1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = UINT_MAX; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 /* track_pfn_copy() will later take care of copying internal state. */ 508 if (unlikely(new->vm_flags & VM_PFNMAP)) 509 untrack_pfn_clear(new); 510 511 return new; 512 } 513 514 void __vm_area_free(struct vm_area_struct *vma) 515 { 516 vma_numab_state_free(vma); 517 free_anon_vma_name(vma); 518 vma_lock_free(vma); 519 kmem_cache_free(vm_area_cachep, vma); 520 } 521 522 #ifdef CONFIG_PER_VMA_LOCK 523 static void vm_area_free_rcu_cb(struct rcu_head *head) 524 { 525 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 526 vm_rcu); 527 528 /* The vma should not be locked while being destroyed. */ 529 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 530 __vm_area_free(vma); 531 } 532 #endif 533 534 void vm_area_free(struct vm_area_struct *vma) 535 { 536 #ifdef CONFIG_PER_VMA_LOCK 537 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 538 #else 539 __vm_area_free(vma); 540 #endif 541 } 542 543 static void account_kernel_stack(struct task_struct *tsk, int account) 544 { 545 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 546 struct vm_struct *vm = task_stack_vm_area(tsk); 547 int i; 548 549 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 550 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 551 account * (PAGE_SIZE / 1024)); 552 } else { 553 void *stack = task_stack_page(tsk); 554 555 /* All stack pages are in the same node. */ 556 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 557 account * (THREAD_SIZE / 1024)); 558 } 559 } 560 561 void exit_task_stack_account(struct task_struct *tsk) 562 { 563 account_kernel_stack(tsk, -1); 564 565 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 566 struct vm_struct *vm; 567 int i; 568 569 vm = task_stack_vm_area(tsk); 570 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 571 memcg_kmem_uncharge_page(vm->pages[i], 0); 572 } 573 } 574 575 static void release_task_stack(struct task_struct *tsk) 576 { 577 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 578 return; /* Better to leak the stack than to free prematurely */ 579 580 free_thread_stack(tsk); 581 } 582 583 #ifdef CONFIG_THREAD_INFO_IN_TASK 584 void put_task_stack(struct task_struct *tsk) 585 { 586 if (refcount_dec_and_test(&tsk->stack_refcount)) 587 release_task_stack(tsk); 588 } 589 #endif 590 591 void free_task(struct task_struct *tsk) 592 { 593 #ifdef CONFIG_SECCOMP 594 WARN_ON_ONCE(tsk->seccomp.filter); 595 #endif 596 release_user_cpus_ptr(tsk); 597 scs_release(tsk); 598 599 #ifndef CONFIG_THREAD_INFO_IN_TASK 600 /* 601 * The task is finally done with both the stack and thread_info, 602 * so free both. 603 */ 604 release_task_stack(tsk); 605 #else 606 /* 607 * If the task had a separate stack allocation, it should be gone 608 * by now. 609 */ 610 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 611 #endif 612 rt_mutex_debug_task_free(tsk); 613 ftrace_graph_exit_task(tsk); 614 arch_release_task_struct(tsk); 615 if (tsk->flags & PF_KTHREAD) 616 free_kthread_struct(tsk); 617 bpf_task_storage_free(tsk); 618 free_task_struct(tsk); 619 } 620 EXPORT_SYMBOL(free_task); 621 622 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 623 { 624 struct file *exe_file; 625 626 exe_file = get_mm_exe_file(oldmm); 627 RCU_INIT_POINTER(mm->exe_file, exe_file); 628 /* 629 * We depend on the oldmm having properly denied write access to the 630 * exe_file already. 631 */ 632 if (exe_file && exe_file_deny_write_access(exe_file)) 633 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 634 } 635 636 #ifdef CONFIG_MMU 637 static __latent_entropy int dup_mmap(struct mm_struct *mm, 638 struct mm_struct *oldmm) 639 { 640 struct vm_area_struct *mpnt, *tmp; 641 int retval; 642 unsigned long charge = 0; 643 LIST_HEAD(uf); 644 VMA_ITERATOR(vmi, mm, 0); 645 646 if (mmap_write_lock_killable(oldmm)) 647 return -EINTR; 648 flush_cache_dup_mm(oldmm); 649 uprobe_dup_mmap(oldmm, mm); 650 /* 651 * Not linked in yet - no deadlock potential: 652 */ 653 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 654 655 /* No ordering required: file already has been exposed. */ 656 dup_mm_exe_file(mm, oldmm); 657 658 mm->total_vm = oldmm->total_vm; 659 mm->data_vm = oldmm->data_vm; 660 mm->exec_vm = oldmm->exec_vm; 661 mm->stack_vm = oldmm->stack_vm; 662 663 /* Use __mt_dup() to efficiently build an identical maple tree. */ 664 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 665 if (unlikely(retval)) 666 goto out; 667 668 mt_clear_in_rcu(vmi.mas.tree); 669 for_each_vma(vmi, mpnt) { 670 struct file *file; 671 672 vma_start_write(mpnt); 673 if (mpnt->vm_flags & VM_DONTCOPY) { 674 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 675 mpnt->vm_end, GFP_KERNEL); 676 if (retval) 677 goto loop_out; 678 679 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 680 continue; 681 } 682 charge = 0; 683 /* 684 * Don't duplicate many vmas if we've been oom-killed (for 685 * example) 686 */ 687 if (fatal_signal_pending(current)) { 688 retval = -EINTR; 689 goto loop_out; 690 } 691 if (mpnt->vm_flags & VM_ACCOUNT) { 692 unsigned long len = vma_pages(mpnt); 693 694 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 695 goto fail_nomem; 696 charge = len; 697 } 698 tmp = vm_area_dup(mpnt); 699 if (!tmp) 700 goto fail_nomem; 701 retval = vma_dup_policy(mpnt, tmp); 702 if (retval) 703 goto fail_nomem_policy; 704 tmp->vm_mm = mm; 705 retval = dup_userfaultfd(tmp, &uf); 706 if (retval) 707 goto fail_nomem_anon_vma_fork; 708 if (tmp->vm_flags & VM_WIPEONFORK) { 709 /* 710 * VM_WIPEONFORK gets a clean slate in the child. 711 * Don't prepare anon_vma until fault since we don't 712 * copy page for current vma. 713 */ 714 tmp->anon_vma = NULL; 715 } else if (anon_vma_fork(tmp, mpnt)) 716 goto fail_nomem_anon_vma_fork; 717 vm_flags_clear(tmp, VM_LOCKED_MASK); 718 /* 719 * Copy/update hugetlb private vma information. 720 */ 721 if (is_vm_hugetlb_page(tmp)) 722 hugetlb_dup_vma_private(tmp); 723 724 /* 725 * Link the vma into the MT. After using __mt_dup(), memory 726 * allocation is not necessary here, so it cannot fail. 727 */ 728 vma_iter_bulk_store(&vmi, tmp); 729 730 mm->map_count++; 731 732 if (tmp->vm_ops && tmp->vm_ops->open) 733 tmp->vm_ops->open(tmp); 734 735 file = tmp->vm_file; 736 if (file) { 737 struct address_space *mapping = file->f_mapping; 738 739 get_file(file); 740 i_mmap_lock_write(mapping); 741 if (vma_is_shared_maywrite(tmp)) 742 mapping_allow_writable(mapping); 743 flush_dcache_mmap_lock(mapping); 744 /* insert tmp into the share list, just after mpnt */ 745 vma_interval_tree_insert_after(tmp, mpnt, 746 &mapping->i_mmap); 747 flush_dcache_mmap_unlock(mapping); 748 i_mmap_unlock_write(mapping); 749 } 750 751 if (!(tmp->vm_flags & VM_WIPEONFORK)) 752 retval = copy_page_range(tmp, mpnt); 753 754 if (retval) { 755 mpnt = vma_next(&vmi); 756 goto loop_out; 757 } 758 } 759 /* a new mm has just been created */ 760 retval = arch_dup_mmap(oldmm, mm); 761 loop_out: 762 vma_iter_free(&vmi); 763 if (!retval) { 764 mt_set_in_rcu(vmi.mas.tree); 765 ksm_fork(mm, oldmm); 766 khugepaged_fork(mm, oldmm); 767 } else { 768 769 /* 770 * The entire maple tree has already been duplicated. If the 771 * mmap duplication fails, mark the failure point with 772 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 773 * stop releasing VMAs that have not been duplicated after this 774 * point. 775 */ 776 if (mpnt) { 777 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 778 mas_store(&vmi.mas, XA_ZERO_ENTRY); 779 /* Avoid OOM iterating a broken tree */ 780 set_bit(MMF_OOM_SKIP, &mm->flags); 781 } 782 /* 783 * The mm_struct is going to exit, but the locks will be dropped 784 * first. Set the mm_struct as unstable is advisable as it is 785 * not fully initialised. 786 */ 787 set_bit(MMF_UNSTABLE, &mm->flags); 788 } 789 out: 790 mmap_write_unlock(mm); 791 flush_tlb_mm(oldmm); 792 mmap_write_unlock(oldmm); 793 if (!retval) 794 dup_userfaultfd_complete(&uf); 795 else 796 dup_userfaultfd_fail(&uf); 797 return retval; 798 799 fail_nomem_anon_vma_fork: 800 mpol_put(vma_policy(tmp)); 801 fail_nomem_policy: 802 vm_area_free(tmp); 803 fail_nomem: 804 retval = -ENOMEM; 805 vm_unacct_memory(charge); 806 goto loop_out; 807 } 808 809 static inline int mm_alloc_pgd(struct mm_struct *mm) 810 { 811 mm->pgd = pgd_alloc(mm); 812 if (unlikely(!mm->pgd)) 813 return -ENOMEM; 814 return 0; 815 } 816 817 static inline void mm_free_pgd(struct mm_struct *mm) 818 { 819 pgd_free(mm, mm->pgd); 820 } 821 #else 822 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 823 { 824 mmap_write_lock(oldmm); 825 dup_mm_exe_file(mm, oldmm); 826 mmap_write_unlock(oldmm); 827 return 0; 828 } 829 #define mm_alloc_pgd(mm) (0) 830 #define mm_free_pgd(mm) 831 #endif /* CONFIG_MMU */ 832 833 static void check_mm(struct mm_struct *mm) 834 { 835 int i; 836 837 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 838 "Please make sure 'struct resident_page_types[]' is updated as well"); 839 840 for (i = 0; i < NR_MM_COUNTERS; i++) { 841 long x = percpu_counter_sum(&mm->rss_stat[i]); 842 843 if (unlikely(x)) 844 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 845 mm, resident_page_types[i], x); 846 } 847 848 if (mm_pgtables_bytes(mm)) 849 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 850 mm_pgtables_bytes(mm)); 851 852 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 853 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 854 #endif 855 } 856 857 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 858 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 859 860 static void do_check_lazy_tlb(void *arg) 861 { 862 struct mm_struct *mm = arg; 863 864 WARN_ON_ONCE(current->active_mm == mm); 865 } 866 867 static void do_shoot_lazy_tlb(void *arg) 868 { 869 struct mm_struct *mm = arg; 870 871 if (current->active_mm == mm) { 872 WARN_ON_ONCE(current->mm); 873 current->active_mm = &init_mm; 874 switch_mm(mm, &init_mm, current); 875 } 876 } 877 878 static void cleanup_lazy_tlbs(struct mm_struct *mm) 879 { 880 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 881 /* 882 * In this case, lazy tlb mms are refounted and would not reach 883 * __mmdrop until all CPUs have switched away and mmdrop()ed. 884 */ 885 return; 886 } 887 888 /* 889 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 890 * requires lazy mm users to switch to another mm when the refcount 891 * drops to zero, before the mm is freed. This requires IPIs here to 892 * switch kernel threads to init_mm. 893 * 894 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 895 * switch with the final userspace teardown TLB flush which leaves the 896 * mm lazy on this CPU but no others, reducing the need for additional 897 * IPIs here. There are cases where a final IPI is still required here, 898 * such as the final mmdrop being performed on a different CPU than the 899 * one exiting, or kernel threads using the mm when userspace exits. 900 * 901 * IPI overheads have not found to be expensive, but they could be 902 * reduced in a number of possible ways, for example (roughly 903 * increasing order of complexity): 904 * - The last lazy reference created by exit_mm() could instead switch 905 * to init_mm, however it's probable this will run on the same CPU 906 * immediately afterwards, so this may not reduce IPIs much. 907 * - A batch of mms requiring IPIs could be gathered and freed at once. 908 * - CPUs store active_mm where it can be remotely checked without a 909 * lock, to filter out false-positives in the cpumask. 910 * - After mm_users or mm_count reaches zero, switching away from the 911 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 912 * with some batching or delaying of the final IPIs. 913 * - A delayed freeing and RCU-like quiescing sequence based on mm 914 * switching to avoid IPIs completely. 915 */ 916 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 917 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 918 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 919 } 920 921 /* 922 * Called when the last reference to the mm 923 * is dropped: either by a lazy thread or by 924 * mmput. Free the page directory and the mm. 925 */ 926 void __mmdrop(struct mm_struct *mm) 927 { 928 BUG_ON(mm == &init_mm); 929 WARN_ON_ONCE(mm == current->mm); 930 931 /* Ensure no CPUs are using this as their lazy tlb mm */ 932 cleanup_lazy_tlbs(mm); 933 934 WARN_ON_ONCE(mm == current->active_mm); 935 mm_free_pgd(mm); 936 destroy_context(mm); 937 mmu_notifier_subscriptions_destroy(mm); 938 check_mm(mm); 939 put_user_ns(mm->user_ns); 940 mm_pasid_drop(mm); 941 mm_destroy_cid(mm); 942 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 943 944 free_mm(mm); 945 } 946 EXPORT_SYMBOL_GPL(__mmdrop); 947 948 static void mmdrop_async_fn(struct work_struct *work) 949 { 950 struct mm_struct *mm; 951 952 mm = container_of(work, struct mm_struct, async_put_work); 953 __mmdrop(mm); 954 } 955 956 static void mmdrop_async(struct mm_struct *mm) 957 { 958 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 959 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 960 schedule_work(&mm->async_put_work); 961 } 962 } 963 964 static inline void free_signal_struct(struct signal_struct *sig) 965 { 966 taskstats_tgid_free(sig); 967 sched_autogroup_exit(sig); 968 /* 969 * __mmdrop is not safe to call from softirq context on x86 due to 970 * pgd_dtor so postpone it to the async context 971 */ 972 if (sig->oom_mm) 973 mmdrop_async(sig->oom_mm); 974 kmem_cache_free(signal_cachep, sig); 975 } 976 977 static inline void put_signal_struct(struct signal_struct *sig) 978 { 979 if (refcount_dec_and_test(&sig->sigcnt)) 980 free_signal_struct(sig); 981 } 982 983 void __put_task_struct(struct task_struct *tsk) 984 { 985 WARN_ON(!tsk->exit_state); 986 WARN_ON(refcount_read(&tsk->usage)); 987 WARN_ON(tsk == current); 988 989 sched_ext_free(tsk); 990 io_uring_free(tsk); 991 cgroup_free(tsk); 992 task_numa_free(tsk, true); 993 security_task_free(tsk); 994 exit_creds(tsk); 995 delayacct_tsk_free(tsk); 996 put_signal_struct(tsk->signal); 997 sched_core_free(tsk); 998 free_task(tsk); 999 } 1000 EXPORT_SYMBOL_GPL(__put_task_struct); 1001 1002 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 1003 { 1004 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 1005 1006 __put_task_struct(task); 1007 } 1008 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 1009 1010 void __init __weak arch_task_cache_init(void) { } 1011 1012 /* 1013 * set_max_threads 1014 */ 1015 static void __init set_max_threads(unsigned int max_threads_suggested) 1016 { 1017 u64 threads; 1018 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1019 1020 /* 1021 * The number of threads shall be limited such that the thread 1022 * structures may only consume a small part of the available memory. 1023 */ 1024 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1025 threads = MAX_THREADS; 1026 else 1027 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1028 (u64) THREAD_SIZE * 8UL); 1029 1030 if (threads > max_threads_suggested) 1031 threads = max_threads_suggested; 1032 1033 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1034 } 1035 1036 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1037 /* Initialized by the architecture: */ 1038 int arch_task_struct_size __read_mostly; 1039 #endif 1040 1041 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1042 { 1043 /* Fetch thread_struct whitelist for the architecture. */ 1044 arch_thread_struct_whitelist(offset, size); 1045 1046 /* 1047 * Handle zero-sized whitelist or empty thread_struct, otherwise 1048 * adjust offset to position of thread_struct in task_struct. 1049 */ 1050 if (unlikely(*size == 0)) 1051 *offset = 0; 1052 else 1053 *offset += offsetof(struct task_struct, thread); 1054 } 1055 1056 void __init fork_init(void) 1057 { 1058 int i; 1059 #ifndef ARCH_MIN_TASKALIGN 1060 #define ARCH_MIN_TASKALIGN 0 1061 #endif 1062 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1063 unsigned long useroffset, usersize; 1064 1065 /* create a slab on which task_structs can be allocated */ 1066 task_struct_whitelist(&useroffset, &usersize); 1067 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1068 arch_task_struct_size, align, 1069 SLAB_PANIC|SLAB_ACCOUNT, 1070 useroffset, usersize, NULL); 1071 1072 /* do the arch specific task caches init */ 1073 arch_task_cache_init(); 1074 1075 set_max_threads(MAX_THREADS); 1076 1077 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1078 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1079 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1080 init_task.signal->rlim[RLIMIT_NPROC]; 1081 1082 for (i = 0; i < UCOUNT_COUNTS; i++) 1083 init_user_ns.ucount_max[i] = max_threads/2; 1084 1085 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1086 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1087 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1088 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1089 1090 #ifdef CONFIG_VMAP_STACK 1091 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1092 NULL, free_vm_stack_cache); 1093 #endif 1094 1095 scs_init(); 1096 1097 lockdep_init_task(&init_task); 1098 uprobes_init(); 1099 } 1100 1101 int __weak arch_dup_task_struct(struct task_struct *dst, 1102 struct task_struct *src) 1103 { 1104 *dst = *src; 1105 return 0; 1106 } 1107 1108 void set_task_stack_end_magic(struct task_struct *tsk) 1109 { 1110 unsigned long *stackend; 1111 1112 stackend = end_of_stack(tsk); 1113 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1114 } 1115 1116 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1117 { 1118 struct task_struct *tsk; 1119 int err; 1120 1121 if (node == NUMA_NO_NODE) 1122 node = tsk_fork_get_node(orig); 1123 tsk = alloc_task_struct_node(node); 1124 if (!tsk) 1125 return NULL; 1126 1127 err = arch_dup_task_struct(tsk, orig); 1128 if (err) 1129 goto free_tsk; 1130 1131 err = alloc_thread_stack_node(tsk, node); 1132 if (err) 1133 goto free_tsk; 1134 1135 #ifdef CONFIG_THREAD_INFO_IN_TASK 1136 refcount_set(&tsk->stack_refcount, 1); 1137 #endif 1138 account_kernel_stack(tsk, 1); 1139 1140 err = scs_prepare(tsk, node); 1141 if (err) 1142 goto free_stack; 1143 1144 #ifdef CONFIG_SECCOMP 1145 /* 1146 * We must handle setting up seccomp filters once we're under 1147 * the sighand lock in case orig has changed between now and 1148 * then. Until then, filter must be NULL to avoid messing up 1149 * the usage counts on the error path calling free_task. 1150 */ 1151 tsk->seccomp.filter = NULL; 1152 #endif 1153 1154 setup_thread_stack(tsk, orig); 1155 clear_user_return_notifier(tsk); 1156 clear_tsk_need_resched(tsk); 1157 set_task_stack_end_magic(tsk); 1158 clear_syscall_work_syscall_user_dispatch(tsk); 1159 1160 #ifdef CONFIG_STACKPROTECTOR 1161 tsk->stack_canary = get_random_canary(); 1162 #endif 1163 if (orig->cpus_ptr == &orig->cpus_mask) 1164 tsk->cpus_ptr = &tsk->cpus_mask; 1165 dup_user_cpus_ptr(tsk, orig, node); 1166 1167 /* 1168 * One for the user space visible state that goes away when reaped. 1169 * One for the scheduler. 1170 */ 1171 refcount_set(&tsk->rcu_users, 2); 1172 /* One for the rcu users */ 1173 refcount_set(&tsk->usage, 1); 1174 #ifdef CONFIG_BLK_DEV_IO_TRACE 1175 tsk->btrace_seq = 0; 1176 #endif 1177 tsk->splice_pipe = NULL; 1178 tsk->task_frag.page = NULL; 1179 tsk->wake_q.next = NULL; 1180 tsk->worker_private = NULL; 1181 1182 kcov_task_init(tsk); 1183 kmsan_task_create(tsk); 1184 kmap_local_fork(tsk); 1185 1186 #ifdef CONFIG_FAULT_INJECTION 1187 tsk->fail_nth = 0; 1188 #endif 1189 1190 #ifdef CONFIG_BLK_CGROUP 1191 tsk->throttle_disk = NULL; 1192 tsk->use_memdelay = 0; 1193 #endif 1194 1195 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1196 tsk->pasid_activated = 0; 1197 #endif 1198 1199 #ifdef CONFIG_MEMCG 1200 tsk->active_memcg = NULL; 1201 #endif 1202 1203 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1204 tsk->reported_split_lock = 0; 1205 #endif 1206 1207 #ifdef CONFIG_SCHED_MM_CID 1208 tsk->mm_cid = -1; 1209 tsk->last_mm_cid = -1; 1210 tsk->mm_cid_active = 0; 1211 tsk->migrate_from_cpu = -1; 1212 #endif 1213 return tsk; 1214 1215 free_stack: 1216 exit_task_stack_account(tsk); 1217 free_thread_stack(tsk); 1218 free_tsk: 1219 free_task_struct(tsk); 1220 return NULL; 1221 } 1222 1223 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1224 1225 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1226 1227 static int __init coredump_filter_setup(char *s) 1228 { 1229 default_dump_filter = 1230 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1231 MMF_DUMP_FILTER_MASK; 1232 return 1; 1233 } 1234 1235 __setup("coredump_filter=", coredump_filter_setup); 1236 1237 #include <linux/init_task.h> 1238 1239 static void mm_init_aio(struct mm_struct *mm) 1240 { 1241 #ifdef CONFIG_AIO 1242 spin_lock_init(&mm->ioctx_lock); 1243 mm->ioctx_table = NULL; 1244 #endif 1245 } 1246 1247 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1248 struct task_struct *p) 1249 { 1250 #ifdef CONFIG_MEMCG 1251 if (mm->owner == p) 1252 WRITE_ONCE(mm->owner, NULL); 1253 #endif 1254 } 1255 1256 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1257 { 1258 #ifdef CONFIG_MEMCG 1259 mm->owner = p; 1260 #endif 1261 } 1262 1263 static void mm_init_uprobes_state(struct mm_struct *mm) 1264 { 1265 #ifdef CONFIG_UPROBES 1266 mm->uprobes_state.xol_area = NULL; 1267 #endif 1268 } 1269 1270 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1271 struct user_namespace *user_ns) 1272 { 1273 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1274 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1275 atomic_set(&mm->mm_users, 1); 1276 atomic_set(&mm->mm_count, 1); 1277 seqcount_init(&mm->write_protect_seq); 1278 mmap_init_lock(mm); 1279 INIT_LIST_HEAD(&mm->mmlist); 1280 mm_pgtables_bytes_init(mm); 1281 mm->map_count = 0; 1282 mm->locked_vm = 0; 1283 atomic64_set(&mm->pinned_vm, 0); 1284 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1285 spin_lock_init(&mm->page_table_lock); 1286 spin_lock_init(&mm->arg_lock); 1287 mm_init_cpumask(mm); 1288 mm_init_aio(mm); 1289 mm_init_owner(mm, p); 1290 mm_pasid_init(mm); 1291 RCU_INIT_POINTER(mm->exe_file, NULL); 1292 mmu_notifier_subscriptions_init(mm); 1293 init_tlb_flush_pending(mm); 1294 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1295 mm->pmd_huge_pte = NULL; 1296 #endif 1297 mm_init_uprobes_state(mm); 1298 hugetlb_count_init(mm); 1299 1300 if (current->mm) { 1301 mm->flags = mmf_init_flags(current->mm->flags); 1302 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1303 } else { 1304 mm->flags = default_dump_filter; 1305 mm->def_flags = 0; 1306 } 1307 1308 if (mm_alloc_pgd(mm)) 1309 goto fail_nopgd; 1310 1311 if (init_new_context(p, mm)) 1312 goto fail_nocontext; 1313 1314 if (mm_alloc_cid(mm, p)) 1315 goto fail_cid; 1316 1317 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1318 NR_MM_COUNTERS)) 1319 goto fail_pcpu; 1320 1321 mm->user_ns = get_user_ns(user_ns); 1322 lru_gen_init_mm(mm); 1323 return mm; 1324 1325 fail_pcpu: 1326 mm_destroy_cid(mm); 1327 fail_cid: 1328 destroy_context(mm); 1329 fail_nocontext: 1330 mm_free_pgd(mm); 1331 fail_nopgd: 1332 free_mm(mm); 1333 return NULL; 1334 } 1335 1336 /* 1337 * Allocate and initialize an mm_struct. 1338 */ 1339 struct mm_struct *mm_alloc(void) 1340 { 1341 struct mm_struct *mm; 1342 1343 mm = allocate_mm(); 1344 if (!mm) 1345 return NULL; 1346 1347 memset(mm, 0, sizeof(*mm)); 1348 return mm_init(mm, current, current_user_ns()); 1349 } 1350 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1351 1352 static inline void __mmput(struct mm_struct *mm) 1353 { 1354 VM_BUG_ON(atomic_read(&mm->mm_users)); 1355 1356 uprobe_clear_state(mm); 1357 exit_aio(mm); 1358 ksm_exit(mm); 1359 khugepaged_exit(mm); /* must run before exit_mmap */ 1360 exit_mmap(mm); 1361 mm_put_huge_zero_folio(mm); 1362 set_mm_exe_file(mm, NULL); 1363 if (!list_empty(&mm->mmlist)) { 1364 spin_lock(&mmlist_lock); 1365 list_del(&mm->mmlist); 1366 spin_unlock(&mmlist_lock); 1367 } 1368 if (mm->binfmt) 1369 module_put(mm->binfmt->module); 1370 lru_gen_del_mm(mm); 1371 mmdrop(mm); 1372 } 1373 1374 /* 1375 * Decrement the use count and release all resources for an mm. 1376 */ 1377 void mmput(struct mm_struct *mm) 1378 { 1379 might_sleep(); 1380 1381 if (atomic_dec_and_test(&mm->mm_users)) 1382 __mmput(mm); 1383 } 1384 EXPORT_SYMBOL_GPL(mmput); 1385 1386 #ifdef CONFIG_MMU 1387 static void mmput_async_fn(struct work_struct *work) 1388 { 1389 struct mm_struct *mm = container_of(work, struct mm_struct, 1390 async_put_work); 1391 1392 __mmput(mm); 1393 } 1394 1395 void mmput_async(struct mm_struct *mm) 1396 { 1397 if (atomic_dec_and_test(&mm->mm_users)) { 1398 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1399 schedule_work(&mm->async_put_work); 1400 } 1401 } 1402 EXPORT_SYMBOL_GPL(mmput_async); 1403 #endif 1404 1405 /** 1406 * set_mm_exe_file - change a reference to the mm's executable file 1407 * @mm: The mm to change. 1408 * @new_exe_file: The new file to use. 1409 * 1410 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1411 * 1412 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1413 * invocations: in mmput() nobody alive left, in execve it happens before 1414 * the new mm is made visible to anyone. 1415 * 1416 * Can only fail if new_exe_file != NULL. 1417 */ 1418 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1419 { 1420 struct file *old_exe_file; 1421 1422 /* 1423 * It is safe to dereference the exe_file without RCU as 1424 * this function is only called if nobody else can access 1425 * this mm -- see comment above for justification. 1426 */ 1427 old_exe_file = rcu_dereference_raw(mm->exe_file); 1428 1429 if (new_exe_file) { 1430 /* 1431 * We expect the caller (i.e., sys_execve) to already denied 1432 * write access, so this is unlikely to fail. 1433 */ 1434 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1435 return -EACCES; 1436 get_file(new_exe_file); 1437 } 1438 rcu_assign_pointer(mm->exe_file, new_exe_file); 1439 if (old_exe_file) { 1440 exe_file_allow_write_access(old_exe_file); 1441 fput(old_exe_file); 1442 } 1443 return 0; 1444 } 1445 1446 /** 1447 * replace_mm_exe_file - replace a reference to the mm's executable file 1448 * @mm: The mm to change. 1449 * @new_exe_file: The new file to use. 1450 * 1451 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1452 * 1453 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1454 */ 1455 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1456 { 1457 struct vm_area_struct *vma; 1458 struct file *old_exe_file; 1459 int ret = 0; 1460 1461 /* Forbid mm->exe_file change if old file still mapped. */ 1462 old_exe_file = get_mm_exe_file(mm); 1463 if (old_exe_file) { 1464 VMA_ITERATOR(vmi, mm, 0); 1465 mmap_read_lock(mm); 1466 for_each_vma(vmi, vma) { 1467 if (!vma->vm_file) 1468 continue; 1469 if (path_equal(&vma->vm_file->f_path, 1470 &old_exe_file->f_path)) { 1471 ret = -EBUSY; 1472 break; 1473 } 1474 } 1475 mmap_read_unlock(mm); 1476 fput(old_exe_file); 1477 if (ret) 1478 return ret; 1479 } 1480 1481 ret = exe_file_deny_write_access(new_exe_file); 1482 if (ret) 1483 return -EACCES; 1484 get_file(new_exe_file); 1485 1486 /* set the new file */ 1487 mmap_write_lock(mm); 1488 old_exe_file = rcu_dereference_raw(mm->exe_file); 1489 rcu_assign_pointer(mm->exe_file, new_exe_file); 1490 mmap_write_unlock(mm); 1491 1492 if (old_exe_file) { 1493 exe_file_allow_write_access(old_exe_file); 1494 fput(old_exe_file); 1495 } 1496 return 0; 1497 } 1498 1499 /** 1500 * get_mm_exe_file - acquire a reference to the mm's executable file 1501 * @mm: The mm of interest. 1502 * 1503 * Returns %NULL if mm has no associated executable file. 1504 * User must release file via fput(). 1505 */ 1506 struct file *get_mm_exe_file(struct mm_struct *mm) 1507 { 1508 struct file *exe_file; 1509 1510 rcu_read_lock(); 1511 exe_file = get_file_rcu(&mm->exe_file); 1512 rcu_read_unlock(); 1513 return exe_file; 1514 } 1515 1516 /** 1517 * get_task_exe_file - acquire a reference to the task's executable file 1518 * @task: The task. 1519 * 1520 * Returns %NULL if task's mm (if any) has no associated executable file or 1521 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1522 * User must release file via fput(). 1523 */ 1524 struct file *get_task_exe_file(struct task_struct *task) 1525 { 1526 struct file *exe_file = NULL; 1527 struct mm_struct *mm; 1528 1529 if (task->flags & PF_KTHREAD) 1530 return NULL; 1531 1532 task_lock(task); 1533 mm = task->mm; 1534 if (mm) 1535 exe_file = get_mm_exe_file(mm); 1536 task_unlock(task); 1537 return exe_file; 1538 } 1539 1540 /** 1541 * get_task_mm - acquire a reference to the task's mm 1542 * @task: The task. 1543 * 1544 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1545 * this kernel workthread has transiently adopted a user mm with use_mm, 1546 * to do its AIO) is not set and if so returns a reference to it, after 1547 * bumping up the use count. User must release the mm via mmput() 1548 * after use. Typically used by /proc and ptrace. 1549 */ 1550 struct mm_struct *get_task_mm(struct task_struct *task) 1551 { 1552 struct mm_struct *mm; 1553 1554 if (task->flags & PF_KTHREAD) 1555 return NULL; 1556 1557 task_lock(task); 1558 mm = task->mm; 1559 if (mm) 1560 mmget(mm); 1561 task_unlock(task); 1562 return mm; 1563 } 1564 EXPORT_SYMBOL_GPL(get_task_mm); 1565 1566 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1567 { 1568 struct mm_struct *mm; 1569 int err; 1570 1571 err = down_read_killable(&task->signal->exec_update_lock); 1572 if (err) 1573 return ERR_PTR(err); 1574 1575 mm = get_task_mm(task); 1576 if (!mm) { 1577 mm = ERR_PTR(-ESRCH); 1578 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1579 mmput(mm); 1580 mm = ERR_PTR(-EACCES); 1581 } 1582 up_read(&task->signal->exec_update_lock); 1583 1584 return mm; 1585 } 1586 1587 static void complete_vfork_done(struct task_struct *tsk) 1588 { 1589 struct completion *vfork; 1590 1591 task_lock(tsk); 1592 vfork = tsk->vfork_done; 1593 if (likely(vfork)) { 1594 tsk->vfork_done = NULL; 1595 complete(vfork); 1596 } 1597 task_unlock(tsk); 1598 } 1599 1600 static int wait_for_vfork_done(struct task_struct *child, 1601 struct completion *vfork) 1602 { 1603 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1604 int killed; 1605 1606 cgroup_enter_frozen(); 1607 killed = wait_for_completion_state(vfork, state); 1608 cgroup_leave_frozen(false); 1609 1610 if (killed) { 1611 task_lock(child); 1612 child->vfork_done = NULL; 1613 task_unlock(child); 1614 } 1615 1616 put_task_struct(child); 1617 return killed; 1618 } 1619 1620 /* Please note the differences between mmput and mm_release. 1621 * mmput is called whenever we stop holding onto a mm_struct, 1622 * error success whatever. 1623 * 1624 * mm_release is called after a mm_struct has been removed 1625 * from the current process. 1626 * 1627 * This difference is important for error handling, when we 1628 * only half set up a mm_struct for a new process and need to restore 1629 * the old one. Because we mmput the new mm_struct before 1630 * restoring the old one. . . 1631 * Eric Biederman 10 January 1998 1632 */ 1633 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1634 { 1635 uprobe_free_utask(tsk); 1636 1637 /* Get rid of any cached register state */ 1638 deactivate_mm(tsk, mm); 1639 1640 /* 1641 * Signal userspace if we're not exiting with a core dump 1642 * because we want to leave the value intact for debugging 1643 * purposes. 1644 */ 1645 if (tsk->clear_child_tid) { 1646 if (atomic_read(&mm->mm_users) > 1) { 1647 /* 1648 * We don't check the error code - if userspace has 1649 * not set up a proper pointer then tough luck. 1650 */ 1651 put_user(0, tsk->clear_child_tid); 1652 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1653 1, NULL, NULL, 0, 0); 1654 } 1655 tsk->clear_child_tid = NULL; 1656 } 1657 1658 /* 1659 * All done, finally we can wake up parent and return this mm to him. 1660 * Also kthread_stop() uses this completion for synchronization. 1661 */ 1662 if (tsk->vfork_done) 1663 complete_vfork_done(tsk); 1664 } 1665 1666 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1667 { 1668 futex_exit_release(tsk); 1669 mm_release(tsk, mm); 1670 } 1671 1672 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1673 { 1674 futex_exec_release(tsk); 1675 mm_release(tsk, mm); 1676 } 1677 1678 /** 1679 * dup_mm() - duplicates an existing mm structure 1680 * @tsk: the task_struct with which the new mm will be associated. 1681 * @oldmm: the mm to duplicate. 1682 * 1683 * Allocates a new mm structure and duplicates the provided @oldmm structure 1684 * content into it. 1685 * 1686 * Return: the duplicated mm or NULL on failure. 1687 */ 1688 static struct mm_struct *dup_mm(struct task_struct *tsk, 1689 struct mm_struct *oldmm) 1690 { 1691 struct mm_struct *mm; 1692 int err; 1693 1694 mm = allocate_mm(); 1695 if (!mm) 1696 goto fail_nomem; 1697 1698 memcpy(mm, oldmm, sizeof(*mm)); 1699 1700 if (!mm_init(mm, tsk, mm->user_ns)) 1701 goto fail_nomem; 1702 1703 uprobe_start_dup_mmap(); 1704 err = dup_mmap(mm, oldmm); 1705 if (err) 1706 goto free_pt; 1707 uprobe_end_dup_mmap(); 1708 1709 mm->hiwater_rss = get_mm_rss(mm); 1710 mm->hiwater_vm = mm->total_vm; 1711 1712 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1713 goto free_pt; 1714 1715 return mm; 1716 1717 free_pt: 1718 /* don't put binfmt in mmput, we haven't got module yet */ 1719 mm->binfmt = NULL; 1720 mm_init_owner(mm, NULL); 1721 mmput(mm); 1722 if (err) 1723 uprobe_end_dup_mmap(); 1724 1725 fail_nomem: 1726 return NULL; 1727 } 1728 1729 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1730 { 1731 struct mm_struct *mm, *oldmm; 1732 1733 tsk->min_flt = tsk->maj_flt = 0; 1734 tsk->nvcsw = tsk->nivcsw = 0; 1735 #ifdef CONFIG_DETECT_HUNG_TASK 1736 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1737 tsk->last_switch_time = 0; 1738 #endif 1739 1740 tsk->mm = NULL; 1741 tsk->active_mm = NULL; 1742 1743 /* 1744 * Are we cloning a kernel thread? 1745 * 1746 * We need to steal a active VM for that.. 1747 */ 1748 oldmm = current->mm; 1749 if (!oldmm) 1750 return 0; 1751 1752 if (clone_flags & CLONE_VM) { 1753 mmget(oldmm); 1754 mm = oldmm; 1755 } else { 1756 mm = dup_mm(tsk, current->mm); 1757 if (!mm) 1758 return -ENOMEM; 1759 } 1760 1761 tsk->mm = mm; 1762 tsk->active_mm = mm; 1763 sched_mm_cid_fork(tsk); 1764 return 0; 1765 } 1766 1767 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1768 { 1769 struct fs_struct *fs = current->fs; 1770 if (clone_flags & CLONE_FS) { 1771 /* tsk->fs is already what we want */ 1772 spin_lock(&fs->lock); 1773 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1774 if (fs->in_exec) { 1775 spin_unlock(&fs->lock); 1776 return -EAGAIN; 1777 } 1778 fs->users++; 1779 spin_unlock(&fs->lock); 1780 return 0; 1781 } 1782 tsk->fs = copy_fs_struct(fs); 1783 if (!tsk->fs) 1784 return -ENOMEM; 1785 return 0; 1786 } 1787 1788 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1789 int no_files) 1790 { 1791 struct files_struct *oldf, *newf; 1792 1793 /* 1794 * A background process may not have any files ... 1795 */ 1796 oldf = current->files; 1797 if (!oldf) 1798 return 0; 1799 1800 if (no_files) { 1801 tsk->files = NULL; 1802 return 0; 1803 } 1804 1805 if (clone_flags & CLONE_FILES) { 1806 atomic_inc(&oldf->count); 1807 return 0; 1808 } 1809 1810 newf = dup_fd(oldf, NULL); 1811 if (IS_ERR(newf)) 1812 return PTR_ERR(newf); 1813 1814 tsk->files = newf; 1815 return 0; 1816 } 1817 1818 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1819 { 1820 struct sighand_struct *sig; 1821 1822 if (clone_flags & CLONE_SIGHAND) { 1823 refcount_inc(¤t->sighand->count); 1824 return 0; 1825 } 1826 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1827 RCU_INIT_POINTER(tsk->sighand, sig); 1828 if (!sig) 1829 return -ENOMEM; 1830 1831 refcount_set(&sig->count, 1); 1832 spin_lock_irq(¤t->sighand->siglock); 1833 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1834 spin_unlock_irq(¤t->sighand->siglock); 1835 1836 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1837 if (clone_flags & CLONE_CLEAR_SIGHAND) 1838 flush_signal_handlers(tsk, 0); 1839 1840 return 0; 1841 } 1842 1843 void __cleanup_sighand(struct sighand_struct *sighand) 1844 { 1845 if (refcount_dec_and_test(&sighand->count)) { 1846 signalfd_cleanup(sighand); 1847 /* 1848 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1849 * without an RCU grace period, see __lock_task_sighand(). 1850 */ 1851 kmem_cache_free(sighand_cachep, sighand); 1852 } 1853 } 1854 1855 /* 1856 * Initialize POSIX timer handling for a thread group. 1857 */ 1858 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1859 { 1860 struct posix_cputimers *pct = &sig->posix_cputimers; 1861 unsigned long cpu_limit; 1862 1863 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1864 posix_cputimers_group_init(pct, cpu_limit); 1865 } 1866 1867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1868 { 1869 struct signal_struct *sig; 1870 1871 if (clone_flags & CLONE_THREAD) 1872 return 0; 1873 1874 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1875 tsk->signal = sig; 1876 if (!sig) 1877 return -ENOMEM; 1878 1879 sig->nr_threads = 1; 1880 sig->quick_threads = 1; 1881 atomic_set(&sig->live, 1); 1882 refcount_set(&sig->sigcnt, 1); 1883 1884 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1885 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1886 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1887 1888 init_waitqueue_head(&sig->wait_chldexit); 1889 sig->curr_target = tsk; 1890 init_sigpending(&sig->shared_pending); 1891 INIT_HLIST_HEAD(&sig->multiprocess); 1892 seqlock_init(&sig->stats_lock); 1893 prev_cputime_init(&sig->prev_cputime); 1894 1895 #ifdef CONFIG_POSIX_TIMERS 1896 INIT_HLIST_HEAD(&sig->posix_timers); 1897 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1898 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1899 #endif 1900 1901 task_lock(current->group_leader); 1902 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1903 task_unlock(current->group_leader); 1904 1905 posix_cpu_timers_init_group(sig); 1906 1907 tty_audit_fork(sig); 1908 sched_autogroup_fork(sig); 1909 1910 sig->oom_score_adj = current->signal->oom_score_adj; 1911 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1912 1913 mutex_init(&sig->cred_guard_mutex); 1914 init_rwsem(&sig->exec_update_lock); 1915 1916 return 0; 1917 } 1918 1919 static void copy_seccomp(struct task_struct *p) 1920 { 1921 #ifdef CONFIG_SECCOMP 1922 /* 1923 * Must be called with sighand->lock held, which is common to 1924 * all threads in the group. Holding cred_guard_mutex is not 1925 * needed because this new task is not yet running and cannot 1926 * be racing exec. 1927 */ 1928 assert_spin_locked(¤t->sighand->siglock); 1929 1930 /* Ref-count the new filter user, and assign it. */ 1931 get_seccomp_filter(current); 1932 p->seccomp = current->seccomp; 1933 1934 /* 1935 * Explicitly enable no_new_privs here in case it got set 1936 * between the task_struct being duplicated and holding the 1937 * sighand lock. The seccomp state and nnp must be in sync. 1938 */ 1939 if (task_no_new_privs(current)) 1940 task_set_no_new_privs(p); 1941 1942 /* 1943 * If the parent gained a seccomp mode after copying thread 1944 * flags and between before we held the sighand lock, we have 1945 * to manually enable the seccomp thread flag here. 1946 */ 1947 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1948 set_task_syscall_work(p, SECCOMP); 1949 #endif 1950 } 1951 1952 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1953 { 1954 current->clear_child_tid = tidptr; 1955 1956 return task_pid_vnr(current); 1957 } 1958 1959 static void rt_mutex_init_task(struct task_struct *p) 1960 { 1961 raw_spin_lock_init(&p->pi_lock); 1962 #ifdef CONFIG_RT_MUTEXES 1963 p->pi_waiters = RB_ROOT_CACHED; 1964 p->pi_top_task = NULL; 1965 p->pi_blocked_on = NULL; 1966 #endif 1967 } 1968 1969 static inline void init_task_pid_links(struct task_struct *task) 1970 { 1971 enum pid_type type; 1972 1973 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1974 INIT_HLIST_NODE(&task->pid_links[type]); 1975 } 1976 1977 static inline void 1978 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1979 { 1980 if (type == PIDTYPE_PID) 1981 task->thread_pid = pid; 1982 else 1983 task->signal->pids[type] = pid; 1984 } 1985 1986 static inline void rcu_copy_process(struct task_struct *p) 1987 { 1988 #ifdef CONFIG_PREEMPT_RCU 1989 p->rcu_read_lock_nesting = 0; 1990 p->rcu_read_unlock_special.s = 0; 1991 p->rcu_blocked_node = NULL; 1992 INIT_LIST_HEAD(&p->rcu_node_entry); 1993 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1994 #ifdef CONFIG_TASKS_RCU 1995 p->rcu_tasks_holdout = false; 1996 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1997 p->rcu_tasks_idle_cpu = -1; 1998 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1999 #endif /* #ifdef CONFIG_TASKS_RCU */ 2000 #ifdef CONFIG_TASKS_TRACE_RCU 2001 p->trc_reader_nesting = 0; 2002 p->trc_reader_special.s = 0; 2003 INIT_LIST_HEAD(&p->trc_holdout_list); 2004 INIT_LIST_HEAD(&p->trc_blkd_node); 2005 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2006 } 2007 2008 /** 2009 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2010 * @pid: the struct pid for which to create a pidfd 2011 * @flags: flags of the new @pidfd 2012 * @ret: Where to return the file for the pidfd. 2013 * 2014 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2015 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2016 * 2017 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2018 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2019 * pidfd file are prepared. 2020 * 2021 * If this function returns successfully the caller is responsible to either 2022 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2023 * order to install the pidfd into its file descriptor table or they must use 2024 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2025 * respectively. 2026 * 2027 * This function is useful when a pidfd must already be reserved but there 2028 * might still be points of failure afterwards and the caller wants to ensure 2029 * that no pidfd is leaked into its file descriptor table. 2030 * 2031 * Return: On success, a reserved pidfd is returned from the function and a new 2032 * pidfd file is returned in the last argument to the function. On 2033 * error, a negative error code is returned from the function and the 2034 * last argument remains unchanged. 2035 */ 2036 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2037 { 2038 struct file *pidfd_file; 2039 2040 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 2041 if (pidfd < 0) 2042 return pidfd; 2043 2044 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2045 if (IS_ERR(pidfd_file)) 2046 return PTR_ERR(pidfd_file); 2047 2048 *ret = pidfd_file; 2049 return take_fd(pidfd); 2050 } 2051 2052 /** 2053 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2054 * @pid: the struct pid for which to create a pidfd 2055 * @flags: flags of the new @pidfd 2056 * @ret: Where to return the pidfd. 2057 * 2058 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2059 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2060 * 2061 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2062 * task identified by @pid must be a thread-group leader. 2063 * 2064 * If this function returns successfully the caller is responsible to either 2065 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2066 * order to install the pidfd into its file descriptor table or they must use 2067 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2068 * respectively. 2069 * 2070 * This function is useful when a pidfd must already be reserved but there 2071 * might still be points of failure afterwards and the caller wants to ensure 2072 * that no pidfd is leaked into its file descriptor table. 2073 * 2074 * Return: On success, a reserved pidfd is returned from the function and a new 2075 * pidfd file is returned in the last argument to the function. On 2076 * error, a negative error code is returned from the function and the 2077 * last argument remains unchanged. 2078 */ 2079 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2080 { 2081 bool thread = flags & PIDFD_THREAD; 2082 2083 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2084 return -EINVAL; 2085 2086 return __pidfd_prepare(pid, flags, ret); 2087 } 2088 2089 static void __delayed_free_task(struct rcu_head *rhp) 2090 { 2091 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2092 2093 free_task(tsk); 2094 } 2095 2096 static __always_inline void delayed_free_task(struct task_struct *tsk) 2097 { 2098 if (IS_ENABLED(CONFIG_MEMCG)) 2099 call_rcu(&tsk->rcu, __delayed_free_task); 2100 else 2101 free_task(tsk); 2102 } 2103 2104 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2105 { 2106 /* Skip if kernel thread */ 2107 if (!tsk->mm) 2108 return; 2109 2110 /* Skip if spawning a thread or using vfork */ 2111 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2112 return; 2113 2114 /* We need to synchronize with __set_oom_adj */ 2115 mutex_lock(&oom_adj_mutex); 2116 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2117 /* Update the values in case they were changed after copy_signal */ 2118 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2119 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2120 mutex_unlock(&oom_adj_mutex); 2121 } 2122 2123 #ifdef CONFIG_RV 2124 static void rv_task_fork(struct task_struct *p) 2125 { 2126 int i; 2127 2128 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2129 p->rv[i].da_mon.monitoring = false; 2130 } 2131 #else 2132 #define rv_task_fork(p) do {} while (0) 2133 #endif 2134 2135 /* 2136 * This creates a new process as a copy of the old one, 2137 * but does not actually start it yet. 2138 * 2139 * It copies the registers, and all the appropriate 2140 * parts of the process environment (as per the clone 2141 * flags). The actual kick-off is left to the caller. 2142 */ 2143 __latent_entropy struct task_struct *copy_process( 2144 struct pid *pid, 2145 int trace, 2146 int node, 2147 struct kernel_clone_args *args) 2148 { 2149 int pidfd = -1, retval; 2150 struct task_struct *p; 2151 struct multiprocess_signals delayed; 2152 struct file *pidfile = NULL; 2153 const u64 clone_flags = args->flags; 2154 struct nsproxy *nsp = current->nsproxy; 2155 2156 /* 2157 * Don't allow sharing the root directory with processes in a different 2158 * namespace 2159 */ 2160 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2161 return ERR_PTR(-EINVAL); 2162 2163 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2164 return ERR_PTR(-EINVAL); 2165 2166 /* 2167 * Thread groups must share signals as well, and detached threads 2168 * can only be started up within the thread group. 2169 */ 2170 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2171 return ERR_PTR(-EINVAL); 2172 2173 /* 2174 * Shared signal handlers imply shared VM. By way of the above, 2175 * thread groups also imply shared VM. Blocking this case allows 2176 * for various simplifications in other code. 2177 */ 2178 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2179 return ERR_PTR(-EINVAL); 2180 2181 /* 2182 * Siblings of global init remain as zombies on exit since they are 2183 * not reaped by their parent (swapper). To solve this and to avoid 2184 * multi-rooted process trees, prevent global and container-inits 2185 * from creating siblings. 2186 */ 2187 if ((clone_flags & CLONE_PARENT) && 2188 current->signal->flags & SIGNAL_UNKILLABLE) 2189 return ERR_PTR(-EINVAL); 2190 2191 /* 2192 * If the new process will be in a different pid or user namespace 2193 * do not allow it to share a thread group with the forking task. 2194 */ 2195 if (clone_flags & CLONE_THREAD) { 2196 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2197 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2198 return ERR_PTR(-EINVAL); 2199 } 2200 2201 if (clone_flags & CLONE_PIDFD) { 2202 /* 2203 * - CLONE_DETACHED is blocked so that we can potentially 2204 * reuse it later for CLONE_PIDFD. 2205 */ 2206 if (clone_flags & CLONE_DETACHED) 2207 return ERR_PTR(-EINVAL); 2208 } 2209 2210 /* 2211 * Force any signals received before this point to be delivered 2212 * before the fork happens. Collect up signals sent to multiple 2213 * processes that happen during the fork and delay them so that 2214 * they appear to happen after the fork. 2215 */ 2216 sigemptyset(&delayed.signal); 2217 INIT_HLIST_NODE(&delayed.node); 2218 2219 spin_lock_irq(¤t->sighand->siglock); 2220 if (!(clone_flags & CLONE_THREAD)) 2221 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2222 recalc_sigpending(); 2223 spin_unlock_irq(¤t->sighand->siglock); 2224 retval = -ERESTARTNOINTR; 2225 if (task_sigpending(current)) 2226 goto fork_out; 2227 2228 retval = -ENOMEM; 2229 p = dup_task_struct(current, node); 2230 if (!p) 2231 goto fork_out; 2232 p->flags &= ~PF_KTHREAD; 2233 if (args->kthread) 2234 p->flags |= PF_KTHREAD; 2235 if (args->user_worker) { 2236 /* 2237 * Mark us a user worker, and block any signal that isn't 2238 * fatal or STOP 2239 */ 2240 p->flags |= PF_USER_WORKER; 2241 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2242 } 2243 if (args->io_thread) 2244 p->flags |= PF_IO_WORKER; 2245 2246 if (args->name) 2247 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2248 2249 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2250 /* 2251 * Clear TID on mm_release()? 2252 */ 2253 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2254 2255 ftrace_graph_init_task(p); 2256 2257 rt_mutex_init_task(p); 2258 2259 lockdep_assert_irqs_enabled(); 2260 #ifdef CONFIG_PROVE_LOCKING 2261 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2262 #endif 2263 retval = copy_creds(p, clone_flags); 2264 if (retval < 0) 2265 goto bad_fork_free; 2266 2267 retval = -EAGAIN; 2268 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2269 if (p->real_cred->user != INIT_USER && 2270 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2271 goto bad_fork_cleanup_count; 2272 } 2273 current->flags &= ~PF_NPROC_EXCEEDED; 2274 2275 /* 2276 * If multiple threads are within copy_process(), then this check 2277 * triggers too late. This doesn't hurt, the check is only there 2278 * to stop root fork bombs. 2279 */ 2280 retval = -EAGAIN; 2281 if (data_race(nr_threads >= max_threads)) 2282 goto bad_fork_cleanup_count; 2283 2284 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2285 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2286 p->flags |= PF_FORKNOEXEC; 2287 INIT_LIST_HEAD(&p->children); 2288 INIT_LIST_HEAD(&p->sibling); 2289 rcu_copy_process(p); 2290 p->vfork_done = NULL; 2291 spin_lock_init(&p->alloc_lock); 2292 2293 init_sigpending(&p->pending); 2294 2295 p->utime = p->stime = p->gtime = 0; 2296 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2297 p->utimescaled = p->stimescaled = 0; 2298 #endif 2299 prev_cputime_init(&p->prev_cputime); 2300 2301 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2302 seqcount_init(&p->vtime.seqcount); 2303 p->vtime.starttime = 0; 2304 p->vtime.state = VTIME_INACTIVE; 2305 #endif 2306 2307 #ifdef CONFIG_IO_URING 2308 p->io_uring = NULL; 2309 #endif 2310 2311 p->default_timer_slack_ns = current->timer_slack_ns; 2312 2313 #ifdef CONFIG_PSI 2314 p->psi_flags = 0; 2315 #endif 2316 2317 task_io_accounting_init(&p->ioac); 2318 acct_clear_integrals(p); 2319 2320 posix_cputimers_init(&p->posix_cputimers); 2321 tick_dep_init_task(p); 2322 2323 p->io_context = NULL; 2324 audit_set_context(p, NULL); 2325 cgroup_fork(p); 2326 if (args->kthread) { 2327 if (!set_kthread_struct(p)) 2328 goto bad_fork_cleanup_delayacct; 2329 } 2330 #ifdef CONFIG_NUMA 2331 p->mempolicy = mpol_dup(p->mempolicy); 2332 if (IS_ERR(p->mempolicy)) { 2333 retval = PTR_ERR(p->mempolicy); 2334 p->mempolicy = NULL; 2335 goto bad_fork_cleanup_delayacct; 2336 } 2337 #endif 2338 #ifdef CONFIG_CPUSETS 2339 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2340 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2341 #endif 2342 #ifdef CONFIG_TRACE_IRQFLAGS 2343 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2344 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2345 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2346 p->softirqs_enabled = 1; 2347 p->softirq_context = 0; 2348 #endif 2349 2350 p->pagefault_disabled = 0; 2351 2352 #ifdef CONFIG_LOCKDEP 2353 lockdep_init_task(p); 2354 #endif 2355 2356 #ifdef CONFIG_DEBUG_MUTEXES 2357 p->blocked_on = NULL; /* not blocked yet */ 2358 #endif 2359 #ifdef CONFIG_BCACHE 2360 p->sequential_io = 0; 2361 p->sequential_io_avg = 0; 2362 #endif 2363 #ifdef CONFIG_BPF_SYSCALL 2364 RCU_INIT_POINTER(p->bpf_storage, NULL); 2365 p->bpf_ctx = NULL; 2366 #endif 2367 2368 /* Perform scheduler related setup. Assign this task to a CPU. */ 2369 retval = sched_fork(clone_flags, p); 2370 if (retval) 2371 goto bad_fork_cleanup_policy; 2372 2373 retval = perf_event_init_task(p, clone_flags); 2374 if (retval) 2375 goto bad_fork_sched_cancel_fork; 2376 retval = audit_alloc(p); 2377 if (retval) 2378 goto bad_fork_cleanup_perf; 2379 /* copy all the process information */ 2380 shm_init_task(p); 2381 retval = security_task_alloc(p, clone_flags); 2382 if (retval) 2383 goto bad_fork_cleanup_audit; 2384 retval = copy_semundo(clone_flags, p); 2385 if (retval) 2386 goto bad_fork_cleanup_security; 2387 retval = copy_files(clone_flags, p, args->no_files); 2388 if (retval) 2389 goto bad_fork_cleanup_semundo; 2390 retval = copy_fs(clone_flags, p); 2391 if (retval) 2392 goto bad_fork_cleanup_files; 2393 retval = copy_sighand(clone_flags, p); 2394 if (retval) 2395 goto bad_fork_cleanup_fs; 2396 retval = copy_signal(clone_flags, p); 2397 if (retval) 2398 goto bad_fork_cleanup_sighand; 2399 retval = copy_mm(clone_flags, p); 2400 if (retval) 2401 goto bad_fork_cleanup_signal; 2402 retval = copy_namespaces(clone_flags, p); 2403 if (retval) 2404 goto bad_fork_cleanup_mm; 2405 retval = copy_io(clone_flags, p); 2406 if (retval) 2407 goto bad_fork_cleanup_namespaces; 2408 retval = copy_thread(p, args); 2409 if (retval) 2410 goto bad_fork_cleanup_io; 2411 2412 stackleak_task_init(p); 2413 2414 if (pid != &init_struct_pid) { 2415 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2416 args->set_tid_size); 2417 if (IS_ERR(pid)) { 2418 retval = PTR_ERR(pid); 2419 goto bad_fork_cleanup_thread; 2420 } 2421 } 2422 2423 /* 2424 * This has to happen after we've potentially unshared the file 2425 * descriptor table (so that the pidfd doesn't leak into the child 2426 * if the fd table isn't shared). 2427 */ 2428 if (clone_flags & CLONE_PIDFD) { 2429 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2430 2431 /* 2432 * Note that no task has been attached to @pid yet indicate 2433 * that via CLONE_PIDFD. 2434 */ 2435 retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile); 2436 if (retval < 0) 2437 goto bad_fork_free_pid; 2438 pidfd = retval; 2439 2440 retval = put_user(pidfd, args->pidfd); 2441 if (retval) 2442 goto bad_fork_put_pidfd; 2443 } 2444 2445 #ifdef CONFIG_BLOCK 2446 p->plug = NULL; 2447 #endif 2448 futex_init_task(p); 2449 2450 /* 2451 * sigaltstack should be cleared when sharing the same VM 2452 */ 2453 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2454 sas_ss_reset(p); 2455 2456 /* 2457 * Syscall tracing and stepping should be turned off in the 2458 * child regardless of CLONE_PTRACE. 2459 */ 2460 user_disable_single_step(p); 2461 clear_task_syscall_work(p, SYSCALL_TRACE); 2462 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2463 clear_task_syscall_work(p, SYSCALL_EMU); 2464 #endif 2465 clear_tsk_latency_tracing(p); 2466 2467 /* ok, now we should be set up.. */ 2468 p->pid = pid_nr(pid); 2469 if (clone_flags & CLONE_THREAD) { 2470 p->group_leader = current->group_leader; 2471 p->tgid = current->tgid; 2472 } else { 2473 p->group_leader = p; 2474 p->tgid = p->pid; 2475 } 2476 2477 p->nr_dirtied = 0; 2478 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2479 p->dirty_paused_when = 0; 2480 2481 p->pdeath_signal = 0; 2482 p->task_works = NULL; 2483 clear_posix_cputimers_work(p); 2484 2485 #ifdef CONFIG_KRETPROBES 2486 p->kretprobe_instances.first = NULL; 2487 #endif 2488 #ifdef CONFIG_RETHOOK 2489 p->rethooks.first = NULL; 2490 #endif 2491 2492 /* 2493 * Ensure that the cgroup subsystem policies allow the new process to be 2494 * forked. It should be noted that the new process's css_set can be changed 2495 * between here and cgroup_post_fork() if an organisation operation is in 2496 * progress. 2497 */ 2498 retval = cgroup_can_fork(p, args); 2499 if (retval) 2500 goto bad_fork_put_pidfd; 2501 2502 /* 2503 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2504 * the new task on the correct runqueue. All this *before* the task 2505 * becomes visible. 2506 * 2507 * This isn't part of ->can_fork() because while the re-cloning is 2508 * cgroup specific, it unconditionally needs to place the task on a 2509 * runqueue. 2510 */ 2511 retval = sched_cgroup_fork(p, args); 2512 if (retval) 2513 goto bad_fork_cancel_cgroup; 2514 2515 /* 2516 * From this point on we must avoid any synchronous user-space 2517 * communication until we take the tasklist-lock. In particular, we do 2518 * not want user-space to be able to predict the process start-time by 2519 * stalling fork(2) after we recorded the start_time but before it is 2520 * visible to the system. 2521 */ 2522 2523 p->start_time = ktime_get_ns(); 2524 p->start_boottime = ktime_get_boottime_ns(); 2525 2526 /* 2527 * Make it visible to the rest of the system, but dont wake it up yet. 2528 * Need tasklist lock for parent etc handling! 2529 */ 2530 write_lock_irq(&tasklist_lock); 2531 2532 /* CLONE_PARENT re-uses the old parent */ 2533 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2534 p->real_parent = current->real_parent; 2535 p->parent_exec_id = current->parent_exec_id; 2536 if (clone_flags & CLONE_THREAD) 2537 p->exit_signal = -1; 2538 else 2539 p->exit_signal = current->group_leader->exit_signal; 2540 } else { 2541 p->real_parent = current; 2542 p->parent_exec_id = current->self_exec_id; 2543 p->exit_signal = args->exit_signal; 2544 } 2545 2546 klp_copy_process(p); 2547 2548 sched_core_fork(p); 2549 2550 spin_lock(¤t->sighand->siglock); 2551 2552 rv_task_fork(p); 2553 2554 rseq_fork(p, clone_flags); 2555 2556 /* Don't start children in a dying pid namespace */ 2557 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2558 retval = -ENOMEM; 2559 goto bad_fork_core_free; 2560 } 2561 2562 /* Let kill terminate clone/fork in the middle */ 2563 if (fatal_signal_pending(current)) { 2564 retval = -EINTR; 2565 goto bad_fork_core_free; 2566 } 2567 2568 /* No more failure paths after this point. */ 2569 2570 /* 2571 * Copy seccomp details explicitly here, in case they were changed 2572 * before holding sighand lock. 2573 */ 2574 copy_seccomp(p); 2575 2576 init_task_pid_links(p); 2577 if (likely(p->pid)) { 2578 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2579 2580 init_task_pid(p, PIDTYPE_PID, pid); 2581 if (thread_group_leader(p)) { 2582 init_task_pid(p, PIDTYPE_TGID, pid); 2583 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2584 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2585 2586 if (is_child_reaper(pid)) { 2587 ns_of_pid(pid)->child_reaper = p; 2588 p->signal->flags |= SIGNAL_UNKILLABLE; 2589 } 2590 p->signal->shared_pending.signal = delayed.signal; 2591 p->signal->tty = tty_kref_get(current->signal->tty); 2592 /* 2593 * Inherit has_child_subreaper flag under the same 2594 * tasklist_lock with adding child to the process tree 2595 * for propagate_has_child_subreaper optimization. 2596 */ 2597 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2598 p->real_parent->signal->is_child_subreaper; 2599 list_add_tail(&p->sibling, &p->real_parent->children); 2600 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2601 attach_pid(p, PIDTYPE_TGID); 2602 attach_pid(p, PIDTYPE_PGID); 2603 attach_pid(p, PIDTYPE_SID); 2604 __this_cpu_inc(process_counts); 2605 } else { 2606 current->signal->nr_threads++; 2607 current->signal->quick_threads++; 2608 atomic_inc(¤t->signal->live); 2609 refcount_inc(¤t->signal->sigcnt); 2610 task_join_group_stop(p); 2611 list_add_tail_rcu(&p->thread_node, 2612 &p->signal->thread_head); 2613 } 2614 attach_pid(p, PIDTYPE_PID); 2615 nr_threads++; 2616 } 2617 total_forks++; 2618 hlist_del_init(&delayed.node); 2619 spin_unlock(¤t->sighand->siglock); 2620 syscall_tracepoint_update(p); 2621 write_unlock_irq(&tasklist_lock); 2622 2623 if (pidfile) 2624 fd_install(pidfd, pidfile); 2625 2626 proc_fork_connector(p); 2627 sched_post_fork(p); 2628 cgroup_post_fork(p, args); 2629 perf_event_fork(p); 2630 2631 trace_task_newtask(p, clone_flags); 2632 uprobe_copy_process(p, clone_flags); 2633 user_events_fork(p, clone_flags); 2634 2635 copy_oom_score_adj(clone_flags, p); 2636 2637 return p; 2638 2639 bad_fork_core_free: 2640 sched_core_free(p); 2641 spin_unlock(¤t->sighand->siglock); 2642 write_unlock_irq(&tasklist_lock); 2643 bad_fork_cancel_cgroup: 2644 cgroup_cancel_fork(p, args); 2645 bad_fork_put_pidfd: 2646 if (clone_flags & CLONE_PIDFD) { 2647 fput(pidfile); 2648 put_unused_fd(pidfd); 2649 } 2650 bad_fork_free_pid: 2651 if (pid != &init_struct_pid) 2652 free_pid(pid); 2653 bad_fork_cleanup_thread: 2654 exit_thread(p); 2655 bad_fork_cleanup_io: 2656 if (p->io_context) 2657 exit_io_context(p); 2658 bad_fork_cleanup_namespaces: 2659 exit_task_namespaces(p); 2660 bad_fork_cleanup_mm: 2661 if (p->mm) { 2662 mm_clear_owner(p->mm, p); 2663 mmput(p->mm); 2664 } 2665 bad_fork_cleanup_signal: 2666 if (!(clone_flags & CLONE_THREAD)) 2667 free_signal_struct(p->signal); 2668 bad_fork_cleanup_sighand: 2669 __cleanup_sighand(p->sighand); 2670 bad_fork_cleanup_fs: 2671 exit_fs(p); /* blocking */ 2672 bad_fork_cleanup_files: 2673 exit_files(p); /* blocking */ 2674 bad_fork_cleanup_semundo: 2675 exit_sem(p); 2676 bad_fork_cleanup_security: 2677 security_task_free(p); 2678 bad_fork_cleanup_audit: 2679 audit_free(p); 2680 bad_fork_cleanup_perf: 2681 perf_event_free_task(p); 2682 bad_fork_sched_cancel_fork: 2683 sched_cancel_fork(p); 2684 bad_fork_cleanup_policy: 2685 lockdep_free_task(p); 2686 #ifdef CONFIG_NUMA 2687 mpol_put(p->mempolicy); 2688 #endif 2689 bad_fork_cleanup_delayacct: 2690 delayacct_tsk_free(p); 2691 bad_fork_cleanup_count: 2692 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2693 exit_creds(p); 2694 bad_fork_free: 2695 WRITE_ONCE(p->__state, TASK_DEAD); 2696 exit_task_stack_account(p); 2697 put_task_stack(p); 2698 delayed_free_task(p); 2699 fork_out: 2700 spin_lock_irq(¤t->sighand->siglock); 2701 hlist_del_init(&delayed.node); 2702 spin_unlock_irq(¤t->sighand->siglock); 2703 return ERR_PTR(retval); 2704 } 2705 2706 static inline void init_idle_pids(struct task_struct *idle) 2707 { 2708 enum pid_type type; 2709 2710 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2711 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2712 init_task_pid(idle, type, &init_struct_pid); 2713 } 2714 } 2715 2716 static int idle_dummy(void *dummy) 2717 { 2718 /* This function is never called */ 2719 return 0; 2720 } 2721 2722 struct task_struct * __init fork_idle(int cpu) 2723 { 2724 struct task_struct *task; 2725 struct kernel_clone_args args = { 2726 .flags = CLONE_VM, 2727 .fn = &idle_dummy, 2728 .fn_arg = NULL, 2729 .kthread = 1, 2730 .idle = 1, 2731 }; 2732 2733 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2734 if (!IS_ERR(task)) { 2735 init_idle_pids(task); 2736 init_idle(task, cpu); 2737 } 2738 2739 return task; 2740 } 2741 2742 /* 2743 * This is like kernel_clone(), but shaved down and tailored to just 2744 * creating io_uring workers. It returns a created task, or an error pointer. 2745 * The returned task is inactive, and the caller must fire it up through 2746 * wake_up_new_task(p). All signals are blocked in the created task. 2747 */ 2748 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2749 { 2750 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2751 CLONE_IO; 2752 struct kernel_clone_args args = { 2753 .flags = ((lower_32_bits(flags) | CLONE_VM | 2754 CLONE_UNTRACED) & ~CSIGNAL), 2755 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2756 .fn = fn, 2757 .fn_arg = arg, 2758 .io_thread = 1, 2759 .user_worker = 1, 2760 }; 2761 2762 return copy_process(NULL, 0, node, &args); 2763 } 2764 2765 /* 2766 * Ok, this is the main fork-routine. 2767 * 2768 * It copies the process, and if successful kick-starts 2769 * it and waits for it to finish using the VM if required. 2770 * 2771 * args->exit_signal is expected to be checked for sanity by the caller. 2772 */ 2773 pid_t kernel_clone(struct kernel_clone_args *args) 2774 { 2775 u64 clone_flags = args->flags; 2776 struct completion vfork; 2777 struct pid *pid; 2778 struct task_struct *p; 2779 int trace = 0; 2780 pid_t nr; 2781 2782 /* 2783 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2784 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2785 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2786 * field in struct clone_args and it still doesn't make sense to have 2787 * them both point at the same memory location. Performing this check 2788 * here has the advantage that we don't need to have a separate helper 2789 * to check for legacy clone(). 2790 */ 2791 if ((clone_flags & CLONE_PIDFD) && 2792 (clone_flags & CLONE_PARENT_SETTID) && 2793 (args->pidfd == args->parent_tid)) 2794 return -EINVAL; 2795 2796 /* 2797 * Determine whether and which event to report to ptracer. When 2798 * called from kernel_thread or CLONE_UNTRACED is explicitly 2799 * requested, no event is reported; otherwise, report if the event 2800 * for the type of forking is enabled. 2801 */ 2802 if (!(clone_flags & CLONE_UNTRACED)) { 2803 if (clone_flags & CLONE_VFORK) 2804 trace = PTRACE_EVENT_VFORK; 2805 else if (args->exit_signal != SIGCHLD) 2806 trace = PTRACE_EVENT_CLONE; 2807 else 2808 trace = PTRACE_EVENT_FORK; 2809 2810 if (likely(!ptrace_event_enabled(current, trace))) 2811 trace = 0; 2812 } 2813 2814 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2815 add_latent_entropy(); 2816 2817 if (IS_ERR(p)) 2818 return PTR_ERR(p); 2819 2820 /* 2821 * Do this prior waking up the new thread - the thread pointer 2822 * might get invalid after that point, if the thread exits quickly. 2823 */ 2824 trace_sched_process_fork(current, p); 2825 2826 pid = get_task_pid(p, PIDTYPE_PID); 2827 nr = pid_vnr(pid); 2828 2829 if (clone_flags & CLONE_PARENT_SETTID) 2830 put_user(nr, args->parent_tid); 2831 2832 if (clone_flags & CLONE_VFORK) { 2833 p->vfork_done = &vfork; 2834 init_completion(&vfork); 2835 get_task_struct(p); 2836 } 2837 2838 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2839 /* lock the task to synchronize with memcg migration */ 2840 task_lock(p); 2841 lru_gen_add_mm(p->mm); 2842 task_unlock(p); 2843 } 2844 2845 wake_up_new_task(p); 2846 2847 /* forking complete and child started to run, tell ptracer */ 2848 if (unlikely(trace)) 2849 ptrace_event_pid(trace, pid); 2850 2851 if (clone_flags & CLONE_VFORK) { 2852 if (!wait_for_vfork_done(p, &vfork)) 2853 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2854 } 2855 2856 put_pid(pid); 2857 return nr; 2858 } 2859 2860 /* 2861 * Create a kernel thread. 2862 */ 2863 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2864 unsigned long flags) 2865 { 2866 struct kernel_clone_args args = { 2867 .flags = ((lower_32_bits(flags) | CLONE_VM | 2868 CLONE_UNTRACED) & ~CSIGNAL), 2869 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2870 .fn = fn, 2871 .fn_arg = arg, 2872 .name = name, 2873 .kthread = 1, 2874 }; 2875 2876 return kernel_clone(&args); 2877 } 2878 2879 /* 2880 * Create a user mode thread. 2881 */ 2882 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2883 { 2884 struct kernel_clone_args args = { 2885 .flags = ((lower_32_bits(flags) | CLONE_VM | 2886 CLONE_UNTRACED) & ~CSIGNAL), 2887 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2888 .fn = fn, 2889 .fn_arg = arg, 2890 }; 2891 2892 return kernel_clone(&args); 2893 } 2894 2895 #ifdef __ARCH_WANT_SYS_FORK 2896 SYSCALL_DEFINE0(fork) 2897 { 2898 #ifdef CONFIG_MMU 2899 struct kernel_clone_args args = { 2900 .exit_signal = SIGCHLD, 2901 }; 2902 2903 return kernel_clone(&args); 2904 #else 2905 /* can not support in nommu mode */ 2906 return -EINVAL; 2907 #endif 2908 } 2909 #endif 2910 2911 #ifdef __ARCH_WANT_SYS_VFORK 2912 SYSCALL_DEFINE0(vfork) 2913 { 2914 struct kernel_clone_args args = { 2915 .flags = CLONE_VFORK | CLONE_VM, 2916 .exit_signal = SIGCHLD, 2917 }; 2918 2919 return kernel_clone(&args); 2920 } 2921 #endif 2922 2923 #ifdef __ARCH_WANT_SYS_CLONE 2924 #ifdef CONFIG_CLONE_BACKWARDS 2925 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2926 int __user *, parent_tidptr, 2927 unsigned long, tls, 2928 int __user *, child_tidptr) 2929 #elif defined(CONFIG_CLONE_BACKWARDS2) 2930 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2931 int __user *, parent_tidptr, 2932 int __user *, child_tidptr, 2933 unsigned long, tls) 2934 #elif defined(CONFIG_CLONE_BACKWARDS3) 2935 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2936 int, stack_size, 2937 int __user *, parent_tidptr, 2938 int __user *, child_tidptr, 2939 unsigned long, tls) 2940 #else 2941 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2942 int __user *, parent_tidptr, 2943 int __user *, child_tidptr, 2944 unsigned long, tls) 2945 #endif 2946 { 2947 struct kernel_clone_args args = { 2948 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2949 .pidfd = parent_tidptr, 2950 .child_tid = child_tidptr, 2951 .parent_tid = parent_tidptr, 2952 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2953 .stack = newsp, 2954 .tls = tls, 2955 }; 2956 2957 return kernel_clone(&args); 2958 } 2959 #endif 2960 2961 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2962 struct clone_args __user *uargs, 2963 size_t usize) 2964 { 2965 int err; 2966 struct clone_args args; 2967 pid_t *kset_tid = kargs->set_tid; 2968 2969 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2970 CLONE_ARGS_SIZE_VER0); 2971 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2972 CLONE_ARGS_SIZE_VER1); 2973 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2974 CLONE_ARGS_SIZE_VER2); 2975 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2976 2977 if (unlikely(usize > PAGE_SIZE)) 2978 return -E2BIG; 2979 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2980 return -EINVAL; 2981 2982 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2983 if (err) 2984 return err; 2985 2986 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2987 return -EINVAL; 2988 2989 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2990 return -EINVAL; 2991 2992 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2993 return -EINVAL; 2994 2995 /* 2996 * Verify that higher 32bits of exit_signal are unset and that 2997 * it is a valid signal 2998 */ 2999 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3000 !valid_signal(args.exit_signal))) 3001 return -EINVAL; 3002 3003 if ((args.flags & CLONE_INTO_CGROUP) && 3004 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3005 return -EINVAL; 3006 3007 *kargs = (struct kernel_clone_args){ 3008 .flags = args.flags, 3009 .pidfd = u64_to_user_ptr(args.pidfd), 3010 .child_tid = u64_to_user_ptr(args.child_tid), 3011 .parent_tid = u64_to_user_ptr(args.parent_tid), 3012 .exit_signal = args.exit_signal, 3013 .stack = args.stack, 3014 .stack_size = args.stack_size, 3015 .tls = args.tls, 3016 .set_tid_size = args.set_tid_size, 3017 .cgroup = args.cgroup, 3018 }; 3019 3020 if (args.set_tid && 3021 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3022 (kargs->set_tid_size * sizeof(pid_t)))) 3023 return -EFAULT; 3024 3025 kargs->set_tid = kset_tid; 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * clone3_stack_valid - check and prepare stack 3032 * @kargs: kernel clone args 3033 * 3034 * Verify that the stack arguments userspace gave us are sane. 3035 * In addition, set the stack direction for userspace since it's easy for us to 3036 * determine. 3037 */ 3038 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3039 { 3040 if (kargs->stack == 0) { 3041 if (kargs->stack_size > 0) 3042 return false; 3043 } else { 3044 if (kargs->stack_size == 0) 3045 return false; 3046 3047 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3048 return false; 3049 3050 #if !defined(CONFIG_STACK_GROWSUP) 3051 kargs->stack += kargs->stack_size; 3052 #endif 3053 } 3054 3055 return true; 3056 } 3057 3058 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3059 { 3060 /* Verify that no unknown flags are passed along. */ 3061 if (kargs->flags & 3062 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3063 return false; 3064 3065 /* 3066 * - make the CLONE_DETACHED bit reusable for clone3 3067 * - make the CSIGNAL bits reusable for clone3 3068 */ 3069 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3070 return false; 3071 3072 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3073 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3074 return false; 3075 3076 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3077 kargs->exit_signal) 3078 return false; 3079 3080 if (!clone3_stack_valid(kargs)) 3081 return false; 3082 3083 return true; 3084 } 3085 3086 /** 3087 * sys_clone3 - create a new process with specific properties 3088 * @uargs: argument structure 3089 * @size: size of @uargs 3090 * 3091 * clone3() is the extensible successor to clone()/clone2(). 3092 * It takes a struct as argument that is versioned by its size. 3093 * 3094 * Return: On success, a positive PID for the child process. 3095 * On error, a negative errno number. 3096 */ 3097 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3098 { 3099 int err; 3100 3101 struct kernel_clone_args kargs; 3102 pid_t set_tid[MAX_PID_NS_LEVEL]; 3103 3104 #ifdef __ARCH_BROKEN_SYS_CLONE3 3105 #warning clone3() entry point is missing, please fix 3106 return -ENOSYS; 3107 #endif 3108 3109 kargs.set_tid = set_tid; 3110 3111 err = copy_clone_args_from_user(&kargs, uargs, size); 3112 if (err) 3113 return err; 3114 3115 if (!clone3_args_valid(&kargs)) 3116 return -EINVAL; 3117 3118 return kernel_clone(&kargs); 3119 } 3120 3121 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3122 { 3123 struct task_struct *leader, *parent, *child; 3124 int res; 3125 3126 read_lock(&tasklist_lock); 3127 leader = top = top->group_leader; 3128 down: 3129 for_each_thread(leader, parent) { 3130 list_for_each_entry(child, &parent->children, sibling) { 3131 res = visitor(child, data); 3132 if (res) { 3133 if (res < 0) 3134 goto out; 3135 leader = child; 3136 goto down; 3137 } 3138 up: 3139 ; 3140 } 3141 } 3142 3143 if (leader != top) { 3144 child = leader; 3145 parent = child->real_parent; 3146 leader = parent->group_leader; 3147 goto up; 3148 } 3149 out: 3150 read_unlock(&tasklist_lock); 3151 } 3152 3153 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3154 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3155 #endif 3156 3157 static void sighand_ctor(void *data) 3158 { 3159 struct sighand_struct *sighand = data; 3160 3161 spin_lock_init(&sighand->siglock); 3162 init_waitqueue_head(&sighand->signalfd_wqh); 3163 } 3164 3165 void __init mm_cache_init(void) 3166 { 3167 unsigned int mm_size; 3168 3169 /* 3170 * The mm_cpumask is located at the end of mm_struct, and is 3171 * dynamically sized based on the maximum CPU number this system 3172 * can have, taking hotplug into account (nr_cpu_ids). 3173 */ 3174 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3175 3176 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3177 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3178 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3179 offsetof(struct mm_struct, saved_auxv), 3180 sizeof_field(struct mm_struct, saved_auxv), 3181 NULL); 3182 } 3183 3184 void __init proc_caches_init(void) 3185 { 3186 sighand_cachep = kmem_cache_create("sighand_cache", 3187 sizeof(struct sighand_struct), 0, 3188 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3189 SLAB_ACCOUNT, sighand_ctor); 3190 signal_cachep = kmem_cache_create("signal_cache", 3191 sizeof(struct signal_struct), 0, 3192 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3193 NULL); 3194 files_cachep = kmem_cache_create("files_cache", 3195 sizeof(struct files_struct), 0, 3196 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3197 NULL); 3198 fs_cachep = kmem_cache_create("fs_cache", 3199 sizeof(struct fs_struct), 0, 3200 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3201 NULL); 3202 3203 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3204 #ifdef CONFIG_PER_VMA_LOCK 3205 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3206 #endif 3207 mmap_init(); 3208 nsproxy_cache_init(); 3209 } 3210 3211 /* 3212 * Check constraints on flags passed to the unshare system call. 3213 */ 3214 static int check_unshare_flags(unsigned long unshare_flags) 3215 { 3216 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3217 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3218 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3219 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3220 CLONE_NEWTIME)) 3221 return -EINVAL; 3222 /* 3223 * Not implemented, but pretend it works if there is nothing 3224 * to unshare. Note that unsharing the address space or the 3225 * signal handlers also need to unshare the signal queues (aka 3226 * CLONE_THREAD). 3227 */ 3228 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3229 if (!thread_group_empty(current)) 3230 return -EINVAL; 3231 } 3232 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3233 if (refcount_read(¤t->sighand->count) > 1) 3234 return -EINVAL; 3235 } 3236 if (unshare_flags & CLONE_VM) { 3237 if (!current_is_single_threaded()) 3238 return -EINVAL; 3239 } 3240 3241 return 0; 3242 } 3243 3244 /* 3245 * Unshare the filesystem structure if it is being shared 3246 */ 3247 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3248 { 3249 struct fs_struct *fs = current->fs; 3250 3251 if (!(unshare_flags & CLONE_FS) || !fs) 3252 return 0; 3253 3254 /* don't need lock here; in the worst case we'll do useless copy */ 3255 if (fs->users == 1) 3256 return 0; 3257 3258 *new_fsp = copy_fs_struct(fs); 3259 if (!*new_fsp) 3260 return -ENOMEM; 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * Unshare file descriptor table if it is being shared 3267 */ 3268 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3269 { 3270 struct files_struct *fd = current->files; 3271 3272 if ((unshare_flags & CLONE_FILES) && 3273 (fd && atomic_read(&fd->count) > 1)) { 3274 fd = dup_fd(fd, NULL); 3275 if (IS_ERR(fd)) 3276 return PTR_ERR(fd); 3277 *new_fdp = fd; 3278 } 3279 3280 return 0; 3281 } 3282 3283 /* 3284 * unshare allows a process to 'unshare' part of the process 3285 * context which was originally shared using clone. copy_* 3286 * functions used by kernel_clone() cannot be used here directly 3287 * because they modify an inactive task_struct that is being 3288 * constructed. Here we are modifying the current, active, 3289 * task_struct. 3290 */ 3291 int ksys_unshare(unsigned long unshare_flags) 3292 { 3293 struct fs_struct *fs, *new_fs = NULL; 3294 struct files_struct *new_fd = NULL; 3295 struct cred *new_cred = NULL; 3296 struct nsproxy *new_nsproxy = NULL; 3297 int do_sysvsem = 0; 3298 int err; 3299 3300 /* 3301 * If unsharing a user namespace must also unshare the thread group 3302 * and unshare the filesystem root and working directories. 3303 */ 3304 if (unshare_flags & CLONE_NEWUSER) 3305 unshare_flags |= CLONE_THREAD | CLONE_FS; 3306 /* 3307 * If unsharing vm, must also unshare signal handlers. 3308 */ 3309 if (unshare_flags & CLONE_VM) 3310 unshare_flags |= CLONE_SIGHAND; 3311 /* 3312 * If unsharing a signal handlers, must also unshare the signal queues. 3313 */ 3314 if (unshare_flags & CLONE_SIGHAND) 3315 unshare_flags |= CLONE_THREAD; 3316 /* 3317 * If unsharing namespace, must also unshare filesystem information. 3318 */ 3319 if (unshare_flags & CLONE_NEWNS) 3320 unshare_flags |= CLONE_FS; 3321 3322 err = check_unshare_flags(unshare_flags); 3323 if (err) 3324 goto bad_unshare_out; 3325 /* 3326 * CLONE_NEWIPC must also detach from the undolist: after switching 3327 * to a new ipc namespace, the semaphore arrays from the old 3328 * namespace are unreachable. 3329 */ 3330 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3331 do_sysvsem = 1; 3332 err = unshare_fs(unshare_flags, &new_fs); 3333 if (err) 3334 goto bad_unshare_out; 3335 err = unshare_fd(unshare_flags, &new_fd); 3336 if (err) 3337 goto bad_unshare_cleanup_fs; 3338 err = unshare_userns(unshare_flags, &new_cred); 3339 if (err) 3340 goto bad_unshare_cleanup_fd; 3341 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3342 new_cred, new_fs); 3343 if (err) 3344 goto bad_unshare_cleanup_cred; 3345 3346 if (new_cred) { 3347 err = set_cred_ucounts(new_cred); 3348 if (err) 3349 goto bad_unshare_cleanup_cred; 3350 } 3351 3352 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3353 if (do_sysvsem) { 3354 /* 3355 * CLONE_SYSVSEM is equivalent to sys_exit(). 3356 */ 3357 exit_sem(current); 3358 } 3359 if (unshare_flags & CLONE_NEWIPC) { 3360 /* Orphan segments in old ns (see sem above). */ 3361 exit_shm(current); 3362 shm_init_task(current); 3363 } 3364 3365 if (new_nsproxy) 3366 switch_task_namespaces(current, new_nsproxy); 3367 3368 task_lock(current); 3369 3370 if (new_fs) { 3371 fs = current->fs; 3372 spin_lock(&fs->lock); 3373 current->fs = new_fs; 3374 if (--fs->users) 3375 new_fs = NULL; 3376 else 3377 new_fs = fs; 3378 spin_unlock(&fs->lock); 3379 } 3380 3381 if (new_fd) 3382 swap(current->files, new_fd); 3383 3384 task_unlock(current); 3385 3386 if (new_cred) { 3387 /* Install the new user namespace */ 3388 commit_creds(new_cred); 3389 new_cred = NULL; 3390 } 3391 } 3392 3393 perf_event_namespaces(current); 3394 3395 bad_unshare_cleanup_cred: 3396 if (new_cred) 3397 put_cred(new_cred); 3398 bad_unshare_cleanup_fd: 3399 if (new_fd) 3400 put_files_struct(new_fd); 3401 3402 bad_unshare_cleanup_fs: 3403 if (new_fs) 3404 free_fs_struct(new_fs); 3405 3406 bad_unshare_out: 3407 return err; 3408 } 3409 3410 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3411 { 3412 return ksys_unshare(unshare_flags); 3413 } 3414 3415 /* 3416 * Helper to unshare the files of the current task. 3417 * We don't want to expose copy_files internals to 3418 * the exec layer of the kernel. 3419 */ 3420 3421 int unshare_files(void) 3422 { 3423 struct task_struct *task = current; 3424 struct files_struct *old, *copy = NULL; 3425 int error; 3426 3427 error = unshare_fd(CLONE_FILES, ©); 3428 if (error || !copy) 3429 return error; 3430 3431 old = task->files; 3432 task_lock(task); 3433 task->files = copy; 3434 task_unlock(task); 3435 put_files_struct(old); 3436 return 0; 3437 } 3438 3439 int sysctl_max_threads(const struct ctl_table *table, int write, 3440 void *buffer, size_t *lenp, loff_t *ppos) 3441 { 3442 struct ctl_table t; 3443 int ret; 3444 int threads = max_threads; 3445 int min = 1; 3446 int max = MAX_THREADS; 3447 3448 t = *table; 3449 t.data = &threads; 3450 t.extra1 = &min; 3451 t.extra2 = &max; 3452 3453 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3454 if (ret || !write) 3455 return ret; 3456 3457 max_threads = threads; 3458 3459 return 0; 3460 } 3461