process(p, clone_flags);
2730 	user_events_fork(p, clone_flags);
2731 
2732 	copy_oom_score_adj(clone_flags, p);
2733 
2734 	return p;
2735 
2736 bad_fork_cancel_cgroup:
2737 	sched_core_free(p);
2738 	spin_unlock(&current->sighand->siglock);
2739 	write_unlock_irq(&tasklist_lock);
2740 	cgroup_cancel_fork(p, args);
2741 bad_fork_put_pidfd:
2742 	if (clone_flags & CLONE_PIDFD) {
2743 		fput(pidfile);
2744 		put_unused_fd(pidfd);
2745 	}
2746 bad_fork_free_pid:
2747 	if (pid != &init_struct_pid)
2748 		free_pid(pid);
2749 bad_fork_cleanup_thread:
2750 	exit_thread(p);
2751 bad_fork_cleanup_io:
2752 	if (p->io_context)
2753 		exit_io_context(p);
2754 bad_fork_cleanup_namespaces:
2755 	exit_task_namespaces(p);
2756 bad_fork_cleanup_mm:
2757 	if (p->mm) {
2758 		mm_clear_owner(p->mm, p);
2759 		mmput(p->mm);
2760 	}
2761 bad_fork_cleanup_signal:
2762 	if (!(clone_flags & CLONE_THREAD))
2763 		free_signal_struct(p->signal);
2764 bad_fork_cleanup_sighand:
2765 	__cleanup_sighand(p->sighand);
2766 bad_fork_cleanup_fs:
2767 	exit_fs(p); /* blocking */
2768 bad_fork_cleanup_files:
2769 	exit_files(p); /* blocking */
2770 bad_fork_cleanup_semundo:
2771 	exit_sem(p);
2772 bad_fork_cleanup_security:
2773 	security_task_free(p);
2774 bad_fork_cleanup_audit:
2775 	audit_free(p);
2776 bad_fork_cleanup_perf:
2777 	perf_event_free_task(p);
2778 bad_fork_cleanup_policy:
2779 	lockdep_free_task(p);
2780 #ifdef CONFIG_NUMA
2781 	mpol_put(p->mempolicy);
2782 #endif
2783 bad_fork_cleanup_delayacct:
2784 	delayacct_tsk_free(p);
2785 bad_fork_cleanup_count:
2786 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2787 	exit_creds(p);
2788 bad_fork_free:
2789 	WRITE_ONCE(p->__state, TASK_DEAD);
2790 	exit_task_stack_account(p);
2791 	put_task_stack(p);
2792 	delayed_free_task(p);
2793 fork_out:
2794 	spin_lock_irq(&current->sighand->siglock);
2795 	hlist_del_init(&delayed.node);
2796 	spin_unlock_irq(&current->sighand->siglock);
2797 	return ERR_PTR(retval);
2798 }
2799 
2800 static inline void init_idle_pids(struct task_struct *idle)
2801 {
2802 	enum pid_type type;
2803 
2804 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2805 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2806 		init_task_pid(idle, type, &init_struct_pid);
2807 	}
2808 }
2809 
2810 static int idle_dummy(void *dummy)
2811 {
2812 	/* This function is never called */
2813 	return 0;
2814 }
2815 
2816 struct task_struct * __init fork_idle(int cpu)
2817 {
2818 	struct task_struct *task;
2819 	struct kernel_clone_args args = {
2820 		.flags		= CLONE_VM,
2821 		.fn		= &idle_dummy,
2822 		.fn_arg		= NULL,
2823 		.kthread	= 1,
2824 		.idle		= 1,
2825 	};
2826 
2827 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2828 	if (!IS_ERR(task)) {
2829 		init_idle_pids(task);
2830 		init_idle(task, cpu);
2831 	}
2832 
2833 	return task;
2834 }
2835 
2836 /*
2837  * This is like kernel_clone(), but shaved down and tailored to just
2838  * creating io_uring workers. It returns a created task, or an error pointer.
2839  * The returned task is inactive, and the caller must fire it up through
2840  * wake_up_new_task(p). All signals are blocked in the created task.
2841  */
2842 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2843 {
2844 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2845 				CLONE_IO;
2846 	struct kernel_clone_args args = {
2847 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2848 				    CLONE_UNTRACED) & ~CSIGNAL),
2849 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2850 		.fn		= fn,
2851 		.fn_arg		= arg,
2852 		.io_thread	= 1,
2853 		.user_worker	= 1,
2854 	};
2855 
2856 	return copy_process(NULL, 0, node, &args);
2857 }
2858 
2859 /*
2860  *  Ok, this is the main fork-routine.
2861  *
2862  * It copies the process, and if successful kick-starts
2863  * it and waits for it to finish using the VM if required.
2864  *
2865  * args->exit_signal is expected to be checked for sanity by the caller.
2866  */
2867 pid_t kernel_clone(struct kernel_clone_args *args)
2868 {
2869 	u64 clone_flags = args->flags;
2870 	struct completion vfork;
2871 	struct pid *pid;
2872 	struct task_struct *p;
2873 	int trace = 0;
2874 	pid_t nr;
2875 
2876 	/*
2877 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2878 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2879 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2880 	 * field in struct clone_args and it still doesn't make sense to have
2881 	 * them both point at the same memory location. Performing this check
2882 	 * here has the advantage that we don't need to have a separate helper
2883 	 * to check for legacy clone().
2884 	 */
2885 	if ((args->flags & CLONE_PIDFD) &&
2886 	    (args->flags & CLONE_PARENT_SETTID) &&
2887 	    (args->pidfd == args->parent_tid))
2888 		return -EINVAL;
2889 
2890 	/*
2891 	 * Determine whether and which event to report to ptracer.  When
2892 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2893 	 * requested, no event is reported; otherwise, report if the event
2894 	 * for the type of forking is enabled.
2895 	 */
2896 	if (!(clone_flags & CLONE_UNTRACED)) {
2897 		if (clone_flags & CLONE_VFORK)
2898 			trace = PTRACE_EVENT_VFORK;
2899 		else if (args->exit_signal != SIGCHLD)
2900 			trace = PTRACE_EVENT_CLONE;
2901 		else
2902 			trace = PTRACE_EVENT_FORK;
2903 
2904 		if (likely(!ptrace_event_enabled(current, trace)))
2905 			trace = 0;
2906 	}
2907 
2908 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2909 	add_latent_entropy();
2910 
2911 	if (IS_ERR(p))
2912 		return PTR_ERR(p);
2913 
2914 	/*
2915 	 * Do this prior waking up the new thread - the thread pointer
2916 	 * might get invalid after that point, if the thread exits quickly.
2917 	 */
2918 	trace_sched_process_fork(current, p);
2919 
2920 	pid = get_task_pid(p, PIDTYPE_PID);
2921 	nr = pid_vnr(pid);
2922 
2923 	if (clone_flags & CLONE_PARENT_SETTID)
2924 		put_user(nr, args->parent_tid);
2925 
2926 	if (clone_flags & CLONE_VFORK) {
2927 		p->vfork_done = &vfork;
2928 		init_completion(&vfork);
2929 		get_task_struct(p);
2930 	}
2931 
2932 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2933 		/* lock the task to synchronize with memcg migration */
2934 		task_lock(p);
2935 		lru_gen_add_mm(p->mm);
2936 		task_unlock(p);
2937 	}
2938 
2939 	wake_up_new_task(p);
2940 
2941 	/* forking complete and child started to run, tell ptracer */
2942 	if (unlikely(trace))
2943 		ptrace_event_pid(trace, pid);
2944 
2945 	if (clone_flags & CLONE_VFORK) {
2946 		if (!wait_for_vfork_done(p, &vfork))
2947 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2948 	}
2949 
2950 	put_pid(pid);
2951 	return nr;
2952 }
2953 
2954 /*
2955  * Create a kernel thread.
2956  */
2957 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2958 		    unsigned long flags)
2959 {
2960 	struct kernel_clone_args args = {
2961 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2962 				    CLONE_UNTRACED) & ~CSIGNAL),
2963 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2964 		.fn		= fn,
2965 		.fn_arg		= arg,
2966 		.name		= name,
2967 		.kthread	= 1,
2968 	};
2969 
2970 	return kernel_clone(&args);
2971 }
2972 
2973 /*
2974  * Create a user mode thread.
2975  */
2976 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2977 {
2978 	struct kernel_clone_args args = {
2979 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2980 				    CLONE_UNTRACED) & ~CSIGNAL),
2981 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2982 		.fn		= fn,
2983 		.fn_arg		= arg,
2984 	};
2985 
2986 	return kernel_clone(&args);
2987 }
2988 
2989 #ifdef __ARCH_WANT_SYS_FORK
2990 SYSCALL_DEFINE0(fork)
2991 {
2992 #ifdef CONFIG_MMU
2993 	struct kernel_clone_args args = {
2994 		.exit_signal = SIGCHLD,
2995 	};
2996 
2997 	return kernel_clone(&args);
2998 #else
2999 	/* can not support in nommu mode */
3000 	return -EINVAL;
3001 #endif
3002 }
3003 #endif
3004 
3005 #ifdef __ARCH_WANT_SYS_VFORK
3006 SYSCALL_DEFINE0(vfork)
3007 {
3008 	struct kernel_clone_args args = {
3009 		.flags		= CLONE_VFORK | CLONE_VM,
3010 		.exit_signal	= SIGCHLD,
3011 	};
3012 
3013 	return kernel_clone(&args);
3014 }
3015 #endif
3016 
3017 #ifdef __ARCH_WANT_SYS_CLONE
3018 #ifdef CONFIG_CLONE_BACKWARDS
3019 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3020 		 int __user *, parent_tidptr,
3021 		 unsigned long, tls,
3022 		 int __user *, child_tidptr)
3023 #elif defined(CONFIG_CLONE_BACKWARDS2)
3024 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3025 		 int __user *, parent_tidptr,
3026 		 int __user *, child_tidptr,
3027 		 unsigned long, tls)
3028 #elif defined(CONFIG_CLONE_BACKWARDS3)
3029 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3030 		int, stack_size,
3031 		int __user *, parent_tidptr,
3032 		int __user *, child_tidptr,
3033 		unsigned long, tls)
3034 #else
3035 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3036 		 int __user *, parent_tidptr,
3037 		 int __user *, child_tidptr,
3038 		 unsigned long, tls)
3039 #endif
3040 {
3041 	struct kernel_clone_args args = {
3042 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3043 		.pidfd		= parent_tidptr,
3044 		.child_tid	= child_tidptr,
3045 		.parent_tid	= parent_tidptr,
3046 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3047 		.stack		= newsp,
3048 		.tls		= tls,
3049 	};
3050 
3051 	return kernel_clone(&args);
3052 }
3053 #endif
3054 
3055 #ifdef __ARCH_WANT_SYS_CLONE3
3056 
3057 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3058 					      struct clone_args __user *uargs,
3059 					      size_t usize)
3060 {
3061 	int err;
3062 	struct clone_args args;
3063 	pid_t *kset_tid = kargs->set_tid;
3064 
3065 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3066 		     CLONE_ARGS_SIZE_VER0);
3067 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3068 		     CLONE_ARGS_SIZE_VER1);
3069 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3070 		     CLONE_ARGS_SIZE_VER2);
3071 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3072 
3073 	if (unlikely(usize > PAGE_SIZE))
3074 		return -E2BIG;
3075 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3076 		return -EINVAL;
3077 
3078 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3079 	if (err)
3080 		return err;
3081 
3082 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3083 		return -EINVAL;
3084 
3085 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3086 		return -EINVAL;
3087 
3088 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3089 		return -EINVAL;
3090 
3091 	/*
3092 	 * Verify that higher 32bits of exit_signal are unset and that
3093 	 * it is a valid signal
3094 	 */
3095 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3096 		     !valid_signal(args.exit_signal)))
3097 		return -EINVAL;
3098 
3099 	if ((args.flags & CLONE_INTO_CGROUP) &&
3100 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3101 		return -EINVAL;
3102 
3103 	*kargs = (struct kernel_clone_args){
3104 		.flags		= args.flags,
3105 		.pidfd		= u64_to_user_ptr(args.pidfd),
3106 		.child_tid	= u64_to_user_ptr(args.child_tid),
3107 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3108 		.exit_signal	= args.exit_signal,
3109 		.stack		= args.stack,
3110 		.stack_size	= args.stack_size,
3111 		.tls		= args.tls,
3112 		.set_tid_size	= args.set_tid_size,
3113 		.cgroup		= args.cgroup,
3114 	};
3115 
3116 	if (args.set_tid &&
3117 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3118 			(kargs->set_tid_size * sizeof(pid_t))))
3119 		return -EFAULT;
3120 
3121 	kargs->set_tid = kset_tid;
3122 
3123 	return 0;
3124 }
3125 
3126 /**
3127  * clone3_stack_valid - check and prepare stack
3128  * @kargs: kernel clone args
3129  *
3130  * Verify that the stack arguments userspace gave us are sane.
3131  * In addition, set the stack direction for userspace since it's easy for us to
3132  * determine.
3133  */
3134 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3135 {
3136 	if (kargs->stack == 0) {
3137 		if (kargs->stack_size > 0)
3138 			return false;
3139 	} else {
3140 		if (kargs->stack_size == 0)
3141 			return false;
3142 
3143 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3144 			return false;
3145 
3146 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3147 		kargs->stack += kargs->stack_size;
3148 #endif
3149 	}
3150 
3151 	return true;
3152 }
3153 
3154 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3155 {
3156 	/* Verify that no unknown flags are passed along. */
3157 	if (kargs->flags &
3158 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3159 		return false;
3160 
3161 	/*
3162 	 * - make the CLONE_DETACHED bit reusable for clone3
3163 	 * - make the CSIGNAL bits reusable for clone3
3164 	 */
3165 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3166 		return false;
3167 
3168 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3169 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3170 		return false;
3171 
3172 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3173 	    kargs->exit_signal)
3174 		return false;
3175 
3176 	if (!clone3_stack_valid(kargs))
3177 		return false;
3178 
3179 	return true;
3180 }
3181 
3182 /**
3183  * clone3 - create a new process with specific properties
3184  * @uargs: argument structure
3185  * @size:  size of @uargs
3186  *
3187  * clone3() is the extensible successor to clone()/clone2().
3188  * It takes a struct as argument that is versioned by its size.
3189  *
3190  * Return: On success, a positive PID for the child process.
3191  *         On error, a negative errno number.
3192  */
3193 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3194 {
3195 	int err;
3196 
3197 	struct kernel_clone_args kargs;
3198 	pid_t set_tid[MAX_PID_NS_LEVEL];
3199 
3200 	kargs.set_tid = set_tid;
3201 
3202 	err = copy_clone_args_from_user(&kargs, uargs, size);
3203 	if (err)
3204 		return err;
3205 
3206 	if (!clone3_args_valid(&kargs))
3207 		return -EINVAL;
3208 
3209 	return kernel_clone(&kargs);
3210 }
3211 #endif
3212 
3213 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3214 {
3215 	struct task_struct *leader, *parent, *child;
3216 	int res;
3217 
3218 	read_lock(&tasklist_lock);
3219 	leader = top = top->group_leader;
3220 down:
3221 	for_each_thread(leader, parent) {
3222 		list_for_each_entry(child, &parent->children, sibling) {
3223 			res = visitor(child, data);
3224 			if (res) {
3225 				if (res < 0)
3226 					goto out;
3227 				leader = child;
3228 				goto down;
3229 			}
3230 up:
3231 			;
3232 		}
3233 	}
3234 
3235 	if (leader != top) {
3236 		child = leader;
3237 		parent = child->real_parent;
3238 		leader = parent->group_leader;
3239 		goto up;
3240 	}
3241 out:
3242 	read_unlock(&tasklist_lock);
3243 }
3244 
3245 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3246 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3247 #endif
3248 
3249 static void sighand_ctor(void *data)
3250 {
3251 	struct sighand_struct *sighand = data;
3252 
3253 	spin_lock_init(&sighand->siglock);
3254 	init_waitqueue_head(&sighand->signalfd_wqh);
3255 }
3256 
3257 void __init mm_cache_init(void)
3258 {
3259 	unsigned int mm_size;
3260 
3261 	/*
3262 	 * The mm_cpumask is located at the end of mm_struct, and is
3263 	 * dynamically sized based on the maximum CPU number this system
3264 	 * can have, taking hotplug into account (nr_cpu_ids).
3265 	 */
3266 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3267 
3268 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3269 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3270 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3271 			offsetof(struct mm_struct, saved_auxv),
3272 			sizeof_field(struct mm_struct, saved_auxv),
3273 			NULL);
3274 }
3275 
3276 void __init proc_caches_init(void)
3277 {
3278 	sighand_cachep = kmem_cache_create("sighand_cache",
3279 			sizeof(struct sighand_struct), 0,
3280 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3281 			SLAB_ACCOUNT, sighand_ctor);
3282 	signal_cachep = kmem_cache_create("signal_cache",
3283 			sizeof(struct signal_struct), 0,
3284 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3285 			NULL);
3286 	files_cachep = kmem_cache_create("files_cache",
3287 			sizeof(struct files_struct), 0,
3288 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3289 			NULL);
3290 	fs_cachep = kmem_cache_create("fs_cache",
3291 			sizeof(struct fs_struct), 0,
3292 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3293 			NULL);
3294 
3295 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3296 #ifdef CONFIG_PER_VMA_LOCK
3297 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3298 #endif
3299 	mmap_init();
3300 	nsproxy_cache_init();
3301 }
3302 
3303 /*
3304  * Check constraints on flags passed to the unshare system call.
3305  */
3306 static int check_unshare_flags(unsigned long unshare_flags)
3307 {
3308 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3309 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3310 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3311 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3312 				CLONE_NEWTIME))
3313 		return -EINVAL;
3314 	/*
3315 	 * Not implemented, but pretend it works if there is nothing
3316 	 * to unshare.  Note that unsharing the address space or the
3317 	 * signal handlers also need to unshare the signal queues (aka
3318 	 * CLONE_THREAD).
3319 	 */
3320 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3321 		if (!thread_group_empty(current))
3322 			return -EINVAL;
3323 	}
3324 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3325 		if (refcount_read(&current->sighand->count) > 1)
3326 			return -EINVAL;
3327 	}
3328 	if (unshare_flags & CLONE_VM) {
3329 		if (!current_is_single_threaded())
3330 			return -EINVAL;
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 /*
3337  * Unshare the filesystem structure if it is being shared
3338  */
3339 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3340 {
3341 	struct fs_struct *fs = current->fs;
3342 
3343 	if (!(unshare_flags & CLONE_FS) || !fs)
3344 		return 0;
3345 
3346 	/* don't need lock here; in the worst case we'll do useless copy */
3347 	if (fs->users == 1)
3348 		return 0;
3349 
3350 	*new_fsp = copy_fs_struct(fs);
3351 	if (!*new_fsp)
3352 		return -ENOMEM;
3353 
3354 	return 0;
3355 }
3356 
3357 /*
3358  * Unshare file descriptor table if it is being shared
3359  */
3360 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3361 	       struct files_struct **new_fdp)
3362 {
3363 	struct files_struct *fd = current->files;
3364 	int error = 0;
3365 
3366 	if ((unshare_flags & CLONE_FILES) &&
3367 	    (fd && atomic_read(&fd->count) > 1)) {
3368 		*new_fdp = dup_fd(fd, max_fds, &error);
3369 		if (!*new_fdp)
3370 			return error;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 /*
3377  * unshare allows a process to 'unshare' part of the process
3378  * context which was originally shared using clone.  copy_*
3379  * functions used by kernel_clone() cannot be used here directly
3380  * because they modify an inactive task_struct that is being
3381  * constructed. Here we are modifying the current, active,
3382  * task_struct.
3383  */
3384 int ksys_unshare(unsigned long unshare_flags)
3385 {
3386 	struct fs_struct *fs, *new_fs = NULL;
3387 	struct files_struct *new_fd = NULL;
3388 	struct cred *new_cred = NULL;
3389 	struct nsproxy *new_nsproxy = NULL;
3390 	int do_sysvsem = 0;
3391 	int err;
3392 
3393 	/*
3394 	 * If unsharing a user namespace must also unshare the thread group
3395 	 * and unshare the filesystem root and working directories.
3396 	 */
3397 	if (unshare_flags & CLONE_NEWUSER)
3398 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3399 	/*
3400 	 * If unsharing vm, must also unshare signal handlers.
3401 	 */
3402 	if (unshare_flags & CLONE_VM)
3403 		unshare_flags |= CLONE_SIGHAND;
3404 	/*
3405 	 * If unsharing a signal handlers, must also unshare the signal queues.
3406 	 */
3407 	if (unshare_flags & CLONE_SIGHAND)
3408 		unshare_flags |= CLONE_THREAD;
3409 	/*
3410 	 * If unsharing namespace, must also unshare filesystem information.
3411 	 */
3412 	if (unshare_flags & CLONE_NEWNS)
3413 		unshare_flags |= CLONE_FS;
3414 
3415 	err = check_unshare_flags(unshare_flags);
3416 	if (err)
3417 		goto bad_unshare_out;
3418 	/*
3419 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3420 	 * to a new ipc namespace, the semaphore arrays from the old
3421 	 * namespace are unreachable.
3422 	 */
3423 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3424 		do_sysvsem = 1;
3425 	err = unshare_fs(unshare_flags, &new_fs);
3426 	if (err)
3427 		goto bad_unshare_out;
3428 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3429 	if (err)
3430 		goto bad_unshare_cleanup_fs;
3431 	err = unshare_userns(unshare_flags, &new_cred);
3432 	if (err)
3433 		goto bad_unshare_cleanup_fd;
3434 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3435 					 new_cred, new_fs);
3436 	if (err)
3437 		goto bad_unshare_cleanup_cred;
3438 
3439 	if (new_cred) {
3440 		err = set_cred_ucounts(new_cred);
3441 		if (err)
3442 			goto bad_unshare_cleanup_cred;
3443 	}
3444 
3445 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3446 		if (do_sysvsem) {
3447 			/*
3448 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3449 			 */
3450 			exit_sem(current);
3451 		}
3452 		if (unshare_flags & CLONE_NEWIPC) {
3453 			/* Orphan segments in old ns (see sem above). */
3454 			exit_shm(current);
3455 			shm_init_task(current);
3456 		}
3457 
3458 		if (new_nsproxy)
3459 			switch_task_namespaces(current, new_nsproxy);
3460 
3461 		task_lock(current);
3462 
3463 		if (new_fs) {
3464 			fs = current->fs;
3465 			spin_lock(&fs->lock);
3466 			current->fs = new_fs;
3467 			if (--fs->users)
3468 				new_fs = NULL;
3469 			else
3470 				new_fs = fs;
3471 			spin_unlock(&fs->lock);
3472 		}
3473 
3474 		if (new_fd)
3475 			swap(current->files, new_fd);
3476 
3477 		task_unlock(current);
3478 
3479 		if (new_cred) {
3480 			/* Install the new user namespace */
3481 			commit_creds(new_cred);
3482 			new_cred = NULL;
3483 		}
3484 	}
3485 
3486 	perf_event_namespaces(current);
3487 
3488 bad_unshare_cleanup_cred:
3489 	if (new_cred)
3490 		put_cred(new_cred);
3491 bad_unshare_cleanup_fd:
3492 	if (new_fd)
3493 		put_files_struct(new_fd);
3494 
3495 bad_unshare_cleanup_fs:
3496 	if (new_fs)
3497 		free_fs_struct(new_fs);
3498 
3499 bad_unshare_out:
3500 	return err;
3501 }
3502 
3503 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3504 {
3505 	return ksys_unshare(unshare_flags);
3506 }
3507 
3508 /*
3509  *	Helper to unshare the files of the current task.
3510  *	We don't want to expose copy_files internals to
3511  *	the exec layer of the kernel.
3512  */
3513 
3514 int unshare_files(void)
3515 {
3516 	struct task_struct *task = current;
3517 	struct files_struct *old, *copy = NULL;
3518 	int error;
3519 
3520 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3521 	if (error || !copy)
3522 		return error;
3523 
3524 	old = task->files;
3525 	task_lock(task);
3526 	task->files = copy;
3527 	task_unlock(task);
3528 	put_files_struct(old);
3529 	return 0;
3530 }
3531 
3532 int sysctl_max_threads(struct ctl_table *table, int write,
3533 		       void *buffer, size_t *lenp, loff_t *ppos)
3534 {
3535 	struct ctl_table t;
3536 	int ret;
3537 	int threads = max_threads;
3538 	int min = 1;
3539 	int max = MAX_THREADS;
3540 
3541 	t = *table;
3542 	t.data = &threads;
3543 	t.extra1 = &min;
3544 	t.extra2 = &max;
3545 
3546 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3547 	if (ret || !write)
3548 		return ret;
3549 
3550 	max_threads = threads;
3551 
3552 	return 0;
3553 }
3554